This is rather outdated version
Some (old) papers and reports
- General Description
- Clustering
- Optimization in Dynamic Environments
- Multimodal Optimization
- Receptors Generation
- Idiotypic Networks
- Papers on AIS in Adversarial Machine Learning
Demos
- DAAISY (Data Analysis with Artificial Immune SYstem)
- In English:
-
A brief introduction to AIS,
S. T. Wierzchoń
- In Polish:
-
Rozdział 1 - Wprowadzenie,
S. T. Wierzchoń, "Sztuczne systemy immunologiczne. Teoria i zastosowania",
Akademicka Oficyna Wydawnicza EXIT, Warszawa 2001
-
Sztuczne systemy immunologiczne - zastosowanie w optymalizacji kombinatorycznej, Anna Świtalska (na podstawie pracy dyplomowej, Akademia Podlaska, Siedlce, 2005)
- In English:
-
Results of experiments
from paper: S. T. Wierzchoń, U. Kużelewska,
"Adaptive clusters formation in an Artificial Immune System",
WAE'02
Warsztaty Naukowe: Algorytmy Ewolucyjne i Optymalizacja Globalna,
Kraków, 23-24 wrzesnia 2002, pp. 131-138
(pdf file)
-
S.T. Wierzchoń, U. Kużelewska,
"Stable clusters formation in an artificial immune system",
ICARIS'02
: 1st International Conference on Artificial Immune Systems,
University of Kent at Canterbury, UK September 9th-11th, 2002, pp. 68-75
(pdf file)
- In English:
-
Results of experiments
from paper: K. Trojanowski, S. T. Wierzchoń,
"Memory Management in Artificial Immune System",
ICNNSC'02:
6th International Conference on Neural Networks and Soft Computing,
Zakopane, 11-15 June, 2002.
-
Results of experiments
from paper: K. Trojanowski, S. T. Wierzchoń,
"Immune Memory Control in Artificial Immune System",
WAE'02
Warsztaty Naukowe: Algorytmy Ewolucyjne i Optymalizacja Globalna,
Kraków, 23-24 wrzesnia 2002, pp. 111-118
(pdf file)
- In Polish:
-
S.T. Wierzchoń,"Immune algorithms in action: Optimization of nonstationary functions",
SzI-16'2001: XII Ogólnopolskie Konwersatorium nt.
Sztuczna Inteligencja - nowe wyzwania (badania - zastosowania - rozwój),
Siedlce-Warszawa, 28 listopada 2001, str. 97-106
(pdf file)
- In English:
-
S.T. Wierzchoń
"Function optimization by the immune metaphor.
Task Quarterly, vol. 6, no. 3 (2002), pp. 493-508
(pdf file)
- In English:
-
S.T. Wierzchoń;
"Deriving concise description of non-self patterns in an artificial immune system",
L. C. Jain, J. Kacprzyk, eds, New Learning Paradigm in Soft Computing,
Physica-Verlag 2002, ISBN 3-7908-1436-9, pp. 438-458
(pdf file)
-
S.T. Wierzchoń;
"Discriminative power of the receptors activated by k-contiguous bits rule",
(Invited paper) Journal of Computer Science and Technology.
Special Issue on Research Computer Science, vol. 1, no. 3, 2000, pp. 1-13
(ps file)
-
S.T. Wierzchoń;
"Generating optimal repertoire of antibody strings in an artificial immune system",
M.A.Kłopotek, M.Michalewicz, S.T.Wierzchoń, eds:
Intelligent Information Systems.
Advances in Soft Computing Series of Physica-Verlag/Springer Verlag,
Heidelberg/ New York 2000, pp. 119-133
(ps file)
- In English:
-
K. Trojanowski, M. Sasin;
"The Idiotypic Network with Binary Patterns Matching",
H. Bersini, J. Carneiro, eds, Artificial Immune Systems, ICARIS 2006,
LNCS 4163, pp. 95-108, 2006, ISBN 3-540-37749-2
(conference presentation - pdf file)
- AIS:
- S.T. Wierzchon, Brief intro to AIS
- X. Xie et al. Immunology for AI
- Raczej stare, ale mozna spojrzec Immunology as a Metaphor for Adaptive and Distributed Information Processing (2007)
- Biologically Inspired Mechanisms for Adversarial Robustness (2020)
- Artificial Immune System LARK
- Understanding immunity: an alternative framework beyond defense and strength BIOLOGIA czysta
- Adversarial Learning:
- Coursera: What Is Adversarial Machine Learning?
- What Is an Adversarial AI Attack?
- How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses (2024)
- Adversarial Examples in Modern Machine Learning: A Review (2019)
- Adversarial Attacks and Defences: A Survey (2018) 1030 cytowan
- A survey on adversarial attacks and defences (2020)
- Adversarial Training Methods for Deep Learning: A Systematic Review (2022)
- A Systematic Review of Adversarial Machine
Learning Attacks, Defensive Controls, and Technologies, 2024
- Adversarial Attack and Defense: A Survey (2022)
- Classification of Adversarial Attacks Using Ensemble Clustering Approach, 2022
- Is Data Clustering in Adversarial Settings Secure?, 2018
- linki od p. Lidii Moryc:
- On Adaptive Attacks to Adversarial Example Defenses, 2020
- Towards Evaluating the Robustness of Neural Networks, 2016
- Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples, 2016
- Explaining and Harnessing Adversarial Examples, 2014
- Immune-based apprtoaches to AL:
- Artificial Immune System of Secure Face Recognition Against Adversarial Attacks, 2024, code
- Defense Mechanisms Against Adversarial Attacks: Strengthening AI Security in Cybersecurity Applications, 2025
- Advancements in Defense Mechanisms against Adversarial Attacks in Computer Vision, 2024
- Defending Against Adversarial Attacks in Artificial Intelligence Technologies, 2025
- Defending local poisoning attacks in multi-party learning via immune system, 2022
- Adversarial attacks on medical machine learning, 2019
- Modeling Biological Immunity to Adversarial Example (2020) - models of perception are discussed
- Adopting Immunological Metaphors in Cybersecurity Applications (2022) A highly philosophical thesis
- Books:
- Digital Immune System: Principles and Practices, 2025
- Generative Adversarial Learning: Architectures and Applications To chyba mozna sciagnac na uczelni
- book on adversarial learnin.