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Abstract. We present nine SAT-solvers and compare their efficiency for several decision and com-
binatorial problems: three classical NP-complete problems of the graph theory, bounded Post cor-
respondence problem (BPCP), extended string correction problem (ESCP), two popular chess prob-
lems, PSPACE-complete verification of UML systems, and the Towers of Hanoi (ToH) of exponen-
tial solutions. In addition to several known reductions to SAT for the problems of graph k-colouring,
vertex k-cover, Hamiltonian path, and verification of UML systems, we also define new original
reductions for the N-queens problem, the knight’s tour problem, and ToH, SCP, and BPCP. Our
extensive experimental results allow for drawing quite interesting conclusions on efficiency and ap-
plicability of SAT-solvers to different problems: they behave quite efficiently for NP-complete and
harder problems but they are by far inferior to tailored algorithms for specific problems of lower
complexity.

1. Introduction

The Boolean satisfiability problem, abbreviated SAT, was the first known NP-complete problem [21].
The efforts towards improving efficiency of SAT-solving algorithms have long passed beyond purely
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academic discourse and currently have many important practical applications, such as verification [1, 2],
bounded model checking [6, 7, 18, 41, 23, 29, 42], planning [22], and composition of web services [31]
to name only some of them. On the other hand, scientific interest in the topic is by no means fading. As
a seminal NP-complete problem, SAT, and efficient solving thereof, is of key importance to the P = NP
hypothesis, which, without any exaggeration, can be counted among the most notable unsolved problems
of not just information technology, but all modern science.

In this paper, our aim is to present modern SAT-solvers and to compare their efficiency for several de-
cision and combinatorial problems: three classical NP-complete problems of the graph theory, bounded
Post correspondence problem (BPCP), extended string correction problem (ESCP), two popular chess
problems, verification of UML systems, and the Towers of Hanoi (ToH) problem. We use several known
reductions to SAT for the problems of graph k-colouring, vertex k-cover, Hamiltonian path, and verifi-
cation of UML systems, but also define new original reductions for the N-queens problem, the knight’s
tour problem, BPCP, ESCP, and the ToH problem. The new reductions are exploited in our experimental
studies, but, especially these for BPCP, ESCP, and ToH, which are an important contribution of this pa-
per, are of more general value and could be used in practice for solving these problems. Each reduction is
followed by two results stating the complexity of the reduction and its correctness, i.e., that the formula
coding the problem is of a given size and it is satisfiable iff the problem has a solution.

It is important to mention that our investigations are dealing not only with NP-complete problems,
but also with problems of polynomial complexity (a chess problem) as well as with a PSPACE-complete
problem (UML verification) and a combinatorial problem of exponential complexity (the ToH solutions
are exponential in the input size). This is motivated by the idea to compare SAT-solvers applied not
only to problems for which they have been originally designed, but also to find out how SAT-solvers
behave when applied to problems of lower complexity and to a problem for which the optimal recursive
algorithm requires an exponential time. Our experimental results show that SAT-solvers do not offer
quick solutions to problems of complexity lower than NP.

Additionally, our intention is to showcase the extent of improvements in the area of SAT solving that
have occurred since the DPLL algorithm was first published, and especially in the last decade. To this
end, the efficiency of modern SAT-solvers is compared against that of older programs. While starting
our investigations, we expected the latter to perform noticeably worse than recent, state-of-the-art SAT-
solvers. Moreover, we separate satisfiable and unsatisfiable instances of the tested problems, in order to
thoroughly analyse efficiency of the SAT-solvers considered.

The rest of this paper is organized as follows. In the next section we present shortly SAT-solving
algorithms and modern SAT-solvers. Reductions to SAT for NP-complete and polynomial problems are
discussed in Section 3. Reductions to SAT for PSPACE- and EXPTIME- problems are presented in
Section 4. In Section 5 experimental results and comparisons are discussed. The final section contains
conclusions.

2. Overview of SAT-solvers

In this section we briefly present SAT-solving algorithms and modern SAT-solvers. The original Davis-
Putnam algorithm, first presented in 1960 [10], is based upon the resolution rule. It is a theorem proving
technique that leads to a proof by contradiction. Thus, the rule is iteratively applied to the negation of
the formula until eventually there remains an empty clause (whose logical value is false). The reductions



are equisatisfiable, that is, at every iteration the output formula is satisfiable if and only if so is the input,
so the inference must have started at a false formula too, which in turn was a negation, meaning the
original formula is satisfiable. On the other hand, the more recent DPLL algorithm [9] employs another
approach, i.e., the splitting rule. DPLL is commonly referred to as a modification of the original DP
algorithm. Indeed, the only alteration consists in using the splitting rule in place of resolution. However,
this has radically changed the nature of the algorithm, turning DPLL into a backtracking scheme.

Though it has been more than half a century since the DPLL algorithm was published, its core idea
remains the basis of modern SAT-solvers. Of course, this by no means indicates that the progress made in
the last fifty years has been insignificant. Most importantly, the satisfiability problem has matured, with
its efficient solving having found specific applications in many production processes, such as the design
and formal verification of integrated circuits (including Intel Core CPUs [19]), automated software ver-
ification (used by Microsoft, among others [11]), or managing dependencies between optional software
components (i.e. plug-ins for the Java Eclipse development environment [24]), and many more. This
further bolsters the efforts towards improving the efficiency of SAT-solvers, as well as reinforces general
interest in the topic, an example of which are International SAT Competitions, held mostly annually
since 2002 and open to all interested developers. Crucially, the projects taking part in the competition
are publicly available with full source code and are among the leading SAT-solvers today.

Solver Release/Year Notes
Lingeling 2016 Winner of several recent SAT Competitions.
Plingeling 2016 Parallel version of Lingeling.
Glucose 4.1 (2016) Originally based on Minisat.

Glucose-syrup 4.1 (2016) Parallel version of Glucose. Winner of the most
recent SAT Competition’s Parallel Track (2017).

Clasp 3.3.0 (2017) Combines ASP (Answer Set Programming) with
state-of-the-art CDCL SAT-solving techniques.

Minisat 2.2.0 (2010) Older, classic solver developed at MIT. Served as
base for many other projects, including Glucose.

ManySAT 2.0 (2008) Variant of Minisat that adds support for parallel
processing.

zChaff 2007 Oldest of tested solvers. Winner of the inaugural
SAT Competition in 2002.

Z3 4.5.0 (2017) Powerful SMT-solver developed at Microsoft
Research. Also supports DIMACS input.

Table 1. SAT-solvers selected for comparison

Modern SAT-solvers can be classified in two main groups, depending on the algorithm used. The first
approach constitutes an evolution of the original DPLL algorithm and is referred to as CDCL (Conflict-
Driven Clause Learning). It augments the classic DPLL backtracking scheme with mechanisms such
as non-chronological backjumping, clause learning, periodic restarts and various heuristics, both deter-
ministic and non-deterministic. Currently, CDCL algorithms are represented in several state-of-the-art



SAT-solvers, including Lingeling [5], Glucose [3] and Clasp [15]. Next to further improvements in
decision-making upon encountering conflicts and generally more efficient search and data structures,
parallel processing is another important direction of their development. While still at an early stage, it
is already supported by two of the aforementioned projects, namely Lingeling and Glucose, and their
number is fully expected to increase in the coming years.

Another possible approach to solving SAT involves the use of local search methods. The algorithm
starts by assigning random truth values to propositional variables, and then proceeds to change one in
each step, depending on the resulting increase in the number of satisfied clauses. This is continued for
a pre-determined number of steps, or until an assignment satisfying all clauses is found. One of the first
SAT-solvers to employ local search algorithms was GSAT (Greedy SAT) [36]. WalkSAT [35] is another
example of such SAT-solver.

Given the ever-changing landscape of modern SAT-solvers, many of which also exist in multiple
code branches, i.e., specifically optimized for parallel processing, it is all but impossible to include every
notable SAT-solver in the comparison. The following have been chosen: Lingeling and Plingeling [5],
Glucose and Glucose-syrup [3], Clasp [15], Minisat [37], ManySAT [17], Microsoft Z3 [12], and zChaff
[27]. All in all, including the parallel versions of Lingeling and Glucose, nine SAT-solvers have been
included in the comparison. They are briefly presented in Table 1.

3. Reductions to SAT for problems in P and NP

Below we discuss translations to SAT for 7 problems: three classical NP-complete graph problems [21],
the bounded Post correspondence problem, extended string correction problem, and two chess problems.

3.1. Reductions for classical NP-complete problems

We begin with the three NP-complete graph problems, firstly because these are classical problems whose
reductions to SAT are well known, and secondly, on account of the encoding for Hamiltonian path
being later reused for knight’s tour. Thus, translations for graph k-colouring and vertex k-cover are only
shortly recalled below; for a full coverage the interested reader is referred to [38]. The reduction to SAT
for Hamiltonian path, as well as further reductions featuring our original encodings, are subsequently
discussed in more detail.

Graph k-colouring. Given a graph of n vertices, the graph k-colouring problem consists in finding
an assignment of one of k possible colours to each vertex of the graph, such that no two adjacent vertices
are of the same colour. Let pi,j , for i = 1..n, j = 1..k, denotes that the i-th vertex has the j-th colour.
The number of propositional variables is thus n ∗ k. Taking the number of subformulas into account, the
encoding proposed in [38] is of size O(n2 ∗k), since the number of edges is n2 for a full, directed graph.

Vertex k-cover problem. Given a graph of n vertices, the vertex k-cover problem consists in finding
a subset of vertices of a given size k, such that each edge of the graph is incident to one of them. Let pi,j ,
for i = 1..n, j = 1..k, denotes that the i-th vertex has been included to the covering subset on the j-th
‘position’. Obviously, the ordering is for the convenience of the encoding only, since every linearisation
of a covering subset is a proper solution. Thus, the number of propositional variables used to encode this
problem in [38] equals n ∗ k and the resulting formula is of size O(n2 ∗ k).

Hamiltonian path. The Hamiltonian path problem consists in finding a path (over edges) in a given
graph such that it visits each of its vertices exactly once. Below, we recall the required constraints



from [38] on account of the translation being later applied for knight’s tour. Let variable pi,j , where
i, j ∈ {1, 2, ..., n}, represent the i-th vertex being at j-th position in the Hamiltonian path. The total
number of variables is thus n2. Below, the formula P(n) encodes a one-to-one assignment of vertices to
positions on the path, and vice versa:

P(n) =
n∧

j=1

( n∨
i=1

pi,j ∧
( ∧
k∈{1..n}\{i}

¬pk,j
))
∧

n∧
i=1

( n∨
j=1

pi,j ∧
( ∧
k∈{1..n}\{j}

¬pi,k
))

Consequently, the whole formula encoding the Hamiltonian path for a graph of n vertices and the
neighbourhood relation N (by N(i) we denote the set of the neighbours of the i-th vertex) is as follows:

H(n,N) = P(n) ∧
n∧

i=1

n−1∧
j=1

(
pi,j =⇒

∨
v∈N(i)

pv,j+1

)
The two subsequent lemmas follow from the construction of the formula H(n,N).

Lemma 3.1. The formula H(n,N) is of size O(n3).

Proof. The size of P(n) is 2n3, because we iterate three times over n while building the nested formula.
The remaining part of H(n,N) can potentially be of size n3, since in the inner disjunction we have to
consider the possibility of up to n neighbours for any given vertex. The entire formula is thus of size
3n3, and so is in O(n3). ut

Lemma 3.2. Given a graph of n vertices and the neighbourhood relation N , there exists a Hamiltonian
path iff the formula H(n,N) is satisfiable.

Proof. It is easily inferred from the definition of the Hamiltonian path. The subformula P(n) comprises
of two conjunctions of constraints ’at least one’ and ’at most one’, thus representing selections of ’exactly
one’, first assigning vertices to positions on the path, and then vice versa. The following part of H(n,N)
ensures that the assignment from P(n) is indeed a valid Hamiltonian path, that is, every vertex but the
last one1 has a successor within its neighbourhood, as per the definition. Because we have a one-to-one
assignment of vertices to positions on the path, and subsequent vertices have successors within their
neighbourhoods, all requirements for a Hamiltonian path to exist are met. ut

3.2. Reduction for bounded Post correspondence problem

Post correspondence problem (PCP) was originally introduced in [34]. There are several equivalent
formulations of PCP. One of them is as follows. Given a finite alphabet Σ containing at least two symbols,
let Σ+ be the set of all non-empty words over Σ. Let W = (w1, . . . , wn), V = (v1, . . . , vn), where
∀i=1..n(wi, vi) ∈ Σ+×Σ+, be two non-empty, finite sequences of n words of Σ+. The problem consists
in finding a sequence of indices (i1, . . . , ik), such that w = wi1 · wi2 · . . . · wik , v = vi1 · vi2 · . . . · vik ,
and w = v. Intuitively, the problem is to find a sequence of indices for which the concatenation of the
corresponding words of the lists W and V are equal. In general, when there is no upper bound on a
1The last vertex is omitted as we consider a Hamiltonian path and not necessarily a circuit.



solution length k, PCP is undecidable, as shown by Post in [34]. Thus, we deal with a bounded version
of PCP (BPCP, for short), where k is bounded. BPCP is in NP [14] and was also studied in different
contexts, for example, using DNA-based bio-computations [20]. An instance of PCP can be visualised
using a list of tiles similar to domino bricks where the i-th tile contains the word wi on the top, and the
word vi at the bottom. Each tile has assigned an id equal to the position of the tile in the input list and we
assume that at least k copies of each tile is at our disposal. Thus, a solution is the sequence of tile’s ids,
and a single element of the sequence is also called a solution step. An example instance and a solution is
depicted in Fig. 1.
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Figure 1. An example instance of PCP, for n = 4 and Σ = {a, b}, W = (bab, bba, bab, b), V = (ab, a, aa, bb).
The solution (4, 4, 2, 4, 1) corresponds to the word w = v = bbbbabbab.

Translation to SAT. In addition to the assumptions above, we restrict the length of each word of W
and V to some m ∈ N+. In this setting, for a given k, the resulting words w and v are of length l ∈ N+,
where k ≤ l ≤ m ∗ k. To avoid ambiguity, we refer to the words of W and V as to elements, while
the concatenated word w and v is called the ’upper’ and the ’bottom’ word, respectively. Moreover,
to enable the standard binary encoding, we treat the symbols of Σ as the consecutive natural numbers
{0, . . . , |Σ| − 1}.

Let PV be a set of propositional variables used to encoding the problem as a Boolean formula.
In order to keep our presentation as clear as possible, we do not show the very details of the binary
encoding over propositional variables. Instead, we use propositions of PV to form symbolic variables,
i.e., vectors of propositional variables, (often called bitvectors), over which natural numbers are binary
encoded2. To this aim, we use expressions of the form (variable := value). For example, let x be
a bitvector (x1, x2).Thus, the value 2 ((10)2) is encoded over x by (x1 ∧ ¬x2), which is denoted by
(x := 2). Moreover, we group symbolic variables into vectors, and refer to the single ones using indices.
Let w and v be vectors of k ∗m symbolic variables to represent numbers corresponding to the alphabet
symbols, let vectors pw and pv (both of size k + 1) encode positions in words w and v, respectively,
whereas id is a vector of k symbolic variables encoding a solution, so a sequence of tile ids3. Thus, for
example, by wi and vi, for i = 1..k ∗m, we denote the symbolic variables encoding consecutive letters
of words w and v, respectively. In other words, wi and vi can be seen as ‘slots’ for numbers representing
the alphabet letters, and the variables idj as ’slots’ for numbers corresponding to tile ids.

Thus the total number of symbolic variables used in our encoding equals 2km + 2(k + 1) + k =
2km + 3k + 2, so it is in O(km). After multiplying it by the length of the longest bitvector: b =

2We use the standard binary encoding, similar to the one shown in equation (5).
3In the simplest case, when Σ contains only two symbols (letters), the bitvector encoding a single symbol consists of only one
propositional variable. However, to encode positions in a word we need dlog2(k ∗m)e propositional variables, while to encode
a tile id we need dlog2(n)e propositions.



max(dlog2(km)e , dlog2(n)e), we have O(kmb), but since in most cases we have km > n, the number
of propositional variables is in O(km ∗ log(km)).

Now, we are at a position to show the reduction of BPCP to SAT in a top-down manner. Overall, the
formula encoding BPCP is as follows.

bpcp(k,m,W, V ) =

m∗k∨
l=k

(
vectorsEq(l, k)∧

k∧
j=1

(
word(j,W,w,pw, id)∧word(j, V,v,pv, id)

))
(1)

where vectorsEq(l, k) is explained later, and word(j, A,u,p, id) is a formula encoding the choice
of the j-th solution step and its consequences. The symbols of the element corresponding to the j-th
solution step are encoded over symbolic vector u, between positions indicated by variables pj and pj+1:

word(j, A,u,p, id)=

|A|∨
i=1

(
(idj := i)∧

(j−1)∗m+1∨
p=j

(
(pj := p)∧(pj+1 := p+|ai|)∧

|ai|∧
x=1

(up+x−1 := at(ai, x))
))

(2)
where ai is the i-th word of the sequence A, |ai| denotes the length of the word ai, and at(ai, x) is the
natural number denoting the x-th symbol of ai. Note that this formula is used twice in (1). It exploits w
and pw to encode symbols of w and the positions of its components, and, respectively, v and pv to encode
v. However, both instances use the same vector (id) to encode a solution. The formula vectorsEq(l, k)
encodes the equality of the vectors w and v up to length l, as well as the fact that the vectors begin at
position 1 and end at position l.

vectorsEq(l, k) =
∧

i=1..l

(wi ⇔ vi)∧ (pw
1 := 1)∧ (pv

1 := 1)∧ (pw
k+1 := l + 1)∧ (pv

k+1 := l + 1) (3)

Lemma 3.3. Given k, m, V , and W , where |W | = |V | = n. The size of the formula bpcp(k,m,W, V )
is in O(k3m3n) and in O(k4m4) if km > n.

Proof. Note that for a given l the size of the formula (3) is 5l, so it is in O(l) = O(mk), because
(m − 1)k is the highest value of l. On the other hand, for a given j, the size of the formula (2) equals
to n ∗ (((j − 1) ∗m + 1− j) ∗ (2 + m)), so it is in O(m2jn), and since the highest value of j is k, we
have O(m2kn). Thus, for the whole formula bpcp(k,m,W, V ) we have O(km ∗ (km + k ∗m2kn)) =
O(k2m2 + k3m3n) = O(k3m3n). ut

Theorem 3.4. Given k, m, V , and W . BPCP has a solution iff bpcp(k,m,W, V ) is satisfiable.

Proof. Notice that we consider the input words of length from 1 to m, so the concatenation of k such
words is of length from k to m ∗ k.
(=⇒) Assume that for a given k,m,W, V there exists a solution sol = (s1, . . . , sk) which defines the
word w = v of length len. We shall show that [vectorsEq(len, k) ∧

∧
j=1..k

(
word(j,W,w,pw, id) ∧

word(j, V,v,pv, id)
]

is satisfied.
Let us analyse the formula word(j,W,w,pw, id), that is the instance of the formula (2) for A = W ,

u = w, and p = pw, i.e., we consider the ’upper’ word w. For a given j, that is, while deciding the
j-th solution step the formula contains an alternative choice over all elements of W , as the variable i



ranges over all available ids. Thus, for i = sj , the formula contains also the element of W matching
the j-th solution step of sol. Note that the value sj is encoded over idj . Next, in order to satisfy the
formula (2), at least one disjunct of the inner alternative has to evaluate to true. So, there exists some
p ∈ {j, . . . , (j − 1) ∗m + 1} corresponding to the starting position of the j-th element of the ’upper’
word. Obviously, this position is the total length of first j − 1 elements of the solution increased by 1.
According to our assumptions, if all j−1 elements are of the shortest possible length 1, their total length
equals j − 1 and the next (j-th) element begins at position j − 1 + 1 = j. On the other hand, if all
previous elements are of the maximal length m, the j-th element starts at position (j − 1) ∗m + 1. The
inner alternative considers both boundary values and also all values between, thus one of them matches
the starting position of the j-th element. Observe, that in the case of the first element, i.e., for j = 1, 1 is
the only value of p. Then, for the given p, the inner conjunction is satisfied. Moreover, p is encoded over
the symbolic variable pw

j , the starting position of the next ((j+1)-th) element is encoded over pw
j+1, and

the consecutive symbols of wsj are binary encoded over the symbolic variables (wp, . . . ,wp+|wsj |−1).
Similarly, we can analyse the formula word(j, V,v,pv, id) for the ’bottom’ word. Finally, since sol

is a solution, the consecutive len symbols of w and v match. Thus, vectorsEq(len, k) is satisfied as the
consecutive len variables of w and v are equal, and the values of pw

1 , pv
1, pw

k+1, and pv
k+1 required by

vectorsEq(len, k) are set by the appropriate instances of the formula (2).
(⇐=) This part of the proof follows directly from the structure of the formula bpcp(k,m,W, V ). If
the formula is satisfiable, then we obtain a valuation M of the symbolic variables which satisfies the
formula. Since vectorsEq(l, k) is satisfied by M , we have M(wi) = M(vi), for i = 1, . . . , l. That
is, the upper word is equal to the bottom one, both start at position 1, and end at position l. Observe
that the formula (2) implies that the upper word is built out of words of W , while the bottom one out
of words of V . For j = 1, . . . , k, the consecutive components of the words start at positions M(pw

j )
and M(pv

j ), respectively, and every consecutive component of the upper and of the bottom word is the
M(idj)-th word of the input sequence W , and V , respectively. Thus, we have a solution for a given
BPCP instance. ut

3.3. Reduction for string correction problem

String correction problem (SCP) is a well-studied class of problems originated from string edit distance.
The edit distance defines a set of some simple operators conducted on strings. SCP consists in finding out
whether a string A can be transformed into a string B in a finite k edit distance operations. If three single-
character operators: insertion, deletion or substitution, are allowed, then the edit distance is called
Levenshtein’s one [25]. This problem can be solved in time proportional to the product of the lengths
of A and B as shown in [40]. A more interesting extension of edit distance is Damerau-Levenshtein
distance [8], where the set of operators is extended with the operator exchanging the positions of any
two symbols in a string. This problem is called the extended string-to-string correction problem (ESCP).
In this case the problem is of the same complexity as before [40]. However, if one limits the available
operations to single character deletions and swapping the adjacent symbols only, and allows for using at
most k edits, where k ∈ N, then the problem becomes NP-complete [40].

Formally, the problem is formulated as follows. Given a finite alphabet Σ, two non-empty strings
A,B ∈ Σ+, and k ∈ N+. Assume that A = (a1, . . . , an) and B = (b1, . . . , bm), where ai, bj ∈ Σ
for i = 1..n and j = 1..m. The problem is whether one can transform A into B by a sequence of at
most k edit operations including swap and deletion. The swap operator occurs when two consecutive



symbols switch their positions. Deletion is the removal of an individual instance of a symbol from a
string, therefore shortening its length by 1. The deleted symbols are replaced with the special value ε
denoting the empty character. Note that we have n ≥ m as otherwise the problem is unsolvable without
an insert operator. Consider an example presented in Fig. 2. A transformation from A = abcaab to
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Figure 2. An example of the problem with inputs: A = abcaab, B = baca, and the parameter k = 3.

B = baca is obtained by swapping the first two symbols (a and b) of A and then deleting the last two
symbols (ab) of A.

Translation to SAT. Let PV be a set of propositional variables needed to encode ESCP. Similarly to
encoding of BPCP (see Sec. 3.2), we use vectors of symbolic variables in order to binary encode the
alphabet symbols and positions inside words. We need to encode an initial string A and its k copies. To
this aim we allocate k + 1 vectors of symbolic variables, si for i = 0..k, each representing a possible
evolution of the string A after applying i edit operations. The strings are of length n, and so the vectors
si consist of n symbolic variables, sij , for j = 1..n. Going into details, each symbolic variable sij is a
sequence of propositions sij,m ∈ PV , where m = 0.. dlog2(|Σ + 1|)e. That is, it contains the number of
bits necessary to binary encode all symbols of Σ and ε. Overall, we use (k + 1) ∗ n ∗ dlog2(|Σ + 1|)e
propositional variables to encode ESCP.

The reduction of ESCP to SAT is presented in a top-down fashion. The whole formula is as follows:

escp(k,A,B) =
n∧

i=1

(
s0i := ai

)
∧
( k∨
j=1

m∧
i=1

(sji := bi)
)
∧

k∧
j=1

step(j).

The meaning of := is the same as in the reduction for BPCP. The first part of the formula is a binary
encoding of the input word A over the vector s0. Next, the disjunctions encode the desired states of a
transformation after j operations have been performed, that is, the situation when the binary represen-
tation of the word B is encoded by vector sj . Finally, the last part of the formula encodes all possible
changes introduced in the consecutive steps, as explained below:

step(j) =
∨

p=1..n−1

(
del(j, p) ∨ swap(j, p)

)
∨ del(j, n). (4)

The formula (4) describes all possible positions of delete and swap operations. The formula encoding a
delete operation execued at step j and position p is as follows:

del(j, p) = (sj−1p 6= ε) ∧
∧

i=1..p−1

(
sji ⇔ sj−1i

)
∧

∧
i=p..n−1

(
sji ⇔ sj−1i+1

)
∧
(
sjn := ε

)



Its first conjunct is the precondition ensuring that there is a non-empty symbol at position p. Then, all
symbols up to position p are ’copied’ from the previous state, which is encoded as the equivalence of
the consecutive p− 1 symbolic variables of sj−1 and sj . Next, starting from position p, the consecutive
symbols are ’copied’ from the previous state and shifted left by one position. At the very end the empty
symbol is added. Finally, the encoding of swap operation at the j-th step and at position p is defined as:

swap(j, p) =
(
sj−1p+1 6= ε

)
∧

∧
i=1..n,i 6=p,i 6=p+1

(
sji ⇔ sj−1i

)
∧
(
sjp ⇔ sj−1p+1

)
∧
(
sjp+1 ⇔ sj−1p

)
,

where the first conjunct is a precondition ensuring that a non-empty symbol is affected by the operation,
the next part ’copies’ all unchanged symbols (i.e., all but those at the positions p and p + 1), and the last
two conjuncts encode swap of the two symbols at positions p and p + 1.

Lemma 3.5. The formula escp(k,A,B) is of size O(kn2).

Proof. The formula consists of three conjuncts; the first two are of size n and k ∗ n, respectively. For
the latter, we bound the number of the inner conjunctions m with n; recall that n ≥ m as the problem
is otherwise unsolvable without additional operators. Finally, the last subformula is the conjunction over
k steps of the ESCP algorithm. Each of these contains the disjunction over n positions in the input
string on which operations swap or delete are performed, and whose respective formulas are both of
size n. As such, the size of the third conjunct is k ∗ n2. The whole formula escp(k,A,B) is thus of size
n + k ∗ n + k ∗ n2, and so is in O(kn2). ut

Theorem 3.6. Given A, B, and k. ESCP has a solution iff the formula escp(k,A,B) is satisfiable.

Proof. (=⇒) Assume there exists a solution, i.e., a sequence of k operations such that A is transformed
into B. We will show that the formula escp(k,A,B) is then satisfied. Any valid solution obviously
originates from the input string A, represented in our encoding by the initial state vector s0. Thus, n
symbolic variables of s0 correspond to the respective symbols of A, as enforced in the first conjunct of
the main formula escp(k,A,B). Note that the operator := indicates equality w.r.t. binary encoding. At
some point during the subsequent k operations, the desired state where A equals B is reached. As such,
there is an operation j ≤ k, after which all symbolic variables of sj binary encode the respective symbols
of B. This is represented by the second conjunct of escp(k,A,B). Finally, at each step between these
initial and final states, either delete or swap is performed, as permitted by the ESCP conditions. This
is reflected in the third and final conjunct of escp(k,A,B). We will now analyse it from the bottom
up, starting with the two subformulas encoding operations delete and swap. Suppose the character at
position p is deleted from A in the j-th operation. If so, then p must be within the non-empty part of
the string, as the deletion of the empty character ε is not valid. Furthermore, following the operation, all
characters before the deletion point, that is, at n < p, are left unchanged, while those after p only have
their positions shifted by one to the left. These constraints are encoded in del(j, n). Following a similar
pattern, suppose the j-th operation consists of swapping the character at position p. Recall that the swap
operation in ESCP is defined as exchanging the positions of two consecutive characters; since the last
character has no subsequent, it is only applicable up to and including p = n−1. All but the two swapped
characters, that is, positions ranging over {1, . . . , p− 1} and {p + 2, . . . , n}, are left unchanged. These
constraints are encoded in swap(j, n). The disjunction of swap(j, n) and del(j, n) over the positions



p ∈ {1, . . . , n} (with the exception of n for the former) constitutes the subformula step(j).
(⇐=) Assuming escp(k,A,B) evaluates to true, we can obtain its satisfying assignment, that is, the
initial state vector s0 and the vectors s1...sk, corresponding to the state of the input in each of the k
steps. They in turn, through binary encoding using n symbolic variables per vector, represent a valid
solution of ESCP where the input string A (encoded by s0) is transformed into B (encoded by sj) using
at most k operations. Note that escp(k,A,B) contains a regular disjunction (as opposed to XOR) of
operations swap(j, n) and del(j, n), even though only one of these can be performed in a single step.
This is because they already encode the requirement that all characters unaffected by the operation are
left unchanged. As such, it is not possible for swap and delete to occur simultaneously in a satisfying
assignment of step(j) or, consequently, of the whole formula escp(k,A,B). ut

3.4. Reductions for chess problems

In this section, we discuss encodings to SAT for two popular chess problems, N-queens and knight’s
tour. The former is often incorrectly claimed to be NP-hard or NP-complete [16]. The decision version
of N-queens is in fact of constant complexity (since valid arrangements have been proven to exist for all
n ≥ 4), while a single witness can be easily constructed as shown in [4]. However, any solution requires
n log n bits, and as such is not polynomial w.r.t. input size, which is only log n. As for Knight’s tour, for
arbitrarily sized n×m chessboards, an algorithm running in time O(nm) is shown in [26].

N-queens. This is a chess problem which consists in placing the n queens on the n × n chessboard
such that they are not attacking one another. Let the assignment of ’true’ to variable pi,j represent the
placement of a queen in the i-th row and j-th column. Conversely, any empty square is equivalent to its
respective variable being assigned ’false’. The formula encoding the N-queens problem is then given as
P(N) ∧ D(N), where P(N) is the subformula previously used for the Hamiltonian path encoding (see
Sec. 3.1), and D(N) is given as follows:

D(n) =

n∧
k=1

n∧
l=1

( ∧
1≤i 6=k<n

∧
1≤j 6=l≤n−i

(
(¬pj,i+j ∨ ¬pl,k+l) ∧ (¬pi+j,j ∨ ¬pk+l,l)∧

(¬pj,n−1−(i+j) ∨ ¬pl,n−1−(k+l)) ∧ (¬pi+j,n−1−j ∨ ¬pk+l,n−1−l)
))

The subsequent two lemmas follow from the construction of the formula P(N) ∧ D(N).

Lemma 3.7. The formula P(N) ∧ D(N) is of size O(n4).

Proof. As per Sec. 3.1, the size ofP(N) is 2n3. However, forD(N), which has four nested conjunctions,
it is not possible to treat the inner conjunction as a single subformula in the same manner because of the
presence of the disjunction operator. As such, the size of P(N) ∧D(N) is 2n3 + n4, and the formula is
thus in O(n4). ut

Lemma 3.8. The N-queens problem has a solution iff the formula P(N) ∧ D(N) is satisfiable.

Proof. Since a queen moves and attacks along rows, columns, and diagonals on the chessboard, there can
be at most one per row, column, and diagonal. Moreover, since the number of queens equals the number



of the rows and the columns, it is easily inferred that any valid solution will have exactly one queen per
row and column. The required ’exactly one’ constraint for rows and columns is thus the same as in the
case of the Hamiltonian path, and is analogously enforced by the subformula P(N). For diagonals, the
disjunctions in the first line of D(N) concern diagonals parallel to the main diagonal, while those in the
second line involve those parallel to the antidiagonal. Altogether, the conjunction P(N) ∧D(N) covers
all required constraints for a valid solution of the N-queens problem. ut

Knight’s tour is a chess problem which consists in finding a sequence of knight’s moves such that
it visits every square exactly once. For the purposes of encoding the knight’s tour as a propositional
formula, it can be considered a specific instance of the Hamiltonian path problem, with the chessboard
being represented by a graph of n2 vertices (each vertex represents a square of the n × n chessboard)
whose are adjacent if and only if a valid knight’s move is possible between the respective squares. The
reduction to SAT follows exactly as previously described in Sec. 3.1, but we need more (i.e., n4) variables
to encode the consecutive moves: by pi,j , for i, j = 1..n2, we denote the j-th move of the knight to
position i. Thus, the resulting formula is of size O(n4).

4. Reductions to SAT for problems in EXPTIME and PSPACE

This section discusses translations to SAT for two problems: one of exponential time complexity and one
of polynomial space complexity.

4.1. Towers of Hanoi

The ToH problem [28] is a well-known mathematical puzzle where n discs of different sizes can be
placed on one of the three towers. Initially, all the disks are aligned on the first tower, such that the
biggest one is on the bottom and every other disc is located on a bigger one. The solution of ToH consists
in finding a sequence of disc movements in order to place all of them on another tower preserving their
original order. However, every move is restricted only to one of the discs being on the top of a tower, and
it cannot be placed on the top of a smaller disc. Below, we present our original propositional encoding
of the ToH problem.

The i-th state is represented by the tuple (d1,i, d2,i, . . . , dn,i), where every dj,i ∈ {0, 1, 2}, for j =
1..n, corresponds to the location of the j-th disc (either on the first (0), second (1), or the third (2) tower).
By D(j, i, t) we denote dj,i = t, where j = 1 stands for the smallest disc, while j = n corresponds
to the biggest one, i = 0 denotes the initial state, and t ∈ {0, 1, 2} corresponds to a tower. We use the
standard binary encoding of integers using two propositional variables:

D(j, i, t) =


¬pj1,i ∧ ¬pj2,i for t = 0,

¬pj1,i ∧ pj2,i for t = 1,

pj1,i ∧ ¬pj2,i for t = 2.

(5)

The initial and final states are encoded as follows:

I =

n∧
j=1

D(j, 0, 0), F =

n∧
j=1

D(j,max, 2),



where max = (2n − 1) is the number of moves. All possible moves in the i-th state are encoded as:

M(i) =
2∨

t=0

( n∨
j=1

(
move(j, i, t) ∧

∧
k∈{1,...,n}\{j}

dk,i = dk,i+1

))
,

where all but the j-th disc remain on the same tower, and the j-th one is moved:

move(j, i, t) = pre(j, i, t) ∧
( ∨
t′∈{0,1,2}\{t}

post(j, i + 1, t, t′)
)
,

pre(j, i, t) = D(j, i, t) ∧
(j−1∧
k=1

¬D(k, i, t)
)
, post(j, i, t, t′) =

(j−1∧
k=1

¬D(k, i− 1, t′)
)
∧D(j, i, t′)

Thus, the whole formula encoding the ToH problem is as follows:

ToH(n) = I ∧ F ∧
max∧
i=0

M(i).

The subsequent two lemmas follow from the construction of the formula ToH(n).

Lemma 4.1. The formula ToH(n) is of size O(2n).

Proof. The solution of the ToH puzzle is a sequence of 2n states, in each of which we have n discs
encoded using two propositional variables. Thus, we need 2n ∗ 2n variables, and the formula is of size
O(2n). ut

Theorem 4.2. The ToH problem for n discs has a solution iff the formula ToH(n) is satisfiable.

Proof. Let us examine the subformulas used in our encoding, beginning with the initial and final states,
denoted by I and F , respectively. The former is straightforward and ensures that the starting position is
correct, i.e. all discs are on the first tower. Note, however, that the latter does not represent the actual end
state of a ToH puzzle solution. Instead, it corresponds to a state reached after about half the total moves,
where only the largest disc is on the destination tower. This is motivated by the observation, following
[28], that all remaining moves can be trivially obtained by mirroring past steps. M(i) is a disjunction
over towers t ∈ {0, 1, 2} and then discs j ∈ {1, . . . , n} of possible moves move(j, i, t), in conjunction
with an additional constraint ensuring every disc but the selected j-th one remains in place, as per the
rules of the ToH puzzle. Thus, M(i) encodes all possible moves in the i-th state. Individual moves
comprise of conjunctions of precondition pre(j, i, t) and postcondition post(j, i, t, t′). Intuitively, the
former ensures that all required conditions for a valid move are met: firstly, the j-th disc is indeed on the
tower t, and secondly, there is no smaller disc on the same tower (and so the j − th one can be moved).
Conversely, the latter verifies post-move conditions, specifically, that the j-th disc is no longer on its
original tower t, has moved to destination tower t′ and is the smallest disc on t′. ut



4.2. Model checking of UML systems

Unified Modeling Language (UML) [39] is a graphical specification language. It consists of over a
dozen types of diagrams which allow for describing a modelled system from different points of view.
Nowadays, model checking techniques are able to verify crucial properties of systems at early stages
of design. Here, we recall some results of our previous work resulted in development of a symbolic
(bounded) model-checking method operating on systems specified in a subset of UML, and performing
a direct translation of all the possible executions of a system (unfolded to a given depth) to SAT.

The tested benchmark is a variant of the well known Generalised Railroad Crossing (GRC). The
system, operating a gate at a railroad crossing, consists of a gate, a controller, and N tracks which are
occupied by trains. Each track is equipped with sensors that indicate a position of a train and send an
appropriate message to the controller. Depending on the track occupancy the controller can either open
or close the gate [32]. Due to improper time constraints, the benchmark contains a subtle error which
allows a train to enter the crossing while the gate is not yet fully closed, and we test the reachability of
such a state.

The reduction to SAT is reported in [32], and presented in more detail in [30]. The number of
propositional variables needed to encode the transition relation is polynomial w.r.t. several parameters
(like, e.g., the length of the event queues, the number of objects in the system, etc.) except for the case
when the multiplication is used in the specification of the system, which makes the encoding exponential,
which does not concern GRC.

5. Experimental results and comparisons

In this section we discuss experimental results and compare the efficiency of the SAT-solvers applied.
The test platform was a desktop PC with a quad-core Intel Core i5-3350 CPU operating at 3.1 Ghz, with-
out HyperThreading support. The system had 16 GB of RAM and was running Windows 7 Professional.
For time measurement, built-in statistics were used for every SAT-solver. Given the computational com-
plexity of SAT, not all test instances were expected to be processed in a reasonable amount of time. It
is of concern especially in the case of older, classic SAT-solvers, i.e., zChaff, as well as unsatisfiable
instances of selected problems. The timeout was set at 60 minutes.
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Figure 3. Average results for the graph k-colouring problem, grouped by input size



0,01

0,10

1,00

10,00

100,00

1000,00

n = 16, k = 8, SAT n = 20, k = 10, SAT n = 24, k = 12, SAT n = 16, k = 8, UNSAT

ru
n

n
in

g 
ti

m
e

 (
s)

 

input size 

Lingeling

Plingeling

Glucose

Glucose-syrup

Clasp

Minisat

ManySAT

Z3

n = 16, k = 8, UNSAT 

Figure 4. Average results for the vertex k-cover problem, grouped by input size

0,01

0,10

1,00

10,00

100,00

n = 50, SAT n = 100, SAT n = 250, SAT n = 50, UNSAT n = 100, UNSAT n = 250, UNSAT

ru
n

n
in

g 
ti

m
e

 (
s)

 

input size 

Lingeling

Plingeling

Glucose

Glucose-syrup

Clasp

Minisat

ManySAT

Z3

n = 50, 
UNSAT 

n = 100, 
UNSAT 

n = 250, 
UNSAT 

Figure 5. Average results for the Hamiltonian path problem, grouped by input size

5.1. Results for NP-complete problems

Because the three discussed classical NP-complete problems come from graph theory, creating input DI-
MACS files for SAT-solvers involves the random generation of graphs with a given number of vertices n
and, where applicable, an additional parameter k. The input strings for the bounded Post correspondence
problem and the String correction problem are also randomized. Thus, to ensure a fair comparison and
reliable results, the running time was averaged over multiple files generated for each test instance.

The standard deviation varied significantly depending on the problem encoded and satisfiability of
the instance, but one consistent observation is that the results were much more stable for the classical
graph problems (vertex k-coloring and Hamiltonian path in particular), as opposed to bounded PCP and
string correction. For the latter two, especially in unsatisfiable instances, relative standard deviation often
exceeded 100%.

Older SAT-solvers generally performed in line with expectations. Of particular note here is Minisat’s
excellent performance when dealing with classical graph problems. On the other hand, zChaff was
unable to handle most of the larger input files, often running out of memory even though a 64-bit version
of the solver is available and was the one tested. Consequently, it is usually omitted from our results for
better chart readability.



The situation is not nearly as clear-cut at the opposite end of the spectrum. Modern SAT-solvers,
like Lingeling, Glucose and Clasp, though often offered far superior performance, did not come out
on top in every single test instance. This clearly shows just how challenging the solving of an NP-
complete problem such as SAT can be, while at the same time emphasizing the continuing need for
further improvements in many areas of the algorithms.

More specifically, of NP-complete problems, Hamiltonian path (Fig. 5) and satisfiable instances of
graph k-colouring (Fig. 3) appeared to be the least challenging for tested SAT-solvers. Even for the
largest of generated input files, representing formulas with about 15 million clauses, finding a solution
did not prove to be very difficult, and all solvers (with the exception of the aforementioned zChaff) were
able to do so in 30 seconds or less. Lingeling, and especially its parallel version Plingeling, actually
recorded the slowest times in both of these tests, which might be seen as surprising for a very recent,
modern, state-of-the-art SAT-solver. It appears that in this particular case the time overhead introduced
by additional operations such as file preprocessing for more efficient solving, and especially dividing
the task between multiple threads in the case of Plingeling, simply exceeded the actual solving time.
While less than ideal in this specific situation, it is in no way indicative of poor performance of the
more sophisticated SAT-solvers in general, as evidenced by their behaviour in the difficult unsatisfiable
instance of graph k-colouring, as well as in the following test.

The vertex k-cover test (Fig. 4) proved to be more difficult, scaling worse with an increased input size
compared to the other two classical graph problems (hence the relatively small values of n and k chosen).
In these circumstances, Lingeling was able to leverage its CDCL advancements to achieve significantly
faster processing time than other SAT-solvers for unsatisfiable input. Overall, the test clearly showed
that the more difficult the instance, the more likely it is for modern SAT-solvers to outperform older, less
advanced algorithms. This was evidenced with not only Lingeling, but also with Clasp being significantly
faster than the older Minisat. Glucose’s results were on par with the latter, however, possibly stemming
from the fact it was originally based on Minisat’s source code. The same held true for ManySAT, while
Z3’s results were below average in this test.

Generally, it was expected for the satisfiable instances of the problems discussed to be solved faster,
on account of not having to explore the remainder of the solution space once a satisfying assignment was
found. While this was indeed the case for both graph k-colouring and vertex k-cover, an anomaly could
be observed in the case of the Hamiltonian path test, where unsatisfiable instances were actually verified
faster. This could be attributed to the relative ease with which the non-existence of a Hamiltonian path
can be proved in a graph, requiring only a single unconnected vertex.

The results for the bounded Post correspondence problem, separated between satisfiable and unsat-
isfiable instances, are presented in Fig. 6. Glucose was the fastest solver in both cases (except for the
largest UNSAT test where it finished marginally behind Lingeling), although its parallel version offered
little to no performance increase, or even introduced slight time overhead. Plingeling, meanwhile, per-
formed significantly better than its sequential counterpart, and this difference only became more evident
as the size of test instances increased. Equally noteworthy is the fact Lingeling (along with its parallel
branch) was the only SAT-solver in this test whose running time was shorter for unsatisfiable instances;
otherwise, as expected, they took longer to verify. This difference, however, was not as dramatic as in
the case of several other tests. Minisat, its parallelization ManySAT, and zChaff were largely unable to
compete against state-of-the-art SAT-solvers in this test, requiring times at least an order of magnitude
longer to complete verification. The results of Clasp and Z3 were also significantly worse than those
achieved by Glucose and Plingeling.
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Figure 7. Results for the string correction problem, grouped by input size

Finally, in the string correction test a particularly large difference in verification time of satisfiable
and unsatisfiable instances could be observed (Fig. 7), with the latter at least an order of magnitude
longer. On the other hand, individual solvers were relatively closely matched compared to previous
tests, although older ones like Minisat and ManySAT, and even the modern Clasp, noticeably lagged
behind when processing the largest input files. Overall, Lingeling and Glucose verified the most difficult
instances in shortest time, with the former slightly more effective at satisfiable instances.

5.2. Results for chess problems

The N-queens problem has several known solutions exploiting certain patterns and symmetries that were
discovered to repeatedly occur in valid arrangements [4]. As such, it was expected that a reduction to
SAT and employing a SAT-solver would not be optimal (Fig. 8). That is indeed the case: while there
always remains a possibility that the solver will be able to encounter a valid assignment relatively early,
even in the most optimistic scenario the processing time is several orders of magnitude worse than that of
algorithms tailored for the N-queens problem. For instance, taking advantage of the aforementioned pat-
terns and symmetries, the well known constraint solver OptaPlanner [13] is capable of finding solutions
for as many as 100000 queens in a matter of seconds.
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The non-viability of using reductions to SAT as a means of efficiently solving chess problems that
are not specifically NP-complete or NP-hard is even more clear in the case of knight’s tour (Fig. 9).
Since the chessboard has n2 squares, the number of variables required to represent a unique knight’s
move drastically increases compared to that of a regular instance of the Hamiltonian path problem.
Consequently, so does the rate at which input files increase in size. As early as at n = 17, or only
slightly more than twice the size of a standard chessboard, none of the tested SAT-solvers was able to
verify satisfiability within 60 minutes.

Practically, this all but disqualifies any use of SAT-solvers for this specific problem. Instead, attention
should be directed towards specialized algorithms for the knight’s tour problem that are known to have
lower computational complexity [33, 26].



5.3. Results for EXPTIME and PSPACE problems

In Fig. 10 we present the comparison of SAT-solvers’ performance using the Towers of Hanoi problem
for n ∈ {5, 7, 9, 11, 13}. Because the puzzle has a solution for any number of discs n, there are, of
course, no unsatisfiable instances to be tested.

As expected, the running time scales very poorly given that the problem is exponential in the size
of the input. Lingeling and Glucose were by far the most efficient solvers in this competition, with the
former slightly faster for the largest of tested instances. However, it should also be noted that in either
case, parallel versions provided no noticeable advantage.
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Figure 10. Results for the Towers of Hanoi problem
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Figure 11. Results for model checking of UML systems

Finally, in Fig. 11 we present the results of GRC benchmark for 20 tracks, scaled w.r.t. the length of
the event queues (3, 5, 8, and 10), where the obtained formula is satisfiable (at depth 18) and the integers
are encoded over 10 propositional variables. It is easy to observe that modern solvers, especially Glucose
and Clasp, handle the benchmarks almost effortlessly, taking advantage of the system symmetry. For
older SAT-solvers, running time does increase with the size of the input, but nowhere near as significantly
as in previous examples. This is also evidenced by the fact even zChaff was able to handle all instances



Lingeling Plingeling Glucose Gl.-syrup Clasp Minisat ManySAT Z3 zChaff

Sat 2277 1663 1655 1716 5061 4684 9449 6357 61848

Unsat 782 710 2261 2269 5484 2585 7806 3779 36000

Total 3059 2373 3916 3986 10545 7269 17255 10136 97848

Table 2. Total time consumed by the solvers for satisfiable and unsatisfiable benchmarks

in this test, albeit, as expected, it was by far the slowest solver in contention, once again emphasizing the
dramatic progress made in the area since the beginning of the twenty-first century.

6. Conclusions

We have presented nine SAT-solvers and compared their efficiency for several decision and combinatorial
problems: five NP-complete problems including three classical graph problems and two others featur-
ing our original SAT encodings, bounded Post correspondence problem and string correction problem,
two popular chess problems, verification of UML systems in PSPACE, and the Towers of Hanoi (ToH)
problem, whose solutions are of exponential complexity. Our experimental results allow for drawing
conclusions on efficiency and applicability of modern SAT-solvers to problems of different complexity.
As one could expect, while SAT-solvers behave quite efficiently for NP-complete and harder problems,
they are by far inferior to tailored algorithms for specific problems of lower complexity, like N-queens.
Another main observation is that modern SAT-solvers, like Lingeling, Glucose and Clasp, despite their
sophistication and often indeed superior performance, especially when dealing with the largest and most
difficult (unsatisfiable) test instances, did not come out on top in every single test. However, their ef-
ficiency is unquestionable, if we take into account the overall results. Table 2 presents the total time
needed by each tool to solve all presented benchmarks. The values in bold indicate the shortest total
times consumed for satisfiable and unsatisfiable instances, and the best total time. As for the satisfiable
benchmarks, the winner is Clasp with only a slight advantage over Plingeling, which, in turn consumed
the least time for the unsatisfiable instances and in total. Thus, Plingeling is the champion of our com-
parison.

Overall, the results clearly show how challenging the solving of the SAT problem can be, while at the
same time emphasizing the continuing need for further improvements in many areas of the algorithms.
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