
Fundamenta Informaticae XX (2017) 1–21 1

DOI 10.3233/FI-2012-0000

IOS Press

TripICS - a Web Service Composition System
for Planning Trips and Travels

Artur Niewiadomski, Piotr Switalski, Marcin Kowalczyk
Siedlce University, Faculty of Science, Institute of Computer Science,

3-Maja 54, 08-110 Siedlce, Poland

artur.niewiadomski@uph.edu.pl; piotr.switalski@uph.edu.pl; kontakt@marcinkowalczyk.pl

Wojciech Penczek∗

Institute of Computer Science, Polish Academy of Sciences

Jana Kazimierza 5, 01-248 Warsaw, Poland

penczek@ipipan.waw.pl

Abstract. We present the web service composition system TripICS, which allows for an easy and
user-friendly planning of visits to interesting cities and places around the world in combination with
travels, arranged in the way satisfying the user’s requirements. TripICS is a specialization of the con-
crete planning of PlanICS viewed as a constrained optimization problem to the ontology containing
services provided by hotels, airlines, railways, museums etc. The system finds an optimal plan by
applying a modification of the most efficient concrete planner of PlanICS based on a combination
of an SMT-solver with the algorithm GEO. The modification has been designed in order to solve
quickly multiple equality constraints. The efficiency of the new planning algorithm is proved by
experimental results.

Keywords: Web Service Composition, Concrete Planning, PlanICS, TripICS, SMT, Hybrid Algo-
rithm, GEO

Address for correspondence: Institute of Computer Science, Siedlce University of Natural Sciences and Humanities, 3-Maja
54, 08-110 Siedlce, Poland
∗Also affiliated with: Institute of Computer Science, Siedlce University of Natural Sciences and Humanities

2 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

1. Introduction

Automatic composition of Web services is a very active area of research which has provided a
lot of important results [1, 8, 13, 24] as well as many implemented approaches [3, 5, 17, 19, 21].
Unfortunately, the problem of finding a composition of Web services satisfying user requirements is
hard [21], so its solution requires efficient heuristic algorithms in order to be of practical applications.

In this paper we follow the approach of our system PlanICS [10, 11, 21, 22] which has been inspired
by [1]. The main goal of PlanICS is to find a plan, i.e., a composition of services that satisfies a user
query, in the process divided into three main phases: abstract planning, offer collecting, and concrete
planning. Abstract planning (AP) consists in finding service types that are expected to be useful in
achieving the user goal. The result of this phase is called an abstract plan. Offer collecting (OC),
which interacts with service types found in abstract planning, aims at collecting data necessary for
the next stage of service composition. Concrete planning (CP) selects concrete services (provided
by OC) of types specified by an abstract plan such that the user requirements are met and the quality
conditions are maximized.

This paper is an improved and extended version of our CS&P’16 paper [20]. The main contribu-
tion consists in offering the system TripICS - a real-life application of our Web service composition
system PlanICS to planning trips and travels around the world. While there are systems offering
some support for planning excursions and travels [6, 7], our system uses advanced automated con-
crete planning methods [21, 23, 26]. TripICS is a specialization of the concrete planning viewed as
a constrained optimization problem to the ontology containing services provided by hotels, airlines,
railways, museums etc. The system finds an optimal plan (solution) satisfying the requirements of
the user by applying the most efficient concrete planner of PlanICS based on a combination of an
SMT-solver [9] with the nature inspired algorithm GEO [23, 26]. However, the algorithm has been
significantly improved in order to solve more efficiently multiple equality constraints. These con-
straints result from a new kind of user queries supported by the current version of our system, i.e.,
those where the order of city visits is not specified. The above improvement required to modify the
neighbourhood operator as well as the fitness function. The efficiency of the new planning algorithm
is proved by results of our extensive experimental results shown in Section 5.2.

Contrary to PlanICS, the first phase of planning, called abstract planning, is realized by TripICS in a
semi-automatic way by giving the user a possibility to choose the elements of an abstract plan using
a Graphical User Interface (GUI). In what follows we give also a new distributed architecture of
TripICS based on a Web application and REST services.

In the remainder of this paper we present: related systems (Section 1.1), the description of the system
TripICS (Section 2), the theory behind it (Sections 3 and 4), and the implementation (Section 5)
followed by some experimental results (Section 5.2) and conclusions (Section 6).

1.1. Related Systems

To the best of our knowledge there are no systems that allow for combining Web services related to
travels, hotels, and entertainments such that the user can specify requirements corresponding to the
way these services fit one to another. The best example of limitations of the most advanced existing
systems is Opodo, which new functionality allows for finding a flight and a hotel (for whole or part
of a trip), but no entertainments can be combined with these. Opodo does not allow to make plans
including many flights and many hotel stays. The function ’Multi-stop’ cannot be combined with
finding hotels or entertainments. Moreover, ’Multi-stop’ cannot be used for finding optimal trips
between two cities via other cities without specifying the order of the cities to be visited together

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 3

with exact dates. TripICS allows for finding plans in which multiple travels are combined with hotels
and an optimal order of visits to cities is found by the system. Other systems can be used for a more
sophisticated specification of single services like hotels (Booking.com, Trivago) or flights (Bravofly,
Flyhacks), separately flights or hotels (Skyscanner, Flysiesta, Mytrip) or have functionality similar
to Opodo (e.g., Kayak). In fact, Kayak is one of a few systems which allows for finding a flight or a
hotel, or a flight + hotel, or a car for renting, or an entertainment, but no requirements on combining
these functions can be specified before selecting one of them.

Another interesting solution for a frequent traveller could be also the TripIt application. Although
TripIt does not offer planning capabilities, but it allows for easy managing of reservations and book-
ings, and during the trip provides additional useful information.

The InspiRock application is also very helpful by planning travels. It allows to interactively search
for transportation, accommodation and tourist attractions, however, contrary to TripICS, the offers
are not downloaded automatically, but the user is redirected to several external web sites. Recently,
there appeared also the eCOMPASS application [14] supporting city visits. It allows for setting some
user preferences and provides detailed daily plans, however the functionality is limited to visiting
one city, and there is no way to plan a trip to several distant places.

2. TripICS Description

Our system is to allow the user for an easy and user-friendly planning of visits to interesting cities
and places around the world in combination with travels in and out, arranged in the way satisfying
the user’s requirements. The general assumption is that the user would like to receive an optimal plan
of a travel starting and ending in given locations and offering a possibility of visiting some specified
cities within some specified dates. A plan is optimal if its quality value is the highest according to
the given criteria. Below, we make the above description much more precise by giving three lists of
requirements: 1) the user has to set (obligatory requirements), 2) the user can optionally set (optional
requirements), and 3) the predefined quality requirements.

2.1. Obligatory Requirements

1. Trip starts and ends in two given locations (cities),

2. Trip starts from a given date (or a period of time) and lasts for a given number of days (option-
ally can be shorter or longer by a specified number of days),

3. Trip involves visiting given cities, each city within a specified minimal/maximal number of
days,

4. In each city to be visited, the attractions specified in the optional rules, are available within the
period of stay.

2.2. Optional Requirements

1. In each city, attractions (museums, exhibitions, matches, concerts, restaurants etc.) to attend
are specified,

2. Quality of hotels is specified by giving a minimal number of stars (0 - 5) and a minimal score
(0 - 10),

3. Travels do not last longer than a given number of hours.

4 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

4. Cities are to be visited in the order specified by the user or their optimal order is to be found
by the planner.

Clearly, a plan is expected to be optimal in the sense that the travels should conveniently fit to the
stays and the prices should be as low as possible for a required quality of hotels. The aim of TripICS
is to return such plans if they exist. Formally, these plans need to satisfy the user requirements as
well as the quality requirements specified below.

2.3. Quality Requirements

1. A travel connection between two cities is always direct if it exists,

2. Costs, durations, and the numbers of breaks of the travels are minimized,

3. Costs of the visits are minimized while their standards and durations are maximized.

3. Theory behind TripICS

Typically, PlanICS realizes planning in three phases called: abstract planning, offer collecting, and
concrete planing, after receiving a user query specifying the requirements. In TripICS we depart from
using an abstract planner, which does free the user from formulating a user query in the specification
language. Instead, the user is given a possibility to set the obligatory and optional requirements
about expected plans using GUI, described briefly in Section 3.2. All the user’s choices, as well as
the quality requirements, are automatically encoded as a user query and passed to the offer collector
and the concrete planners. The available options result from the underlying ontology.

3.1. Ontology

This section discusses the ontology exploited by TripICS. Fig. 1 shows a part of the ontology corre-
sponding to a travel domain. The ontology defines three service types Travel, Stay, andEntertainment
aimed at providing instances of the Ticket, Attraction, and Accommodation object types (and
operating also on objects of type Person and Location) which are the trip elements constituting
(among others) the abstract plan.

A ticket represents a journey from one location to another, for a certain price. An accommodation
corresponds to a stay in some location, for a certain price as well. An attraction represents an
admission ticket for an event, a reservation, or a confirmation that the attraction is available at the
specified time. All these objects contain attributes describing contexts and details of the particular
trip elements. We introduce also two auxiliary object types: ABlock and V Block. This is to avoid
duplication of common attributes using the inheritance mechanism.

For example, all the mentioned trip elements are described by the attributes begin, end, price, and
type, and therefore they are inherited from the object type ABlock. The type attribute defines
the transportation type (bus, train, plane, ship, etc.), the accommodation type (hotel, guest house,
hostel, apartment, etc.), or the attraction type (museum, exhibition, match, concert, restaurant etc.),
when used in the Ticket, Accommodation, or Attraction object, respectively. On the other hand,
the number of breaks is specific to travels only, and thus the attribute breaks is introduced in the
object type Ticket. Each accommodation (and attraction) has been assigned a number stored in the
attribute reviews corresponding to the average score given by people who stayed there (or enjoyed
the attraction) before. Similarly, since a fixed location is a common feature of accommodations and

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 5

Thing

ServiceStamp

Accommodation

Ticket
Person

Travel StayLocation

Attraction

Entertainment

Artifact

ABlock

VBlock

Object type Attributes’ names and types
Location continent, country, city: String
Person name: String; loc: Location
ABlock begin, end: Date; price: Real; type: String
T icket from, to: Location; breaks: int
V Block reviews: Real; loc: Location
Accommodation stars: Int; freeCancel: Bool

Attraction reserved: Bool

Figure 1. The TripICS ontology. The rectangles stand for object types while the rounded rectangles correspond
to the service types. The types irrelevant for the working example are marked grey. The table describes the object
types and their attributes.

attractions, the attribute loc of type Location is introduced in the class V Block and inherited by
Attraction and Accommodation object types. The attributes are summarized in Fig. 1. Note that
their meanings follow intuitively from their names.

3.2. Specifying requirements

Using an intuitive web application GUI, the user inputs information about stages of the trip, which
are added to the list at the right hand side and, simultaneously, the cities to be visited are shown
on the map (see Fig. 2). The user provides the names of the start city and a city to be visited.
Next, he specifies the transportation type (e.g., plane, train or any type), the starting date range, and
other constraints like duration, price, and numbers of breaks ranges. If the accommodation option is
chosen, then the form allowing to define additional parameters of the stay is shown (see Fig. 3, left).
The last step of specifying every stage of the trip is (optionally) adding some attractions to enjoy in
a selected city (see Fig. 3, right).

Finally, the user starts the planning process using the dedicated button, and optionally sets some
planner options, such as a planning algorithm (SMT, GA, IPH, SCGEO, SCSA1 [26, 23]), timeout,
maximal number of offers etc., as well as some parameters specific to the particular planning method,
e.g., a population size of GA and IPH. However, since SCGEO proved to be the most efficient
planning method for the travel domain [23], the further parts of this paper are devoted mainly to the
SCGEO algorithm and its improvements.

3.3. Collecting Offers and Planning

Basing on the city list and other data provided in the previous step, an abstract plan, i.e., a sequence
of service types, is built. Next, this abstract plan is used by the offer collector (OC), i.e., the tool
which in cooperation with the service registry queries real-world services. The service registry keeps
an evidence of web services, registered accordingly to the service type system. Usually, each service

1SMT - the SMT-based planner, GA - the GA-based planner, IPH - the initial population hybrid planner (SMT + GA), SCGEO
- the SMT combined with GEO planner, SCSA - the SMT combined with SA planner, where SMT (Satisfiability Modulo
Theories), GA (Genetic Algorithm), SA (Simulated Annealing), GEO (Generalised Extremal Optimization)

6 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

Figure 2. TripICS web application GUI

Figure 3. TripICS web application GUI: the accommodation and attractions form

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 7

type of the ontology represents a set of real-world services of similar functionality. For example,
using the service type Stay one could register Booking.com as well as Hilton service.

OC queries web services of types present in the abstract plan and retrieves data called offers. An
offer is a tuple of values representing a possible realization of one service type of the plan. Each
tuple element (called an offer attribute) corresponds to an attribute of some object processed by the
service type. We define the function attr : Attributes 7→ N, where Attributes stand for the set
of all attributes of the object types defined in the ontology. This function assigns a natural number
(referred to as an attribute index) to every object attribute. The mapping of the attributes to numbers
designates the positions of particular values in the tuple, called offer values. The offers collected for
a single service type of the plan constitute so called offer sets.

The offers are searched by a concrete planner in order to find the best solution satisfying all con-
straints and maximizing the quality function. Thus, the concrete planning problem (CPP) can be
formulated as a constrained optimization problem. Its solution consists in selecting one offer from
each offer set such that all constraints are satisfied and the value of the quality function is maximized.

Definition 3.1. (CPP)
Let n be the length of the abstract plan and let O = (O1, . . . , On) be a vector of offer sets collected
by OC such that ki denotes the number of offers of the i-th offer set, for each i = 1, . . . , n. Let P ij
stand for the j-th offer of Oi. Let P be the set of all possible sequences (P 1

j1
, . . . , Pnjn), such that

ji ∈ {1, . . . , ki} and i ∈ {1, . . . , n}, and let C(S) = {Cj(S) | j = 1, . . . , c for c ∈ N}, where
S ∈ P, be a set of the constraints to be satisfied. The Concrete Planning Problem is defined as
follows:

max{Q(S) | S ∈ P} subject to
c∧
j=1

Cj(S), (1)

where Q : P 7→ R is an objective function defined as the sum of all quality constraints.

That is, a solution of CPP consists in selecting one offer from each offer set such that all constraints
are satisfied and the value of the objective function is maximized. More details and the proof of
NP-hardness of the concrete planning problem can be found in [21]. The constraints and the quality
function result from the user requirements and preferences what is shown in the next subsection.

3.4. Constraints and Quality Function

The constraints and the quality function play a crucial role in the planning process. In this section,
using a simple example, we show how the user requirements and preferences in combination with
several general rules (described in Sec. 2) result in a set of constraints and a quality function.

Example 3.2. Assume that the user wants to make a trip on the 15th of August from Warsaw (W) to
Berlin (B) and then back in a few days. In Berlin, he prefers to stay in a 3-star hotel for 3 days and
during the visit he plans to take a city tour and attend a concert. The specified requirements result
in an abstract plan consisting of the following 5 service types: (Travel, Stay, Entertainment,
Entertainment, Travel). Then, OC searches for the matching offers, and retrieves the following
example five offer sets (O1, . . . , O5). In the tables below we show only the offer attributes relevant
to the planner, i.e., those occurring in constraints or in the quality function.

8 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

O1(Travel)

id begin / end price fr. / to br.
1 15.08, 10:40 / 15.08, 12:05 565 W / B 0
2 15.08, 06:20 / 15.08, 07:45 565 W / B 0
3 15.08, 07:20 / 15.08, 12:05 533 W / B 1
4 15.08, 14:05 / 15.08, 19:18 170 W / B 0
5 15.08, 18:05 / 15.08, 22:58 276 W / B 0

O2(Stay)

id begin / end price sc. / stars loc
1 15.08, 14 / 18.08, 11 1044 9.1 / 3 B
2 15.08, 15 / 18.08, 11 1211 9.1 / 3 B
3 15.08, 15 / 18.08, 12 1729 9.0 / 3 B
4 15.08, 15 / 18.08, 11 1032 7.0 / 3 B
5 15.08, 15 / 18.08, 12 1259 8.9 / 3 B

O3(Entertainment)

id begin / end price score loc
1 15.08, 18 / 15.08, 21 84 8.5 B
2 16.08, 12 / 16.08, 15 84 8.5 B
3 16.08, 15 / 16.08, 18 84 8.5 B
4 17.08, 12 / 17.08, 15 79 7.2 B
5 17.08, 15 / 17.08, 18 79 7.2 B

O4(Entertainment)

id begin / end price score loc
1 16.08, 20 / 16.08, 23 280 7.2 B
2 16.08, 21 / 17.08, 1 130 8.1 B
3 17.08, 21 / 18.08, 1 110 3.0 B
4 17.08, 18 / 17.08, 22 580 9.3 B
5 16.08, 20 / 16.08, 23 164 7.9 B

O5(Travel)

id begin / end price fr. / to br.
1 18.08, 11:50 / 18.08, 16:30 429 B / W 1
2 18.08, 15:10 / 18.08, 19:30 524 B / W 1
3 18.08, 08:50 / 18.08, 10:10 561 B / W 0
4 18.08, 09:37 / 18.08, 15:19 170 B / W 0
5 18.08, 14:37 / 18.08, 20:36 276 B / W 0

This example deals with a plan of length 5 where every service of the plan has 5 possible realiza-
tions. Thus, the search space is of size 55 = 3125 as there is so many possible offer combinations.
However, the number of plans (solutions) is much lower if we take constraints into account.

For example, assume that the user wants to synchronise travels and hotel in such a way that the
time between arrival and hotel check-in is not longer than 3 hours. Similarly, the return travel
should be not later than 3 hours after the hotel check-out time. After adding these two constraints
the number of the possible solutions decreases to 2200. Another constraint could be to have at
least a three-hour break between attractions. When this constraint is taken into account, there are
only 1408 possible solutions. The underlying constraints are encoded by the following expressions:
(o2.begin− o1.end ≤ 3), (o5.begin− o2.end ≤ 3), (o4.begin− o3.end ≥ 3), where oi represents
an offer from the i-th offer set.

As to the quality function, the user can choose between several schemes, but he can also en-
able/disable some of the function components. For example, if the user prefers only to minimize the
total price, the quality function is expressed byWprice∗

∑
i=1..5 oi.price, and the optimal solution is

(4, 4, 5, 3, 4) with the price 1561, where Wprice is some negative constant (a weight). The numbers
in the sequence correspond to the indices of the offers in the corresponding offer sets. That is, both
the travels are for the price of 170 each, the stay is in the cheapest hotel, and the cheapest tour and
concert are chosen. However, if the user also wants to maximize the reviews of the stay and attrac-
tions, the quality function is then as follows: Wprice ∗

∑
i=1..5 oi.price+Wscore ∗

∑
i=2..4 oi.score.

Assuming Wprice = −1 and Wscore = 10, we obtain the optimal solution (4, 1, 3, 2, 4) where the
accommodation and attractions with a low price and a high score are chosen. Fig. 4 presents the
resulting plan.

4. Extensions of Concrete Planners

Exploration of the travelling domain with our concrete planning methods, as well as a further de-
velopment of TripICS, revealed several new challenges. One of them is solving multiple equality
constraints by the planners. These constraints result from a new kind of user queries supported by
the current version of our system, i.e., those where the order of city visits is not specified. As an

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 9

Figure 4. Visualisation of the last plan of Example 3.2

example, consider two consecutive offer sets Oi and Oi+1 collected from services of types Travel
and Stay. They are coupled by the constraint oi.to = oi+1.loc in order to ensure that the user arrives
to the city where he stays. Moreover, these equality constraints often form sequences involving sev-
eral decision variables. For example, if the next offer set represents the possible attractions to enjoy
during the visit, we have another constraint oi+1.loc = oi+2.loc enforcing that the accommodation
and the event are located in the same city. This type of constraints significantly limits the capabilities
of our SA- and GEO-based planners to find near-optimal solutions. In the following subsections we
explain this problem in detail and show how to solve it on the example of the SCGEO algorithm.

4.1. Algorithm SCGEO

We start with recalling the algorithm combining SMT with GEO (i.e., SCGEO) aimed at solving the
concrete planning problem, introduced in [23]. Algorithm 1 presents its pseudo-code. The coloured
(and boxed) lines indicate the fragments subject to changes by our modifications, introduced in the
next subsections.

SCGEO starts with generating an initial solution by the SMT-based procedure in such a way that
all constraints are satisfied, but usually the quality of the first solution is far from the optimum. A
solution is represented by a sequence of n decision variables of the values corresponding to offer
indices chosen from the consecutive offer sets. Thus, n denotes the length of the plan.

The subsequent iterations of SCGEO consist of the following steps. First, the value of each deci-
sion variable is temporarily changed by applying the neighbourhood operator (which simply sets a
random value to the given decision variable), and the obtained candidate solution is evaluated and
stored in order to build the ranking list. Next, a ranking list is built, according to the differences
between the fitness value of the current solution and the changed ones. The lower value, the higher
position of the solution in the ranking. If a changed solution violates some constraints of C(S), then
it is assigned a very high fitness value in order to push it at the bottom of the ranking.

Then, one of the candidate solutions of the ranking list is selected randomly. The probability of its

10 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

Algorithm 1: Pseudocode of the SCGEO algorithm for the concrete planning
SCGEO(n, K, τ)
Input: the number of decision variables: n, the number of iterations: K, a parameter: τ
Result: a solution with the highest fitness value

1: Icur ← SmtGen(n) ; // generate an initial solution by SMT

2: Qbest ← Q (Icur) ; // calculate and store the best fitness value found so far

3: Ibest ← Icur ; // remember the best solution found so far

4: for (i← 1..K) do
5: for (j ← 1..n) do
6: Itmp,j ← neighbourhood (Icur, j) ; // j-th decision variable changed

7: if (Itmp,j satisfies all constraints) then
8: Qj ← Q (Itmp,j); // calculate the fitness value of Itmp,j

9: else
10: Qj ←∞ ; // solutions violating constraints fall low in the ranking

11: ∆j ← Qj − Q (Icur); // relative change of fitness resulting from change

12: Rank ← sort((Itmp,1,∆1), . . . , (Itmp,n,∆n)), ascending); // build the ranking by sorting

the candidate solutions according to increasing ∆j values

13: changed← false ;
14: while (¬changed) do
15: j ← random(1..n) ; // randomly choose a candidate solution to be changed

16: k ← Rank.find(j) ; // the position of the j-th solution in the ranking

17: p← k−τ ; // the acceptance probability of the j-th solution

18: x← random([0.0, 1.0]); // a random value from the range [0.0, 1.0]

19: if (p > x) then
20: Icur ← Itmp,j ; // a new solution becomes the current one

21: changed← true;
22: if ((∞ > Qj > Qbest)) then
23: Qbest ← Qj ; // update the best fitness value found so far

24: Ibest ← Icur ; // update the best solution found so far

25: return Ibest; // return the best solution

acceptance as a new solution is calculated as pj = k−τj , where j represents the changed decision
variable, kj is the ranking position of the corresponding candidate solution, and τ is one of the
algorithm parameters. If the j-th solution is not accepted, then another one of the ranking is chosen
with a uniform probability. The algorithm repeats the attempts to accept a new solution until the
current solution is replaced. All the steps described above are repeated until some stop criterion is
satisfied. In our case we run the algorithm for a fixed number of steps, in order to fairly compare the
efficiency of different versions of the algorithm, introduced in the next subsections.

The analysis of the SCGEO behaviour in the presence of equality constraint sequences revealed
the following problem - the returned solutions are of relatively low quality. Using several small
datasets, for which only a few plans exist, we have observed that SCGEO was unable to find any
other solution than the initial one returned by the SMT-based procedure. The reason behind this was
the fact that, in order to transform a current solution into a new valid plan, one has to change more

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 11

than one decision variable in a single step. Otherwise, after changing the value of only one variable
by the neighborhood operator some equality constraints were violated and the obtained candidate
solution was placed at a very low position in the ranking. Thus, in the next subsections, we suggest
two modifications of SCGEO fixing the problem. The experimental evaluation of the improvements
is the subject of Section 5.2.

4.2. Improvement of Neighbourhood Operator

We present the EQN algorithm to compute the new neighbourhood operator specialised to deal with
a set of equality constraints. Let us start from giving formal definitions of constraints that EQN deals
with.

Definition 4.1. (Simple equality constraint (SEC))
By a SEC we mean an expression of the form oi.a = oj .b, where i, j ∈ {1, . . . , n}, i 6= j, and a, b
are some offer attributes of the i-th and j-th offer set, respectively.

It is worth noting that in the above definition, if i = j, then both the compared values belong to the
same offer. This kind of constraints can be easily checked and the offers violating them filtered out
before passing data to the planner, similarly to comparisons with constants.

Let osi : EQ 7→ N × N be a function that every SEC assigns the indices of the offer sets involved
in the constraint, i.e., osi(oi.a = oj .b) = (i, j), for i, j ∈ {1, . . . , n}. Moreover, let (i, j) denote a
transformation of the ordered pair into a set (i.e., (i, j) = {i, j}).

Definition 4.2. (Set of related simple equality constraints (RSEC))
Let EQ = {c1, . . . , ce} ⊆ C(S), where e ≤ |C(S)|, be a set of all SECs passed to a concrete
planner. Let G = (EQ,E) be an undirected graph, where every SEC is a node, and E ⊆ EQ×EQ
is the set of graph edges, such that E = {(c, c′) | (osi(c) ∩ osi(c′) 6= ∅)}. By a set of the related
simple equality constraints (RSEC in short) we mean any subset of EQ that is the set of the nodes
of some strongly connected component of the graph G.

Intuitively, the edges of G connect the SECs which share an offer set, and by RSEC we call such a
subset of EQ that is either a singleton {c} if c does not share any offer set with any other SEC, or
such a maximal set of constraints of EQ that every SEC of RSEC shares an offer set with another
constraint of the same RSEC, in such a way that there exists a path in the graph G between every
pair of constraints of the RSEC.

Having SECs and RSECs formally defined, let us continue with the algorithm. Since EQN makes
use of several auxiliary functions and precomputed data sets, we describe them briefly below.

First, we analyse the constraints in order to choose all SECs which constitute the EQ set passed to
the algorithm. Note that in the TripICS’ context, all constraints of EQ form a single RSEC, because
all elements of the plan concerning a single city visit are bound by SECs using their loc attributes,
and every consecutive ticket is bound by SECs, with the previous, and the next stay, using attributes
from and to, respectively. Thus, for simplicity, the given version of the algorithm considers only
one RSEC consisting of all constraints of EQ, but it can be easily generalized to deal with a set of
disjoint RSECs. Moreover, since the planners work on finite data sets, we represent the values of
offer attributes occurring in EQ by integers.

We define also the auxiliary function ati : EQ 7→ N × N that every constraint of EQ assigns a
pair of numbers representing the attribute indices which occur in the constraint. That is, ati(oi.a =
oj .b) = (attr(a), attr(b)), for i, j ∈ {1, . . . , n}.

12 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

The next step consists in selecting all offer attributes occurring in the considered RSEC. They are
represented by a set A ⊂ N × 2N, i.e., a set containing pairs where the first value is the index of an
offer set, and the second element is a set of natural numbers representing attributes of the given offer
set used to build the SECs.

Using the obtained set A, we transform the offers into a data structure representing the function
part : N× N× Z 7→ 2N which given the offer set index, the attribute index, and the attribute value
assigns a set offer ids, for which the given attribute has the given value. This is explained in the
following example.

Example 4.3. (Function part)
Consider the first offer set of Example 3.2. Assume, that attr(to) = 5, i.e., the attribute to of the
object type Ticket is represented by the number 5, the number 0 stands for the value Warsaw, and
1 corresponds to Berlin. Then, we have part(1, 5, 1) = {1, 2, 3, 4, 5} and part(1, 5, 0) = ∅.

Another function used by the EQN algorithm is pgv : N 7→ 2N that a decision variable index assigns
a set of possible good values, i.e., a set of all offer ids restricted to only those, which allow to set
the coupled offer attributes occurring in EQ constraints to the same value. The pgv function is
also represented by a precomputed data structure and passed to the EQN algorithm. This notion is
explained below.

Example 4.4. (Possible good values)
Consider the offers of Example 3.2. Assume that we add an offer of id = 6 to the first offer set
which represents a ticket from Warsaw to London. Consider the constraint o1.to = o2.loc. It is
clear that no value of o2.loc is equal to London. Thus, we have pgv(1) = {1, 2, 3, 4, 5}, since the
sixth offer (of the first offer set) has no counterpart (of the second set), satisfying the constraint.

Before we present the EQN algorithm in detail, we need to define another helper function which
provides access to the offers data. Let oV alue : N× N× N 7→ Z be the function which for a given
offer set index, offer id, and attribute index returns the corresponding offer value.

A pseudocode of EQN is presented as Algorithm 2. The procedure takes as input a current solution
and the index of a decision variable from which we start the changes (the source variable). For sim-
plicity, we assume that all constant and precomputed values described above are available globally,
and we do not have to pass them explicitly as parameters.

Algorithm 2: Pseudocode of the EQN algorithm
EQN(Icur, i)
Input: a current solution to be modified: Icur, an index of the source decision variable: i
Result: a new candidate solution
if (i 6∈ V) then return neighbourhood(Icur, i); // the standard neighbourhood operator

;
else

Icur(i)← random(pgv(i)); // set the i-th value to a randomly chosen of pgv(i)
if (all constraints from EQ are satisfied) then

return Icur; // if one change is enough to satisfy EQ ctrs.

else return propagate(Icur, {i}); // adjust other variables to the i-th one

;

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 13

The algorithm starts with checking if the source variable is involved in some SEC. If this is not the
case, the standard neighbourhood operator is used to modify the current solution, i.e., the value of
the i-th decision variable is set to a random offer id. Otherwise, the value is randomly chosen of a
(possibly) smaller set pgv(i). Next, after the i-th value has been changed, the equality constraints are
checked. If some of them is still unsatisfied, the algorithm calls the recursive procedure propagate
presented as Algorithm 3. Note that in order to change a variable at most once, we remember the
indices of the modified variables as a set passed to the propagate procedure.

The overall goal of the procedure is to find a candidate solution which satisfies all equality con-
straints. To this aim, the algorithm attempts to sequentially change the values of all decision vari-
ables involved in equality constraints but the fixed ones having values already set. After every
change, the obtained solution is tested against the equality constraints and either all are satisfied and
the algorithm ends, or the set of fixed variables is extended by the recently changed one and the next
propagation step begins.

Algorithm 3: Pseudocode of the propagate procedure
propagate(I , FV)
Input: a solution to be modified: I , a set of indices of fixed decision variables: FV ,
Result: a candidate solution
if (|FV | = |V |) then return I ; // all considered decision variables already changed

;
U ← getUnsatCtrs(EQ, I) ; // the set of equality constraints violated by I
c← random(U) ; // randomly choose one of the violated constraints

(v1, v2)← osi(c) ; // indices of decision vars. involved in the constraint

if (v1 ∈ FV ∧ v2 ∈ FV) then return I ; // dead-end propagation: both v. already changed

;
(a1, a2)← ati(c) ; // indices of attributes involved in the constraint

if (v1 ∈ FV) then
(f, tc)← (v1, v2) ; // v1 fixed, v2 to be changed

(af , atc)← (a1, a2) ; // value of a1 will be propagated, or

else
(f, tc)← (v2, v1) ; // v2 fixed, v1 to be changed

(af , atc)← (a2, a1) ; // value of a2 will be propagated

val← oV alue(f, I(f), af) ; // the value to be propagated

I(tc)← random(part(tc, atc, val)) ; // set the tc-th var a value satisfying c
if (all constraints from EQ are satisfied by I) then return I;
;
else return propagate(I , FV ∪ {f}); // further recursive propagation

;

Going into details, the propagate procedure takes a solution and a set of fixed variables’ indices as
input, but it makes use also of several precomputed sets and functions, like the previously defined
functions osi, ati, and oV alue, as well as V - the set of indices of all decision variables occurring
in all SECs. The procedure starts with checking the recursion stopping condition, that is, if there are
still decision variables to change. If so, then one of the violated equality constraints c is randomly
selected, and the decision variables, denoted by v1 and v2, occurring in c are extracted. Next, we
check if both variables v1 and v2 have already been modified by the algorithm. If so, then we deal
with an unsuccessful propagation caused by some value randomly chosen during one of the previous
steps. In this case we abort the procedure by returning the current solution.

14 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

Otherwise, if at least one of the two variables can be modified, we proceed with applying the actual
change. To this aim, we extract the attribute indices of c, and determine which variable should be
treated as the fixed one (the f -th variable and the af -th attribute), and which one is to be changed
(the tc-th variable, the atc-th attribute). Finally, we read the value of the fixed attribute and set the
value of the tc-th decision variable to some id randomly chosen of the set provided by the function
part. This operation either ends the propagation if all EQ constraints are satisfied, or the recursive
propagation continues.

4.3. Improvement of Fitness Function

The standard version of the SCGEO algorithm [23] makes use of the fitness function which pun-
ishes the solutions for violating constraints using some high constant value. We observed that this
disrupts creating proper GEO rankings, because the punished solutions are indistinguishable w.r.t.
the number of violated constraints. The improvement introduced to the fitness function consists in
returning a value depending on the number of the violated constraints. This is calculated as follows:
Q′(I) = Q(I)−punBC(I), whereQ(I) is the quality of the candidate solution I , pun is the punish-
ment factor2, and BC(I) is the number of the constraints violated by the candidate solution I . This
modification makes the fitness values to gradually decrease when the number of violated constraints
increases. The structures of the rankings computed according to the new method are more adequate
to the nature of the GEO algorithm.

5. Implementation and Experiments

TripICS has been implemented as a distributed application according to the SOA (Service Oriented
Architecture) [2] paradigm. The main modules of the system include the web application front-end,
Trip Agent, Offer Collector, and the Planner services. The TripICS architecture and interactions
between the components are presented in Fig. 5.

The web application module transforms the user’s requirements 1 , specified according to the de-
scription of Sec. 3.2, into a query encoded in the JSON [4, 12] format, and sends it to Trip Agent
(TA) 2 . Notice that due to providing a RESTful API [25] endpoint, TA is ready to consume JSON
queries from any compatible client, like, e.g., a mobile application. Thus, the main role of TA is to
provide a clearly defined interface enabling an access to the system modules. Moreover, it manages
tasks for OC and the Planner services. Therefore, TA passes the query 3 to an OC instance which,
via sub-collectors specialized for particular service types and dedicated adapters, queries in parallel
the collaborating services 4 5 6 . Using collected data and the query, OC prepares offers and
constraints, and finishes its task by passing them back as a response 7 . The next step of TA consists
in calling the planer service 8 which converts the offers from JSON to the required numerical form
and runs the requested planning method. The planner response 9 containing either a plan found or
a message, if no plan exists, is passed back to the client application 10 , and visualised by GUI.

The front-end application has been implemented using JavaScript, HTML, and CSS in combination
with the AngularJS [15] and Bootstrap [18] frameworks. It exploits also Google Maps JavaScript
API to handle the map component. The back-end modules have been implemented in Java and make
use of the Spring Framework [16].

2The pun value should be relatively high in comparison to the maximal possible value of the quality function. For example, in
the presented experiments, we set pun to 100000.

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 15

Web Application Trip Agent

user's
request

1 query2

response10

8

9

7

3

TripICS

Offer Collector

Travel Collector

4 5 6

Stay Collector Entertainment Collector

TAdapter1 SAdapter1 EAdapter1

Planner

SMT GA IPH SCGEO SCSA

TAdapterN SAdapterK EAdapterM...

TService1 SService1 EService1TServiceN SServiceK EServiceM...

Figure 5. The TripICS architecture and data flow

The application is still being extended and improved. For example, for several reasons, our Offer
Collector supports only a limited number of services. First of all, the vast majority of the existing
travel-related services requires a fee for access to data, and the available demo endpoints often
limit the query volume to only several requests. Secondly, since APIs from different providers are
heterogeneous, one requires a significant effort to implement a dedicated adapter communicating
with the particular service and mapping gathered data to the common representation.

Despite the difficulties in gathering massive data sets to the experiments, we have evaluated the effi-
ciency of TripICS focusing on the planning modules. To this aim, we have used several benchmarks
generated by our software Travel Benchmark Generator (TBG), described in the next subsection.

5.1. Travel Benchmark Generator

Our software TBG is able to generate massive offer sets and constraints emulating results gathered
by the OC module in response to a user query which does not specify the order of city visits. TBG
accepts a lot of arguments corresponding to data provided by users via GUI. The most important
parameters, i.e., those used to scale the size of benchmarks, are as follows:

• c - the number of cities to visit during the journey,

• a - the number of attractions to enjoy in every city, and

• N - the number of offers in each offer set.

The other parameters, such as minimal and maximal prices, travel durations, etc. have been set to
some constant values, the same for every benchmark. For example, the parameters minDate and
maxDate determining the time span to plan the whole journey have been set to 2017/01/01 and
2017/01/31, respectively.

The resulting abstract plans are service type sequences of the form ((T, S,Ea)c, T), where T stands
for Travel, S denotes Stay type, and E represents Entertainment. That is, the plans consist of
sequences (T, S,Ea) repeated c times and the returning journey at the end. The notion Ea means

16 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

an Entertainment service repeated a times. Next, for the consecutive service types of the plan an
offer set of size N is generated.

Moreover, TBG generates also the set of constraint C. Let the following sequence (for better
clarity, divided into sub-sequences related to the particular locations) represent an example plan:
((T1, S1, E1,1, . . . , E1,a), (T2, S2, E2,1, . . . , E2,a), . . . , (Tc, Sc, Ec,1, . . . , Ec,a), Tc+1). Then, the
set of constraints is described by the formulae:

• startP lace = T1.from∧endP lace = Tc+1.to - the journey begins and ends in the locations
chosen by the user,

• T1.begin ≥ minDate∧ Tc+1.end ≤ maxDate - the journey dates fit to the given time span,

•
∧c
i=1(Ti.to = Si.loc ∧

∧a
j=1 Si.loc = Ei,j .loc) - the user arrives to some city, and there he

stays and enjoys the attractions,

•
∧c
i=1 Ti.end = Si.begin - the user checks in the hotel on the arrival day.

•
∧c
i=1 Ti+1.begin = Si.end - the user checks out from the hotel on the next departure day,

•
∧c
i=1 Ti+1.from = Si.loc - the next travel starts from the currently visited place,

•
∧c−1
i=1

∧c
j=i+1 Si.loc 6= Sj .loc - the user visits each city only once,

•
∧c
i=1(Si.begin ≤ Ei,1.begin) - the first attraction in each city begins not earlier than the

arrival,

•
∧c
i=1(Si.end ≥ Ei,a.end) - the last attraction in each city ends not later that the end of the

stay,

•
∧c
i=1

∧a−1
j=1 (Ei,j .end ≤ Ei,j+1.begin) - each attraction begins not earlier than the previous

one finishes.

Overall, we have generated two benchmark series. Both of them use the same offer sets, but differ in
sets of constraints. The first series covers all but the last three constraint types described above, while
the second series includes all of them. The benchmarks’ parameters and features are summarized in
Table 1. The meaning of the columns (from left to right) is the following: the benchmark identifier,
the number of cities to visit, the number of attractions in every city, the length of the plan, the search
space sizes for 512 = 29 and 1024 = 210 offers in each offer set, and the numbers of constraints for
benchmarks from the first and the second series.

Table 1. The benchmarks’ parameters and features

Search space size Num. of constraints
Benchmark id c a n N=512 N=1024 Series1 Series2

T1 3 16 2144 2160 28 40
T2 3 4 19 2171 2190 31 46
T3 5 22 2198 2220 45 52

T4 3 21 2189 2210 38 54
T5 4 4 25 2225 2250 42 62
T6 5 29 2261 2290 46 70

T7 3 26 2234 2260 49 69
T8 5 4 31 2279 2310 54 79
T9 5 36 2324 2360 59 89

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 17

5.2. Experiments

In this section we show the experimental results examining efficiency of the introduced improve-
ments. The computation time and quality of the solutions found have been used as the criteria to
compare the modified SCGEO versions against the original one.

The experiments have been conducted using four variants of our algorithm:

• the standard SCGEO, without improvements (SCGEO),

• SCGEO with Neighbourhood Operator Improved (SCGEO+N),

• SCGEO with Fitness Function Improved (SCGEO+F), and

• SCGEO with both improvements (SCGEO+FN).

The experiments have been performed using the Z3 SMT-solver (version 4.4) running on a standard
PC equipped with 4.0 GHz CPU (Intel i7-6700K processor). We have previously tuned the SCGEO
algorithm for setting the optimal working conditions using our benchmarks. For this algorithm we
use the following parameters: the number of iterations: K = 2000, τ=1.0. Each instance of the
experiment has been repeated 50 times.

The tested benchmarks are characterised in Table 1, while the detailed results for Series 1 and 2 are
given in Tables 2 and 3, respectively. The left part of each table shows the experimental results for
benchmarks sets with 512 offers while the right one - for benchmarks sets with 1024 offers.

Table 2. Results of the first experiment series for the sets of 512 offers (left), and 1024 offers (right). The table
entries (addressing computation time / quality) are organised as follows. The first row (in bold) contains the average
values, the second row shows (in normal font) the result of the best quality among all experiment repetitions, and
the third row presents the standard deviation (italic).

512 offers 1024 offers
SCGEO SCGEO+N SCGEO+F SCGEO+FN SCGEO SCGEO+N SCGEO+F SCGEO+FN

T1 5.3 / 1539.7 5.8 / 1662.5 3.5 / 2326.0 4.0 / 2448.3 6.4 / 1561.9 6.9 / 1624.4 4.1 / 2356.9 4.8 / 2411.0
5.8 / 1543.7 6.6 / 1914.7 4.3 / 2326.7 4.9 / 2685.5 6.5 / 1592.7 7.2 / 1970.1 4.4 / 2375.7 5.1 / 2728.5
0.5 / 10.5 0.5 / 117.9 0.2 / 1.6 0.2 / 123.5 0.1 / 51.0 0.1 / 122.6 0.1 / 35.1 0.2 / 123.1

T2 7.5 / 1613.6 8.1 / 1689.2 4.7 / 2573.9 5.4 / 2617.3 8.1 / 1727.9 8.7 / 1884.9 5.6 / 2699.3 6.5 / 2871.3
7.7 / 1627.7 8.4 / 2042.2 4.9 / 2587.7 5.5 / 2912.9 8.7 / 1777.3 9.5 / 2042.3 5.8 / 2737.5 6.7 / 3053.0
0.2 / 25.3 0.2 / 104.2 0.1 / 25.2 0.1 / 74.4 0.3 / 53.7 0.3 / 105.0 0.1 / 42.8 0.1 / 122.6

T3 9.4 / 1205.3 10.5 / 1657.8 6.1 / 2362.5 6.9 / 2772.6 10.4 / 1544.9 11.2 / 1693.1 6.8 / 2699.1 7.9 / 2874.9
10.0 / 1214.4 10.9 / 2189.2 6.4 / 2369.4 7.4 / 3316.6 11.1 / 1548.4 12.1 / 2120.8 7.1 / 2703.3 8.2 / 3274.4

0.4 / 21.7 0.3 / 311.0 0.1 / 18.4 0.2 / 312.0 0.4 / 4.8 0.4 / 140.2 0.1 / 5.9 0.1 / 137.3
T4 9.3 / 1457.7 10.0 / 1778.9 5.9 / 2916.5 6.8 / 3204.5 10.3 / 1917.3 11.2 / 2103.2 6.9 / 3371.2 8.0 / 3553.6

9.7 / 1485.5 10.5 / 2154.2 6.0 / 2928.5 6.9 / 3600.9 10.5 / 1950.9 11.4 / 2343.8 7.1 / 3393.9 8.3 / 3720.0
0.1 / 59.2 0.2 / 167.5 0.1 / 35.2 0.1 / 168.9 0.1 / 38.4 0.1 / 90.3 0.1 / 32.1 0.1 / 84.3

T5 12.7 / 1800.0 13.7 / 1946.5 8.0 / 3562.7 9.3 / 3700.0 13.8 / 1514.7 15.1 / 1758.4 9.2 / 3276.7 10.5 / 3562.6
12.9 / 1802.8 14.0 / 2408.4 8.3 / 3565.8 10.3 / 4094.0 14.1 / 1549.1 15.8 / 2382.4 10.9 / 3312.5 11.0 / 4020.3

0.1 / 5.9 0.1 / 142.6 0.1 / 7.6 0.3 / 112.9 0.1 / 45.9 0.2 / 192.8 0.4 / 48.0 0.2 / 182.4
T6 16.7 / 2086.2 18.1 / 2102.6 10.3 / 4207.3 12.3 / 4229.6 18.0 / 1983.9 19.7 / 2121.9 11.8 / 4100.2 13.9 / 4204.5

17.0 / 2096.1 18.4 / 2172.4 10.7 / 4211.1 12.5 / 4287.4 18.3 / 1998.8 19.9 / 2372.7 12.1 / 4114.5 14.2 / 4449.7
0.1 / 31.0 0.1 / 39.4 0.2 / 16.1 0.1 / 39.8 0.2 / 14.5 0.2 / 108.3 0.1 / 10.9 0.2 / 97.7

T7 15.2 / 2112.9 16.3 / 2270.6 9.5 / 4520.8 11.0 / 4677.8 16.4 / 2108.2 17.9 / 2292.4 10.7 / 4515.5 12.4 / 4689.3
15.5 / 2126.8 16.6 / 2599.8 9.7 / 4526.8 11.3 / 4938.4 16.7 / 2133.5 18.2 / 2607.4 11.0 / 4533.3 13.1 / 4881.4

0.1 / 31.3 0.2 / 121.5 0.1 / 16.2 0.1 / 92.8 0.1 / 32.3 0.2 / 121.9 0.1 / 27.0 0.2 / 92.0
T8 20.9 / 2194.0 22.6 / 2417.2 12.9 / 5109.7 15.2 / 5250.1 22.4 / 2079.3 24.4 / 2239.4 14.4 / 4997.0 16.6 / 5152.3

21.2 / 2199.5 23.6 / 2847.5 13.3 / 5114.5 15.5 / 5760.8 23.7 / 2089.8 25.0 / 2485.7 14.8 / 5004.5 17.2 / 5496.2
0.1 / 16.3 0.2 / 177.2 0.1 / 14.2 0.1 / 161.7 0.3 / 10.0 0.2 / 103.7 0.2 / 8.7 0.3 / 95.3

T9 27.8 / 2282.1 30.2 / 2656.2 17.1 / 5760.0 19.4 / 6084.1 29.5 / 2201.7 30.3 / 2431.9 18.5 / 5672.1 20.5 / 5938.6
28.2 / 2286.6 31.0 / 3067.3 17.4 / 5766.6 20.6 / 6548.4 30.0 / 2232.0 32.7 / 2714.3 19.2 / 5711.0 20.8 / 6225.4

0.2 / 13.3 0.3 / 193.2 0.2 / 15.2 0.7 / 191.6 0.2 / 25.3 1.3 / 116.7 0.3 / 32.9 0.1 / 135.1

18 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

Table 3. Results of the second experiment series. The meaning of the columns is the same as in Table 2.

512 offers 1024 offers
SCGEO SCGEO+N SCGEO+F SCGEO+FN SCGEO SCGEO+N SCGEO+F SCGEO+FN

T1 7.4 / 1551.1 7.9 / 1633.3 4.3 / 3149.7 4.8 / 3221.2 8.3 / 1296.9 8.9 / 1316.7 5.2 / 2898.2 5.8 / 2913.9
8.2 / 1555.0 9.0 / 1706.6 5.0 / 3154.0 5.6 / 3319.2 8.5 / 1311.5 9.1 / 1601.5 5.4 / 2910.5 6.1 / 3224.9

0.2 / 3.9 0.2 / 51.8 0.2 / 5.9 0.3 / 56.5 0.1 / 15.9 0.1 / 61.8 0.1 / 13.0 0.2 / 68.5
T2 9.9 / 1550.9 10.4 / 1603.8 6.3 / 3662.3 6.9 / 3727.1 11.0 / 1390.7 12.0 / 1558.9 7.2 / 3515.2 8.1 / 3686.2

10.5 / 1557.8 11.1 / 1669.0 6.4 / 3672.8 7.1 / 3958.9 11.6 / 1415.6 12.4 / 1673.4 7.4 / 3531.8 8.3 / 3791.0
0.4 / 6.7 0.4 / 46.8 0.1 / 7.7 0.1 / 53.7 0.5 / 26.5 0.4 / 82.1 0.1 / 17.3 0.1 / 73.7

T3 13.0 / 1667.0 13.6 / 2076.3 8.1 / 4376.6 8.8 / 4788.8 13.8 / 1553.6 14.9 / 1704.9 9.0 / 4261.2 10.1 / 4420.4
13.9 / 1687.3 14.8 / 2166.5 8.6 / 4390.3 9.0 / 4871.9 14.4 / 1574.9 15.1 / 2033.3 9.2 / 4284.8 10.4 / 4735.3

0.5 / 36.4 0.4 / 85.6 0.2 / 27.1 0.1 / 96.9 0.2 / 22.4 0.1 / 105.2 0.1 / 20.2 0.1 / 96.7
T4 12.4 / 1676.1 13.0 / 1784.3 7.7 / 4591.3 8.4 / 4694.9 13.4 / 1699.3 14.3 / 2021.2 8.7 / 4624.4 9.8 / 4934.4

12.6 / 1680.2 13.3 / 1999.7 7.9 / 4595.2 8.7 / 4913.6 13.7 / 1737.1 14.6 / 2273.4 9.0 / 4652.8 11.8 / 5154.8
0.1 / 2.7 0.1 / 105.7 0.1 / 3.7 0.1 / 107.2 0.1 / 47.6 0.1 / 123.9 0.1 / 37.8 0.5 / 118.0

T5 17.4 / 1714.3 18.4 / 1755.9 10.7 / 5560.0 11.8 / 5597.4 18.8 / 1739.1 20.1 / 1943.9 12.2 / 5573.9 13.6 / 5834.6
17.7 / 1739.3 19.0 / 1783.4 12.0 / 5581.5 12.2 / 5628.0 19.2 / 1771.0 20.4 / 2372.0 12.5 / 5613.7 13.9 / 6200.6

0.1 / 17.2 0.2 / 22.5 0.4 / 10.1 0.2 / 27.7 0.2 / 30.5 0.2 / 186.6 0.2 / 37.6 0.2 / 202.8
T6 23.6 / 1960.0 25.0 / 2054.4 14.4 / 6859.8 15.9 / 6948.0 25.0 / 2007.8 26.8 / 2021.8 15.9 / 6896.4 17.7 / 6928.3

24.2 / 1969.2 25.4 / 2272.7 14.6 / 6867.2 16.3 / 7113.9 25.2 / 2048.1 27.9 / 2216.7 16.2 / 6942.0 18.2 / 7130.2
0.2 / 16.5 0.2 / 64.7 0.1 / 15.9 0.2 / 68.1 0.2 / 38.0 0.2 / 63.3 0.2 / 39.5 0.2 / 66.8

T7 20.2 / 1969.2 21.3 / 2184.6 12.3 / 6730.3 13.6 / 6895.3 21.5 / 2204.8 22.9 / 2342.4 13.8 / 6965.8 15.2 / 7129.7
21.5 / 1978.8 21.6 / 2365.1 12.5 / 6738.5 13.9 / 7127.4 21.9 / 2223.0 23.2 / 2472.3 14.0 / 6983.0 15.7 / 7231.5

0.3 / 10.4 0.1 / 124.3 0.1 / 7.6 0.1 / 99.2 0.2 / 22.0 0.2 / 93.0 0.1 / 25.4 0.2 / 83.7
T8 28.7 / 2372.1 28.7 / 2392.7 17.2 / 8616.0 18.7 / 8626.1 29.0 / 2211.5 30.1 / 2525.3 18.5 / 8466.6 19.7 / 8745.8

29.1 / 2385.5 29.9 / 2476.2 17.7 / 8625.5 19.8 / 8728.7 30.8 / 2286.6 30.5 / 2794.6 19.6 / 8525.4 20.2 / 8893.1
0.2 / 33.1 0.3 / 27.6 0.2 / 21.9 0.6 / 32.5 1.3 / 73.0 0.2 / 98.5 0.6 / 55.7 0.2 / 100.4

T9 36.7 / 2314.0 38.2 / 2395.4 22.0 / 10233.0 23.1 / 10311.0 38.0 / 2328.5 45.0 / 2427.6 22.6 / 10249.7 26.7 / 10324.0
38.1 / 2326.6 40.3 / 2522.5 22.7 / 10246.6 24.4 / 10462.6 38.5 / 2373.9 49.5 / 2688.3 23.0 / 10293.9 34.6 / 10568.0

0.3 / 16.8 0.8 / 59.8 0.2 / 16.9 0.5 / 75.4 0.5 / 53.3 2.7 / 98.0 0.2 / 54.2 3.9 / 77.3

In general, the experimental results prove the efficiency of the introduced SCGEO modifications.
The average quality of solutions increases after applying the neighbourhood operator by about 8%
in the first experiment series, and by about 5% in the second series (see Fig. 6, right). However, com-
paring the best solutions found, we observed that enabling the specialized neighbourhood operator
results in the quality improvement of 22% and 11% for the first and the second experiment series,
respectively. It is worth noting, that in some cases the EQN algorithm is able to find a solution of
the quality higher even by 80%, comparing to the standard SCGEO.

However, the fitness function improvement brings even more radical gain in the solutions quality.
It enables to find the solutions of average qualities higher by about 100% in the first series, and
by about 200% in the second experiment series. These factors stay similar if we consider the best
quality values, as well. It is worth mentioning that for the longest plans of the second experiment
series the solution quality improvement reaches as much as 340%.

To summarize the discussion on quality, one can conclude that adding the inequality constraints in
the second experiment series degrades the EQN algorithm performance, because even if the equality
constraints are satisfied, other conditions may be still violated. On the other hand, the improved
fitness function excels at both kinds of constraints. This proves that SCGEO works much better
when candidate solutions violating some constraints are permitted to take also higher positions in
the ranking lists.

Concerning the computation time, one can observe that the additional computations performed by the
modified neighbourhood operator generate from 5% to 10% overhead. In average, the SCGEO+N
algorithm consumes 9.25% and 6.5% more time than the standard one, during the first and the second
experiment series, respectively (see Fig. 6, left). On the other hand, application of the improved
fitness function reduces the run time of SCGEO+F and SCGEO+FN by about 30% comparing to

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 19

the time consumed by SCGEO and SCGEO+N. This unexpected benefit also results from the better
structure of the ranking list, because a new candidate solution is chosen much easier, with much less
of the random generator calls (see lines 13-21 of the Algorithm 1).

Figure 6. Comparison of the average computational time (left) and quality values (right) obtained using the
considered SCGEO versions.

In Fig. 7 (left) we show a comparison of the standard deviation for the average quality values ob-
tained with all considered SCGEO versions. It is easy to observe, that enabling the modified neigh-
bourhood operator results in a higher dispersion of the quality values. We believe that the EQN
algorithm has still a potential for further improvements.

The general summary of the results is presented in Fig. 7 (right). This is a chart showing the average
quality of the solutions divided by the average computation times of all the experiments. The con-
clusion of this juxtaposition is that the most efficient version of the algorithm is SCGEO+F, because
it yields solutions of very high quality, but consumes the least time amongst the compared methods.

Figure 7. Standard deviation for average quality values (left) and the overall efficiency comparison (right) of
different SCGEO versions.

6. Conclusions

We have presented a new version of our system TripICS, which can be used for planning trips and
travels around the world. Its efficiency is obtained due to several modifications of the most efficient

20 A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels

concrete planner of PlanICS based on a combination of an SMT-solver with the algorithm GEO.
The modifications have been designed in order to improve algorithms solving multiple equality
constraints. We plan to introduce similar modifications also to our other concrete planning methods.

Our main motivation for developing this system was twofold. Firstly, we wanted to show that web
service composition can be successfully used in practice for real-life applications, and secondly our
aim was to offer a new useful tool, which could be publicly used. Therefore, we keep working on
introducing TripICS to the Internet market.

References

[1] S. Ambroszkiewicz. Entish: A language for describing data processing in open distributed
systems. Fundam. Inform., 60(1-4):41–66, 2004.

[2] M. Bell. Introduction to Service-Oriented Modeling (SOA): Service Analysis, Design, and
Architecture. John Wiley & Sons, 2008.

[3] D. Berardi, F. Cheikh, G. De Giacomo, and F. Patrizi. Automatic service composition via
simulation. Int. J. Found. Comput. Sci., 19(2):429–451, 2008.

[4] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 7159, 2014.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, and F Patrizi. Automatic service
composition and synthesis: the roman model. IEEE Data Eng. Bull., 31(3):18–22, 2008.

[6] D. Damljanovic and V. Devedzic. Applying semantic web to e-tourism. In In Ma, Z.,Wang, H.
(Eds.), The Semantic Web for Knowledge and Data Management: Technologies and Practices,
pages 243–265. IGI Global, New York, 2008.

[7] D. Damljanovic and V. Devedzic. Applying semantic web to e-tourism. In In Mehdi Khosrow-
Pour (Ed.), Encyclopedia of Information Science and Technology, pages 3426–3432. IGI
Global, Hershey, 2009.

[8] G. De Giacomo, M. Mecella, and F. Patrizi. Automated service composition based on behav-
iors: The roman model. In Athman Bouguettaya, Quan Z. Sheng, and Florian Daniel, editors,
Web Services Foundations, pages 189–214. Springer, 2014.

[9] L. De Moura and N. Bjorner. Satisfiability modulo theories: Introduction and applications.
Commun. ACM, 54(9):69–77, September 2011.

[10] D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola, and J. Skaruz.
HarmonICS - a tool for composing medical services. In ZEUS, pages 25–33, 2012.

[11] D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Pólrola, M. Szreter,
and A. Zbrzezny. Planics - a web service composition toolset. Fundam. Inform., 112(1):47–71,
2011.

[12] ECMA. The JSON Data Interchange Format. Technical Report Standard ECMA-404, 2013.

[13] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2005.

[14] D. Gavalas, V. Kasapakis, C. Konstantopoulos, G. Pantziou, N. Vathis, and C. Zaroliagis. The
eCOMPASS multimodal tourist tour planner. Expert systems with Applications, 42(21):7303–
7316, 2015.

[15] Google. AngularJS – Superheroic JavaScript MVW Framework, 2010.

[16] R. Johnson et al. Spring Framework Reference Documentation, 2011.

A. Niewiadomski et al. / TripICS - a Web Service Composition System for Planning Trips and Travels 21

[17] Z. Li, L. O’Brien, J. Keung, and X. Xu. Effort-oriented classification matrix of web service
composition. In Proc. of the Fifth International Conference on Internet and Web Applications
and Services, pages 357–362, 2010.

[18] M. Mark, J. Thornton, et al. Bootstrap. The world’s most popular mobile-first and responsive
front-end framework., 2011.

[19] W. Nam, H. Kil, and D. Lee. Type-aware web service composition using boolean satisfiability
solver. In Proc. of CEC’08 and EEE’08, pages 331–334, 2008.

[20] A. Niewiadomski and W. Penczek. Tripics - a web service composition system for planning
trips and travels (extended abstract). In Proc. of CS&P’16, 2016.

[21] A. Niewiadomski, W. Penczek, J. Skaruz, M. Szreter, and M. Jarocki. SMT versus Genetic and
OpenOpt Algorithms: Concrete Planning in the PlanICS Framework. Fundamenta Informati-
cae, 135(4):451–466, 2014.

[22] A. Niewiadomski, W. Penczek, J. Skaruz, M. Szreter, and A. Półrola. Combining ontology
reductions with new approaches to automated abstract planning of PlanICS. Applied Soft Com-
puting, 53:352–379, 2017.

[23] A. Niewiadomski, J. Skaruz, P. Switalski, and W. Penczek. Concrete Planning in PlanICS
Framework by Combining SMT with GEO and Simulated Annealing. Fundam. Inform.,
147:289–313, 2016.

[24] J. Rao and X. Su. A survey of automated web service composition methods. In Proc. of
SWSWPC’04, volume 3387 of LNCS, pages 43–54. Springer, 2005.

[25] L. Richardson, M. Amundsen, and S. Ruby. RESTful Web APIs. O’Reilly Media, Inc., 2013.

[26] J. Skaruz, A. Niewiadomski, and W. Penczek. Hybrid planning by combining SMT and simu-
lated annealing. In Proc. of CS&P’15, pages 173–176, 2015.

