
Fundamenta Informaticae 154 (2017) 289–306 289

DOI 10.3233/FI-2017-1567

IOS Press

Verification of Linear-Time Temporal Properties for
Reaction Systems with Discrete Concentrations

Artur Męski∗

Institute of Computer Science, PAS, Jana Kazimierza 5, 01-248 Warsaw, Poland

Vector Software, Inc., London, UK

meski@ipipan.waw.pl, artur.meski@vectorcast.com

Maciej Koutny
School of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

maciej.koutny@ncl.ac.uk

Wojciech Penczek
Institute of Computer Science, PAS, Jana Kazimierza 5, 01-248 Warsaw, Poland

University of Natural Sciences and Humanities, ICS, Siedlce, Poland

penczek@ipipan.waw.pl

Abstract. Reaction systems are a formal model for computational processes inspired by the func-
tioning of the living cell. This paper introduces reaction systems with discrete concentrations,
which are an extension of reaction systems allowing for quantitative modelling. We demonstrate
that although reaction systems with discrete concentrations are semantically equivalent to the
original qualitative reaction systems, they provide much more succinct representations in terms of
the number of entities being used. We define a variant of Linear Time Temporal Logic interpreted
over models of reaction systems with discrete concentrations. We provide its suitable encoding
in SMT, together with bounded model checking, and present experimental results demonstrating
the scalability of the verification method for reaction systems with discrete concentrations.

Keywords: reaction systems, bounded model checking, linear time temporal logic
∗Address for correspondence: Institute of Computer Science, PAS, Jana Kazimierza 5, 01-248 Warsaw, Poland

290 A. Męski et al. / Verification of Linear-Time Temporal Properties for

1. Introduction
In the seminal paper [1] Andrzej Ehrenfeucht and Grzegorz Rozenberg introduced a formal model for
processes inspired by the functioning of living cells. The new model of reaction systems captured in
presumably the simplest way the basic mechanisms responsible for the dynamic behaviour of a living
cell. In particular, the key feature of reaction systems is that the functioning of the living cell results
from the interactions of biochemical reactions. In turn, these interactions are based on the mechanisms
of facilitation and inhibition: the (products of the) reactions may facilitate or inhibit each other. The
striking simplicity of the basic model of reaction systems stems also from the fact that they model the
reactions, states, and dynamic processes using (tuples of) finite sets. More involved concepts, such as
time and probabilities, can be suitably defined using the basic ones.

Reaction system related research topics have so far been motivated by biological issues or by
a need to understand computations/processes underlying the dynamic behaviour of reaction systems
(see, e.g., [2, 3]). Following their introduction, a number of extensions of reaction systems were stud-
ied, e.g., reaction systems with time [4] and quantum and probabilistic reaction systems [5]. Mathe-
matical properties of reaction systems were investigated in, e.g., [6, 7, 8, 9, 10, 11, 12, 13]. Examples
of application of reaction systems to modelling of systems include, e.g., [14, 15]. Recently, there has
been an increasing interest in verification of reaction systems as described in, e.g., [16, 17, 18].

The basic model of reaction systems is qualitative in the sense that there is no direct representation
of the number of molecules involved in biochemical reactions nor the number of molecules present in
the current system state. This paper, which extends our conference paper [19], considers reaction sys-
tems with discrete concentrations of entities, so defines a model allowing for quantitative modelling.
Note that there exist also other approaches that allow for modelling of complex dependencies of con-
centration levels and their changes, e.g., chemical reaction networks theory based on [20]. However,
the formalism of reaction systems is much simpler and the processes of reaction systems depend on
interactions with the environment.

Although reaction systems with discrete concentrations are semantically equivalent to the original
qualitative reaction systems, they provide much more succinct representations in terms of the num-
ber of entities being used, and allow for more efficient verification [19]. Our experimental results
show a significant improvement in the execution times in favour of reaction systems with discrete
concentrations. Reaction systems with durations introduced in [21] share some similarities with the
formalism defined in this paper. However, in contrast to reaction systems with durations, the execution
of reaction systems with discrete concentrations does not explicitly depend on a counter which can be
implemented using reactions (see the translation into reaction systems presented in [21]).

In this paper we define a variant of Linear-Time Temporal Logic (rsLTL, for short) interpreted
over models of reaction systems with discrete concentrations. We provide its suitable encoding in
SMT, together with a bounded model checking method, and present experimental results showing the
efficiency of verification for reaction systems with discrete concentrations.

The rest of the paper is organised as follows. In the next section, we recall some basic notions
related to reaction systems. Then, we define reaction systems with discrete concentrations in Sec. 3,
linear-time temporal logic interpreted over such reaction systems (Sec. 4), and bounded model check-
ing via SMT-encoding (Sec. 5) followed by experimental results (Sec. 6). The final section contains
some concluding remarks.

A. Męski et al. / Verification of Linear-Time Temporal Properties for 291

2. Preliminaries

A reaction system is a pair rs = (S,A), where S is a finite background set and A is a set of reactions
over the background set. Each reaction in A is a triple b = (R, I, P) such that R, I , P are nonempty
subsets of S with R ∩ I = ∅. The set of all possible reactions over S is denoted rac(S), and
A ⊆ rac(S). The sets R, I , and P are respectively denoted by Rb, Ib, and Pb and called the reactant,
inhibitor, and product set of reaction b. A reaction b ∈ A is enabled by T ⊆ S, denoted enb(T),
if Rb ⊆ T and Ib ∩ T = ∅. The result of b on T is given by resb(T) = Pb if enb(T), and by
resb(T) = ∅ otherwise. Then the result of A on T is resA(T) =

⋃
{resb(T) | b ∈ A} =

⋃
{Pb |

b ∈ A and enb(T)}.
Intuitively, T represents a state of a biochemical system being modelled by listing all present

biochemical entities. A reaction b is enabled by T and can take place if all its reactants are present and
none of its inhibitors is present in T . The system reaches the next state T ′ = resA(T) by executing
the reactions enabled in T .

Example 2.1. Let (S,A) = ({1, 2, 3, 4}, {a1, a2, a3, a4}) be a reaction system, where:

a1 = ({1, 4}, {2}, {1, 2}), a2 = ({2}, {3}, {1, 3, 4}),
a3 = ({1, 3}, {2}, {1, 2}), a4 = ({3}, {2}, {1}).

In state T = {1, 3, 4} reactions a1, a3, and a4 are enabled, while a2 is not. Hence resA(T) =
resa1(T) ∪ resa3(T) ∪ resa4(T) = {1, 2} ∪ {1, 2} ∪ {1} = {1, 2}. ut

Entities in reaction systems are non-permanent, i.e., if entity x is present in the successor state
T ′ of a current state T then it must have been produced (sustained) by a reaction enabled by T (thus
x ∈ resA(T)). Also, there are no conflicts between reactions enabled by T . Therefore there is no
counting in reaction systems, and so it is a qualitative model. This follows from the level of abstraction
adopted for the basic model. However, in the broad framework of reaction systems (see, e.g., [2]) one
considers models with aspects of counting.

A reaction system is a finite system in the sense that the size of each state is a priori limited (by the
size of the background set), and the state transformations it describes are deterministic since there are
no conflicts between enabled reactions. This changes once we decided to take account of the external
environment which is necessary to reflect the fact that the living cell is an open system. Such an
environment can be represented by a context automaton.

A context automaton over a set Ct, is a triple ca = (Q, qinit, R), where Q is a finite set of states,
qinit ∈ Q is the initial state, and R ⊆ Q × Ct × Q is a transition relation labelled with elements of
Ct. We assume that for all q ∈ Q there exists c ∈ Ct and q′ ∈ Q such that (q, c, q′) ∈ R.

A context restricted reaction system is a pair crrs = (rs, ca) such that rs = (S,A) is a reaction
system, and ca = (Q, qinit, R) is a context automaton over 2S . The dynamic behaviour of crrs
is then captured by the state sequences of its interactive processes. An interactive process in crrs is
π = (ζ, γ, δ), where:

• ζ = (z0, z1, . . . , zn), γ = (C0, C1, . . . , Cn), and δ = (D0, D1, . . . , Dn)
• z0, z1, . . . , zn ∈ Q with z0 = qinit

292 A. Męski et al. / Verification of Linear-Time Temporal Properties for

• C0, C1, . . . , Cn, D0, D1, . . . , Dn ⊆ S with D0 = ∅
• (zi, Ci, zi+1) ∈ R, for every i ∈ {0, . . . , n− 1}
• Di = resA(Di−1 ∪ Ci−1), for every i ∈ {1, . . . , n}.

Then the state sequence of π is τ = (W0, . . . ,Wn) = (C0∪D0, . . . , Cn∪Dn). In the above definition
it is required that for each context set there exists in the automaton a transition from its current state.

Intuitively, the state sequence of π captures the observed behaviour of crrs by recording the suc-
cessive states of the evolution of the reaction system rs in the environment represented by the context
automaton ca.

3. Reaction systems with discrete concentrations

The enabling of some of biochemical reactions encountered in practical applications depends not only
on the availability of the necessary reactants and the absence of inhibitors, but also on their concen-
tration levels. To address this aspect in biochemical modelling, we will now introduce an extension of
the basic reaction systems supporting an explicit representation of the discrete concentration levels of
entities. The resulting model uses multisets of entities, but otherwise it retains key features of the orig-
inal framework. The main new idea is that the k-th level of concentration of an entity x is represented
by a multiset containing k copies of x.

In what follows, a multiset over a set X is any mapping b : X → {0, 1, . . . }, and the empty
multiset ∅X is one which always returns 0. We denote this by b ∈ B(X), where B(X) is the set
of all multisets over X . For a set B of multisets over X , !(B) is the multiset over X such that
!(B)(x) = max({0} ∪ {b(x) | b ∈ B}), for every x ∈ X . For two multisets, b and b′, we denote
b ≤ b′ if b(x) ≤ b′(x), for every x ∈ X . The carrier of a multiset b is the set carr(b) = {x ∈ X |
b(x) > 0}.

A reaction system with discrete concentrations is a pair rsc = (S,A), where S is a finite back-
ground set and A is a nonempty finite set of c-reactions over the background set. Each c-reaction in A
is a triple a = (r, i,p) such that r, i, p are multisets over S with r(e) < i(e), for every e ∈ carr(i).
The multisets r, i, and p are respectively denoted by ra, ia, and pa and called the reactant, inhibitor,
and product concentration levels of c-reaction a. We would like to stress that an entity e is an inhibitor
of a whenever e ∈ carr(ia).

A c-reaction a ∈ A is enabled by t ∈ B(S), denoted ena(t), if ra ≤ t and t(e) < ia(e), for every
e ∈ carr(ia). The result of a on t is given by resa(t) = pa if ena(t), and by resa(t) = ∅S otherwise.
Then the result of A on t is resA(t) = !{resa(t) | a ∈ A} = !{pa | a ∈ A and ena(t)}.

In the above, t is a state of a biochemical system being modelled such that, for each entity e ∈ S,
t(e) is the concentration level of e (e.g., t(e) = 0 indicates that e is not present in the current state,
and t(e) = 1 indicates that e is present at its lowest concentration level). A c-reaction a is enabled by
t and can take place if the current concentration levels of all its reactants are at least as high as those
specified by ra, and the current concentration levels of all its inhibitors (i.e., entities in the carrier of
ia) are below the thresholds specified by ia.

A context restricted reaction system with discrete concentrations is a pair crrsc = (rsc, ca) such
that rsc = (S,A) is a reaction system with discrete concentrations, and ca = (Q, qinit, R) is a context

A. Męski et al. / Verification of Linear-Time Temporal Properties for 293

automaton over B(S). The dynamic behaviour of crrsc is then captured by the state sequences of its
interactive processes. An interactive process in crrsc is π = (ζ, γ, δ), where:

• ζ = (z0, z1, . . . , zn), γ = (c0, c1, . . . , cn), and δ = (d0,d1, . . . ,dn)
• z0, z1, . . . , zn ∈ Q with z0 = qinit

• c0, c1, . . . , cn,d0,d1, . . . ,dn ∈ B(S) with d0 = ∅B(S)
• (zi, ci, zi+1) ∈ R, for every i ∈ {0, . . . , n− 1}
• di = resA(!{di−1, ci−1}), for every i ∈ {1, . . . , n}.

Then the state sequence of π is τ = (w0, . . . ,wn) = (!{c0,d0}, . . . ,!{cn,dn}).
A context restricted reaction system with discrete concentrations crrsc = (rsc, ca) is a finite state

system since it comprises finitely many c-reactions and finitely many multisets labelling the arcs of
its context automaton. More precisely, let #crrsc(e) be the maximum integer assigned to e ∈ S in all
the multisets of entities occurring in both rsc and ca. Then, w(e) ≤ #crrsc(e), for all e ∈ S and all
states occurring in the state sequences of the interactive processes in crrsc. (Note that this bound can
be improved by ignoring the reactant and inhibitor multisets in c-reactions.) Moreover, the behaviour
of crrsc can be simulated by a suitable context restricted reaction system.

To construct such a system, for every t ∈ B(S), we define two sets of entities, Γ(t) = {e.i | e ∈
S ∧ t(e) = i > 0} and Γall(t) = {e.i | e ∈ S ∧ 1 ≤ i ≤ t(e)}. The e.i’s will be entities of the system
we are going to construct. Note that Γall(t) is a downward-closed set in the sense that if e.i ∈ Γall(t)
and i > 1, then e.1, . . . , e.(i−1) ∈ Γall(t). In fact, Γall is a bijection from B(S) to all the downward-
closed sets, and its inverse Γ−1all is given by Γ−1all (Z)(e) = max{{0} ∪ {i | e.i ∈ Z}, for every e ∈ S.
In what follows, Γall and Γ−1all will be applied component-wise to sequences of respectively multisets
and downward-closed sets. For such crrsc, we define the corresponding context restricted reaction
system as Θ(crrsc) = (rs, ca) = ((S′, A′), (Q, qinit, R′)), where: S′ = {e.i | e ∈ S and 1 ≤ i ≤
#crrsc(e)}, A′ = {(Γ(r),Γ(i),Γall(p)) | (r, i,p) ∈ A}, and R′ = {(z,Γall(c), z′) | (z, c, z′) ∈ R}.
It is straightforward to see that Θ(crrsc) is well-defined.

As to the complexity of the translation, the number of reactions, states and arrows remains the
same. Moreover, the representations of reactions and inhibitors are of the same order. What changes
is the size of the background set, in the worst case by the factor max{#crrsc(e) | e ∈ S} as well as
the representations of products and contexts (again by the same factor).

We will now investigate a very close correspondence between Θ(crrsc) and crrsc. First, we
observe that, by the definitions of A′ and R′, all sets of entities occurring in the interactive processes
of Θ(crrsc) are downward-closed. Then we obtain that all interactive processes of crrsc can be
simulated by Θ(crrsc).

Theorem 3.1. If π = (ζ, γ, δ) is an interactive process in crrsc, then π′ = (ζ,Γall(γ),Γall(δ)) is an
interactive process in Θ(crrsc).

Proof:
It suffices to show for w in the state sequence of π, Γall(resA(w)) = resA′(Γall(w)). Suppose
a = (r, i,p) ∈ A and a′ = (Γ(r),Γ(i),Γall(p)) ∈ A′. We first observe that a is enabled in w (i.e.,
r ≤ w and w(e) < i(e), for all e ∈ carr(i)) iff a′ is enabled in Γall(w) (i.e., Γ(r) ⊆ Γall(w) and
Γ(i) ∩ Γall(w) = ∅). Moreover, it is easy to check that Γall(resa(w)) = resa′(Γall(w)). ut

294 A. Męski et al. / Verification of Linear-Time Temporal Properties for

Moreover, all interactive processes of Θ(crrsc) simulate those of crrsc.

Theorem 3.2. If π = (ζ, γ, δ) is an interactive process in Θ(crrsc), then π′ = (ζ,Γ−1all (γ),Γ−1all (δ))
is an interactive process in crrsc.

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1. We have therefore obtained a
one-to-one correspondence between the interactive processes of Θ(crrsc) and crrsc.

Remark 3.3. From the point of view of enabling c-reactions, not all concentration levels are important
and, consequently, they do not need to be represented in the states of Θ(crrsc). To achieve the
desired effect, all one needs to do is re-define Γall, in the following way: Γ′all(t) = Γ(t) ∪ (Γall(t) ∩⋃
a∈A Γ(ra) ∪ Γ(ia)).

Note that syntactically crrs are a subclass of crrsc, such that all the concentration levels in crrsc
are limited to the value of at most one, that is, for any t ∈ B(S) and for any e ∈ carr(t) we have
t(e) = 1.

When dealing with concentration levels we often need to perform incrementation and decremen-
tation operations. For this we need an additional notation: in the remainder of this paper we use the
notation e 7→ i to indicate the multiplicity of an entity e in a multiset of entities, e.g., {e 7→1, f 7→2} is
a multiset with one copy of e, two copies of f , and nothing else.

4. Linear-time temporal logic for reaction systems

In this section we demonstrate how linear-time temporal logic can be used to express properties of
reaction systems. Firstly, for the convenience of specifying multisets over a given set S we introduce
the following grammar of multiset expressions: a ::= true | e ∼ c | e ∼ e | ¬a | a ∨ a, where
∼∈ {<,≤,=,≥, >}, e ∈ S, and c ∈ IN. The set of all the multiset expressions over S is denoted
by BE(S). Let b be a multiset over S. The fact that a holds in b is denoted by b |=b a, where the
relation |=b is defined recursively as follows:

b |=b true iff for any b ∈ B(S), b |=b e1 ∼ c iff b(e1) ∼ c,
b |=b e1 ∼ e2 iff b(e1) ∼ b(e2), b |=b ¬a iff b 6|=b a,

b |=b a1 ∨ a2 iff b |=b a1 or b |=b a2.

Next, we derive the conjunction operator: a1 ∧ a2
def
≡ ¬(¬a1 ∨ ¬a2). Notice that for ∼ the entire

set of relations is not required since we can use the logical operators to obtain the same expressiveness
with a minimal set of those operators.

The language of Reaction Systems Linear-Time Temporal Logic (rsLTL, for short) is defined by
the following grammar: φ ::= a | φ ∧ φ | φ ∨ φ | Xaφ | φUaφ | φRaφ, where a ∈ BE(S).

The temporal operators are used to express requirements imposed on a path. The Xφ operator
means ‘in the next state φ holds’. The φ1Uφ2 operator uses two properties and means ‘φ2 holds
eventually, and φ1 must hold at every preceding state’. The φ1Rφ2 operator means ‘φ2 holds up to
and including the first state where φ1 holds’.

A. Męski et al. / Verification of Linear-Time Temporal Properties for 295

For a given crrsc we define its model, which is then used to formally define the semantics of the
introduced operators.

Definition 4.1. Let crrsc = (rsc, ca), where rsc = (S,A) is a reaction system with discrete con-
centrations, and ca = (Q, qinit, R) is a context automaton over B(S). Then, the model for crrsc is a
quadrupleM = (W, w0,−→, L), where:

1. W = B(S)×Q is the set of states,
2. winit = (∅, qinit) is the initial state,
3. −→ ⊆ W × B(S) ×W is the transition relation such that for all w,w′, α ∈ B(S), q, q′ ∈
Q:
(
(w, q), α, (w′, q′)

)
∈ −→ iff: (q, α, q′) ∈ R and w′ = resA(!{w, α}). Each element

(w, α, w′) ∈ −→ is denoted w
α−→ w′.

The paths in rsLTL contain additional elements which represent context multisets. The paths are
defined as sequences of states interleaved with actions, i.e., the context multisets.

Definition 4.2. A path is an infinite sequence σ = (w0, α0, w1, α1, . . .) of states and actions such that:
wi

αi−→ wi+1 and αi ∈ B(S) for i ≥ 0.

Let σ be a path. For each i ≥ 0, the i-th state wi of the path σ is denoted by σs(i), and the i-th
action αi of the path σ is denoted by σa(i). Let σs(i) = (wi, qi) for each i ≥ 0. Then, with σb(i) and
σca(i) we denote wi and qi, respectively. Let i ≥ 0, then by σi we denote the suffix of σ such that
σi = (σs(i), σa(i), σs(i+ 1), σa(i+ 1), . . .), i.e., σis(j) = σs(j + i) and σia(j) = σa(j + i) for each
j ≥ 0. By ΠM we denote the set of all the paths of the modelM, whereas by ΠM(w) we denote the
set of all the paths that start in w ∈W, that is, ΠM(w) = {σ ∈ Π | σs(0) = w}.

Definition 4.3. LetM = (W, winit,−→, L) be a model and σ ∈ ΠM be a path ofM. The fact that φ
holds over σ is denoted byM, σ |= φ (or σ |= φ ifM is implicitly understood), where the relation |=
is defined recursively as follows:

σ |= a iff σb(0) |=b a,
σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2,
σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2,
σ |= Xaφ1 iff σa(0) |=b a and σ1 |= φ1,
σ |= φ1Uaφ2 iff (∃j ≥ 0)

(
σj |= φ2 and (∀0 ≤ l < j)(σl |= φ1 and σa(l) |=b a)

)
,

σ |= φ1Raφ2 iff (∀j ≥ 0)
(
σj |= φ2 or (∃0 ≤ l < j)(σl |= φ1 and (∀0 ≤ m < l)(σa(m) |=b a))

)
.

Next, we derive the following operators: a ⇒ φ
def
≡ ¬a ∨ φ, Gaφ

def
≡ falseRaφ, Faφ

def
≡ trueUaφ.

Moreover, we assume a = true when a is unspecified for any of the rsLTL operators, e.g., Fφ is the
same as Ftrueφ.

An rsLTL formula holds in a model iff it holds in all the paths starting in its initial state, i.e.,
M |= φ iff σ |= φ for all σ ∈ ΠM(winit). Additionally, a formula may also hold existentially in a
model, i.e.,M |=∃ φ iff there exists σ ∈ ΠM(winit) s.t. σ |= φ.

Given an rsLTL formula and a model M, the decision problem of checking if M |= φ, is the
model checking problem for rsLTL.

296 A. Męski et al. / Verification of Linear-Time Temporal Properties for

Example 4.4. We consider an abstract system rsc = ({x, y, h,m}, {a1, a2, . . . , a6}), where:

a1 = ({y 7→1, x 7→1}, {y 7→2, h 7→1}, {y 7→2}), a2 = ({y 7→2, x 7→2}, {y 7→3, h 7→1}, {y 7→3}),
a3 = ({y 7→3, h 7→1}, {y 7→4, h 7→2}, {y 7→4}), a4 = ({y 7→4, h 7→1}, {h 7→2}, {y 7→3}),
a5 = ({y 7→4, x 7→2}, {h 7→1}, {y 7→2}), a6 = ({m 7→1}, {y 7→3}, {m 7→1}).

We define a context automaton ca = ({0, 1}, 0, {r1, r2, . . . , r7}), where:

r1 = (0, {x 7→1, y 7→1,m 7→1}, 1), r2 = (1, {x 7→1}, 1), r3 = (1, {x 7→2}, 1),
r4 = (1, {x 7→1, h 7→1}, 1), r5 = (1, {x 7→2, h 7→1}, 1), r6 = (1, {h 7→1}, 1),
r7 = (1, {h 7→2}, 1).

Finally, we define crrsc = (rsc, ca). Intuitively, the system produces the entities y and m at different
concentration levels. If there is y present with the concentration level of exactly one unit, the entity x
is provided, and h is not present, then the concentration level of y is increased by one unit, i.e., y 7→2
is produced. In the next step, the concentration of y is increased further, but the concentration of x is
required to be at the level of two units. The level of y increases from three to four units when the level
of h is exactly one unit. Then, if h is being continuously provided at the level of exactly one unit the
concentration of y oscillates between four and three units. When y is present at the concentration level
of at least four units, x is at the concentration level of two units, and h is not provided, the level of y
drops to two units. Additionally, when m is provided, it is sustained at the level of one unit unless y
reaches the level of three units.

LetM be the model for crrsc. We formulate the following rsLTL properties interpreted inM:

φ1 = Gx>0((y = 2)⇒ Xx>1(y ≥ 3)), φ2 = Fx>0((y = 2) ∧Xx>1(y < 3)),
φ3 = X((y = 3)R(m ≥ 1)).

The formula φ1 states that, globally, when x > 0 is supplied in the context (by the context au-
tomaton), and if y = 2 then in the next state y ≥ 3, if x > 1 is supplied in the context. This property
holds existentially in the model, i.e.,M |=∃ φ1. However, it does not hold universally, i.e.,M 6|= φ.
This follows from the fact that φ2 ≡ ¬φ1 and M |=∃ φ2, that is, φ2 expresses the property for a
counterexample of φ1.

The property described by φ3 holds in a path where: when y = 3 holds, it releases m ≥ 1 from
holding, otherwise m ≥ 1 is required to hold. The release property is required to hold after one step,
i.e., by using the X operator we skip the first step of the path where σb(0) = ∅.

4.1. Bounded semantics

Motivated by various successful applications of bounded model checking to practical problems such
as software verification [22], in this paper we focus on the bounded model checking approach defined
for finite prefixes of paths. This approach requires us to specify when a given formula holds while
considering only a finite number of states and actions that belong to the prefix of the considered path.

Definition 4.5. A path σ = (w0, α0, w1, α1, . . .) is a (k, l)-loop (or k-loop) if there exist k ≥ l > 0
such that wl−1 = wk and σ = (w0, α0, . . . , αl−2, wl−1)(αl, wl+1, αl+1, . . . , αk−1, wk)

ω.

A. Męski et al. / Verification of Linear-Time Temporal Properties for 297

The bounded semantics for rsLTL is defined for finite path prefixes. We define a satisfiability relation
that for a given path considers its first k states and k − 1 actions only.

Definition 4.6. The fact that a formula φ holds in a path σ with bound k ∈ IN is denoted by σ |=k φ.
Then, σ |=k φ if and only if:

– σ is a (k, l)-loop for some 0 < l ≤ k and σ |= φ, or
– σ |=nl φ, where:

σ |=nl a iff σs(0) |=b a,
σ |=nl φ1 ∧ φ2 iff σ |=nl φ1 and σ |=nl φ2,
σ |=nl φ1 ∨ φ2 iff σ |=nl φ1 or σ |=nl φ2,
σ |=nl Xaφ iff k > 0, σa(0) |=b a, and σ1 |=nl φ,
σ |=nl φ1Uaφ2 iff (∃0 ≤ j ≤ k)

(
σj |=nl φ2 and (∀0 ≤ l < j)(σl |=nl φ1 and σa(l) |=b a)

)
σ |=nl φ1Raφ2 iff (∃0 ≤ j ≤ k)

(
σj |=nl φ1 and ((∀0 ≤ l ≤ j)(σl |=nl φ2)

and (∀0 ≤ l < j)(σa(l) |=b a))
)

Lemma 4.7. Let k ∈ IN, φ be an rsLTL formula, and σ be a path. Then, σ |=k φ implies σ |= φ.

Lemma 4.8. Let φ be an rsLTL formula andM be a model. Then,M |= φ implies that there exists
k ∈ IN such thatM |=k φ.

The proofs for these lemmas are similar to the ones for LTL [23]. The only difference in these proofs
is related to the augmented temporal operators which impose additional restrictions on the considered
path by using multiset expressions.

For a bound k ∈ IN we define the relation |=k
∃ for models as follows: M |=k

∃ φ iff there exists
σ ∈ ΠM(winit) s.t. σ |=k φ. The bounded model checking problem for rsLTL is defined as the
decision problem of checking ifM |=k

∃ φ for a given bound k ∈ IN.
Based on Lemma 4.7 and 4.8 we state the following theorem:

Theorem 4.9. Let φ be an rsLTL formula andM be a model. Then,M |=∃ φ iff there exists k ∈ IN
such thatM |=k

∃ φ.

5. SMT-based encoding

In this section we provide a translation of the bounded model checking problem for rsLTL into the
satisfiability modulo theory (SMT) [22] with the integer arithmetic theory. The SMT problem is a
generalisation of the Boolean satisfiability problem, where some functions and predicate symbols
have interpretations from the underlying theory.

Let crrsc = ((S,A), (Q, qinit, R)) and M be the model for crrsc. For an integer k ≥ 0 we
aim to encode all the paths of the modelM that are bounded with k. The entities of S are denoted
by e1, . . . , em, where m = |S|. We introduce the following sets of positive integer variables used in
the encoding: P =

⋃k
i=0{pi,1, . . . , pi,m}, PE =

⋃k
i=0{pEi,1, . . . , pEi,m}, and Q = {q0, . . . , qk}. Let

σ be a path ofM. Then, pi = (pi,1, . . . , pi,m) and pEi = (pEi,1, . . . , p
E
i,m) encode the state σs(i), i.e.,

298 A. Męski et al. / Verification of Linear-Time Temporal Properties for

σa(i) and σb(i), respectively. The action σa(i) is encoded with pEi = (pEi,1, . . . , p
E
i,m). With pi[j] and

pEi [j] we denote, respectively, pi,j and pEi,j .
We define the following functions that map background set entities to the corresponding variables

of the encoding: for all 0 ≤ i ≤ k we define ti : S → Pi and tEi : S → PEi such that ti(ej) = pi,j ,
tEi (ej) = pEi,j for all 1 ≤ j ≤ m. The function e : Q → {0, . . . , |Q| − 1} maps states of the context
automaton to the corresponding natural values used in the encoding. The set of the reactions that
produce e ∈ S is defined as Prod(e) = {a ∈ A | pa(e) > 0}.

To define the SMT encoding of the paths we need auxiliary functions that correspond to elements
of the encoding.

Initial state: Init(pi, qi) =
∧
e∈S(ti(e) = 0) ∧ (q0 = e(qinit)) encodes the initial state of the model,

where all the concentration levels are set to zero, and the context automaton is in its initial state.

Context: Ctci(pEi) =
∧
e∈S(tEi (e) = ci(e)) encodes a multiset ci ∈ B(S) of context entities.

Enabledness: Ena
(
pi,p

E
i

)
=
∧
e∈S(ti(e) ≥ ra(e) ∨ tEi (e) ≥ ra(e)) ∧∧

e∈S(ti(e) < ia(e) ∧ tEi (e) < i(e)) encodes the enabledness of a reaction a.

Entity concentration: Let f1, f2, f3 be expressions over P ∪ PE , then we introduce the if-then-else
operator: f1 → f2 | f3 = (f1 ∧ f2) ∨ (¬f1 ∧ f3). Let e ∈ S, then Prodsorted(e) = (a1, a2, . . . , aw)
is an ordered list of the reactions producing e, where w = |Prod(e)| and paj ≤ paj+1 for all
1 ≤ j < w. The produced concentration level for entity e, reaction aj , and 1 ≤ j ≤ w, is en-
coded as: Cje

(
pi,p

E
i ,pi+1

)
= Enaj

(
pi,p

E
i

)
→ ti+1(e) = paj | C

j+1
e

(
pi,p

E
i ,pi+1

)
if j < w,

and Enaj
(
pi,p

E
i

)
∧ ti+1(e) = paj if j = w. Finally, we define the complete entity concentra-

tion encoding for all the reactions. If w = 0, then Ce
(
pi,p

E
i ,pi+1

)
= (ti+1(e) = 0), otherwise

Ce(pi,p
E
i ,pi+1) = C1

e(pi,p
E
i ,pi+1) ∨ ((

∧
a∈Prod(e) ¬Ena(pi,pEi)) ∧ ti+1(e) = 0).

Transitions of context automaton: The encoding of the transition relation of the context automaton
is a disjunction of the encodings for each transition:

Trca(qi,p
E
i , qi+1) =

∨
(q,c,q′)∈R

(qi = e(q) ∧ Ctc(pEi) ∧ qi+1 = ei+1(q
′)).

Transition relation: We build a conjunction of the produced concentration levels for all entities and
the transition relation for the context automaton to encode the transition relation of the model:

Trrsc(pi, qi,p
E
i ,pi+1, qi+1) = (

∧
e∈S

Ce(pi,p
E
i ,pi+1)) ∧ Trca(qi,p

E
i , qi+1).

Paths: To encode the paths ofM that are bounded with k we unroll the transition relation up to k and
combine it with the encoding of the initial state of the model:

Pathsk = Init(p0, q0) ∧
k−1∧
i=0

Trrsc(pi, qi,p
E
i ,pi+1, qi+1).

Next, we present a translation of the rsLTL formulae into an SMT encoding. The rsLTL encoding
is based on the fixed point encoding for LTL presented in [24].

A. Męski et al. / Verification of Linear-Time Temporal Properties for 299

In rsLTL, in place of propositional variables appearing in standard LTL formulae, we use multiset
expressions. Let a be a multiset expression, encbi(a) and enccti (a) denote the encoding of a using the
variables of, respectively, pi and pEi . The former refers to states of rsc, while the latter refers to actions.
Since we are defining a translation into SMT those encodings are defined in a straightforward way. To
deal with (k, l)-loops we introduce an integer variable L. When L = l holds for a path then the path
is a (k, l)-loop: Loopsk(L) = ¬(L = 0) ∧

∧k
i=1

(
(L = i)⇒ E(pi−1, qi−1,pk, qk)

)
, where E encodes

the equivalence of two states of the model: E(pi, qi,pj , qj) = (qi = qj) ∧
∧m
c=1(pi[c] = pj [c]).

The encoding of an rsLTL formula φ at the position i ∈ {0, . . . , k} is defined as |[φ]|ki . Firstly, we
introduce the encoding for propositional formulae:

|[φ]|ki 0 ≤ i ≤ k
|[a]|ki encbi (a)

|[φ1 ∧ φ2]|ki |[φ1]|ki ∧ |[φ2]|ki
|[φ1 ∨ φ2]|ki |[φ1]|ki ∨ |[φ2]|ki

Next, we define the encoding for temporal formulae. The translations of the until and release op-
erators are based on the fixed point encoding for CTL [25]. The encoding introduces an auxiliary
translation 〈〈φ〉〉ki which corresponds to computing fixed point approximations.

|[φ]|ki 0 ≤ i < k

|[Xaφ1]|ki |[φ1]|ki+1 ∧ enccti (a)

|[φ1Uaφ2]|ki |[φ2]|ki ∨
(
|[φ1]|ki ∧ (|[φ1Uaφ2]|ki+1 ∧ enccti (a))

)
|[φ1Raφ2]|ki |[φ2]|ki ∧

(
|[φ1]|ki ∨ (|[φ1Raφ2]|ki+1 ∧ enccti (a))

)
i = k

|[Xaφ1]|ki
∨k

j=1((L = j) ∧ |[φ1]|kj) ∧ enccti (a)

|[φ1Uaφ2]|ki |[φ2]|ki ∨
(
|[φ1]|ki ∧ (

∨k
j=1((L = j) ∧ 〈〈φ1Uaφ2〉〉ki+1) ∧ enc

ct
i (a))

)
|[φ1Raφ2]|ki |[φ2]|ki ∧

(
|[φ1]|ki ∨ (

∨k
j=1((L = j) ∧ 〈〈φ1Raφ2〉〉ki+1) ∧ enc

ct
i (a))

)
〈〈φ〉〉ki 0 ≤ i < k

〈〈φ1Uaφ2〉〉ki |[φ2]|ki ∨
(
|[φ1]|ki ∧ (〈〈φ1Uaφ2〉〉ki+1 ∧ enc

ct
i (a))

)
〈〈φ1Raφ2〉〉ki |[φ2]|ki ∧

(
|[φ1]|ki ∨ (〈〈φ1Raφ2〉〉ki+1 ∧ enc

ct
i (a))

)
i = k

〈〈φ1Uaφ2〉〉ki |[φ2]|ki
〈〈φ1Raφ2〉〉ki |[φ2]|ki

The cases for |[φ]|ki when i = k are considered separately: additional transitions for j ∈ {1, . . . , k}
are encoded when (k, j)-loop exists, i.e., when L = j holds. In contrast to the LTL encoding of [24],
we require for all the transitions to be constrained by the parameter a encoded with enccti (a).

Finally, the bounded model checking problem for rsLTL is reduced to satisfiability checking, i.e.,
to verify ifM |=k

∃ φ we check the satisfiability of the following formula: Pathsk ∧ Loopsk ∧ |[φ]|k0 .

6. Experimental evaluation

In this section we present the results of an experimental evaluation of the translation presented in
Section 5. The verification tool was implemented in Python and uses Z3 [26] for SMT-solving. We

300 A. Męski et al. / Verification of Linear-Time Temporal Properties for

implement an incremental approach, i.e., in a single SMT instance we increase the length of the
encoded interactive processes by unrolling their encoding until a witness for the verified property is
found, instead of creating separate instances for each length tested.

Additionally, we compare the implementation for crrsc with an implementation for crrs by veri-
fying reachability properties of the crrs obtained by applying the translation defined in Section 3 to
crrsc. To provide a fair comparison, both the verification approaches were implemented in Python
using similar techniques. The implementation for crrs is based on the encoding from Section 5 which
is optimised for crrs by using boolean variables instead of integer variables. The translation into SMT
for crrs corresponds to the translation for crrsc – it is assumed that all concentration levels are equal
to 1 when an entity is present, and equal to 0 otherwise.

The k-reachability is defined for a pair ρ = (x,y) where x,y ∈ B(S). We say that ρ is k-
reachable if there exists an interactive process π = (ζ, γ, δ) in crrsc such that δ = (d0,d1, . . . ,dk),
and x ≤ dk, dk(e) < y(e), for every e ∈ carr(y).
Incrementation and decrementation operations. With ↑ge and ↓ge we denote the set of reactions
encoding the operation of, respectively, incrementation and decrementation of concentration levels
of e ∈ S when g ∈ S is present with a non-zero concentration. With Me we denote the maximal
allowed value of e. Then ↑ge= {({e 7→ i, g 7→ 1}, ∅S , {e 7→ i+ 1}) | 1 ≤ i < Me} and ↓ge= {({e 7→
i, g 7→1}, ∅S , {e 7→ i− 1}) | 2 < i ≤Me}.
Permanency. In a similar way we introduce a set of reactions for encoding permanency:

♦i
e = {({e 7→ i}, i, {e 7→ i}) | 1 ≤ i ≤Me}

is a set of reactions ensuring permanency of e ∈ S which can be inhibited by i ∈ B(S).
We exploit the notation to use ↑ge , ↓ge , and ♦i

e in place of regular reactions ignoring that they
are in fact sets of reactions. In the implementation for crrsc we introduce an optimisation where
these reactions are encoded as macro-reactions, that is, as simple operations on integer variables that
increment, decrement, or retain the value of the variable encoding concentration of e.

We assume the macro-reactions are allowed only when no ordinary reaction is enabled.

6.1. Eukaryotic heat shock response

Firstly, we test our implementation using the model of the eukaryotic heat shock response (HSR) [19]
originally introduced in [14]. HSR is an internal repair mechanism triggered when a cell is subjected
to an environmental stressor – increased temperature that is not ideal for its functioning.

A temperature exceeding the ideal temperature causes the proteins (prot) of a cell to misfold (mfp),
which in turn may cause its malfunctioning. To facilitate refolding of the proteins, heat shock response
proteins (hsp) are produced, which are molecular chaperones for the misfolded proteins. The produc-
tion of hsp is initiated by heat shock factors (hsf) which are, dimerised (hsf2), and then trimerised
(hsf3). Next, hsf3 activates hsp production by binding to the heat shock element (hse) which is the
promoter-site of the gene encoding the heat shock proteins.

The original model of [14] used stress and nostress entities to distinguish between the presence
and absence of the heat shock. In the model of [19] it is assumed that the heat shock appears at
(and above) the temperature of 42 ◦C , and this is modelled using the temp entity. All the entities

A. Męski et al. / Verification of Linear-Time Temporal Properties for 301

Table 1. Entities used in the heat shock response model.

entity description entity description
hsp heat shock protein hsf3 :hse hsf3 bound with hse

hsf heat shock factor hsp:mfp hsp bound with mfp

hsf2 dimerised heat shock factor hsp:hsf complex consisting of hsp and hsf

hsf3 trimerised heat shock factor temp temperature value
hse heat shock element cool decreases the temperature
mfp misfolded protein heat increases the temperature
prot protein

except temp remain at the concentration level of one unit. We assume that the maximal value of the
temperature modelled using the entity temp is 50.

Table 2. Reactions of the heat shock response model (curly brackets are omitted).

reactants inhibitors products

hsf 7→1 hsp 7→1 hsf 3 7→1

hsf 7→1, hsp 7→1,mfp 7→1 ∅S hsf3 7→1

hsf 3 7→1 hsp 7→1, hse 7→1 hsf 7→1

hsp 7→1, hsf3 7→1,mfp 7→1 hse 7→1 hsf 7→1

hsf3 7→1, hse 7→1 hsp 7→1 hsf3 :hse 7→1

hsp 7→1, hsf3 7→1,mfp 7→1, hse 7→1 ∅S hsf3 :hse 7→1

hse 7→1 hsf3 7→1 hse 7→1

hsp 7→1, hsf3 7→1, hse 7→1 mfp 7→1 hse 7→1

hsf3 :hse 7→1 hsp 7→1 hsp 7→1, hsf3 :hse 7→1

hsp 7→1,mfp 7→1, hsf3 :hse 7→1 ∅S hsp 7→1, hsf3 :hse 7→1

hsf 7→1, hsp 7→1 mfp 7→1 hsp:hsf 7→1

hsp:hsf 7→1, temp 7→42 ∅S hsf 7→1, hsp 7→1

hsp:hsf 7→1 temp 7→42 hsp:hsf 7→1

hsp 7→1, hsf3 7→1 mfp 7→1 hsp:hsf 7→1

hsp 7→1, hsf3 :hse 7→1 mfp 7→1 hse 7→1, hsp:hsf 7→1

temp 7→42, prot 7→1 ∅S mfp 7→1, prot 7→1

prot 7→1 temp 7→42 prot 7→1

hsp 7→1,mfp 7→1 ∅S hsp:mfp 7→1

mfp 7→1 hsp 7→1 mfp 7→1

hsp:mfp 7→1 ∅S hsp 7→1, prot 7→1

The background set S for the rsc modelling HSR consists of the entities in Table 1. The set Aord
comprises the reactions in Table 2. We also define the set of reactions dealing with temperature

302 A. Męski et al. / Verification of Linear-Time Temporal Properties for

Atemp =↑heattemp ∪ ↓cooltemp ∪ �itemp , where i = {heat 7→ 1, cool 7→ 1}. By defining the set i in this way
we ensure that the result of changing the temperature will not be overridden by the permanency.

The rsc for HSR is defined as rscHSR = (S,Aord ∪Atemp).
To define a crrrs for rscHSR we use the context automaton caHSR = (Q, q0, R) where Q = {0, 1},

q0 = 0 and R = {(0, {hsf 7→ 1, prot 7→ 1, hse 7→ 1, temp 7→ 35}, 1), (1, {cool 7→ 1}, 1), (1, {heat 7→
1}, 1), (1, ∅S , 1)}. Then, the crrsc for rscHSR is defined as crrscHSR = (rscHSR, caHSR). The context
set specified in caHSR for the transition from 0 (the initial state) corresponds to the initial context set
used in [14] as the minimal set of entities needed in HSR, together with the temp entity indicating a
temperature that does not cause the heat shock.

First, we test the efficiency of our implementation by verifying the reachability of the following
results of crrscHSR: ρ1 = (x1,y1) where x1 = {hsp:hsf 7→1, hse 7→1, prot 7→1}, y1 = {temp 7→42}
and ρ2 = (x2,y2) where x2 = {mfp 7→ 1}, y2 = ∅S . Reachability of ρ1 proves that it is possible
to enter the state where HSR may become stable, while reachability of ρ2 proves that it is possible
for the proteins to eventually misfold. The k-reachability for ρ1 is proved for k = 4, while ρ2 for

Table 3. Results for the verification of reachability properties of HSR

ρ1 ρ2

time [s] memory [MB] time [s] memory [MB]

crrs 17.32 25.08 38.78 28.38

crrsc 0.35 24.87 0.93 24.99

improvement 49.48× 1.01× 41.69× 1.13×

k = 9. There is no noticeable improvement in memory consumption for the verification of crrsc over
crrs. However, there is a significant difference in the execution times in favour of crrsc, e.g., for ρ1 the
verification for crrsc is 49.48 times faster. The verification results1 for the reachability properties are
summarised in Table 3.

Table 4. rsLTL formulae for HSR with the verification performance

Formula k time [s] memory [MB]

φ1 XFheat>0(temp > 42) 9 1.01 30.04

φ2 XGheat>0((temp > 42)⇒ F(mfp > 0)) 21 3.18 34.77

The verification results for rsLTL formulae are presented in Table 4. The verification of the for-
mula φ2 requires more resources than φ1, since the result is found for a larger value of k and the
verified property contains more temporal operators, resulting in a larger encoding.

1The experimental results were obtained using a system equipped with 3.7GHz Intel Xeon E5 processor and 12GB of
memory, running Mac OS X 10.12.3.

A. Męski et al. / Verification of Linear-Time Temporal Properties for 303

6.2. Scalable chain

As the next benchmark we use the scalable chain (SC) model [19]. The background set for the system
is defined as S = {e1, e2, . . . , em, inc, dec}. Intuitively, the system executes reactions incrementing
concentration levels of m entities, each up to a maximal concentration level c. For i < m, when the
maximal concentration level of ei is reached, then the entity ei+1 is produced.

The inc and dec entities cause, respectively, incrementation or decrementation of concentration
levels. We define the following sets of reactions: P =

{
({ei 7→ c}, ∅S , {ei+1 7→ 1)}) | 1 ≤ i < m

}
,

O =
{
↑incei , ↓

dec
ei | 1 ≤ i ≤ m

}
, F =

{
({em 7→ c}, {dec 7→ 1}, {em 7→ c})

}
. The reactions of P

implement the production of the subsequent entities, while their concentration levels are changed by
the reactions of O. The reaction of F ensures persistency of the “final” entity em when it reaches
the concentration of c, unless dec is present. The rsc for the scalable chain system is defined as
rscSC = (S,P∪O∪F). Next, we define the context automaton caSC = (Q, q0, R) whereQ = {0, 1},
q0 = 0, and the setR consists of the following transitions: (0, {e1 7→1, inc 7→1}, 1), (1, {inc 7→1}, 1),
(1, {dec 7→1}, 1). Finally, we define crrscSC = (rscSC, caSC).

5
10

15
20

10

20
10−1

101

103

m
c

tim
e

(i
n

se
co

nd
s)

crrsc
crrs

5
10

15
20

10

20

102

103

m
c

m
em

or
y

(i
n

M
B

)

Figure 1. Verification results for the reachability property of SC

The verified reachability property of the scalable chain system is proved for k = m · c − 1. The
property expresses the reachability of the maximal concentration level of the entity em. The time and
memory consumption results are presented in Fig. 1.

In most cases there is an observable advantage of the implementation for crrsc when the value
of c is relatively large compared to m, e.g., for m = 8 and c = 20 the results for crrsc are 5.6
times better. For m = 10 and c = 14 the verification of crrs proved to be 1.6 times more efficient
as it only consumed 1334 seconds, compared to 2155 seconds for crrsc. However, for m = 20 and
c = 16 crrs was only 1.2 times better. We attribute this inconsequence to the heuristics of the SMT-
solver used. The crrsc implementation appears to be more memory-efficient when dealing with larger
concentration level values. It appears that when the verified system is highly-dependent on a large
domain of concentration levels, then the crrsc will most likely be more suitable.

To test the performance of our rsLTL implementation we use a fixed maximal concentration level
c = 2 and verify the properties presented in Table 5. The time and memory consumption results are

304 A. Męski et al. / Verification of Linear-Time Temporal Properties for

Table 5. rsLTL formulae for Scalable Chain

Formula k

φ1 Finc>0(em = c) 2 ·m− 1

φ2 φ2 = φ1
2, φi

2 = Finc>0((ei = c) ∧ φi
2) for i ∈ {1, . . . ,m− 1}, where φm

2 = Finc>0((em = c)) 2 ·m− 1

φ3 G((e1 = 1)⇒ Finc>0(em = c)) 2 ·m
φ4 Finc>0(e1 = c) 1

φ5 X((e1 > 0)Rinc>0(e2 > 0)) 2

presented in Fig. 2. The properties expressed with φ1, φ2, and φ3 are proved for variable values of k
that depend on the scaling parameter m. Verifying the formula φ2 requires the most resources since
it contains multiple nested operators which also result in multiple levels of recursion when computing
the translation. Our implementation proved to be the most efficient for φ4 and φ5. This is mostly due
to the very low and constant value of k. This means that only a very small portion of the model needs
to be traversed to prove these properties.

0 10 20 30 40 50

10−1

100

101

102

103

m

tim
e

(i
n

se
co

nd
s)

φ1
φ2
φ3
φ4
φ5

0 10 20 30 40 50

101.5

102

102.5

m

m
em

or
y

(i
n

M
B

)

φ1
φ2
φ3
φ4
φ5

Figure 2. Verification results for the rsLTL properties of SC

7. Concluding remarks

This paper introduced reaction systems with discrete concentrations, which support quantitative mod-
elling. Although the formalism is not more expressive than the standard reaction systems, our exper-
imental results demonstrate that expressing concentration levels in an explicit way allows for some
improvements in the efficiency of verification, and opens up possibilities for introducing different op-
timisations. Since we applied bounded model checking, the class of properties the method is able
to verify is limited: it is unable to disprove existential properties (or alternatively, to prove universal
properties). Therefore, in our future work we plan to provide a complete method for the verification of
rsLTL, possibly by establishing a method for computing the diameter (completeness threshold) [27]
of the model. The reachability problem for context-restricted reaction systems (with discrete concen-
trations) is NP-hard [19]. Therefore the computational complexity of the model checking problem for

A. Męski et al. / Verification of Linear-Time Temporal Properties for 305

reaction systems brings limitations to the practical applicability of the method. However, our exper-
imental results demonstrate that the presented method scales well when verifying properties of large
models. In our future work we plan also to extend this approach to provide a comprehensive frame-
work for verifying quantitative properties of reaction systems, as well as provide a logical characteri-
sation for the introduced logic and a complete computational complexity analysis for the verification
problems that it introduces.

References

[1] Ehrenfeucht A, Rozenberg G. Reaction Systems. Fundamenta Informaticae, 2007;75(1-4):263–280.

URL http://content.iospress.com/articles/fundamenta-informaticae/fi75-1-4-15.

[2] Ehrenfeucht A, Kleijn J, Koutny M, Rozenberg G. Reaction Systems: A Natural Computing Approach
to the Functioning of Living Cells. A Computable Universe, Understanding and Exploring Nature as
Computation, 2012. pp. 189–208. doi:10.1142/9789814374309_0010.

[3] Ehrenfeucht A, Kleijn J, Koutny M, Rozenberg G. Evolving reaction systems. Theoretical Computer Sci-
ence, 2017;682:79–99. doi:10.1016/j.tcs.2016.12.031.

[4] Ehrenfeucht A, Rozenberg G. Introducing time in reaction systems. Theoretical Computer Science,
2009;410(4-5):310–322. doi:10.1016/j.tcs.2008.09.043.

[5] Hirvensalo M. On probabilistic and quantum reaction systems. Theoretical Computer Science,
2012;429:134–143. doi:10.1016/j.tcs.2011.12.032.

[6] Alhazov A, Aman B, Freund R, Ivanov S. Simulating R Systems by P Systems. In: Membrane Com-
puting, 17th International Conference, CMC 2016, Milan, Italy, July 25-29, 2016. 2016 pp. 51–66. doi:
10.1007/978-3-319-54072-6_4.

[7] Formenti E, Manzoni L, Porreca AE. Cycles and Global Attractors of Reaction Systems. In: Descriptional
Complexity of Formal Systems - 16th International Workshop, DCFS 2014, LNCS. 2014 pp. 114–125.
doi:10.1007/978-3-319-09704-6_11.

[8] Formenti E, Manzoni L, Porreca AE. Fixed Points and Attractors of Reaction Systems. In: Language,
Life, Limits - 10th Conference on Computability in Europe, CiE 2014, volume 8493 of LNCS. Springer,
2014 pp. 194–203. doi:10.1007/978-3-319-08019-2_20.

[9] Formenti E, Manzoni L, Porreca AE. On the complexity of occurrence and convergence problems in
reaction systems. Natural Computing, 2014. pp. 1–7. doi:10.1007/s11047-014-9456-3.

[10] Salomaa A. Functions and sequences generated by reaction systems. Theoretical Computer Science,
2012;466:87–96. doi:10.1016/j.tcs.2012.07.022.

[11] Salomaa A. On State Sequences Defined by Reaction Systems. In: Logic and Program Semantics. 2012
pp. 271–282. doi:10.1007/978-3-642-29485-3_17.

[12] Salomaa A. Functional Constructions between reaction Systems and Propositional Logic. Int. J. of Foun-
dations of Computer Science, 2013;24(1):147–160. doi:10.1142/S0129054113500044.

[13] Salomaa A. Minimal and almost minimal reaction systems. Natural Computing, 2013;12(3):369–376. doi:
10.1007/s11047-013-9372-y.

306 A. Męski et al. / Verification of Linear-Time Temporal Properties for

[14] Azimi S, Iancu B, Petre I. Reaction System Models for the Heat Shock Response. Fundamenta Informati-
cae, 2014;131(3-4):299–312. doi:10.3233/FI-2014-1016.

[15] Corolli L, Maj C, Marini F, Besozzi D, Mauri G. An excursion in reaction systems: From computer science
to biology. Theoretical Computer Science, 2012;454:95–108. doi:10.1016/j.tcs.2012.04.003.

[16] Azimi S, Gratie C, Ivanov S, Manzoni L, Petre I, Porreca AE. Complexity of Model Checking for Reaction
Systems. Theoretical Computer Science, 2016;623:103–113. doi:10.1016/ j.tcs.2015.11.040.

[17] Azimi S, Gratie C, Ivanov S, Petre I. Dependency Graphs and Mass Conservation in Reaction Systems.
Theoretical Computer Science, 2015;598:23–39. doi:10.1016/ j.tcs.2015.02.014.

[18] Męski A, Penczek W, Rozenberg G. Model Checking Temporal Properties of Reaction Systems. Informa-
tion Sciences, 2015;313:22–42. doi:10.1016/j.ins.2015.03.048.

[19] Męski A, Koutny M, Penczek W. Towards Quantitative Verification of Reaction Systems. In: Unconven-
tional Computation and Natural Computation: 15th International Conference, UCNC 2016, Manchester,
UK, July 11-15, 2016, Proceedings. 2016 pp. 142–154. doi:10.1007/978-3-319-41312-9_12.

[20] Horn F, Jackson R. General mass action kinetics. Archive for Rational Mechanics and Analysis,
1972;47(2):81–116. doi:10.1007/BF00251225.

[21] Brijder R, Ehrenfeucht A, Rozenberg G. Reaction Systems with Duration. In: Computation, Cooperation,
and Life - Essays Dedicated to Gheorghe Paun on the Occasion of His 60th Birthday, volume 6610 of
LNCS. Springer, 2011 pp. 191–202. doi:10.1007/978-3-642-20000-7_16.

[22] Kroening D, Strichman O. Decision Procedures - An Algorithmic Point of View, Second Edition. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2016. doi:10.1007/978-3-662-50497-0.

[23] Biere A, Cimatti A, Clarke EM, Zhu Y. Symbolic Model Checking Without BDDs. In: Proceedings of the
5th International Conference on Tools and Algorithms for Construction and Analysis of Systems, TACAS
’99. Springer-Verlag, 1999 pp. 193–207. doi:10.1007/3-540-49059-0_14.

[24] Biere A, Heljanko K, Junttila TA, Latvala T, Schuppan V. Linear Encodings of Bounded LTL Model
Checking. Logical Methods in Computer Science, 2006; 2(5). doi:10.2168/LMCS-2(5:5)2006.

[25] Clarke E, Grumberg O, Peled D. Model Checking. MIT Press, 1999. ISBN 978-0-262-03270-4.

[26] de Moura L, Bjørner N. Z3: An Efficient SMT Solver. In: Proceedings of the 14th International Conference
on Tools and Algorithms for Construction and Analysis of Systems, TACAS 2008. Springer-Verlang, 2008
pp. 337–340. doi:10.1007/978-3-540-78800-3_24.

[27] Clarke EM, Kroening D, Ouaknine J, Strichman O. Completeness and Complexity of Bounded Model
Checking. In: Verification, Model Checking, and Abstract Interpretation, 5th International Conference,
VMCAI 2004, Proceedings. 2004 pp. 85–96. doi:10.1007/978-3-540-24622-0_9.

