Publications
-
Paweł Teisseyre, Konrad Furmanczyk, Jan Mielniczuk, Verifying the Selected Completely at Random Assumption in Positive-Unlabeled Learning, Proceedings of the European Conference on Artificial Intelligence ECAI’24, 2024.
-
Wojciech Rejchel, Paweł Teisseyre, Jan Mielniczuk
Joint empirical risk minimization for instance-dependent positive-unlabeled data, Knowledge-Based Systems, 2024.
-
Anna Skowrońska, Siamala Sinnadurai, Paweł Teisseyre, Patrycja Gryka, Agnieszka Doryńska, Magdalena Dzierwa, Mariusz Gąsior, Marcin Grabowski, Karol Kamiński, Jarosław D Kasprzak, Jacek Kubica, Maciej Lesiak, Bartosz Szafran, Mariusz Wójcik, Jarosław Pinkas, Radosław Sierpiński, Ryszard Gellert, Piotr Jankowski,
First-year follow-up costs of myocardial infarction management in Poland from payer's perspective, Polish Heart Journal (Kardiologia Polska), 2024.
-
Wangduk Seo, Sung-Hyun Cho, Paweł Teisseyre, Jaesung Lee, A Short Survey and Comparison of CNN-Based Music Genre Classification Using Multiple Spectral Features, IEEE Access, 2024.
-
Tomasz Klonecki, Paweł Teisseyre, Feature selection under budget constraint in medical applications: analysis of penalized empirical risk minimization methods, Applied Intelligence, 2023.
-
Małgorzata Kupisz-Urbańska, Piotr Jankowski, Roman Topór-Mądry, Michał Chudzik, Mariusz Gąsior, Robert Gil, Patrycja Gryka, Zbigniew Kalarus, Jacek Kubica, Jacek Legutko, Przemysław Mitkowski, Jarosław Pinkas, Radosław Sierpiński, Janina Stępińska, Zbigniew Siudak, Paweł Teisseyre, Adam Witkowski, Urszula Zielińska-Borkowska, Tomasz Zdrojewski, Ryszard Gellert,
Survival in nonagenarians with acute myocardial infarction in 2014–2020: A nationwide analysis, Polish Heart Journal (Kardiologia Polska), 2023.
-
Konrad Furmanczyk, Jan Mielniczuk, Wojciech Rejchel, Paweł Teisseyre, Double Logistic Regression Approach to Biased Positive-Unlabeled Data, Proceedings of the European Conference on Artificial Intelligence ECAI’23, 2023.
-
Tomasz Klonecki, Paweł Teisseyre, Jaesung Lee, Cost-constrained Group Feature Selection Using Information Theory, Proceedings of the International Conference Modeling Decisions for Artificial Intelligence, MDAI'23, 2023.
-
Tomasz Klonecki, Paweł Teisseyre, Jaesung Lee, Cost-constrained feature selection in multilabel classification using an information-theoretic approach, Pattern Recognition, 2023.
-
Tae-Won Lee, Paweł Teisseyre, Jaesung Lee, Effective Exploitation of Macroeconomic Indicators for Stock Direction Classification using the Multimodal Fusion Transformer, IEEE Access, 2023.
-
Paweł Teisseyre, Jaesung Lee, Multilabel all-relevant feature selection using lower bounds of conditional mutual information, Expert Systems with Applications, 2023.
-
Paweł Teisseyre, Joint feature selection and classification for positive unlabelled multi-label data using weighted penalized empirical risk minimization, International Journal of Applied Mathematics and Computer Science, 2022.
-
Ewelina Pośpiech, Paweł Teisseyre, Jan Mielniczuk, Wojciech Branicki, Predicting Physical Appearance from DNA Data—Towards Genomic Solutions, Genes, 2022.
-
M. Kukla-Bartoszek, P. Teisseyre, E. Pośpiech, J. Karłowska-Pik, P. Zieliński, A. Woźniak, M. Boroń, M. Dąbrowski, M. Zubańska, A. Jarosz, R. Płoski, T. Grzybowski, M. Spólnicka, J. Mielniczuk, W. Branicki,
Searching for improvements in predicting human eye colour from DNA, International Journal of Legal Medicine, 2021.
-
P. Teisseyre, T. Klonecki, Controlling Costs in Feature Selection: Information Theoretic Approach, Proceedings of the International Conference on Computational Science ICCS’21, 2021.
-
J. Mielniczuk, P. Teisseyre, Detection of Conditional Dependence Between Multiple Variables Using Multiinformation, Proceedings of the International Conference on Computational Science ICCS’21, 2021.
-
M. Łazęcka, J. Mielniczuk, P. Teisseyre,
Estimating the class prior for positive and unlabelled data via logistic regression, Advances in Data Analysis and Classification, 2021.
-
M. Kubkowski, J. Mielniczuk, P. Teisseyre, How to Gain on Power: Novel Conditional Independence Tests Based on Short Expansion of Conditional Mutual Information, Journal of Machine Learning Research, Volume 22(62), 1−57, 2021.
-
P. Teisseyre, Classifier chains for positive unlabelled multi-label learning, Knowledge-Based Systems, Volume 213, 2021.
-
P. Teisseyre, Learning classifier chains using matrix regularization: application to multi-morbidity prediction, Proceedings of the European Conference on Artificial Intelligence ECAI’20, 2020.
-
P. Teisseyre, Jan Mielniczuk, M. Łazęcka, Different strategies of fitting logistic regression for positive and unlabelled data, Proceedings of the International Conference on Computational Science ICCS’20, 2020.
-
P. Teisseyre, Jan Mielniczuk, M. J. Dąbrowski, Testing the Significance of Interactions in Genetic Studies Using Interaction Information and Resampling Technique, Proceedings of the International Conference on Computational Science ICCS’20, 2020.
-
M. Kukla-Bartoszek, E. Pospiech, A. Wozniak, M. Boron, J. Karlowska-Pik, P. Teisseyre, M. Zubanska, A. Bronikowska, T. Grzybowski, R. Ploski, M. Spolnicka, W. Branicki, DNA-based predictive models for the presence of freckles, Forensic Science International: Genetics, Volume 42, 252-259, 2019.
-
J. Mielniczuk, P. Teisseyre, Stopping rules for mutual information-based feature selection, Neurocomputing, Volume 358(17), 255-274, 2019.
-
P. Teisseyre, D. Zufferey, M. Slomka, Cost-sensitive classifier chains: Selecting low-cost features in multi-label classification, Pattern Recognition, Volume 86, 290-319, 2019.
-
M. Pawluk, P. Teisseyre, J. Mielniczuk, Information-Theoretic Feature Selection Using High-Order Interactions,
Proceedings of the 4th International Conference LOD, Volterra, Italy, 2019.
-
M. J. Dabrowski, M. Draminski, K. Diamanti, K. Stepniak, M. A. Mozolewska, P. Teisseyre, J. Koronacki, J. Komorowski, B. Kaminska and B. Wojtas, Unveiling new interdependencies between significant DNA methylation sites, gene expression profiles and glioma patients survival, Scientific Reports, Volume 8, 1-12, 2018.
-
J. Mielniczuk, P. Teisseyre, Deeper Look at Two Concepts of Measuring Gene-Gene Interactions: Logistic Regression and Interaction Information Revisited, Genetic Epidemiology, Volume 42 (2) 187-200, 2018.
-
P. Teisseyre, CCnet: joint multi-label classification and feature selection using classifier chains and elastic net regularization, Neurocomputing, Volume 235, 98-111, 2017.
-
M. Sydow, K. Baraniak, P. Teisseyre, Diversity of editors and teams versus quality of cooperative work: experiments on wikipedia, Journal of Intelligent Information Systems, Volume 48 (3), 601–632, 2017.
-
P. Teisseyre, Feature ranking for multi-label classification using Markov Networks, Neurocomputing, Volume 205, 439-454, 2016.
-
P. Teisseyre, R. A. Klopotek, J. Mielniczuk, Random Subspace Method for High-Dimensional Regression with the R Package regRSM, Computational Statistics, Volume 31(3), 943-972, 2016 .
-
J. Mielniczuk, P. Teisseyre,
What do we choose when we err? Model selection and testing for misspecied logistic regression revisited,
Challenges in Computational Statistics and Data Mining, Volume: 605 of the series Studies in Computational Intelligence, 271--296, 2015.
- P. Przybyła, P. Teisseyre,
What do your look-alikes say about you? Exploiting strong and weak similarities for author profiling, Notebook for PAN at CLEF 2015.
- P. Przybyła, P. Teisseyre,
Analysing Utterances in Polish Parliament to Predict Speaker's Background, Journal of Quantitative Linguistics, Volume 21 (4), 2014.
- J. Mielniczuk, P. Teisseyre,
Using Random Subspace Method for Prediction and Variable Importance Assesment in Regression, Computational Statistics and Data Analysis, Volume 71, 725-742, 2014.
-
J. Mielniczuk, P. Teisseyre,
Selection of regression and autoregression models with initial ordering of variables, Communications in Statistics, Theory and Methods, Volume 41 (24), 4484 - 4502, 2012.
-
J. Mielniczuk, P. Teisseyre, Selection and prediction for linear models using Random Subspace Methods, Proceedings of the Conference Information Technologies: Research and their Interdisciplinary Applications, 2012.
- J. Mielniczuk, P. Teisseyre,
Model selection in logistic regression using p-values and greedy search, Security and Intelligent Information Systems. LNCS 7053, Springer-Verlag Berlin Heidelberg, 128-141, 2011.
-
L. Stapp, M. Pilarski, P. Stapp, P. Zgadzaj, P. Teisseyre, Dynamic Time Warping as a method for observing load possibility for CDN clusters, Proceedings of The Second International Multi-Conference on Complexity, Informatics, Cybernetics, Orlando, Florida, USA, 2011.
PhD thesis
-
P. Teisseyre, On some methods of model selection for linear and logistic regression, PhD dissertation, Warsaw, 2013.