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Abstract. Reaction systems are a formal model for specifying and
analysing computational processes in which reactions operate on sets of
entities (molecules), providing a framework for dealing with qualitative
aspects of biochemical systems. This paper is concerned with reaction
systems in which entities can have discrete concentrations and reactions
operate on multisets of entities, providing a succinct framework for deal-
ing with quantitative aspects of systems. This is facilitated by a dedicated
linear-time temporal logic which allows one to express and verify a wide
range of behavioural system properties.

In practical applications, a reaction system with discrete concentra-
tions may only be partially specified, and effective calculation of the
missing details would provide an attractive design approach. To develop
such an approach, this paper introduces reaction systems with parame-
ters representing the unknown parts of the reactions. The main result is
a method which attempts to replace these parameters in such a way that
the resulting reaction system operating in a given external environment
satisfies a given temporal logic formula. We provide a suitable encoding
of parametric reaction systems in smt, and outline a synthesis procedure
based on bounded model checking for solving the synthesis problem. We
also provide preliminary experimental results demonstrating the feasibil-
ity of the new synthesis method.

The seminal paper [11] introduced a fundamental reaction systems model
for computational processes inspired by the functioning of a living cell. The
model can capture in a very simple way the basic mechanisms underpinning the
dynamic behaviour of a living cell. A key feature of reaction systems is that
the latter results from the interactions of biochemical reactions based on the
mechanisms of facilitation and inhibition, i.e., the products of reactions may
facilitate or inhibit each other. The basic model of reaction systems represents
the reactions, states, and dynamic processes using (tuples of) finite sets, and so
it directly captures the qualitative aspects of systems. Having said that, more
involved concepts can be introduced using the basic ones.
c© Springer International Publishing AG, part of Springer Nature 2018
S. Stepney and S. Verlan (Eds.): UCNC 2018, LNCS 10867, pp. 131–144, 2018.
https://doi.org/10.1007/978-3-319-92435-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92435-9_10&domain=pdf


132 A. Męski et al.

Reaction system related research topics have so far been motivated by bio-
logical issues or by a need to understand computations/processes underlying the
dynamic behaviour of reaction systems (see, e.g., [9,10]). A number of extensions
were also introduced, e.g., reaction systems with time [12], reaction systems with
durations [5], and quantum and probabilistic reaction systems [16]. Mathemati-
cal properties of reaction systems were investigated in, e.g., [1,7,8,13–15,23–26].

Examples of applications of reaction systems to modelling of systems include,
e.g., [4,6]. Verification of reaction systems was discussed in, e.g., [2,3,20]. The
papers [19,22] introduced reaction systems with discrete concentrations of enti-
ties and reactions operating on multisets of entities, resulting in a model allow-
ing direct quantitative modelling. Although there exist other approaches that
support modelling of complex dependencies of concentration levels and their
changes, e.g., chemical reaction networks theory based on [17], reaction systems
provide much simpler framework and the processes of reaction systems take into
account interactions with the external environment. Discrete concentrations can
be simulated in the original qualitative reaction systems, but reaction systems
with discrete concentrations provide much more succinct representations in terms
of the number of entities being used, and allow for more efficient verification [19].
The properties being verified are expressed in rsltl which is a version of the
linear-time temporal logic defined specifically for reaction systems.

In practical applications, a reaction system with discrete concentrations may
have only partially specified reactions, and a reaction mining i.e., an effective
filling in the missing details would provide an attractive design approach. To
develop such an approach, this paper introduces reaction systems with param-
eters representing the unknown parts of the reactions. The main result is a
methodology which attempts to replace these parameters in such a way that
the resulting reaction system satisfies a given rsltl formula when operating
in a given external environment. Intuitively, such a formula might correspond
to a number of observations (runs) of the behaviour of a partially specified sys-
tem. Moreover, the environment is specified using a context automaton which
represents the influence of the bigger system in which the reaction system with
discrete concentrations operates. We provide a suitable encoding of parametric
reaction systems in smt, and propose a synthesis procedure based on bounded
model checking for solving the synthesis problem. We also provide preliminary
successful experimental results demonstrating the scalability of the new synthe-
sis method. The paper is organised in the following way. In the next section, we
recall the basic notations and definitions used by reaction systems with discrete
concentrations. Section 2 introduces parametric reaction systems, and the fol-
lowing section defines smt-based encoding of such systems. Section 4 discusses
experimental evaluation of the synthesis approach introduced in this paper, and
Sect. 5 draws some concluding remarks.

1 Preliminaries

A multiset over a set X is a mapping b : X → {0, 1, . . . }, and its carrier is
carr(b) = {x ∈ X | b(x) > 0}. The empty multiset ∅X is one with the empty
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carrier. B(X) denotes the set of all multisets over X. For a finite B ⊂ B(X),
�(B) is the multiset over X such that �(B)(x) = max({0} ∪ {b(x) | b ∈ B}),
for every x ∈ X. For b,b′ ∈ B(X), b ≤ b′ if b(x) ≤ b′(x), for every x ∈ X.

We use x �→ i for denoting the multiplicity of x in multisets; e.g., {x �→1, y �→2}
is a multiset with one copy of x, two copies of y, and nothing else. If the multiplicity
of an entity is 1, we may also simply omit the value, e.g., {x, y �→2}.

The syntax ofmultiset expressions BE (X) is defined by the following grammar:
a :: = true | e ∼ c | e ∼ e | ¬a | a ∨ a, where ∼ ∈ {<,≤,=,≥, >}, e ∈ X, c ∈ IN.
Then b |=b a means that a holds for b ∈ B(X) assuming that:

b |=b true for every b ∈ B(X),
b |=b e ∼ c iff b(e) ∼ c,
b |=b e ∼ e′ iff b(e) ∼ b(e′),
b |=b ¬a iff b �|=b a,
b |=b a ∨ a′ iff b |=b a or b |=b a

′.

Reaction Systems with Discrete Concentrations. The enabling of biochemical
reactions may depend not only on the availability of reactants and the absence
of inhibitors, but also on their concentration levels. We will now recall an exten-
sion of the basic reaction systems with explicit representation of the discrete
concentration levels of entities (the k-th level of concentration of x is repre-
sented by a multiset containing k copies of x). The model uses multisets rather
than sets of entities, but otherwise retains key features of the original framework.

A reaction system with discrete concentrations (rsc) is a pair rsc = (S,A),
where S is a finite background set (comprising entities) and A is a nonempty finite
set of reactions over the background set. Each reaction is a triple a = (r, i,p)
such that r, i, p are nonempty multisets over S with r(e) < i(e), for every
e ∈ carr(i). The multisets r, i, and p are respectively denoted by ra, ia, and pa

and called the reactant, inhibitor, and product concentration levels of reaction a.
An entity e is an inhibitor of a whenever e ∈ carr(ia).

A reaction a ∈ A is enabled by t ∈ B(S), denoted ena(t), if ra ≤ t and
t(e) < ia(e), for every e ∈ carr(ia). The result of a on t is given by resa(t) = pa

if ena(t), and by resa(t) = ∅S otherwise. Then the result of A on t is resA(t) =
�{resa(t) | a ∈ A}.

Intuitively, t is a state of a biochemical system being modelled, and t(e) is
the concentration level of each entity e (e.g., t(e) = 0 indicates that e is not
present in the current state while t(e) = 1 indicates that e is present at its
lowest concentration level). A reaction a is enabled by t and can take place if
the current concentration levels of all its reactants are at least as high as those
specified by ra, and the current concentration levels of all its inhibitors (i.e.,
entities in the carrier of ia) are below the thresholds specified by ia.

The above gives the behaviour of an rsc as a closed system. To define its oper-
ation as an open system, we need a suitable representation of the environment.
A context automaton over a background set S is a triple ca = (Q, qinit, R), where
Q is a finite set of states, qinit ∈ Q is the initial state, and R ⊆ Q × B(S) × Q
is the transition relation. We assume that, for every q ∈ Q, there exist c ∈ B(S)
and q′ ∈ Q such that (q, c, q′) ∈ R. We also denote (q, c, q′) ∈ R by q

c−→ q′.
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A context restricted reaction system with discrete concentrations (crrsc) [22]
is a pair crrsc = (rsc, ca) such that rsc = (S,A) is an rsc, and ca = (Q, qinit, R)
is a context automaton over S. The dynamic behaviour of crrsc is captured by
the state sequences of its interactive processes, where an interactive process in
crrsc is a triple π = (ζ, γ, δ) such that:

– ζ = (z0, z1, . . . , zn), γ = (c0, c1, . . . , cn), and δ = (d0,d1, . . . ,dn)
– z0, z1, . . . , zn ∈ Q with z0 = qinit

– c0, c1, . . . , cn,d0,d1, . . . ,dn ∈ B(S) with d0 = ∅S

– (zi, ci, zi+1) ∈ R, for every i ∈ {0, . . . , n − 1}
– di = resA(�{di−1, ci−1}), for every i ∈ {1, . . . , n}.

The sequence γ is the context sequence of π and δ is the result sequence,
while ζ is simply the sequence of states of ca. The state sequence of π is
τ = (w0, . . . ,wn) = (�{c0,d0}, . . . ,�{cn,dn}).
Reaction Systems Linear-Time Temporal Logic. Here we recall the logic (rsltl)
introduced in [22], which captures requirements imposed on paths of crrsc.

The model of a crrsc given by crrsc = (rsc, ca) with rsc = (S,A) and ca =
(Q, qinit, R) is the triple M(crrsc) = (W, winit,−→, L), where: W = B(S)× Q is
the set of states; winit = (∅, qinit) is the initial state; and −→ ⊆ W × B(S)× W

is the transition relation such that, for all w,w′, α ∈ B(S) and q, q′ ∈ Q, we
have ((w, q), α, (w′, q′)) ∈ −→ if (q, α, q′) ∈ R and w′ = resA(�{w, α}).

We write M instead of M(crrsc) when crrsc is understood. We also denote
(w, α, w′) ∈ −→ by w

α−→ w′.
A path of M is an infinite sequence σ = (w0, α0, w1, α1, . . . ) of states and

actions (context multisets) such that wi
αi−→ wi+1, for every i ≥ 0. For every

i ≥ 0, we denote σs(i) = wi = (σb(i), σca(i)) and σa(i) = αi. Moreover, σi =
(wi, αi, wi+1, αi+1, . . . ) is a suffix of σ. By ΠM(w) we denote the set of all the
paths that start in w ∈ W and ΠM =

⋃
w∈W

ΠM(w) is the set of all paths of M.
The syntax of rsltl is given by the following grammar:

φ :: = a | φ ∧ φ | φ ∨ φ | Xaφ | φUaφ | φRaφ,

where a ∈ BE (S). Intuitively, Xaφ means ‘following an action satisfying a, φ
holds in the next state’, φUaφ

′ means ‘φ′ holds eventually, and φ must hold
at every preceding state, following only actions satisfying a’, and φRaφ

′ means
‘following only actions satisfying a, φ′ holds up to and including the first state
where φ holds’.

Let M = (W, winit,−→, L) be a crrsc model and σ ∈ ΠM. The fact that φ
holds over σ is denoted by M, σ |= φ (or σ |= φ if M is understood), where |=
is defined as follows:

σ |= a if σb(0) |=b a
σ |= φ ∨ φ′ if σ |= φ or σ |= φ′

σ |= φ ∧ φ′ if σ |= φ and σ |= φ′

σ |= Xaφ if σa(0) |=b a and σ1 |= φ
σ |= φUaφ

′ if (∃j ≥ 0)(σj |= φ′ and (∀0 ≤ l < j)(σl |= φ and σa(l) |=b a))
σ |= φRaφ

′ if (∀j ≥ 0)(σj |= φ′

or (∃0 ≤ l < j)(σl |= φ and (∀0 ≤ m < l)(σa(m) |=b a))).
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Moreover, a ⇒ φ stands for ¬a ∨ φ, Gaφ for falseRaφ, Faφ for trueUaφ, and
Fφ is the same as Ftrueφ, for every rsltl operator F. Thus, φUφ′ means that
‘φ′ holds eventually, and φ must hold at every preceding state’, and φRφ′ means
that ‘φ′ holds up to and including the first state where φ holds’.

An rsltl formula φ holds in a model M if it holds in all the paths starting in
its initial state, i.e., M |= φ if σ |= φ for all σ ∈ ΠM(winit). A formula φ may
also hold existentially in M, i.e., M |=∃ φ if σ |= φ for some σ ∈ ΠM(winit).

Bounded Semantics for rsltl. We use the bounded model checking approach
which requires us to specify when a given formula holds while considering only
a finite number of states and actions of the prefix of the path being considered.

A path σ = (w0, α0, w1, α1, . . . ) is a (k, l)-loop (or k-loop) if there exist k ≥
l > 0 such that σ = (w0, α0, . . . , αl−2, wl−1)(αl, wl+1, αl+1, . . . , αk−1, wk)ω and
wl−1 = wk. The bounded semantics for rsltl is defined for finite path prefixes.
We define a satisfiability relation that for a given path considers its first k states
and k−1 actions only. The fact that a formula φ holds in a path σ with a bound
k ∈ IN is denoted by σ |=k φ and defined as follows:

– σ is a (k, l)-loop for some 0 < l ≤ k and σ |= φ,
or

– σ |=nl φ, where:
σ |=nl a if σb(0) |=b a
σ |=nl φ ∧ φ′ if σ |=nl φ and σ |=nl φ′

σ |=nl φ ∨ φ′ if σ |=nl φ or σ |=nl φ′

σ |=nl Xaφ if k > 0, σa(0) |=b a, and σ1 |=nl φ
σ |=nl φUaφ

′ if (∃0 ≤ j ≤ k)(σj |=nl φ′ and (∀0 ≤ l < j)(σl |=nl φ
and σa(l) |=b a))

σ |=nl φRaφ
′ if (∃0 ≤ j ≤ k)(σj |=nl φ and ((∀0 ≤ l ≤ j)(σl |=nl φ′)

and (∀0 ≤ l < j)(σa(l) |=b a)))

For a bound k ∈ IN and a crrsc model M, M |=k
∃ φ if there exists σ ∈ ΠM(winit)

such that σ |=k φ. The bounded model checking problem for rsltl is the decision
problem of checking if M |=k

∃ φ, for a given k ∈ IN and M.

Theorem 1 ([22]). Let φ be an rsltl formula and M be a crrsc model. Then,
M |=∃ φ if and only if there exists k ∈ IN such that M |=k

∃ φ.

2 Parametric Reaction Systems

We introduce parametric reaction systems which allow for defining also incom-
plete reactions by using parameters in place of reactant, inhibitor, and prod-
uct sets.

A parametric reaction system (prs) is a triple prs = (S, P,A), where S is
a finite background set, P is a finite set of elements called parameters, and A
is a nonempty finite set of parametric reactions over the background set. Each
parametric reaction in A is a triple a = (r, i, p) such that r, i, p ∈ B(S) ∪ P .



136 A. Męski et al.

The elements r, i, and p are respectively denoted by ra, ia, and pa and called the
reactants, inhibitors, and products of parametric reaction a. A parameter valua-
tion of prs is a function v : P ∪B(S) → B(S) such that v(b) = b if b ∈ B(S). We
also write b←v for v(b). The set of all the parameter valuations for prs is denoted
by PVprs . Let v ∈ PVprs . For X ⊆ A we define X←v = {(a←v

r , a←v
i , a←v

p ) | a ∈ X}.
Then, by prs←v we denote the structure (S,A←v) where all the parameters in A
are substituted according to the parameter valuation v. We say that v ∈ PVprs
is a valid parameter valuation if prs←v yields an rsc.

A context-restricted parametric reaction system (crprs) is a pair crprs =
(prs, ca) such that prs = (S, P,A) is a prs and ca = (Q, qinit, R) is a context
automaton over S. For v ∈ PVprs we define crprs←v = (prs←v, ca).

Example 1. We consider a simple prs for a simplified abstract genetic regula-
tory system based on [9]. The system contains two (abstract) genes x and y
expressing proteins X and Y , respectively, and a protein complex Q formed
by X and Y . The background set is defined as S = {x, x̂,X, y, ŷ, Y, h,Q},
where x̂ and ŷ denote RNA polymerase attached to the promoter of genes x
and y, respectively. Here h is used as an abstract inhibitor. Finally, the set of
parametric reactions consists of the following subsets: Ax = {({x}, {h}, {x}),
({x}, {h}, {x̂}), ({x, x̂}, {h}, {X})}, Ay = {({y}, {h}, λ1), (λ2, {h}, {ŷ}), ({y, ŷ},
{h}, λ3)}, AQ = {({X,Y }, {h}, {Q})}. Notice that the reactions of Ay use
parameters λ1, λ2, λ3 to define expression of the protein Y . Suppose that we
investigate the processes starting from the states that already contain x and
y. This leads to the following definition of the context automaton: ca =

({0, 1}, 0, R), where: R = {0 {x,y}−−−→ 1, 1 ∅−→ 1, 1
{h}−−→ 0)}. When the con-

text set contains the entity h, ca reverts back to the initial state, while for
the empty context set the ca remains in the state 1. Then, crprs is defined as
crprs = ((S, P,A), ca), where: P = {λ1, λ2, λ3} and A = Ax ∪ Ay ∪ AQ. �

In this paper, our focus is on the synthesis of a parameter valuation given
some observations expressed with rsltl formulae. Let crprs = (prs, ca) be a
crprs, and F = {φ1, . . . , φn} be a set of rsltl formulae. The aim of parameter
synthesis for crprs is to find a valid parameter valuation v of crprs such that
(M(crprs←v) |=∃ φ1) ∧ · · · ∧ (M(crprs←v) |=∃ φn). Each formula of F corre-
sponds to an interactive process observed in the analysed system via, e.g., exper-
iments or simulations. Therefore, for each such process we expect an individual
path in M(crprs←v) and we solve n the model checking problems for rsltl in
one instance. However, the parameter valuation v is shared among all instances,
which allows us to calculate v such that all properties of F are satisfied.

Example 2. Let us assume we performed an experiment on the system of Exam-
ple 1 where protein Y was expressed. We have the following observations related
to the expression of the protein Y :

– whenever the current state contains y, then y and ŷ are found in the next
state: φc

1 = G¬h(y ⇒ X(y ∧ ŷ));
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– when y and ŷ are present, then Y is finally produced: φc
2 = G¬h((y ∧ ŷ) ⇒

FY );
– the entities y, ŷ, and Y are eventually produced: φr = (F¬hy) ∧ (F¬hŷ) ∧
(F¬hY ).

These observations are made assuming h is not provided in the context set.
Additionally, we observe that the protein Q is not present in the first three
steps of the execution and then, after an arbitrary number of steps it is finally
produced: φd = ¬Q ∧ X(¬Q ∧ X(¬Q ∧ FQ)). The observations are related to a
single interactive process (experiment), therefore we constrain the problem using
the conjunction of all the observations. Finally, the observations are expressed
using the rsltl formula φ = φr ∧ φc

1 ∧ φc
2 ∧ φd. Next, we perform parameter

synthesis for F = {φ}, that is, we obtain a valid parameter valuation v such that
M(crprs←v) |=∃ φ. A parameter valuation v such that λ←v

1 = {y}, λ←v
2 = {y},

λ←v
3 = {Y } is valid and satisfies the requirements of our observations. �

Parameter Constraints. In some cases restricting parameter valuations using
only rsltl formulae may prove to be less efficient than constraining the valuation
using specialised constraints for the parameters of a prs.

For prs = (S, P,A) the parameter constraints PC (prs) are defined using the
following grammar:

c ::= true | λ[e] ∼ c | λ[e] ∼ λ[e] | ¬c | c ∨ c,

where λ ∈ P , e ∈ S, c ∈ IN, and ∼ ∈ {<,≤,=,≥, >}. Intuitively, λ[e] can be
used to refer to the concentration of e ∈ S in the multisets corresponding to the
valuations of λ.

Let v be a parameter valuation of prs. The fact that c holds in v is denoted
by v |=p c and defined as follows:

v |=p true for every v,
v |=p λ[e] ∼ c if λ←v(e) ∼ c,
v |=p λ1[e1] ∼ λ2[e2] if λ←v

1 (e1) ∼ λ←v
2 (e2),

v |=p ¬c if v �|=p c,
v |=p c1 ∨ c2 if v |=p c1 or v |=p c2.

A constrained parametric reaction system (cprs) is a tuple cprs = (S, P,A, c)
such that (S, P,A) is a prs and c ∈ PC (prs). For v ∈ PVprs , we then define
cprs←v = prs←v. A parameter valuation v ∈ PVprs is valid in cprs if it is valid in
prs and v |=p c. A context-restricted cprs (cr-cprs) is a pair cr -cprs = (cprs, ca)
such that cprs = (S, P,A, c) is a cprs and ca is a context automaton over S. We
also denote cr -cprs←v = (cprs←v, ca).

The proposed language of parameter constraints allows for specifying con-
straints on multisets corresponding to parameters and relationships between
them, which is demonstrated in the following example.

Example 3. Suppose λ1, λ2, λ3 ∈ P . To constrain λ←v
1 to be a sub-multiset of

λ←v
2 (i.e., λ←v

1 ⊆ λ←v
2 , for all v), we define submset(λ1, λ2) =

∧
e∈S(λ1[e] ≤
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λ2[e]). To constrain λ←v
3 to be the intersection of λ←v

1 and λ←v
2 (i.e., λ←v

1 ∩λ←v
2 =

λ←v
3 , for all v), we define intersect(λ1, λ2, λ3) as

∧
e∈S(((λ1[e] > λ2[e]) ∧ (λ3[e] = λ2[e])) ∨ ((λ1[e] ≤ λ2[e]) ∧ (λ3[e] = λ1[e]))).

�
The parameter synthesis problem for cr-cprs is defined similarly as for crprs.

Let cr -cprs = (cprs, ca), F = {φ1, . . . , φn} be a rsltl formulae, and c be a
parameter constraint. The aim is to calculate a valid parameter valuation v
of cr -cprs such that (M(cr -cprs←v) |=∃ φ1) ∧ · · · ∧ (M(cr -cprs←v) |=∃ φn).
In the next section, we show how this problem can be solved using an incre-
mental approach, which amounts to checking (M(cr -cprs←v) |=k

∃ φ1) ∧ · · · ∧
(M(cr -cprs←v) |=k

∃ φn) for k ≥ 0, by increasing the value of k until a valid
parameter valuation is found.

3 smt-Based Encoding

In this section we provide a translation of the parameter synthesis problem for
cr-cprs and rsltl into the satisfiability modulo theory (smt) [18] with the integer
arithmetic theory. The smt problem is a generalisation of the Boolean satisfia-
bility problem, where some functions and predicate symbols have interpretations
from the underlying theory.

Let cr -cprs = ((S, P,A, c), (Q, qinit, R)) and F = {φ1, . . . , φn} be a set of
rsltl formulae. Then, we encode the model M(cr -cprs←v), where v is a valid
parameter valuation of cr -cprs. Let k ≥ 0 be an integer, then for each f ∈
{1, . . . , n} we encode any possible path of M(cr -cprs←v) bounded with k. That
is, for each formula φf we encode a separate bounded path representing its
witness. The entities of S are denoted by e1, . . . , em, where m = |S|. For each
φf ∈ F and i ∈ {0, . . . , k} we introduce sets of positive integer variables:

� Pf,i = {pf,i,1, . . . , pf,i,m}, PE
f,i = {pE

f,i,1, . . . , p
E
f,i,m}, Qf = {qf,0, . . . , qf,k}.

Let ta : A → {1, . . . , |A|} be a bijection mapping all the reactions to integers.
Then, for each a ∈ A we also introduce a set of variables encoding products:

� Pp
f,i,a = {pp

f,i,ta(a),1, . . . , p
p
f,i,ta(a),m}.

Let σ.f be a path of M(cr -cprs←v). Then

� pf,i = (pf,i,1, . . . , pf,i,m) and pE
f,i = (pE

f,i,1, . . . , p
E
f,i,m)

are used to encode (σ.f)b(i) and (σ.f)a(i), respectively. With pf,i[j] and pE
f,i[j]

we denote, respectively, pf,i,j and pE
f,i,j . If i ≥ 1, we define, for all a ∈ A:

� pp
f,i = (pp

f,i,1,1, . . . , p
p
f,i,1,m, . . . , pp

f,i,|A|,1, . . . , p
p
f,i,|A|,m).

The following functions map the background set entities to the corresponding
variables of the encoding: for all i ∈ {0, . . . , k} we define tf,i : S → Pf,i and
tE

f,i : S → PE
f,i such that
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� tf,i(ej) = pf,i,j and tE
f,i(ej) = pE

f,i,j for all j ∈ {1, . . . , m}.

For all i ∈ {0, . . . , k} and a ∈ A we define tp
f,i,a : S → Pp

f,i,a such that:

� tp
f,i,a(ej) = pp

f,i,ta(a),j for all j ∈ {1, . . . , m}.

The bijection e : Q → {1, . . . , |Q|} maps states of the context automaton to the
values used in the encoding. Let tp : P → {1, . . . , |P |} be a bijection mapping
all the parameters to their corresponding integers. Then we introduce the tuple
of parameters:

� ppar = (ppar
1,1 , . . . , ppar

1,m, . . . , ppar
|P |,1, . . . , p

par
P,m).

For each parameter λ ∈ P we define

� Ppar
λ = {ppar

tp(λ),1, . . . , p
par
tp(λ),m}

and pmλ : S → Ppar
λ such that pmλ(ej) = ppar

tp(λ),j . Let a ∈ A and s ∈ {ra, ia, pa}.
Then, res(ej) denotes pms(ej) if s ∈ P , and s(ej) otherwise. To define the smt
encoding of the paths we need auxiliary functions that correspond to elements
of the encoding.

Initial state: To encode the initial state of the model for φf ∈ F we define

� Init(pf,i, qf,i) = (
∧

e∈S tf,i(e) = 0) ∧ qf,i = e(qinit),

where all the concentration levels are set to zero, and the context automaton is
in its initial state.

Context: To encode a multiset c ∈ B(S) of context entities we define:

� Ctc(pE
f,i) =

∧
e∈S tE

f,i(e) = c(e)

Parameter correctness: With PC(ppar) we encode the parameter constraints,
require that the concentration levels of the reactants are always lower than the
concentration levels of the inhibitors, and ensure that all the multisets corre-
sponding to the parameters are non-empty, i.e., for each parameter at least one
entity must have positive concentration level:

� PC(ppar) = encpar(c) ∧ (
∧

a∈A

∧
e∈S reia(e) > 0

⇒ (rera(e) < reia(e))) ∧ (
∧

λ∈P

∨
e∈S pmλ(e) > 0)

where encpar(c) is the encoding of c which follows directly from the semantics of
parameter constraints.

Parametric reaction: The parametric reactions a ∈ A are encoded with

� Rcta(pf,i,p
E
f,i,p

p
f,i+1,p

par) =
∧

e∈S((tf,i(e) ≥ rera(e) ∨ tE
f,i(e) ≥ rera(e))

∧(tf,i(e) < reia(e) ∧ tE
f,i(e) < reia(e)) ∧ (tp

f,a,i+1(e) = repa(e))).

The encoding for parametric reactions specifies the required concentration levels
for a ∈ A to be enabled, as well as encodes the concentration levels for the
produced entities. The encoding for the produced entities uses the variables
specific to the encoded reaction.
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Transitions of cprs: Then, we encode the local state changes of cprs with

� Trcprs(pf,i,p
E
f,i,p

p
f,i+1,pf,i+1,p

par) = (
∧

a∈A Rcta(pf,i,p
E
f,i,p

p
f,i+1,p

par))
∧(∧e∈S tf,i+1(e) = max({0} ∪ ⋃

a∈A{tp
f,a,i+1(e)})).

In this function, we encode the concentration levels for all the entities in the
successor state using the individual concentration levels encoded for all a ∈ A
in Rcta.

Transitions of context automaton: The encoding of the transition relation
of the context automaton is a disjunction of the encoded transitions:

� Trca(qf,i,p
E
f,i, qf,i+1) =

∨
(q,c,q′)∈R(qf,i = e(q) ∧ Ctc(pE

f,i) ∧ qf,i+1 = e(q′)).

Transition relation: The transition relation of the model for cr -cprs is a con-
junction of the transition relations for cprs and ca:

� Trcr-cprs(pf,i, qf,i,p
E
f,i,p

p
f,i+1,pf,i+1,p

par)
= Trcprs(pf,i,p

E
f,i,p

p
f,i+1,pf,i+1,p

par) ∧ Trca(qf,i,p
E
f,i, qf,i+1).

Paths: Finally, to encode the paths of M(cr -cprs←v) that are bounded with k
we unroll the transition relation up to k and combine it with the encoding of
the initial state of the model:

� Pathskf = Init(pf,0, qf,0)∧(
∧k−1

i=0 Trcr-cprs(pf,i, qf,i, ,p
E
f,i,p

p
f,i+1,pf,i+1,p

par)).

The encoded rsltl formula φf at the position i ∈ {0, . . . , k} is denoted by |[φf ]|ki .
To encode the formula |[φf ]|ki we use our translation presented in Sect. 5 of [22].
However, for each formula φf ∈ F , we use independent sets of variables corre-
sponding to its path, i.e., the variables indexed with f . The encoding Loopskf for
the loop positions is defined for each formula φf ∈ F .

Calculation of Parameter Valuation. We perform the synthesis of the parameter
valuation v by testing the satisfiability of the formula:

⎛

⎝
∧

φf∈F

Pathskf ∧ Loopskf ∧ |[φf ]|k0

⎞

⎠ ∧ PC(ppar).

Therefore, in the first step we test the satisfiability of the formula and then we
extract the valuation of the parameters of P when the formula is satisfiable. That
is, for the satisfied formula we obtain its model, i.e., the satisfying valuations
of the variables used in the formula. Let V (p) be the valuation of a variable
p used in our encoding. Then, the parameter valuations are defined as follows:
λ←v(e) = V (pmλ(e)) for each e ∈ S and λ ∈ P .

4 Experimental Evaluation

In this section we present the results of an experimental evaluation of the trans-
lation presented in Sect. 3. We test our method on the reaction system model for
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the mutual exclusion protocol (Mutex) introduced in [20]. The system consists
of n ≥ 2 processes competing for exclusive access to the critical section. The
background set of crrsc modelling the mutual exclusion protocol is defined as
S =

⋃n
i=1 Si, where the set of background entities corresponding to the i-th pro-

cess is defined as Si = {out i, req i, ini, act i, lock , done, s}, where the entities lock ,
done, and s are shared amongst all the processes. The set of reactions is defined
as A =

⋃n
i=1 Ai ∪ {

({lock}, {done}, {lock})}, where Ai is the set of reactions
associated with the i-th process. The complete description of the system may
be found in [20]. The context automaton ca provides the initial context set and
provides context sets such that only at most two simultaneously active processes
are allowed. We define the crrsc modelling Mutex as crrscM = ((S,A), ca).

Next, we assume here that the system is open and we allow for introducing
new processes that participate in the communication to gain access to the critical
section. Let us assume we are allowed to modify the behaviour of the additional
process (here, the n-th process) only by introducing an additional reaction. Such
an assumption could be justified by a mechanism that accepts new processes to
participate in the protocol only if they contain the reactions of Ai for any i ∈
{1, . . . , n}, while the remaining reactions could be performing some computation
outside of the critical section.

Our aim is to violate the property of mutual exclusion by making the first
and the n-th process enter their critical sections simultaneously. The addi-
tional (malicious) reaction uses the parameters of P = {λr, λi, λp}. Then, we
define the extended model cr -cprsM = ((S, P,A ∪ {(λr, λi, λp)}, c), ca), where
c = ¬λp[inn] ∧

∧
λ∈P,e∈S\Sn

¬λ[e] constrains the additional reaction by requir-
ing that it may produce only entities related to the n-th process and it cannot
produce inn, to avoid trivial solutions. Then, we need to synthesise a parameter
valuation v of cr -cprsM which gives the rsltl property φ = F(in1 ∧ inn), i.e.,
M(cr -cprs←v

M ) |=∃ φ.
The verification tool was implemented in Python and uses Z3 4.5.0 [21]

for smt-solving. We implement an incremental approach, i.e., in a single smt
instance we increase the length of the encoded interactive processes by unrolling
their encoding until witnesses for all the verified formulae are found. Then, the
corresponding parameter valuation is extracted. The verification results1 pre-
sented in Figs. 1 and 2 compare four approaches: the implementation of the
encoding from Sect. 3 (cr -cprs) and its extension (cr -cprsopt) that optimises
the obtained parameter valuations by using OptSMT provided with Z3. Then,
we also use the same encoding for verification of the rsltl property (crrsc),
i.e., we replace all the parameters with the obtained parameter valuations and
test the formula φ in the same way as in [22]. Next, we compare our results
with the ones obtained using the non-parametric method (crrscnp) of [22]. The
results presented are attained from averaging three executions of the bench-
mark. Our experimental implementation provides a valuation v which allows to
violate the mutual exclution property, where λ←v

r = {outn}, λ←v
i = {s}, and

1 The experimental results were obtained using a system equipped with 3.7 GHz Intel
Xeon (E5-1620 v2) processor and 12 GB of memory, running Mac OS X 10.13.2.
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Fig. 1. Synthesis results for Mutex (time)
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Fig. 2. Synthesis results for Mutex (memory)

λ←v
p = {reqn, done} for all the tested values n ≥ 2. This valuation was obtained

using cr -cprsopt.
When using cr -cprsopt, the memory consumption increases. However, the

method might require less time to calculate the result than cr -cprs. The differ-
ence in time and memory consumption between the parametric (cr -cprs) and the
non-parametric (crrsc) approach is minor. However, crrscnp is the most efficient
of all the approaches tested. This suggests that our parameter synthesis method
might possibly be improved by optimising the encoding used. However, this is
merely a preliminary experimental evaluation and in the future we are going to
test our method on a larger number of systems.



Reaction Mining for Reaction Systems 143

5 Concluding Remarks

We have presented a method for reaction mining which allows for calculating
parameter valuations for partially defined reactions of reaction systems. We also
demonstrated how the presented method can be used for synthesis of an attack
in which we inject an additional instruction represented by a reaction, where we
use rsltl to express the goal of the attack.

Assuming there is a finite set of allowed concentration levels for the parame-
ters, the presented method also allows for enumerating all the possible parameter
valuations for fixed-length processes. This can be achieved by adding an addi-
tional constraint blocking the parameter valuation obtained in the previous step.

Our method focuses only on existential observations which can be obtained
from simulations or experiments performed on the system. However, when we
consider some widely accepted laws governing the system under investigation,
those should be formulated as universal observations.

Since we use the bounded model checking approach, if no valid parameter val-
uation exists and no bound on k is assumed, then our method does not terminate.

In our future work we are going to focus on complexity considerations of
the parameter synthesis, tackle the problem of universal observations, as well as
optimise the smt encoding.

Acknowledgements. W. Penczek acknowledges the support of the National Centre
for Research and Development (NCBR), Poland, under the PolLux project VoteVerif
(POL-LUX-IV/1/2016).
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