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Abstract

We compare the efficiency of seven modern SMT-solvers for several deci-
sion and combinatorial problems: the bounded Post correspondence problem
(BPCP), the extended string correction problem (ESCP), and the Towers
of Hanoi (ToH) of exponential solutions. For this purpose, we define new
original reductions to SMT for all the above problems, and show their com-
plexity. Our extensive experimental results allow for drawing quite interesting
conclusions on efficiency and applicability of SMT-solvers depending on the
theory used in the encoding.
Keywords: SAT, SMT, SMT-solvers, SMT-Lib, complexity, post correspon-
dence problem, string correction problem, Towers of Hanoi

1 Introduction

The Boolean satisfiability problem (SAT), as the first known NP-complete problem
[22], is amongst the most significant theoretical issues of the last decades. Moreover,
besides purely academic discourse, SAT-solving algorithms have important practical
applications in a number of domains, like, e.g., planning [23], web service compo-
sition [31, 28], verification [1, 2], and model checking [9, 3, 13, 20, 34, 36, 27, 35].
Reductions to SAT are generally an efficient way of solving NP-complete problems,
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both theoretical and practical. However, for many classes of problems constraints
in encodings cannot be easily expressed in terms of propositional formulas.

Often, out of necessity or convenience, the formula is expressed as a Boolean
combination of predicates over some theory, like, e.g., theory of real and integer
arithmetic [24]. Then, in many cases, using reasoning methods tailored to the
underlying theory [6] is a more efficient way of satisfiability checking than a direct
translation to SAT. The list of specialised decision procedures for (fragments of)
theories with practical applications is long and still growing. It includes, amongst
others, theories of arrays, strings, finite sets, lists, tuples, and bit-vectors of a fixed
or arbitrary finite size. These procedures are implemented and incorporated in many
modern SMT-solvers which have recently become more and more powerful and
efficient tools. In this paper we compare their performance and draw interesting
conclusions.

In our recent papers [29, 30] we investigated efficiency of several modern
SAT-solvers, applying them to solving numerous problems of different compu-
tation complexity. One of the lessons learned is that while SAT-solvers behave
quite efficiently for NP-complete and harder problems, they are by far inferior
to tailored algorithms for P-complete problems. Thus, this paper deals with NP
and harder problems only. We present seven modern SMT-solvers: CVC4 [16],
MathSAT5 [12], Yices [17], Z3 [15], SMTinterpol [11], Boolector [10], and STP
[18]. Their efficiency is compared for the following three problems: bounded Post
correspondence problem (BPCP), extended string correction problem (ESCP), and
the Towers of Hanoi (ToH) problem. We define new original encodings for these
problems, which, to the best of our knowledge, have not been previously translated
to SMT. For two of them we compare the efficiency of SMT-solvers using two
different underlying theories: theory of arrays and bit-vectors. The new reductions
for BPCP and ESCP serve not only our experimental studies, but could also be used
in practice for solving these problems. ToH, while known to be always satisfiable,
is an interesting benchmark because of its exponential complexity w.r.t. the formula
size. Obviously, having a valuation satisfying an SMT formula, we can easily recon-
struct a problem solution, i.e., we know how to achieve the goal. Each reduction is
followed by two results stating the complexity of the reduction and its correctness,
i.e., that the formula coding the problem is of a given size and it is satisfiable iff the
problem has a solution. Our extensive experimental results allow for drawing quite
interesting conclusions on efficiency and applicability of SMT-solvers depending
on the theory used in the encoding. Additionally, our intention is to showcase the
extent of improvements in the area of SMT solvers.

The rest of this paper is organized as follows. In the next section we present
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shortly SMT-solving algorithms and modern SMT-solvers. A reduction to SMT
for BPCP is discussed in Section 3. A reduction to SMT for ESCP is presented in
Section 4, while a reduction for ToH is given is Section 5. In Section 6 experimental
results and comparisons are discussed. The final section contains conclusions.

2 Short overview of SMT-solvers

In this section we briefly present SMT-solving algorithms and modern SMT-solvers.
Satisfiability Modulo Theories (SMT) can be viewed as a generalization of

SAT. Both problems consist in determining whether a given formula is satisfiable.
However, instances of SAT are purely Boolean formulas, whereas those of SMT
are expressed in first-order logic, using predicates from a number of possible input
theories. There are two main approaches to solving SMT instances. The first one,
referred to as ’eager’, involves encoding the input as a Boolean formula. It is then
passed to a regular SAT solver, thereby leveraging continuous advancements in
the area of SAT solving. Of course, the effectiveness of this method, often called
bit-blasting [10], hinges on the initial translation to SAT. Depending on the specifics
of the input theory, it could result in a significant increase in the size of the formula.

By contrast, the ’lazy’ approach uses specific reasoning procedures for dif-
ferent input theories, allowing to choose the most efficient algorithms and data
structures for each. In the lazy schema [7], a SAT-solver works with a Boolean
abstraction of the input formula, a skeleton where all predicates over respective the-
ories are replaced with fresh propositional variables. Then, if a satisfying valuation
is found, specialized theory solvers are called to check the validity of a proposed
solution over underlying theories and domains.

As is the case in the SAT-solving community, there are annual SMT Competi-
tions [4]. Being open to everyone and providing full source code of participating
programs, they play a major role in the continued development of more efficient
SMT-solvers. SMT-Lib 2 [5] has emerged as the standardized language for SMT
instances, similarly to DIMACS for Boolean formulas in CNF. While both formats
use plain text for input files, the SMT-Lib 2 syntax is completely different and much
more complex, given the increased expressive power of first order logic.

For example, assuming that i is a symbolic integer variable, the constraint
expressing that (i + 2 < 10) is the SMT-Lib command assert(< (+ i 2) 10).
Moreover, if arr is a symbolic array of integers indexed by integers, the equality
of the i-th element of the array with some symbolic integer x, i.e., arr[i] = x, is
expressed as assert(= (select arr i) x).

Apart from the core Boolean operators, the SMT-Lib 2 standard defines several
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theories, including these of integer and real numbers, arrays, fixed size bit-vectors,
and others. Additionally, multiple sub-logics combining specific theories are avail-
able, making it possible to employ the most specialized, and thus efficient, reasoning
procedures and satisfiability techniques for a given fragment of the full SMT-Lib 2
logic. The SMT encodings for benchmarks presented in this paper use two such
sub-logics, namely QF_ALIA (quantifier-free arrays and linear integer arithmetic)
and QF_BV (quantifier-free bit-vectors).

3 Reduction to SMT for BPCP

Below we discuss a translation of the bounded Post correspondence problem to an
SMT formula exploiting arrays and linear integer arithmetic.

Post correspondence problem (PCP), introduced in [32], has been analysed in
the literature numerous times, e.g., in [19], and has several equivalent formulations.
One of them is as follows. Given a finite alphabet Σ containing at least two
symbols, let Σ+ be the set of all non-empty words over Σ. Let W = (w1, . . . , wn),
V = (v1, . . . , vn), where ∀i=1..n(wi, vi) ∈ Σ+ × Σ+, be two non-empty, finite
sequences of n words of Σ+. The problem consists in finding a sequence of indices
(i1, . . . , ik), such that w = wi1 · wi2 · . . . · wik , v = vi1 · vi2 · . . . · vik , and w = v.
Intuitively, the problem is to find a sequence of indices for which the concatenation
of the corresponding words of the lists W and V are equal. In general, when there
is no upper bound on a solution length k, PCP is undecidable, as shown by Post
in [32]. Thus, we deal with a bounded version of PCP (BPCP, for short), where
k is bounded. BPCP is in NP [19] and was also studied in different contexts, for
example, using DNA-based bio-computations [21]. An instance of PCP can be
visualised using a list of tiles similar to domino bricks where the i-th tile contains
the word wi on the top, and the word vi at the bottom. Each tile has assigned an id
equal to the position of the tile in the input list and we assume that at least k copies
of each tile is at our disposal. Thus, a solution is the sequence of tile’s ids, and a
single element of the sequence is also called a solution step. An example instance
and a solution is depicted in Fig. 1.

Translation to SMT. Let m ∈ N+ be the length of the longest word of W and V ,
i.e., m = max(|w|), for w ∈W ∪ V . To avoid ambiguity, we refer to the words of
W and V as to elements or segments, while the concatenated word w and v is called
the ’upper’ and the ’bottom’ word, respectively. Moreover, we treat the symbols of
Σ as the consecutive natural numbers {0, . . . , |Σ| − 1}.

We encode a BPCP instance as an SMT formula using theory of arrays and
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Figure 1: An example instance of PCP, for n = 4 and Σ = {a, b}, W =
(bab, bba, bab, b), V = (ab, a, aa, bb). The solution (4, 4, 2, 4, 1) corresponds to
the word w = v = bbbbabbab.

linear integer arithmetic. To this aim, we allocate a symbolic array a of integers,
indexed also by integers. The subsequent elements of a are intended to store the
consecutive symbols of the upper and the bottom word. Note that using the same
array for both words implies their equality. Besides the array, we allocate the
following integer variables3 s0, . . . , sk−1 to store solution sequences, pw

0 , . . . ,p
w
k ,

and pv
0, . . . ,p

v
k to store starting positions of consecutive segments inside the upper

and the bottom word, respectively. Note that since pw
0 and pv

0 encode positions of
the first upper and bottom segments, the variables pw

k and pv
k would point at start

of the k + 1-th segment, while there are only k of them. Actually, pw
k and pv

k are
used to compute the total length of the resulting word.

Thus, to encode BPCP we need 3k + 2 symbolic integers, and one symbolic
array, where no more than k ∗m integers are stored.

Now, we are at a position to show a reduction of BPCP to SMT in a top-down
manner. Overall, the formula encoding BPCP is as follows.

bpcp(k,W, V ) = (pw
0 = 0) ∧ (pv

0 = 0) ∧ (pw
k = pv

k) ∧ allWords(k,W, V ) (1)

where the first part of the formula states that the words w and v begin at the position
0 and their lengths are equal, whereas allWords(k,W, V ) encodes all possible
combinations of k elements of W or V over the symbolic array a:

allWords(k,W, V ) =
k−1∧
j=0

(
wrd(j,W,pw) ∧ wrd(j, V,pv)

)
. (2)

The formula wrd(j, A,p), encoding a choice between the elements of A as the
j-th solution step, is given below, where ai is the i-th element (word) of A, |ai| and
|A| denote the length of ai, and the number of elements in A, respectively, whilst

3 Actually, in the SMT-Lib 2 nomenclature, these are called integer constants, because solvers try
to determine a constant integer value, such that all constraints involving them are met.
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at(ai, x) is the natural number representing the x-th symbol of ai.

wrd(j, A,p) =

|A|−1∨
i=0

(
(sj = i)∧(pj+1 = pj⊕|ai|)∧

|ai|−1∧
x=0

(a[pj⊕x] = at(ai, x))
)

(3)
Thus, for a chosen ai, the formula stores i as the value of the variable sj , it sets the
value of pj+1 to the start position of the next segment of the word, and it encodes
the subsequent symbols of ai over a starting from the position indicated by pj . The
⊕ symbol denotes the addition involving symbolic integers.

Note that this formula is used twice in (2), for both words, the upper and
the bottom one. Each instance refers to a different word sequence and position
variables (W,pw and V,pv, respectively). However, both the formulae make use of
the same symbolic array a, as well as the same solution variables. This enforces
the equality of w and v and of the indices of the consecutive segments of w and v.

In what follows, by the size of an SMT-formula we mean the number of the
theory predicates used in the formula. Next we discuss the size of the formula
bpcp(k,W, V ).

Lemma 1 Given k, m, V , and W , where |W | = |V | = n, the formula bpcp(k,W, V )
is of size O(knm).

Proof: Notice that the formula (1) contains 3 integer expressions (equalities).
Then, the formula (2) consists of 2k instances of the formula (3), and each such an
instance contains no more than n(3 + 3m) operations like integer additions and
comparisons. Thus, the total size of the formula bpcp(k,W, V ) is 3 + 2k(3n +
3nm) = 3 + 6kn(1 + m) which is in O(knm). 2

Theorem 1 Given k, V , and W . BPCP has a solution iff bpcp(k,W, V ) is satisfi-
able.

Proof: The proof follows directly from the structure of the formula bpcp(k,W, V ).
Notice that for any pair of words w, v a necessary condition for being a solution
of BPCP is that their lengths are equal, i.e., |w| = |v|. This is ensured by the
conjunction of the first three constraints at the beginning of the formula (1) which
states that both words start from the position 0 and the concatenated k segments end
at the same position. Next, the formula (2) encodes all possible combinations of k
segments of the upper and the lower word using a conjunction of respective instances
of the formula (3), each of them dealing with the encoding of a single (upper or
bottom) segment. Let us now analyse the structure of the formula wrd(j, A,p).
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The purpose of the formula is to encode an alternative of all possible input words
(segments) at the j-th step. The start position of the j-th segment is encoded using
the respective position variable, either pw

j or pv
j . Moreover, the length of a chosen

segment at some position determines also the start position of the next segment,
which is encoded over pw

j+1 (pv
j+1, respectively). Such an encoding, together with

the initial constraints from the formula (1) ensures that the k-upper and k-bottom
segments constitute words of the same length. Note, however, that the consecutive
symbols of the upper and the bottom word are encoded over the same symbolic
array. Thus, the whole formula is satisfiable iff w = v. 2

4 Reduction to SMT for SCP

String correction problem (SCP) is a well-studied class of problems originated from
string edit distance. The edit distance defines a set of simple operators conducted
on strings. SCP consists in finding out whether a string A can be transformed
into a string B in a finite k edit operations. If three single-character operators:
insertion, deletion or substitution, are allowed, then the edit distance is called
Levenshtein’s one [25]. For example, the Levenshtein distance between "golden"
and "older" is 2:

• golden -> olden (deletion of ’g’),

• olden -> older (substitution of ’n’ to ’r’).

Wagner and Fischer [33] presented the string-to-string correction problem, where
Levenshtein distance was used, and gave an algorithm which solves this problem in
time proportional to the product of the lengths of the two strings. A more interesting
extension of edit distance is Damerau-Levenshtein distance [14], where the set of
operators is extended with the operator exchanging the positions of any two symbols
in a string. This problem is called the extended string-to-string correction problem
(ESCP). Both mentioned edit distances are efficiently solvable if all operations have
the same cost [8]. In this case the problem is of the same complexity as before [33].
However, if one limits the available operations to single character deletions and
swapping the adjacent symbols only, and allows for using at most k edits, where
k ∈ N, then the problem becomes NP-complete [33].

Formally, the problem is formulated as follows. Given a finite alphabet Σ, two
non-empty strings A,B ∈ Σ+, and k ∈ N+. Assume that A = (a1, . . . , an) and
B = (b1, . . . , bm), where ai, bj ∈ Σ for i = 1..n and j = 1..m. The problem is
whether one can transform A into B by a sequence of at most k edit operations
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including swap and deletion. The swap operator occurs when two consecutive
symbols switch their positions. Deletion is the removal of an individual instance of
a symbol from a string, therefore shortening its length by 1. After deletion, the gap
at the end of the string is completed with the special value ε denoting the empty
character. Note that we have n ≥ m as otherwise the problem is unsolvable without
an insert operator. Consider an example presented in Fig. 2. A transformation from
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Figure 2: An example of the problem with inputs: A = abcaab, B = baca, and the
parameter k = 3.

A = abcaab to B = baca is obtained by swapping the first two symbols (a and b)
of A and then deleting the last two symbols (ab) of A.

Translation to SMT. The presented encoding of ESCP uses symbolic integers
to encode the alphabet symbols and positions inside strings, and symbolic arrays
of integers to represent strings. While we need to encode an initial string A and
its k copies, the strings are organized in a symbolic arrays sj , for j = 0..k, each
representing the possible evolutions of the string A after applying j edit operations.
The reduction of ESCP to SMT is presented in a top-down fashion. The whole
formula is as follows:

escp(k,A,B) =
n∧

i=1

(
s0[i] = ai

)
∧
( k∨
j=1

m∧
i=1

(sj [i] = bi)
)
∧

k∧
j=1

step(j), (4)

where ai and bi denote the i-th symbol of string A and B, respectively.
The first part of the formula encodes the input word A over the array s0. Next,

the disjunctions encode the desired states of a transformation after j operations,
that is, the situation when the representation of the word B is encoded by array sj .
Finally, the last part of the formula encodes all possible changes introduced in the
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consecutive steps, as explained below:

step(j) = (del(j) Y swap(j)) (5)

The formula (5) expresses that in the j-th step either a symbol is deleted from
the string or two adjacent symbols are swapped.

The formula del(j) encoding the delete operation executed at step j is as
follows:

(pj ≥ 0) ∧ (pj < n) ∧ (sj−1[pj ] 6= ε) ∧
n−1∧
i=0

(
(i < pj) ∧ (sj [i] = sj−1[i])

)
∨(

(i ≥ pj) ∧ (sj [i] = sj−1[i⊕ 1])
)
∨
(

(i = n− 1)(sj [n− 1] = ε)
)

(6)

The symbolic integer variable pj denotes the position at which the deletion is
applied in the j-th step. Thus, the first two conjuncts of the formula (6) bound the
value of pj to a correct position in the string.

The next conjunct ensures that there is a non-empty symbol at position pj .
Then, all symbols up to position pj are ’copied’ from the previous state. Next,
starting from position pj , the consecutive symbols are ’copied’ from the previous
state and shifted left by one position. At the very end the empty symbol is added.

Finally, the encoding of the swap operation at the j-th step is defined as:

swap(j) = (pj < n− 1) ∧ (pj ≥ 0) ∧ (sj−1[pj ⊕ 1] 6= ε)∧
n−2∧
i=0

((
(sj [i] = sj−1[i]) ∧ ((i < pj) ∨ (i > pj + 1))

)
∨ (7)

(
(sj [pj ] = sj−1[pj ⊕ 1]) ∧ (i = pj)

)
∨
(
(sj [pj ⊕ 1] = sj−1[pj ]) ∧ (i = pj + 1)

))
where the first line is a precondition ensuring that pj is a valid position in the string
and a non-empty symbol is affected by the operation. This time the value of pj
should be less than n − 1 because there has to exist a neighbouring symbol, at
position pj⊕1. The next conjunct ’copies’ all unchanged symbols (i.e., all but those
at the positions pj and pj ⊕ 1), and afterwards encode swap of the two symbols at
positions pj and pj ⊕ 1.

Lemma 2 The formula escp(k,A,B) is of size O(kn2).
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Proof: The formula (4) consists of three conjuncts; the first two are of size
n and kn, respectively. For the latter, we approximate the number of the inner
conjunctions m with n; recall that n ≥ m as the problem is otherwise unsolvable
without additional operators. Finally, the last subformula is the conjunction over k
steps of the ESCP algorithm. Each of these contains the disjunction over n positions
in the input string on which operations swap or delete are performed, and whose
respective formulas are both of size n. As such, the size of the third conjunct is
kn2. The whole formula escp(k,A,B) is thus of size n + kn + kn2, and so is in
O(kn2). 2

Theorem 2 Given A, B, and k. ESCP has a solution iff the formula escp(k,A,B)
is satisfiable.

Proof: (=⇒) Assume there exists a solution, i.e., a sequence of k operations such
that A is transformed into B. We will show that the formula escp(k,A,B) is then
satisfied. Any valid solution obviously originates from the input string A, repre-
sented in our encoding by the initial state array s0. Thus, the values stored in array
s0 correspond to the respective symbols of A, as enforced in the first conjunct of
the main formula escp(k,A,B). At some point during the subsequent k operations,
the desired state where A equals B is reached. As such, there is an operation j ≤ k,
after which all symbolic variables of sj correspond to the respective symbols of
B. This is represented by the second conjunct of escp(k,A,B). Finally, at each
step between these initial and final states, either delete or swap is performed, as
permitted by the ESCP conditions. This constraint is enforced by the third and final
conjunct of escp(k,A,B). We will now analyse it from the bottom up, starting with
the two subformulas encoding operations delete and swap. Suppose the character
at position pj is deleted from A in the j-th operation. If so, then pj must be within
the non-empty part of the string, as the deletion of the empty character ε is not valid.
Furthermore, following the operation, all characters before the deletion point, that is,
at n < pj , are left unchanged, while those after pj only have their positions shifted
by one to the left. These constraints are encoded by the formula del(j). Following
a similar pattern, suppose the j-th operation consists of swapping the character at
position pj . Recall that the swap operation in ESCP is defined as exchanging the
positions of two consecutive characters; since the last character has no subsequent,
it is only applicable up to and including pj = n − 1. All but the two swapped
characters, that is, positions ranging over {0, . . . , pj − 1} and {pj + 2, . . . , n− 1},
are left unchanged. These constraints are encoded in swap(j). The (exclusive)
disjunction of del(j) and swap(j) over the positions p ∈ {0, . . . , n− 1} (with the
exception of n− 1 for the former) constitutes the subformula step(j). Note that
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although at any given step j only one of these can be performed, we use the XOR
operator.
(⇐=) Assuming escp(k,A,B) evaluates to true, we can obtain its satisfying assign-
ment, that is, the initial array s0 and the arrays s1...sk, corresponding to the state of
the input in each of the k steps. They in turn, through encoding using a symbolic
array, represent a valid solution of ESCP where the input string A (encoded by s0)
is transformed into B (encoded by sj) using at most k operations. 2

5 Reduction to SMT for ToH

This section discusses a translation to SMT for the ToH problem of exponential
time complexity.

Towers of Hanoi (ToH) [26] is a well-known mathematical puzzle where n
discs of different sizes are moved between three towers. Initially, all discs are on
the first tower, arranged in order of size, ascending. The solution of ToH consists
in finding a sequence of disc movements such that all are moved to another tower,
preserving their original order. From any given tower t, only the top disc (i.e., the
smallest present on t) can be moved to another, and the move is valid unless there
is a smaller one on the destination tower t′.

Below, we present our original SMT encoding of the ToH problem. Let
i ∈ {0, . . . , (2n−1 − 1)} denote a sequence of states that constitutes a valid ToH
solution. The i-th state is then represented by bit-vectors dt,i, each of length n,
where t ∈ {0, 1, 2} corresponds to the state of the first, second, and third tower,
respectively. By D(j, i, t), we denote dt,i

j−1, i.e., that the j-th disc (in order of size,
ascending) is placed on tower t. In other words, we set specific bits in dt,i to ’true’
if corresponding discs are indeed located on tower t, and conversely to ’false’ if
they are not.

The initial and final states are encoded as follows:

I =

n∧
j=1

D(j, 0, 0), F =

n−1∧
j=1

(
D(j,max, 1)

)
∧D(n,max, 0), (8)

where max = 2n−1 − 1 is the number of moves. For some disc j in the i-th
state, the pre- and post-move conditions are that no smaller discs can be present on
source tower t and destination tower t′, respectively. As such, they can be succintly
expressed in terms of bit-vector comparisons. Note that by dmaxj we denote a
bit-vector whose bits up to and including the j-th are positive, while the remaining
ones are negative.

pre(j, i, t) = dt,i ≤ dmaxj , (9)
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post(j, i, t, t′) = dt′,i ≤ dmaxj ∧D(j, i, t′) ∧ ¬D(j, i, t) (10)

Any given disc j can potentially be moved to two other towers:

move(j, i, t) = pre(j, i, t) ∧
( ∨
t′∈{0,1,2}\{t}

post(j, i + 1, t, t′)
)
, (11)

while all possible moves in the i-th state are encoded as:

M(i) =
2∨

t=0

( n∨
j=1

(
move(j, i, t) ∧

∧
k∈{1,...,n}\{j}

dt,i
k = dt,i+1

k

))
, (12)

Thus, the whole formula encoding the ToH problem is as follows:

ToH(n) = I ∧ F ∧
max−1∧
i=0

M(i). (13)

The subsequent two lemmas follow from the construction of the formula ToH(n).

Lemma 3 The formula ToH(n) is of size O(2n).

Proof: The solution of the ToH puzzle is a sequence of max = 2n−1 − 1 states,
each of which is represented by three bit-vectors corresponding to towers. Thus, we
need 3 · 2n−1− 3 = 2n + 2n−1− 3 variables and the formula is of size O(2n). 2

Theorem 3 The ToH problem for n discs has a solution iff the formula ToH(n) is
satisfiable.

Proof: The main formula ToH(n) has three conjuncts: initial state I, final state
F and the conjuction of all possible movesM(i) over max = 2n−1 − 1 moves.
Let us first examine the former. I enforces that all discs are initially on the first
tower and as such is self-explanatory. Following the observation in [26], F does
not actually correspond to the ’true’ final state of a ToH puzzle, since from that
point onwards, remaining moves can be trivially obtained by mirroring past steps.
M(i) is a disjunction over towers t ∈ {0, 1, 2} and then discs j ∈ {1, . . . , n} of
possible moves move(j, i, t), in conjunction with an additional constraint ensuring
every disc but the selected j-th one remains in place, as per the rules of the ToH
puzzle. Thus,M(i) encodes all possible moves in the i-th state. Each possible
move move(j, i, t) is a conjunction of pre- and post-move conditions, which again
intuitively corresponds to the rules of the ToH puzzle: pre(j, i, t) ensures that the
j-th disc being moved is indeed on source tower t, and that there is no smaller one
on top of it. Conversely, post(j, i, t, t′) verifies that the j-th disc is no longer on t,
has been moved to t′ and that the move was valid (i.e., there were no smaller discs
present on t′). 2
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Figure 3: Experimental results for array encoding. Total computation time (left)
and percentage of benchmarks solved in time (right).

6 Experimental results and comparisons

In this section we discuss experimental results and compare the efficiency of the
SMT-solvers applied. The test platform is a virtual machine with 8 CPU cores and
64 GB of RAM, running Ubuntu 16.04 LTS.

6.1 Theory of arrays and linear integer arithmetic

For encodings using the theory of arrays and linear integer arithmetic (the QF_ALIA
logic in SMT-Lib 2 nomenclature) we have a total of 60 benchmarks for BPCP and
110 for ESCP whose results are presented in Fig. 3. Yices was the clear winner
in the BPCP test, being able to solve about 90 percent of the instances within
the timeout period set at 1000 seconds. Its total running time was also by far the
shortest. On the other hand, the performance and effectiveness of all SMT-solvers
were remarkably similar when dealing with ESCP instances. While MathSAT and
CVC4 proved marginally better both in terms of running time and percentage of
solved instances, the latter was around 70 percent for all five tested solvers, and
time differences were also minimal.

6.2 Bit-vector Theory

Experimental results for the same instances of BPCP and ESCP, but encoded using
the bit-vector theory (the QF_BV logic in SMT-Lib 2 nomenclature), are presented
in Fig. 4. Additionally, Fig. 5 summarizes results for the Towers of Hanoi (ToH)
problem, which are also listed in Tab. 1. Note that there is no randomised input for
ToH instances, hence the relatively small number of benchmarks (10). Boolector,
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Figure 4: Experimental results for bit-vector encoding. Total computation time
(left) and percentage of benchmarks solved in time (right).

N cvc4 mathsat yices z3 boolector stp
3 0.03 0.01 0.00 0.01 0.03 0.03
4 0.10 0.02 0.00 0.03 0.19 0.10
5 0.29 0.07 0.01 0.08 0.68 0.29
6 0.86 0.21 0.04 0.23 1.33 0.87
7 2.88 0.62 0.12 0.91 1.85 2.51
8 8.64 1.84 0.39 2.53 2.88 7.11
9 23.46 5.97 1.09 18.90 5.52 19.77
10 120.23 20.78 3.27 175.41 11.07 30.26
11 538.74 76.63 9.36 871.20 40.19 83.83
12 1000* 303.63 34.30 1000* 111.50 199.73
Total 1695.23 409.78 48.58 2069.30 175.24 344.50

Table 1: Results for the Towers of Hanoi (ToH) benchmark.

utilizing the Lingeling SAT-solver, was the fastest in both the BPCP and ESCP tests.
Notably, it reached 100 percent instances solved in the latter. On the other hand,
CVC4 was well behind the other solvers in terms of both the total running time and
the percentage of the instances successfully solved within the timeout.

A general comparison of the ESCP and BPCP benchmarks is depicted in
Fig. 6. The arrows indicate the solvers which were the fastest in processing the
respective benchmark set. Clearly, the most efficient way to solve ESCP is to use
bit-vector encoding and Boolector. Boolector is also the most efficient solver to
deal with bit-vector-based encoding of BPCP. However, Yices is the fastest to solve
BPCP using array-based encoding. The array-based encoding of ESCP involving
multiple symbolic arrays constituted the most time-consuming benchmarks. All
tested solvers supporting QF_ALIA solved them in a similar time, between 34000
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Figure 6: Overall comparison of ESCP and BPCP benchmarks

and 39000 sec., with only a slight advantage of MathSAT.

7 Conclusions

We have presented extensive experiments involving seven modern SMT-solvers
and compared their efficiency for two NP-complete problems: bounded Post cor-
respondence problem (BPCP) and extended string-to-string correction problem
(ESCP), as well as for the Towers of Hanoi (ToH) puzzle, whose solutions are of
exponential complexity. Our original SMT encodings are implemented using both
the QF_ALIA and QF_BV logics of SMT-Lib 2 , i.e., the theories of arrays and
bit-vectors.

It can be observed that certain SMT-solvers are better suited to one or the other
of these two logics. MathSAT, for example, was much more efficient when dealing
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with the bit-vector-based encodings of BPCP and ESCP than using the array-based
encoding. Moreover, it appears that the performance of specialized solvers, i.e.,
those that only support one of the two theories, is superior to that of their more
universal counterparts. For instance, Boolector, which only supports the theory of
bit-vectors but not integer arrays, was by far the most efficient in bit-vector-based
benchmarks for both BPCP and ESCP. Although Yices finished first in the ToH test,
Boolector and STP, another solver supporting the QF_BV logic exclusively, finished
second and third, respectively, both far ahead of remaining universal SMT-solvers.

Overall, as was the case with our prior SAT-solver comparisons [29, 30],
the results indicate that solving SMT also remains a considerable challenge. No
particular solver proved superior in all test instances, and indeed the opposite could
be observed, that is, specialized solvers only supporting a single SMT-Lib 2 theory
often demonstrating superior efficiency.

An interesting topic that remains to be investigated in possible future work is
a comparison of pure SAT versus SMT encodings using different input theories for
a broad range of computational problems of different complexity.
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