
All True Concurrency Models Start
with Petri Nets: A Personal Tribute
to Carl Adam Petri

Wojciech Penczek

1 Starting from Petri Nets

Paraphrasing ‘All roads lead to Rome’ one might say ‘All true concurrency models
start with Petri nets.’ So, in my case, Petri nets have been my first research topic.
Initially, I investigated their algebraic properties, but later my work focused on
verification of Petri nets using various model reduction techniques and symbolic
model-checking approaches.

1.1 Petri Nets Have Always Been Around

My first contact with Petri nets was in 1984–1985 during my studies at Warsaw
University of Technology and the University of Warsaw. Then I learned the basic
definitions of this true concurrency model for distributed systems and could enjoy
its attractive graphical representations.

In 1986 when I joined the Institute of Computer Science of the Polish Academy
of Sciences, my work, supervised by Prof. Antoni Mazurkiewicz, was focused on
prime event structures, traces, and trace systems. I have been impressed by the match
between trace systems and condition-event systems, their elegant composition and
decomposition methods, and how the trace theory is used as a tool for reasoning
about the behavior of Petri nets [5]. Later, I could also see how extensions of traces,

W. Penczek (�)
Institute of Computer Science, PAS, Warsaw, Poland

Siedlce University of Natural Sciences and Humanities, Institute of Computer Science (ICS),
Siedlce, Poland
e-mail: penczek@ipipan.waw.pl

© Springer Nature Switzerland AG 2019
W. Reisig, G. Rozenberg (eds.), Carl Adam Petri: Ideas, Personality, Impact,
https://doi.org/10.1007/978-3-319-96154-5_24

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96154-5_24&domain=pdf
mailto:penczek@ipipan.waw.pl
https://doi.org/10.1007/978-3-319-96154-5_24

194 W. Penczek

such as infinite traces or semi-traces, are used for modeling behaviors of more
involved variants of Petri nets.

1.2 Meeting Carl Adam Petri at GMD

My first foreign research trip was to the ‘Gesellschaft fur Mathematik und Datenver-
arbeitung’ (GMD, Society for Mathematics and Information Technology) in 1988.
Invited by Prof. Ursula Goltz I spent a few weeks at GMD, having the privilege of
meeting there famous people working on Petri nets. These were Wolfgang Reisig,
Eike Best, Kurt Lautenbach, and finally I was introduced to Carl Adam Petri. This
was a very short meeting and we only exchanged a few sentences, but I do remember
this contact very well, being under a very strong impression of the personality of
Prof. Petri who was kindly interested in my research. He asked about my scientific
interests and the aim of my visit to GMD. This personal contact with Prof. Petri has
strongly influenced my scientific career and the topics of my interest. Most of my
further research results have been concerned with verification of Petri nets.

2 Verification of Time Petri Nets

My work on verification of (time) Petri nets started with several results concerning
abstractions and partial order reductions [8, 9]. In 2001 these were the main methods
for alleviating the state explosion problem of state spaces. Regardless of the true
concurrency nature of Petri nets, their state spaces built on marking graphs may
grow exponentially in the number of transitions or can be infinite in the case of time
Petri nets. So, efficient verification was possible only after abstracting or reducing
the state spaces. Many verification methods for time Petri nets were adapted from
those developed for Timed Automata and vice versa [10]. One of the most important
examples is minimization algorithms for time Petri nets [12] exploiting partitioning
refinement. Then, we put forward methods based on bounded model checking using
BDDs as well as SAT- and SMT-solvers, applied to both concrete and abstract state
spaces [4, 6, 7, 11, 13].

In order to discuss verification methods of time Petri nets in more detail, it is
useful to recall their definition.

Definition 1 A time Petri net (TPN) is a six-tuple N = (P, T , F,m◦, Ef t, Lf t),
where

• P = {p1, . . . , pnp} is a finite set of places,
• T = {t1, . . . , tnT } is a finite set of transitions, where P ∩ T = ∅,
• F : (P × T) ∪ (T × P) → N is the flow function, where N is the set of natural

numbers, including 0,
• m0 : P → N is the initial marking of N ,

All True Concurrency Models Start with Petri Nets 195

p7

t5t2

p6p4 p8

p5

t3

p2

p3p1 t4t1

111

1 1

1 1

11

11

11

t6
1

1

[1,2]

[0,3]

[1,2]

[1,1]

[1,2]
[1,2]

Fig. 1 A time Petri net

• Ef t : T → N, Lf t : T → NU{∞} are functions describing respectively the
earliest firing time and the latest firing time of the transitions, where clearly
Ef t(t) ≤ Lf t(t) for each t ∈ T .

A four-tuple (P, T , F,m0) is called a Petri net.

An example of a time Petri net is shown in Fig. 1. The values of the functions Ef t

and Lf t are given by Ef t(t) = 1 and Lf t(t) = 2 for t ∈ {t1, t3, t5, t6}, Ef t(t2) =
0, Lf t(t2) = 3, and Ef t(t4) = Lf t(t4) = 1.

Intuitively, a marking specifies how many tokens (denoted by the black dots) are
stored in particular places. Firing of a transition consumes a number of tokens from
its input places and produces a number of tokens in its output places; the above
numbers are given by the corresponding values of F (represented in the figure by
the numbers decorating the arrows connecting those pairs of a place and a transition
for which the value of F is not equal to zero).

Intuitively, a transition t is enabled if all its input places contain a sufficient
number of tokens to be consumed by the flow function. The earliest and latest firing
times of a transition t specify the timing interval in which t can be fired. If the
time passed since the transition t has become enabled reaches the value Lft(t), the
transition has to be fired, unless disabled by a firing of another transition. In order
to simplify some subsequent notions, we consider only nets satisfying the following
two conditions:

• the flow function F maps onto {0, 1}, so F can be identified with the relation
F ⊆ (P × T) ∪ (T × P), and

• the number of tokens that can be stored in a place is limited to 1, so m0 can be
identified with the set of places m0 assigns to 1. Introducing such a limit changes
slightly the conditions under which a transition is enabled, which can be seen
below.

In order to describe models for time Petri nets we need to give some basic
definitions.

Let t ∈ T be a transition.

– By the preset of t we mean the set of its input places •t = {p ∈ P |F(p, t) = 1}.

196 W. Penczek

– By the postset of t we mean the set of its output places t• = {p ∈ P |F(t, p) =
1}.

– By a marking of N we mean any subset m ⊆ P .
– A transition t is enabled at m(m[t〉 for short) if •t ⊆ m and t • ∩(m \ • t) = ∅,

i.e., m contains each input place of t , and m does not contain any output place of
t except for these places which are both input and output places of t .

– By en(m) = {t ∈ T |m[t〉} we mean the set of transitions enabled at m.
– If t is enabled at m, then t leads from m to the marking m′ = (m \ • t) ∪ t•.

2.1 Concrete Models of TPNs

A concrete state records a snapshot of the behavior of a TPN. In order to verify
whether a system modeled by a TPN satisfies some properties, we need to represent
the set of all its concrete states, defined below, together with their valuation, with
propositions, which are used for formulating the properties. Such a structure is
called a concrete model. Typically, one of two approaches to building concrete
models is applied, depending on whether the flow of time is recorded by real
variables, called clocks, or firing intervals. We discuss the clock approach in more
detail.

A concrete state of a TPN is a pair σ = (m, clock), where m is a marking
and clock is a function that gives values to the clocks that can be associated with
the transitions or the places. If a net is distributed, i.e., composed of well-defined
sequential processes, then the clocks can be also assigned to its processes [10]. The
explanation below is for the clocks assigned to the transitions. The initial state is
denoted by σ 0 = (m0, (0, . . . , 0)). The concrete state changes because of either
the firing of an enabled transition t ∈ T for which Ef t(t) ≤ clock(t) ≤ Lf t(t),

denoted σ
t−→c σ′, or the passing of some time provided this does not disable any

enabled transition, denoted σ
t−→c σ ′, where τ is a special symbol. Notice that τ

does not specify how much time passed, but it is used to label the time transitions.
Since our aim is to verify temporal (i.e., changing in time) properties of

markings of a TPN N = (P, T , F,m0,Eft,Lft), we use the propositional variables
corresponding to its places. Formally, let PV = {℘p\p ∈ P } be a set of
propositional variables, where the propositional variable ℘p corresponds to a place
p ∈ P .

Definition 2 (Concrete Model for TPN) A concrete model for a time Petri net
N = (P, T , F,m0, Ef t, Lf t) is a tuple Mc(N) = ((�, σ 0,→c), Vc), where

• � is the set of all the concrete states of N ,
• σ 0 is the initial state,
• →c is the transition relation, and
• Vc : � → PV is a valuation function such that Vc((m, ·)) = {℘p | p ∈ m} i.e.,

Vc assigns the same propositions to concrete states with the same markings.

All True Concurrency Models Start with Petri Nets 197

To abstract from the flow of time in the transition relation, in the definition of a
concrete model instead of −→c one can use also the discrete transition relation

→d ⊆ �×T ×�, defined as: σ
t−→d σ ′ iff (∃σ1, σ2 ∈ �)σ

τ∗−→c σ1
t−→c σ2

τ∗−→c σ ′.
Unfortunately, concrete models are typically infinite. Therefore, we need to

abstract them into preferably finite abstract ones, i.e., models whose nodes are sets
of concrete states. The transitions of the abstract models are labeled with elements
of the set B = T ∪ {τ }, consisting of the transitions T of N and the special symbol
τ, as defined below.

Definition 3 (Abstract Model for TPN) A structure Ma(N) = ((W,w0,→), V)

is an abstract model for a concrete model MC(N) = ((S, s0,→), Vc), where

• each node w ∈ W is a set of states of S and s0 ∈ w0,
• V (w) = Vc(s) for each s ∈ w,
• →⊂ W × B × W such that

EE : (∀w1, w2 ∈ W) (∀b ∈ B) : w1
b−→ w2 if (∃s1 ∈ w1)(∃s2 ∈ w2) s.t. s1

b−→ s2.

The condition EE is illustrated in Fig. 2.
Definition 3 is very general, so it needs to be refined in order to ensure that

abstract models preserve the properties expressible in a given temporal logic.
Moreover Definition 3 does not give any clue how to build abstract models. We
elaborate on these two issues in the next two sections.

2.2 Abstract Models Preserving Temporal Logics

Properties of timed systems are usually expressed using temporal logics. In this
section our focus is on the logics that are most commonly, used, i.e., Linear Time
Temporal Logic (LTL) and Computation Tree Logic∗ (CTL∗); see Chapter 4 of [10].
LTL is interpreted over all the state sequences of a model starting at the initial state,
while CTL∗ is interpreted over the tree resulting from unwinding a model starting

b

b b

b

Fig. 2 An example of an abstract model satisfying the condition EE. The ovals represent the
abstract states, the black dots stand for the concrete states, and the red (blue) arrows represent
the concrete (abstract, resp.) transitions. Valuations of the nodes are omitted. The same graphical
conventions apply to Figs. 3, 4, and 5

198 W. Penczek

from the initial state. The formulas of LTL and of CTL∗ are built from propositional
variables of PV using standard Boolean operators ¬, v, ∧, and the state operators
X (neXt), U (Until), and R (Release), the meanings of which correspond to their
names. Since CTL∗ is interpreted over trees, its language contains also the two path
quantifiers A (for All sequences) and E (there Exists a sequence) that allow us (to
apply the state operators to some sequence or to all sequences starting at some state.
We also use the restriction of CTL∗, called ACTL∗, such that negation can only
by applied to the propositional variables and the operator E cannot be used. For
example, X{℘pU℘q) is an LTL formula, AG(EX(℘pU℘q)) is a formula of CTL∗,
while AG(AX(℘pU℘q)) is an ACTL∗ formula.

Three more properties, EA, AE, and U, of abstract models are defined below
in order to ensure the preservation of the three temporal logics, LTL, CTL∗,
and ACTL∗, respectively. Surjective models are abstract models that satisfy the
condition EA, given below.

These models preserve the logic LTL.

EA : (∀w1, w2 ∈ W) (∀b ∈ B) : w1
b−→ w2 ⇒ (∀s2 ∈ w2) (∃s1 ∈ w1)s1

b−→ s2.

The condition EA is illustrated in Fig. 3.
Bisimulating models are abstract models that satisfy the condition AE, defined

below. These models preserve the logic CTL∗.

AE : (∀w1, w2 ∈ W) (∀b ∈ B) : w1
b−→ w2 ⇒ (∀s1 ∈ w1) (∃s2 ∈ w2)s1

b−→ s2.

The condition AE is illustrated in Fig. 4.
Simulating models are abstract models that satisfy the condition U, defined

below. These models preserve the logic ACTL∗.
U: For each w ∈ W there is a nonempty wcor ⊆ w such that s0 ∈ (w0)cor , and

(∀w1, w2 ∈ W) (∀b ∈ B) : w1
b−→ w2 ⇒ (∀s1 ∈ w1

cor
) (∃s2 ∈ w2

cor
)
s1

b−→ s2.

The condition U is illustrated in Fig. 5, where the blue ovals denote subsets wcor

of the abstract states and the blue-dashed-violet arrows represent the abstract
transitions.

Fig. 3 An example of an
abstract model satisfying the
condition EA

b1 b1 b2

b2b1

All True Concurrency Models Start with Petri Nets 199

Fig. 4 An example of an
abstract model satisfying the
condition AE b1 b2

b1 b1 b2 b2

Fig. 5 An example of an
abstract model satisfying the
condition U

b1 b2

b1 b1 b2

There are different methods of generating abstract models, descriptions of which
can be found in [10]. One of the main methods, called partitioning refinement, starts
with a small abstract model preserving only the propositional variables of a given
formula. Then, this abstract model is refined by splitting states until one of the
properties EA, AE, or U begins to hold, depending on which temporal logic the
formula belongs to. Abstract models constructed this way are finite, thus they allow
the standard model-checking method to be applied.

2.3 Partial Order Reductions (POR) [8]

However, it may turn out that the abstract models defined above are still too
large to be efficiently verified. Then, we can weaken languages of temporal
logics by disallowing the use of the next-step operator. This is indicated with
−X added to the name of each logic. Then, the equivalence to be preserved by
a reduced model is weakened as well. Such an equivalence relation preserving
CTL∗−X (ACTL∗−X, LTL−X) is called stuttering bisimulation (simulation, trace
equivalence, respectively).

The intuitive idea behind partial order reductions consists in generating reduced
abstract models such that for each maximal path p in the abstract model, the reduced
one contains at least one (but as few as possible) maximal path p′, which differs
from p only in the ordering of independent transitions. This independence relation
is symmetric and is defined for Petri nets as follows. Two transitions t , t ′ are
independent iff (•t ∪ t•)∩(•t ′ ∪ t ′•) = ∅, i.e., t and t ′ have no common input and no
common output places. In the case of time Petri nets one can define an asymmetric
covering relation by t covers t ′ iff t, t ′ are independent and Ef t(t) = 0.

200 W. Penczek

There are many algorithms that use this independency or covering relation to
generate a reduced model without building the full one. At each node w of the
generated reduced state space, the algorithm computes a subset (called stubborn or
ample) of the set of all the enabled transitions and generates the successor nodes for
the transitions of this subset only.

2.4 Symbolic Model Checking for TPN

At the Institute of Computer Science, Polish Academy of Sciences we have
developed several new methods for verification of (parametric) time Petri nets. We
considered two symbolic approaches, SAT- and BDD-based, to bounded model
checking (BMC) of (parametric) time Petri nets and focused on the properties
expressed in Linear Temporal Logic and the existential fragment of Computation
Tree Logic. More specifically, we developed a SAT-based (parametric) reachability
method for a class of distributed time Petri nets [11], which are TPNs composed
of sequential processes, BMC approaches for verification of distributed time Petri
nets [7], bounded parametric model checking for Petri nets [4], and a BDD-based
BMC method for temporal properties of 1-Safe Petri nets [6]. Moreover, we proved
and exploited the fact that the discrete-time semantics is sufficient to verify the
properties formulated in the existential and the universal version of CTL∗ of time
Petri nets with the dense semantics [2]. Recently, an SMT-based reachability-
checking method for bounded time Petri nets was defined [13].

2.5 Verics

Our tool Verics [3] is a model checker composed of several independent mod-
ules aimed at verification of (parametric) time Petri nets, timed automata, and
multiagent systems. The verification engine is mainly based on translations of
the model-checking problem into the SAT problem. Depending on the type of
considered system, the verifier enables us to test various classes of properties—from
reachability of a state satisfying certain conditions to more complicated features
expressed with formulas of (timed) temporal, epistemic, or deontic logics. The
implemented model-checking methods include SAT-based ones as well as these
based on generating abstract models for systems.

2.6 SAT-Based Bounded Model Checking

Bounded model checking is a symbolic method aimed at verification of temporal
properties of distributed (timed) systems. It is based on the observation that some

All True Concurrency Models Start with Petri Nets 201

properties of a system can be checked using only a part of its model. In order
to apply SAT-based BMC to testing whether a system satisfies a certain (usually
undesired) property, the transition relation of a given system is unfolded up to
some depth k and encoded as a propositional formula. The formula expressing the
property of interest is encoded as a propositional formula as well and satisfiability
of the conjunction of these two formulas is checked using a SAT-solver. If the
conjunction is satisfiable, one can conclude that a witness was found. Otherwise,
the value of k is incremented. The above process is terminated when the value of k

is equal to the diameter of the system, i.e., to the maximal length of a shortest path
between its two arbitrary states.

2.7 Encoding for PN and TPN

Below we show how to encode the paths of length k. A set of global states is
represented by a single symbolic state, i.e., as a vector of propositional variables
w (called a state variable vector). Then, k+1 state variable vectors stand for a
symbolic k-path, where the first symbolic state encodes the initial state of the system
while the last one corresponds to the last states of the k-paths. The formula encoding
the symbolic k-path is defined as follows:

pathk

(
w0, . . . ,wk

)
= I

(
w0

)
∧

k−1∧

i=0

T
(
wi ,wi+1

)
(1)

where I(w0) encodes the initial state of the system, and T(wi ,wi+1) encodes a
transition between symbolic states represented by the global state vectors wi and
wi+1.

In what follows we briefly describe how to define T(wi ,wi+1) for PN and TPN.

Implementation for PN Consider a Petri net N = (P, T , F,m0), where the places
are denoted by the integers smaller than or equal to n = |P |. We use the set
{p1, . . . , pn} of propositions, where pi is interpreted as the presence of a token in
the place i. The states of S are encoded by valuations of a vector of state variables
w = (w[1], . . . ,w[n]), where w[i] = pi for 0 ≤ i ≤ n. The initial state and the
transition relation → are encoded as follows:

– I
(
w0

) := ∧
i∈m0 w0[i] ∧ ∧

i∈P \m0 ¬w0[i],
– T (w, v) := ∨

t∈T

(∧
i∈•t w [i] ∧ ∧

i∈(t•\pre(t)) ¬w [i] ∧ ∧
i∈(•t\t•) ¬v [i] ∧

∧
i∈t• v [i] ∧ ∧

i∈(p\(•t∪t•))∪(•t∩t•) w [i] ⇔ v [i]
)

.

A more detailed description and the encoding of the formulas of the existential
fragment of CTL can be found in [11].

202 W. Penczek

Implementation for Distributed TPN The main difference between the symbolic
encoding of the transition relation of PN and TPN consists in the time flow. Below,
we give some details of the encoding for distributed TPN. A current state of a TPN
N is given by its marking and the time passed since each of the enabled transitions
became enabled (which influences the future behavior of the net). Thus, a concrete
state σ of N can be defined as an ordered pair (m, clock), where m is a marking and
clock : : I → R+ is a function, which for each index i of a process of M gives the
time elapsed since the marked place of this process became marked most recently
[12]. In order to deal with countable structures instead of uncountable ones, we can
use extended detailed region graphs, i.e., abstract models based on the well-known
detailed region graphs introduced by Alur et al. for timed automata [1].

To apply the BMC approach we deal with a model obtained by a discretization
of its extended detailed region graph. The model is of an infinite but countable
structure, which, however, is sufficient for BMC (which deals with finite sequences
of states only). Instead of dealing with the whole extended detailed region graph,
we discretize this structure, choosing for each region one or more appropriate
representatives. The discretization scheme is based on the one for timed automata
[14], and it preserves the qualitative behavior of the underlying system. The details
and the formal definitions can be found in [11].

2.8 Bounded Parametric Model Checking

BMC is also applied to verification of properties expressed in the existential
fragment of the logic PRTCTL, which is an extension of Computation Tree Logic
(CTL) by allowing the formulation of properties involving lengths of paths in
a model. For example, consider EG≤5℘, which expresses the fact that there is
a path such that in the first six states of this path ℘ holds. Another example
is ∀�1≤1∃�2≤2EF≤�1+�2℘, which expresses the fact that for each value of the
parameter �1 not greater than 1 there is a value of the parameter �2 not exceeding
2 such that ℘ can be reached at a prefix of length at most �1 + �2 + 1 of some
path. The propositions appearing in these formulas correspond to the places of the
net considered. In order to apply verification using BMC, the qualitative properties
expressed in PRTECTL are directly encoded as propositional formulas.

3 Final Remarks

We have discussed some features of verification that are specific to Petri nets, in
particular model abstraction techniques, partial order reductions, and SAT-based
bounded-model-checking methods for (time) Petri nets.

All True Concurrency Models Start with Petri Nets 203

Verification of (time) Petri nets is a very active area of research with many new
verification methods emerging every year. This is motivated by broad practical
applications of time Petri nets to model concurrent systems, real-time systems,
stochastic systems, and hybrid systems. It is also important to mention that the
efficiency of tools for (time) Petri nets is improving every year (see http://mcc.lip6.
fr/).

Acknowledgements The author is grateful to Dr. Agata Półrola for reading and commenting on
this paper, which is mainly based on the joint book [10] and joint research.

References

1. R. Alur, C. Courcoubetis, D. Dill, Model checking in dense real-time. Inf. Comput. 104(1),
2–34 (1993)

2. A. Janowska, W. Penczek, A. Półrola, A. Zbrzezny, Using integer time steps for checking
branching time properties of time Petri nets. in Trans. Petri Nets and Other Models of
Concurrency, ed. by M. Koutny, W.M.P. van der Aalst, A. Yakovlev. LNCS, vol. 8100(8)
(Springer, Berlin, 2013), pp. 89–105

3. M. Knapik, A. Niewiadomski, W. Penczek, A. Półrola, M. Szreter, A. Zbrzezny, Parametric
model checking with VerICS, in Trans. Petri Nets and Other Models of Concurrency, ed. by
M. Knapik et al. LNCS, vol. 6550(4) (Springer, Berlin, 2010), pp. 98–120

4. M. Knapik, M. Szreter, W. Penczek, Bounded parametric model checking for elementary net
systems, in Trans. Petri Nets and Other Models of Concurrency, ed. by M. Knapik et al. LNCS,
vol. 6550(4), 42–71 (Springer, Berlin, 2010)

5. A. Mazurkiewicz. Trab theory, in Advances in Petri Nets 1986, ed. by W. Braner, W. Reisig,
G. Rozenberg. LNCS, vol. 255 (Springer, Berlin, 1986), pp. 279–324

6. A. Mȩski, W. Penczek, A. Półrola, BDD-based bounded model checking for temporal
properties of 1-safe Petri nets. Fundam. Inform. 109(3), 305–321 (2011)

7. A. Mȩski, A. Półrola, W. Penczek, B. Woźzna-Szcześniak, A. Zbrzezny, Bounded model
checking approaches for verification of distributed time Petri nets, in Proceedings of the
International Workshop on Petri Nets and Software Engineering (PNSE’11) (2011), pp. 72–
91

8. W. Penczek, A. Półrola, Abstractions and partial order reductions for checking branching
properties of time Petri nets, in Proceedings of the 22nd International Conference on
Applications and Theory of Petri Nets (ICATPN’01), ed. by J.M. Colom, M. Koutny. LNCS,
vol. 2075 (Springer, Berlin, 2001), pp. 323–342

9. W. Penczek, A. Półrola, Specification and model checking of temporal properties in time Petri
nets and timed automata, in Proceedings of the 25th International Conference on Applications
and Theory of Petri Nets (ICATPN ’04), ed. by J. Cortadella, W. Reisig. LNCS, vol. 3099
(Springer, Berlin, 2004), pp. 37–76

10. W. Penczek, A. Półrola, Advances in Verification of Time Petri Nets and Timed Automata: A
Temporal Logic Approach. Studies in Computational Intelligence, vol. 20 (Springer, Berlin,
2006)

11. W. Penczek, A. Półrola, A. Zbrzezny, SAT-based (parametric) reachability for a class of
distributed time Petri nets, in Trans. Petri Nets and Other Models of Concurrency, ed. by M.
Knapik et al. LNCS, vol. 6550(4) (Springer, Berlin, 2010), pp. 72–97

http://mcc.lip6.fr/
http://mcc.lip6.fr/

204 W. Penczek

12. A. Półrola, W. Penczek, Minimization algorithms for time Petri nets. Fundam. Inform. 60(1–4),
307–331 (2004)

13. A. Półrola, P. Cybula, A. Meski, SMT-based reachability checking for bounded time Petri nets.
Fundam. Inform. 135(4), 467–882 (2014)

14. A. Zbrzezny, SAT-based reachability checking for timed automata with diagonal constraints.
Fundam. Inform. 67(1–3), 303–322 (2005)

	All True Concurrency Models Start with Petri Nets: A Personal Tribute to Carl Adam Petri
	1 Starting from Petri Nets
	1.1 Petri Nets Have Always Been Around
	1.2 Meeting Carl Adam Petri at GMD

	2 Verification of Time Petri Nets
	2.1 Concrete Models of TPNs
	2.2 Abstract Models Preserving Temporal Logics
	2.3 Partial Order Reductions (POR) ch24:bib8
	2.4 Symbolic Model Checking for TPN
	2.5 Verics
	2.6 SAT-Based Bounded Model Checking
	2.7 Encoding for PN and TPN
	2.8 Bounded Parametric Model Checking

	3 Final Remarks
	References

