
Control of Immune Memory in Artificial Immune System

Krzysztof Trojanowski1), Sławomir T. Wierzchoń1,2)

1) Institute of Computer Science, Polish Academy of Sciences
01-237 Warszawa, ul. Ordona 21

e-mail: {trojanow,stw}@ipipan.waw.pl

2) Department of Computer Science, Białystok Technical University
15-351 Białystok, ul. Wiejska 45a

Introduction

As stated by [Wilke99], evolutionary scenarios – studied to understand different phenomena
of living systems – can be divided into three large classes. When looking at a system from a
single species standpoint, we can find that the species evolve (i) in a constant environment,
(ii) in a changing environment whose properties cannot be altered by the species, or (iii) in a
changing environment that reacts to feedback from the species. By species we mean a
population of individual entities subjected to mutation and selection. Thus the world of
species covers not only plants or animals but also self-replicating molecules, pure information
carriers such as computer programs or populations of bitstrings used in artificial chemistry
[Dittrich00], genetic algorithms, or artificial immune systems [Wierzchoń01]. The first of the
three classes mentioned above is most-intensively studied: let us mention works on population
genetics, e.g. [Gale90], quasispecies, [Eigen71], or standard genetic algorithms. Surprisingly,
class (iii) has also been studied by many authors: let us mention ecological investigations, e.g.
[Freedman80] or interspecies interactions analysed by the artificial life community, consult
e.g. [Adami98].

Concerning the second class, we should mention [Wilke99] where Eigen’s quasispecies
model in a variable environment was intensively studied. Interestingly, the model proposed by
Eigen in 1971 (and concerned with infinite populations) was one of the first exact
mathematical studies of the interplay of mutation and selection on a molecular level. The
recent analysis of genetic algorithm, [Nimwegen97] although dealing with finite populations
has its roots in the quasispecies model. An alternative approach refers to the idea of immune
system, consult [Wierzchoń01]. It was tested in the papers [TrojanowskiWierzchon02] and
[TrojanowskiWierzchon02a], where an interested reader can find the algorithm and relevant
literature. Our aim – inspired by the earlier paper [Wierzchoń01a] – was to trace the immune
memory emergence and its usefulness in optimising. In [Trojanowski, Wierzchoń02a] it was
shown, that the presence of memory can improve efficiency of the artificial immune system in
searching for optima of non-stationary environments, however the main problem was a form
of memory control, i.e. memory structure, and rules of remembering, reminding and
forgetting. It should be mentioned here, that the idea of employing memory mechanisms in
heuristic optimisation (but in the other heuristic than the immune system, i.e. in evolutionary
algorithms) was already studied by Trojanowski and Michalewicz in e.g.
[Trojanowski,Michalewicz99]. Memory proved its positive influence on the effectiveness of
evolutionary optimisation in non-stationary environments. It introduces into the algorithm a
primitive form of learning, which comes to be helpful especially in case of cyclically

changing environments. In this paper our goal was to find memory control rules, which would
be appropriate for the immune system.

In this study we compare two methods of memory control. In both methods there exists a
memory buffer in artificial immune system. The buffer is one and only one, it is common for
all individuals in the system and may contain many individuals obtained during the search
process. The size of the memory buffer is constant during the time of search.

Experiments

The two already mentioned methods have different population architectures. In the first one
there is one population which exchanges information with memory buffer, and in the second
one, there are two populations, which can write to memory but only one of them can read.

Single-population method

Here, the system consists of a population of antibodies, which perform search process over
the search space and a memory buffer storing complete individuals remembered during the
search. The population is initialised randomly once at the beginning of the search and
continues its search after every change in optimised environment without any significant
modification of a group of individuals. The only modification performed after change (which
represents presentation of another antigen to the immune system) is concerned with exchange
of a single individual with the memory buffer.

Double-population method

In this approach there are two population of antibodies: the first one, called population of
explorers, represents primary response of an immune system, and the second one, called
exploitative population, represents secondary response of the system. There is also a memory
buffer, which represents memory cells of the system. This architecture of populations
corresponds to the idea proposed by Branke in [Branke99].

After every change in the optimised environment, both populations start their search processes
in parallel at the same time. The difference is in starting points of these populations.
Population of explorers starts with randomly generated and therefore uniformly distributed
over the search space population of individuals. Exploitative population takes the best
individual form the memory (here "the best" means that all individuals from the memory
buffer are re-evaluated with evaluation function after change, and then the best one is
selected), and builds its population using this individual as a "seed". All individuals in
exploitative population are created by light mutation of the seed. Then the search process
starts. During the search process populations do not disturb each other, i.e. do not exchange
any information. They just compete in the race to the optimum. Returned value of this
searching pair is the better individual of the best individuals of the two populations.

Memory control

We tested two forms of memory control: for single-population architecture of a system and
for double-population architecture. For both of forms, three mechanisms concerned with
memory access are discussed: remembering, forgetting and recalling.

1) Memory control for a single-population architecture
a) Rules of remembering - at the first iteration of the search process memory buffer is

empty. Then, at the end of every iteration the best individual in the population, which
was also the best in previous iteration, is added to the memory buffer. Note that it is
not enough to be the best individual just once, but an individual has to be the best in
two iterations one by one, to be remembered. What is remembered (i.e. the content of
memory buffer) increases as the generation number increases.

b) Rules of forgetting - when the buffer is full, the solution with minimal affinity value is
deleted to make room for a new one.

c) Rules of recalling - memory is recalled every time the change appears in the
environment. This is the time when all the individuals in the current population are re-
evaluated (to take into account the effect of changes). Then, if any of the remembered
individuals is better than the best individual in the population, then it will be replaced
with the current one.

2) Memory control for a double-population architecture

a) Rules of remembering - at the first iteration of the search process memory buffer is
empty. Then, after every change in the testing environment, the better individual of the
best individuals of the two populations: population of explorers and exploitative
population are added to the memory buffer. Thus, what is remembered (i.e. the content
of memory buffer) increases as the generation number increases.

b) Rules of forgetting - when the buffer is full, the solution with minimal affinity value is
deleted to make room for a new one.

c) Rules of recalling - memory is recalled every time the change appears in the
environment to initiate the exploitative population. Then, best found individual takes
role of a seed for exploitative population.

Testing environment

A set of experiments was performed. We did three groups of experiments with two types of
environments. Our test-bed was a test-case generator proposed in
[Trojanowski,Michalewicz99]. The generator creates a convex search space, which is a
multidimensional hypercube. It is divided into a number of disjoint subspaces of the same size
with defined simple unimodal functions of the same shape but possibly different value of
optimum. In case of two-dimensional search space we simply have a patchy landscape, i.e. a
chess-board with a hill in the middle of every field. Hills do not move but cyclically change
their heights what makes the landscape varying in time. The goal is to find the current highest
hill. In our experiments there was a sequence of fields with varying hills' heights. Other fields
of the space were static. We did experiments with two-dimensional search space where the
chess-boards were of size 4 by 4, i.e. with 16 fields, and of size 6 by 6, i.e. with 36 fields.
Thus the search spaces consisted of 15 local optima and one global optimum in the first case,
and of 35 local optima and one global optimum in the second one. We tested four shapes of
the sequence of non-stationary fields presented in Figure 2. In the figure, values in cells are
weights of unimodal fuctions of the respective fields, which control heights of the hills. In
other words the function located at the (i,j)-field is of the form fij(x,y) = wij×g(x-ai, y-bj),
where g is a fixed unimodal function and (ai, bj) is the central point of this field. Lower index
at the value in the cell represents the position of the field in the sequence of presented optima.
The environments #1 and #3 (left part of Figure 2) were test-beds for experiments with cyclic

changes, while the environments #2 and #4 (right part of Figure 2) were test-beds for
experiments with both cyclic and acyclic changes. The aim of these experiments was to trace
efficiency of primary (acyclic changes) and secondary (cyclic changes) immune response to
the antigens (i.e. current optima). For experiments with cyclic changes a single epoch obeys 5
cycles of changes. In all the experiments each antigen has been presented through 10
iterations. Thus, in case of the environment #1 a single epoch took 200 iterations, in case of
the environment #2 - 400 iterations, in case of the environment #3 - 300 iterations, and in case
of the environment #4 - 600 iterations. Experiments with non-cyclic changes were based on
the environments #2 and #4 and a single epoch included just one cycle of changes and took 80
and 120 iterations respectively.

0.1 0.1 0.1 0.5 4 0.546 5 0.100 0.100 0.146 4
0.1 0.1 0 3 0.1 0.100 0.500 6 0.500 3 0.100
0.1 0.5 2 0.1 0.1 0.100 0.546 2 0.146 7 0.100
1 1 0.1 0.1 0.1 1.000 1 0.100 0.100 0.000 8

16 112 06

0.655 0.4711 0.075

0.254 0.6510 0.254

0.03 0.53 0.59

0.252 0.652 0.258

0.651 0.471 0.077

Figure 1. Environments #1 (top left), #2 (top right), #3 (bottom left) and #4 (bottom right) - shapes of the
sequence of non-stationary fields in testing environments.

For the six environments described above we did series of experiments with external memory
buffer of different sizes - from zero to 50. Every experiment was repeated through 100 epochs
and in the later figures we always study average values of these 100 epochs. For the results
estimation we used a measure proposed in [Trojanowski,Michalewicz99]: Accuracy.
Accuracy is a difference between the value of the current best individual in the population of
the "just before the change" generation and the optimum value averaged over the entire run.
For this measure the smaller values are the better results.

Obtained results

Obtained values of Accuracy are presented in the figures. In every figure we compare two
graphs for the two method described above.

Cyclic changes

The results of cyclic changes are presented in Figure 2 (env. #1) Figure 3 (env. #2), Figure 4
(env. #3), and Figure 5 (env. #4).

Figure 2. Results for experiments with 11 sizes of memory buffer (from 0 to 50) performed with two methods:
single-population (Serie 1) and double-population (Serie 2) approach for environment #1 (cyclic changes).

Figure 3. Results for experiments with 11 sizes of memory buffer (from 0 to 50) performed with two methods:
single-population (Serie 1) and double-population (Serie 2) approach for environment #2 (cyclic changes).

Figure 4. Results for experiments with 11 sizes of memory buffer (from 0 to 50) performed with two methods:
single-population (Serie 1) and double-population (Serie 2) approach for environment #3 (cyclic changes).

0

100

200

300

av
g

va
lu

e
fo

r 1
00

 e
xp

er
im

en
ts

Serie1 194.61 236.38 132.24 158.64 144.7 153.07 177.76 136.97 132.82 164.13 157.09

Serie2 135.43 54.9 39.142 37.317 40.811 37.277 38.063 34.136 46.687 38.288 30.233

0 5 10 15 20 25 30 35 40 45 50

0

100

200

300

av
g

va
lu

e
fo

r 1
00

 e
xp

er
im

en
ts

Serie1 115.08 285.65 146.14 116.08 94.385 96.982 98.172 114.22 102.35 119.42 86.349

Serie2 149.69 127.5 46.647 47.948 44.098 43.545 46.962 53.005 49.273 51.71 46.293

0 5 10 15 20 25 30 35 40 45 50

0

100

200

300

av
g

va
lu

e
fo

r 1
00

 e
xp

er
im

en
ts

Serie1 123.84 215.95 150.81 129.72 116.42 130.45 122.12 122.14 121.86 122.25 137.8

Serie2 175.09 143.31 91.936 85.685 86.001 83.891 87.446 80.96 82.406 80.395 85.116

0 5 10 15 20 25 30 35 40 45 50

Figure 5. Results for experiments with 11 sizes of memory buffer (from 0 to 50) performed with two methods:
single-population (Serie 1) and double-population (Serie 2) approach for environment #2 (cyclic changes).

Non-cyclic changes

The results of non-cyclic changes are presented in Figure 6 (env. #2) and Figure 7 (env. #4).

Figure 6. Results for experiments with 11 sizes of memory buffer (from 0 to 50) performed with two methods:
single-population (Serie 1) and double-population (Serie 2) approach for environment #2 (non-cyclic changes).

Figure 7. Results for experiments with 11 sizes of memory buffer (from 0 to 50) performed with two methods:
single-population (Serie 1) and double-population (Serie 2) approach for environment #2 (non-cyclic changes).

0

100

200

300

av
g

va
lu

e
fo

r 1
00

 e
xp

er
im

en
ts

Serie1 117.17 263.94 227.97 187.24 143.12 121.94 124.68 118.44 128.16 125.27 125.13

Serie2 201.14 203.04 173.07 138.81 118.22 100.42 95.02 92.505 97.287 92.943 94.755

0 5 10 15 20 25 30 35 40 45 50

0

100

200

300

400

500

av
g

va
lu

e
fo

r 1
00

 e
xp

er
im

en
ts

Serie1 352.95 430.98 389.88 402.99 439.26 313.88 374.29 412.36 407.64 345.4 297.14

Serie2 178.43 199.24 206.82 213.14 186.25 171.4 223.73 175.72 199.13 175.6 169.87

0 5 10 15 20 25 30 35 40 45 50

0

100

200

300

400

500

av
g

va
lu

e
fo

r 1
00

 e
xp

er
im

en
ts

Serie1 283.18 288.19 296.2 295.26 291.98 282.46 285.39 294.15 313.22 301.34 288.02

Serie2 197.66 233.88 225.58 244.28 244.71 233.82 264.3 248.12 230.34 240.93 238.62

0 5 10 15 20 25 30 35 40 45 50

Conclusions

Results obtained for the single-population approach applied to cyclically changing
environments show, that too small memory buffer can significantly decrease quality of
obtained results. With increasing size of memory buffer, we can observe that obtained results
are getting better. Additionally, when the memory size exceeds a threshold value, which is
different for different environments, the result values stabilise and become as good as the ones
of experiments without memory or in some cases even slightly better. However, in general it
is easy to come to convinction that memory cannot help much with non-stationary
optimisation process.

Completely different results were obtained for experiments with cyclically changing
environments and with the double-population approach. We can see that artificial immune
system with even small memory buffer is better than the pure system. However, every type of
changes in the environment has a kind of limes in memory buffer size, such that for
algorithms with larger memory buffer, obtained results are almost the same while the
computation cost is obviously higher. The value of this limes, i.e. optimal memory buffer size
is the most probably concerned with a length of a cycle of changes. This conclusion can be
confirmed by observation that for environment with a cycle of changes of length 12, the
results stopped to be improved for memory buffer of size 30 (Figure 5) while for a cycle of
changes of length 6 - for memory buffer of size 15 (Figure 4). However, a shape of a path of
changes should be also taken into account in this considerations (compare also Figures 2 and
3).
Experiments with cyclically changing environment showed that the form of memory control
plays key role in efficiency of the artificial immune system, and forces a form of architecture
of populations in the system.

For experiments with non-cyclically changing environments, both approaches did not improve
obtained results too much and sometimes even decreased their quality. Obtained graphs
(Figures 6 and 7) show that differences between results for experiments with and without
memory are not significant and do not show any dependency between memory buffer size and
quality of obtained results.

Finally, we can also see, that in three of four environments with cyclic changes, the better
results were obtained when algorithm continued search after change with the same population,
as before the change. The results were worse when algorithm every time started from scratch
(see Figures 2, 3, 4 and 5 - accuracy values for experiments with memory buffer of size zero).

References

[Adami98] Adami, C. Introduction to Artificial Life. Santa Clara: Telos, Springer-Verlag
1998

[Branke99] Branke, J., Memory Enhanced Evolutionary Algorithm for Changing
Optimization Problems, Proc. of the 1999 Congress on Evolutionary Computation -
CEC'99, IEEE Publishing, pp. 1875-1882

[Dittrich00] Dittrich, P. Zielgler, J., Banzhaf, W. Artificial chemistries. A review. Artificial
Life, 7 (2001) 225 – 275

[Eigen71] Eigen, M. Selforganization of matter and the evolution of biological
macromolecules. Naturwissenschaften 58 (1971)465-523

[Freedman80] Freedman, H.I. Deterministic Mathematical Models in Population Ecology.
New York: Marcel Dekker 1080

[Gale90] Gale, J.S. Theoretical Population Genetics. London: Unwin Hyman 1990
[Trojanowski,Michalewicz99] Trojanowski,K., and Michalewicz, Z., Searching for optima in

non-stationary environments, Proc. of the 1999 Congress on Evolutionary
Computation - CEC'99, IEEE Publishing, pp.1843-1850

[Trojanowski,Wierzchoń02] Trojanowski K., Wierzchoń S. T., Memory Management in
Artificial Immune System, presented at International Conference on Neural Nets and
Soft Computing, ICNNSC 2002, Zakopane, Poland, proceedings to be printed in
Physica-Verlag, Advances in Soft Computing series.

[Trojanowski,Wierzchoń02a] Trojanowski K., Wierzchoń S. T., Searching for Memory in
Artificial Immune System, Intelligent Information Systems 2002. Proceedings of the
IIS'2002 Symposium, Sopot, Poland, June 3-6, 2002. Heidelberg 2002, Physica-
Verlag, Advances in Soft Computing.

[Nimwegen97] van Nimwegen, E., Crutchfield, J.P., and Mitchell, M. Statistical dynamics of
the royal road genetic algorithm. SFI Working Paper 97-04-035, Santa Fe 1997

[Wierzchoń01] Wierzchoń, S.T. Artificial Immune Systems. Theory and Applications (in
Polish). Akademicka Oficyna Wydawnicza EXIT, Warszawa 2001. ISBN 83-87674-
30-3, 282+vii pp.

[Wierzchoń01a] Wierzchoń, S.T. Algorytmy immunologiczne w działaniu: optymalizacja
funkcji niestacjonarnych. XII Ogólnopolskie Konwersatorium nt. Sztuczna
Inteligencja – nowe wyzwania. SzI-16'2001, Siedlce-Warszawa, 28 listopada 2001,
Akademia Podlaska, PAN., WAT, s. 97-106

[Wilke99] Wilke, C.O. Evolutionary dynamics in time-dependent environments. Ph. D.
Thesis, Dept. of Physics and Astronomy, Ruhr-Universität Bochum, Bochum 1999

	Non-cyclic changes

