
Combining Ontology Reductions
with New Approaches to Automated Abstract Planning of PlanICSI

Artur Niewiadomskia,∗, Wojciech Penczeka,b,∗, Jaroslaw Skaruza, Maciej Szreterb, Agata Półrolac

aInstitute of Computer Science, Siedlce University of Natural Sciences and Humanities, 3-Maja 54, 08-110 Siedlce, Poland
bInstitute of Computer Science, Polish Academy of Sciences, Jana Kazimierza 5, 01-248 Warsaw, Poland

cFaculty of Mathematics and Computer Science, Lodz University, Banacha 22, 90-238 Lodz, Poland

Abstract

The paper deals with the first phase of Web Service Composition – the abstract planning problem, performed by the tool Planics.
We discuss three algorithms based on multisets of service types being a concise representation of abstract plans. The first algorithm
reduces the abstract planning problem to a satisfiability problem for an SMT-solver (SMT stands for the Satisfiablity Modulo
Theories), the second one follows a GA-based approach (GA stands for a genetic algorithm), while the third hybrid algorithm
combines the two above. All the algorithms are applied to ontologies, which are efficiently reduced using a graph database approach.
The paper presents theoretical aspects of the framework together with many examples, and the extensive experimental results of the
four algorithms followed by their analysis and comparison with each other and other approaches.

Keywords: Tool PlanICS, Service-Oriented Architecture, Web Service Composition, Genetic Algorithms, Satisfiability Modulo
Theories, Abstract Planning, Hybrid algorithms, Graph Databases,

1. Introduction

The main concept of Service-Oriented Architecture (SOA)
[1] consists in using independent (software) components that
are easily available via interfaces. Typically, Web services have
to be composed in order to satisfy the user’s goal as a simple
web service does not need to satisfy it. In order to relieve the
user of manually defining plans, selecting services and their
providers, many algorithms solving the Web Service Composi-
tion Problem (WSCP) [1, 2, 3, 4] have been recently developed
[5, 6, 7, 8]. Since WSCP is hard but a very important problem,
it attracts a lot of attention in the Web service community. In
this paper we deal with WSCP and to this aim we follow our
earlier results on the system Planics [9, 10].

It is assumed that one can construct a hierarchy of classes,
organised in an ontology, containing all underlined web ser-
vices and the objects processed by them. Moreover, the plan-
ning process is divided into several stages in order to reduce
the task complexity by restricting the number of concrete ser-
vices to be considered. In the first phase the planner operates on
classes of services corresponding to sets of real-world services
of common functionalities, matching them into an abstract plan
[11, 12]. The second stage deals with concrete services, refin-
ing the abstract plan into a concrete one [13].

In this paper our focus is on the abstract planning problem
only, attempting to find all significantly different plans. While

IThis work has been supported by the National Science Centre under the
grant No. 2011/01/B/ST6/01477.
∗Corresponding author
Email address: artur.niewiadomski@uph.edu.pl (Artur

Niewiadomski)

the existing approaches (see Sect. 1.1) are quite efficient for
ontologies of medium size, their computational time becomes
unacceptable for ontologies of larger sizes. Therefore, our so-
lution consists in combining a symbolic method based on ap-
plications of SMT-solvers [14] and genetic algorithms [15, 16],
to ontologies reduced with graph database methods.

The paper is organized in the following way. Firstly, the ab-
stract planning problem (APP, for short) is defined and shown
to be NP-hard. Then, our original approach to APP using mul-
tisets of service types as a concise representation of abstract
plans is presented. Note that a multiset representation can be
even exponentially more compact than the set of all its lineari-
sations. This approach is combined with delegating a task for
an SMT-solver and a genetic algorithm, which in addition to a
database ontology reduction method are the main contributions
of this paper.

In the SMT-based approach, the blocking formulas are used
for pruning the search space with different ’interleavings’ of
linearisations of the already generated plans. In the GA-based
approach, an individual is constructed for a multiset of service
types on which all GA operations are executed. This gives a
great improvement in comparison to a linear representation of
an individual as the correct order of the service types can be
neglected. A linearization of an individual is obtained for com-
puting its fitness value only. The algorithm stores each abstract
plan newly found. In the subsequent iterations all individuals
similar to the abstract plans stored are ’punished’ by decreas-
ing their fitness value. Note that for the search space pruning
(by means of blocking the similar solutions) the order of ser-
vice types does not matter because every sequence is projected
to a multiset. However, it is not known whether a multiset con-

Preprint submitted to Applied Soft Computing December 18, 2016

stitutes a plan before a valid sequence is found. Moreover, in
addition to a multiset, a valid sequence is needed in the next
composition stages when the ordering is definitively important
(e.g., while concrete services are to be called).

Our extensive experiments show that the above two methods
are complementary. While the SMT-based approach is precise
but suffers from a long computation time, the GA-based ap-
proach is much faster, but the probability of finding a solution
decreases if the lengths of plans grow. Therefore, we present
also the third hybrid approach which shares the advantages of
both the planners. In the hybrid algorithm each iteration of GA
is followed by the SMT-based procedure which modifies several
individuals meeting required conditions in order to obtain solu-
tions of APP. In following sections, details of the algorithms are
given while experimental results are presented in Section 7.

In real-world applications, an ontology is usually very large
while user queries tend to be local, producing plans containing
small numbers of services and objects, compared to the overall
ontology size. The Planics planners developed so far work on
whole ontologies what hinders their performance and leaves a
lot of space for improvements. While the idea of pruning on-
tologies was examined before (see [17]), our paper presents a
novel and original approach of using a graph database to prun-
ing ontologies on the basis of user queries. Our experimental
results confirm that this approach can result in a very signifi-
cant improvement in the computing time. Moreover, our ex-
periments show that the ontology pruning can greatly improve
also the performance of an external tool (Fast Downward [18])
adapted to solve APP due to suitable translations. In some cases
the ontology reduction makes that tool efficient, even when the
size of the original problem is prohibitive for them.

The remainder of the paper is organised as follows. Section
1.1 discusses related work. Abstract planning problem is dealt
with in Section 2. SMT-based approach to APP is given in Sec-
tion 3 while Section 4 shows how GA can be applied to this
aim. The hybrid solution is described in Section 5. Section 6
shows how a graph database can prune an ontology, guided by
the user query. Section 7 presents the experimental results of
our planning tool. The last section concludes the results.

Additionally, we provide a supplementary material online
[19] containing more examples illustrating the theory, the
proofs of the two theorems, and other resources which may be
of interest to the reader.

1.1. Related Work

Some preliminary results describing our SMT- and GA-based
abstract planning methods have been published in conference
proceedings: an SMT-based method in [11], a GA-based ap-
proach in [20, 12], and a hybrid solution in [21]. This paper
extends and refines the above approaches, presents them all to-
gether with examples, and, for many benchmarks, compares
their efficiency also with two other tools.

The existing solutions to WSCP, belonging to AI planning
methods, can be divided [5] into numerous approaches based
on: automata theory [22], situation calculus [23], Petri nets
[24], theorem proving [25], and model checking [26, 27, 28]. In

[6] a similar SAT-based approach to solve WSCP is presented,
but the states of the objects are not considered and plans are not
represented by multisets. Other applications of SMT to WSCP
deal with automatic verification and testing e.g., a message race
detection problem is considered in [29], a behavioural confor-
mance of WS-BPEL specifications is checked in [30], a service
substitutability problem is investigated in [31], and WS-BPEL
specifications are verified against business rules in [32]. In [33]
a similar GA-based approach is presented, but the algorithm is
used to one phase planning (abstract combined with the con-
crete one). Individuals represented by multisets were used in
[34], but without computing linearizations of them to find the
fitness value.

There are several papers solving the web composition prob-
lem by modeling it in the domain of graphs, with solutions
corresponding to reachability in graphs. In these papers, ser-
vices are based on the IOPR (input, output, precondition, re-
sult) paradigm, similarly to our approach. However, none of
the papers distinguishes between abstract and concrete plan-
ning in our sense, and neither uses graph databases. To the best
of our knowledge, we could also find no experimental analysis
showing that graph-based approaches can effectively deal with
ontologies with significant numbers of services and objects. In
[35] information about inputs and outputs of services is repre-
sented by interface automata. In dependency graphs, the ver-
tices correspond to object types while the edges to services pro-
cessing them. There is no experimental evaluation. Both ser-
vices and objects processed by them are represented by graph
vertices [36], and backward chaining is used for searching plans
satisfying the user query. The paper does not offer a complete
solution. In [37], the vertices correspond to web services, but
there is no abstract phase and no objects directly represented in
the graph. Edges are added at the basis of concrete values of
the parameters. There are no experimental results and the au-
thors seem not to care much about the efficiency of the method.
Weighted graphs are used [38] for modeling parameters such
as cost, execution time and availability, and presents respec-
tive graph algorithms for solving the corresponding composi-
tion problem. A graph approach to composing web services is
described in [17]. The way of modeling is similar to ours, with
input and ouput parameters, but without the formalized ontol-
ogy. Contrary to our approach the algorithm does not reduce the
problem to testing reachability in graphs, but runs algorithms
searching and updating the graphs on-the-fly. No experiments
are presented showing how the approach scales for increased
numbers of services. It does not use a graph database, and does
not deal with the abstract planning of any kind.

Another graph-based approach was examined in [39], where
the concepts (being inputs and outputs of services) are defined
in an ontology using an inheritance relation, but they do not
have any internal structure. The paper also does not test the
reachability, but constructs a graph by an exhaustive fix-point
search with testing semantic conditions on-the-fly. The result
of the graph search is a possibly non-optimal concrete plan that
is later improved which corresponds to the concrete planning
phase of Planics. Some results reporting a performance evalua-
tion for different numbers of services are, given, but the graph

2

search is not distinguished from the optimization stages. In
[40] ontologies are annotated with semantics information, and
a graph algorithm is used with similarity measures describing
how services are matched.

The key difference between the papers described above and
our approach is that we model matching of the service input and
output at the graph level, by reducing it to the problem of testing
reachability in graphs. Graph nodes model not only services,
but also objects consumed and produced by services. The ab-
stract planning allows to reduce matching of service and object
types to the problem of finding paths between selected graph
nodes. The other approaches use graphs as a model for rep-
resenting state spaces, but test matching objects to services by
calling specialized algorithms what hampers the performance.
Another original feature of our method consists in using graph
databases for representing graphs and performing operations on
them.

Graph databases [41, 42] are a relatively recent addition in
the domain of the NoSQL databases, defined by rejecting the
traditional database model of relational tables, and using alter-
native solutions, in this case graphs. Neo4j is one of the most
popular implementations. In [43] web service composition us-
ing the MapReduce approach aimed at processing Big Data is
considered. Our method uses a different solution, but shares the
idea of exploiting efficient tools developed for dealing with big
amounts of data.

Recently, several papers have explored the connection be-
tween multi-agent systems (MAS) and composition of web ser-
vices (WSs), where agents can provide WSs, use WSs for com-
munication, and compose WSs. For example, [44] describes
the model-driven development (MDD) of MAS communicat-
ing over semantic web in order to exchange and evaluate se-
mantic information. In [45] the framework of [44] is extended
by introducing a domain-specific modeling language SEA ML,
which uses the metamodel independent of the agent platform.
The Planics approach enables to apply the MAS techniques de-
scribed above. For example, the definition of execution seman-
tics would allow for an application of formal tools reasoning
about knowledge in multi-agent systems, in the way similar to
[46] uses the formal semantics of SEA ML for performing for-
mal validation. Epistemic temporal logic [47] could be used for
getting information from web services or composing them.

In the next section, after introducing the Planics ontology, we
continue the discussion by comparing Planics with approaches
to WSCP adapting WSMO [48] and OWL-S [49] concepts.

2. Abstract Planning Phase

We start with introducing APP of Planics. We present the
Planics ontology, focusing mainly on the features affecting the
abstract planning process and then basic definitions, which en-
able us to explain what abstract planning is about.

2.1. Planics Ontology

The Planics ontology format exploits the OWL language
[50], where the concepts build an inheritance tree of classes.

All the classes in an ontology are derived from one base class
called Thing; the class has three direct descendants of the
names Artifact, Stamp, and Service. The further descendants
are “domain-dependent”, i.e., they can differ depending on the
area covered by the given ontology. However, the contents of
each ontology should meet the rules presented below. A frag-
ment of an example ontology is presented in Fig. 1.

By object types we mean the classes derived from Artifact
and Stamp. The branch of classes rooted at Artifact aims at
storing the types of objects the services operate on. Each object
is composed of a number of attributes, whereas each attribute
definition consists of the name and the type. The values of the
attributes determine the current state of the object. However,
in the abstract planning phase the types of the object attributes
are irrelevant (i.e., they are not used by the planner). Similarly,
the planner does not consider the exact values of the attributes,
focusing only on the fact whether an attribute has some value
(i.e., is set) or not (i.e., is not set, so it is null).

The Stamp class and its descendants define special-purpose
object types, aimed at confirmation of the service execution.
Moreover, subclasses of Stamp can describe additional service
execution features, like a price or an execution time. Each ser-
vice, when executed, produces exactly one stamp - a confirma-
tion object. The stamps are useful in constructing a user query,
as well as in the planning process.

The classes from the branch rooted at Service, called ser-
vice types, correspond to sets of real-world services. Each set
is featured by a common activity, a formalised description of
which is provided by the (values of) class attributes. This ac-
tivity affects a set of objects and transforms it into a new set of
objects. The attributes used to describe the transformation are
as follows: the sets in, inout, and out enumerating the objects
processed by the service, and the Boolean formulas pre and post
specifying the conditions satisfied by these objects before and
after the service execution. The sets distinguish between the
objects which are read-only, i.e., required for the service to be
executed and passed unchanged to the set of objects resulting
from this execution (the set in), these which values of attributes
can be modified by the service (the set inout), and these which
are produced by the service (the set out).

Let us also make a comment on the inheritance in the Planics
ontologies. Since it is not central to this paper, we describe it
briefly. In general, we allow for multiple inheritance with some
restrictions. As to the object types, we demand that the sets of
attribute names of the super types are pairwise disjoint. This
way we avoid known problems with multiple attributes of the
same name. Note that the service type inheritance is completely
handled by the Planics parser, so the planners obtain already
computed final specification of the service types.

2.2. Comparison with OWL-S and WSMO
It is important to discuss similarities and differences be-

tween Planics and two major solutions for the Semantic Web
paradigm: OWL-S and WSMO [51]. OWL-S represents se-
mantic information as an OWL ontology. The upper Service
ontology links to: Profile explaining “what the service does”,
Service Model (SM) describing “how the service works”, and

3

Grounding clarifying “how to access it” by mapping SM to the
concrete WSDL document. The Profile, similarly to the Planics
service type, exposes Inputs, Outputs, Preconditions, and Ef-
fects of the OWL-S service. That is, both the approaches use an
implicit capability representation, i.e., a service is described by
a state transformation. On the other hand, Service Model and
Grounding are covered by the process of service registration in
the Planics Service Registry.

There are several approaches to service composition built on
the top of the OWL-S concept. In [52] Klusch et.al. introduce
the OWLS-Xplan toolset converting a composition problem in
OWL-S to its equivalent in PDDL (Planning Domain Definition
Language) [53] and using the Xplan tool to solve it. The Xplan
is a hybrid planner combining the advantages of Hierarchical
Task Network (HTN) planners (such as SHOP2 [54]) and action
planners (like, e.g., FastForward [55]). The HTN approach re-
lies on decomposition rules allowing to break complex actions
into a set of atomic ones. The action based planners are able to
find plans consisting of simple actions. Thus, Xplan works best
for problems which are in part hierarchically structured.

A hybrid approach to the semantic service matching problem
which consists in finding services of input and output coher-
ent with the query is reported in [49]. Comparing to Planics, a
single matchmaking step corresponds to finding a service type
which can be used to build a plan, regardless on pre- and post-
conditions. In other words, matchmaking can be viewed as an
OWL-S equivalent for a simplified abstract planning, e.g., plan-
ning in types.

As far as an WSMO specification is concerned, it is divided
into four parts: Ontologies, Web Services, Goals, and Medi-
ators. Ontologies provide terminology for other WSMO el-
ements. Goals represent the aim of the service composition.
The Web Services part defines the web service capabilities in
terms of preconditions, postconditions, assumptions, and ef-
fects. Mediators are connectors linking the components used
to modelling the service. They resolve heterogeneity problems
between the components by defining appropriate mappings and
transformations.

Since the WSMO concept is much broader than Planics, it is
not easy to compare with each other. Concerning the descrip-
tion languages, that of WSMO is far more rich than Planics’s,
since we are focused on specifying only the service features
useful in the planning process. However, WSMO does not pro-
vide its own composition method. Since WSMO exploits vari-
ous relations between concepts, expressed in the RDF-manner
[56], the planning problem can be solved by reasoning in the
ontology. There exist many tools (reasoners) that can be used
for this purpose. Unfortunately, the growth of the number of
services and sorts of data exchanged makes the model expo-
nentially hard to analyse. In contrast, the solutions of our ap-
proach are “composition oriented”, i.e., the tool implements the
original composition method. The problem of operating in en-
vironments containing a large number of services is handled by
a graphDB-based reduction (see Sec. 6) and by dividing com-
position into the abstract and concrete planning phases.

However, neither OWL-S nor WSMO have gained wide pop-
ularity, because they are too complex and not easy to understand

[57]. For most enterprises a simpler approach, like, e.g., Se-
mantic Annotations for WSDL (SAWSDL) [58], is often suf-
ficient. Notice that Planics is closer to OWL-S and WSMO
than to SAWSDL, as it offers more than a way of annotat-
ing WSDL messages. It is similar to OWL-S and differs from
WSMO as it proposes a strict way of defining ontologies rather
then a general conceptual framework. Compared to both these
approaches, Planics is less expressive but at the same time
also significantly less complex, thus addressing the cited above
shortcomings. Its logic language for expressing preconditions
and results is even simpler than the most restricted language
used in OWL-S, i.e., OWL-Lite. On the other hand, in Planics
the decidability is guaranteed by the construction of its seman-
tics. Summarizing, Planics has its background in formal verifi-
cation, what means that it is focused on performance rather than
expressibility. WSMO is even more complex than OWL-S, and
none of the concepts it introduces as an extension of OWL-S
is used in Planics. For example, the latter uses no mediators,
heavily applied in WSMO to link heterogeneous components.
Some parts of WSMO are not specified, and the promises about
providing the full semantics for each part have never materi-
alised. The unique feature of Planics is the two-phase planning
algorithm, distinguishing between the abstract and the concrete
planning.

2.3. Basic Definitions
APP exploits the service and object types of the ontology.

Below, we formalize the main concepts introduced in the pre-
vious subsection. Note that the Thing class is a root concept
required by the OWL language, but useless in the abstract plan-
ning process, and thus we omit it when not required.

Object types. Let I be the set containing all identifiers used as
the names of the attributes, the types, and the objects. We iden-
tify the attributes with their names, because during the abstract
planning the types of the attributes are irrelevant. Thus, by A
we denote the set of all attributes, where A ⊂ I. Then, we define
an object type to be a pair (t, Attr), where t ∈ I, and Attr ⊆ A.
Moreover, let T be the set of object types, i.e., all descendants
of the classes Artifact and Stamp.

We define also a transitive, irreflexive, and antisymmetric in-
heritance relation Ext ⊆ T × T, such that

(
(t1, A1), (t2, A2)

)
∈

Ext iff t1 , t2 and A1 ⊆ A2. Thus, a subtype contains the at-
tributes of a supertype, but more attributes may be introduced.

Example 1. Consider the object types depicted in Fig. 1.
We have (Arti f act,Ware) ∈ Ext (i.e., Ware is a subclass of
Arti f act), as the set of attributes of Arti f act is included in that
of Ware. Similarly, {(Ware, Boards),
(Ware,Nails), (Ware, Arbour), (S tamp, PriceS tamp)} ⊆ Ext.
Moreover, from transitivity of Ext also {Arti f act} ×
{Boards,Nails, Arbour} ⊆ Ext.

By an object o we mean a pair o = (id, type), such that id ∈
I and type ∈ T, i.e., a pair containing the object name type.
We refer to the elements of this pair respectively by id(o), and
Tp(o), for a given object o. Moreover, we denote the set of all
objects by O, and define the function attr : O 7−→ 2A assigning
a set of the attributes to each object of O.

4

Thing

Artifact
{ id }

Stamp
{ level, serviceId, serviceType }

Ware
{ owner, location }

PriceStamp
{ price }

Boards
{ woodKind, volume, thickness }

Arbour
{ material, length, width, type }

Nails
{ size, weight }

Service
{ in, inout, out, pre, post }

Figure 1: Object types inheritance in an example ontology and introducing new
attributes by subtypes.

Service type and user query. The aim of a WSCP process is to
compose services to satisfy the user’s goal which is formulated
as a user query specification. The ontology contains service
type specifications being definitions of the service types that
can be used for composition. For abstract planning all these
specifications need to be reduced to abstract forms, i.e., sets of
objects and abstract formulas over them.

Definition 1 (Abstract formulas). The following BNF (Backus-
Naur Form) grammar defines an abstract formula over a set of
objects O:

<form> ::= <disj>

<disj> ::= <conj>|<conj> or <disj>

<conj> ::= <lit>|<conj> and <lit>

<lit> ::= isSet(o.a)|isNull(o.a)|true|false

where O ⊆ O, o ∈ O, a ∈ attr(o), and o.a denotes the attribute
a of the object o.

The grammar above defines DNF (Disjunctive Normal Form)
formulas without negations, i.e., alternatives of clauses. Their
elements, called abstract clauses, are conjunctions of literals.
Each non-trivial literal specifies an abstract value of an object
attribute, using the appropriate function (isS et or isNull). We
assume that the abstract formulas used in abstract planning con-
tain no clauses in which isS et(o.a) and isNull(o.a) are applied
to the same o ∈ O and a ∈ attr(o).

Below, we give the specification syntax of the service types
and of the user queries.

Definition 2 (Specification). A specification is a 5-tuple
(in, inout, out, pre, post), such that in, inout, out are pairwise
disjoint sets of objects, and pre is an abstract formula defined
over objects from in ∪ inout, while post is an abstract formula
defined over objects from in ∪ inout ∪ out.

In what follows, we denote a user query specifica-
tion q or a service type specification s by specx =

(inx, inoutx, outx, prex, postx), where x ∈ {q, s}, resp. We say
that the service s processes the objects of the lists inx, inoutx,
and outx. The objects of inx are read-only, these from inoutx

may be modified, while outx stores only new objects (i.e., these
which are produces by the service).

At this point, we would like to explain why the post-
conditions can be built also of attributes of the in-objects, de-
spite they are declared as read-only. Actually, the reason for

this is technical and is associated with the procedure reduc-
ing the original conditions into abstract ones. This situation
is due to constraints comparing attribute values of objects of
in and inout ∪ out, for example o.a >= x.b, where o ∈ in,
x ∈ inout ∪ out, a ∈ attr(o), and b ∈ attr(x). Thus, we should
have an access to the attributes of the in objects also from the
post-conditions. However, note that after reduction of condi-
tions to the abstract form we do not use or compare the (con-
crete) attribute values but only the abstract ones using the func-
tions isS et and isNull. Although it would be possible to ex-
clude the in objects from the abstract post-conditions domain,
we have decided to leave them in order to obtain a better con-
sistency between the full and reduced conditions.

An example of simple Selling service can be found in part I
of the material online [19], where we provide also more ex-
amples of the main notions introduced in this section.

The service types and user queries are interpretations of their
specifications. Before introducing their formal definitions we
introduce the notions of worlds and valuation functions.

Definition 3 (Valuations of object attributes). Consider an ab-
stract formula over O, such that ϕ =

∨
i=1..n αi, where n ∈ N,

and each αi is an abstract clause. A valuation of the object at-
tributes over αi is the partial function vαi :

⋃
o∈O{o}×attr(o) 7−→

{true, false}, where:

• vαi (o, a) = true if isS et(o.a) is a literal of αi, or

• vαi (o, a) = false if isNull(o.a) is a literal of αi, or

• vαi (o, a) is undefined, otherwise.

Moreover, we restrict a valuation function vαi to a set of ob-
jects O ⊂ O by defining vαi (O) = vαi

∣∣∣⋃
o∈O{o}×attr(o), and use the

notation vαi (o) instead of vαi ({o}) when the valuation function
vαi is restricted to a single object and its attributes.

If an abstract formula omits values of some attributes, then
the undefined values introduced in Def. 3 occur. This case is
quite common for the service composition domain, as the in-
formation we deal with can often be incomplete, uncertain, or
irrelevant. Besides overcoming this problem, undefined values
are also used to represent families of total valuation functions
(see below).

Definition 4 (Consistent functions). Consider sets A, A′, B such
that A′ ⊆ A, f : A 7−→ B be a total function, and f ′ : A 7−→ B
be a partial function, such that f ′ restricted to A′ is total. We
say that f is consistent with f ′, if f ′ restricted to A′ equals to
f , i.e., ∀a∈A′ f ′(a) = f (a).

By total(f) we denote the family of the total valuation func-
tions which are consistent with a partial valuation function f .

Let Vϕ =
⋃n

i=1 total(vαi) be a family of the valuation func-
tions over ϕ that are consistent over every abstract clause αi.
Vϕ(O) =

⋃n
i=1 total(vαi (O)) is the restriction of Vϕ to the ob-

jects of O and their attributes.
From some point of view covering of the undefined values

by families of functions brings additional complexity. How-
ever, the aim of introducing this mechanism is twofold. Firstly,

5

taking into account incompleteness and vagueness of the user
query. We believe that the user’s knowledge can be limited as
she is often unable to precisely describe the state of all objects.
Besides, the user probably is focused on the most important fea-
tures only, leaving the other attributes unspecified. Secondly, in
the abstract planning phase we aim at maximizing a possibility
of finding a plan, even if it turns out to be impossible to realize
it in the next phases, after the real values of the attributes are
taken into account. Thus, we consider all combinations of the
possible abstract values of the attributes which are left unspeci-
fied. Note that for symbolic methods this is not very expensive.

The next definition we introduce is the one of worlds:

Definition 5 (Worlds). A world w is a pair (Ow, v(Ow)), where
Ow ⊆ O and v(Ow) is a total valuation function, restricted to the
objects from Ow, for some valuation function v. The size of w,
denoted by |w|, is the number of the objects in w, i.e., |w| = |Ow|.

The intuition is that a world stands for a state of a set of ob-
jects. We introduce also the notion of a sub-world of a world w
to be a world built from a subset of Ow and v restricted to the
objects from the chosen subset. Moreover, a pair consisting of
a set of objects and a family of total valuation functions defines
a worldset. More formally, if V = {v1, . . . , vn} is a family of
total valuation functions and O ⊆ O is a set of objects, then(
O,V(O)

)
means the set {

(
O, vi(O)

)
| 1 ≤ i ≤ n}, for n ∈ N. In-

tuitively, we distinguish between worldsets and sets of worlds,
because a worldset is built over the same set of objects but with
different valuations (belonging to the same family of functions),
while a set of worlds may contain arbitrary worlds. Finally, by
W we denote the set of all worlds. It should be noticed that a
valuation function used to define a world is always restricted
to the set of the objects of the world, even if this is not stated
explicitly.

Now, we define a user query and a service type as an inter-
pretation of a corresponding specification.

Definition 6 (Interpretation of a specification). Let specx =

(inx, inoutx, outx, prex,
postx) be a service type or a user query specification, where
x ∈ {s, q}, respectively. An interpretation of specx is a pair of
worldsets x = (W x

pre,W
x
post), where:

• W x
pre =

(
inx∪ inoutx,V

x
pre

)
, whereVx

pre is the family of the
valuation functions over prex,

• W x
post =

(
inx ∪ inoutx ∪ outx,V

x
post

)
, where Vx

post is the
family of the valuation functions over postx.

An interpretation of a service type (user query) specification is
called simply a service type (user query, respectively).

Additionally, we assume that for every user query specifica-
tion q we have inoutq ∪ outq , ∅ (otherwise planning would
become trivial). We use the symbol S for the set of all service
types of the ontology (notice that the sets S and T are disjoint).
For a service type (W s

pre,W
s
post), W s

pre is called the input world-
set, while W s

post - the output worldset. In turn, for a user query
(Wq

pre,W
q
post), Wq

pre is called the initial worldset, denoted addi-
tionally by Wq

init, while Wq
post is called the expected worldset

and denoted additionally by Wq
exp. It should be also noticed that

outx contains only new objects (i.e., the ones which are absent
in W x

pre, but present in W x
post). In the case of a service type s,

the objects of outs are produced as the result of a world trans-
formation (to be defined in Sec. 2.5).

2.4. Abstract Planning Overview
APP aims at composing service types to satisfy a user query.

The query specifies two worldsets: an initial one, consisting of
the objects owned by the user, and an expected one, containing
objects required to be produced as a result of the service com-
position. In order to define how this is achieved, we need to
introduce several auxiliary concepts. The first such a notion is
that of compatibility of object states and worlds.

Definition 7 (Compatible object states). Let o, o′ ∈ O, and let
v and v′ be valuation functions. We say that v′(o′) is compatible
with v(o), denoted by v′(o′)�ob jv(o), iff:

• the types of both objects are the same, or the type of
o′ is a subtype of type of o, i.e., Tp(o) = Tp(o′) or
(Tp(o),Tp(o′)) ∈ Ext, and

• for all attributes of o, we have that v′ agrees with v, i.e.,
∀a∈attr(o)v′(o′, a) = v(o, a).

That is, an object of some subtype (o′) is compatible with
the one of a base type (o), when the valuations of all common
attributes are the same.

Example 2. Consider three objects o = (w,Ware), o′ =

(w′,Ware), and o′′ = (b, Boards), valuation functions
v(o), v′(o′), and partial valuation function v′′(o′′). Assume that:

• v(o, location) = v′(o′, location) = v′′(o′′, location),

• v(o, id) = v′(o′, id) = v′′(o′′, id),

• v(o, owner) = v′(o′, owner) = v′′(o′′, owner),

then we have:
v(o)�ob jv′(o′), v′(o′)�ob jv(o), v′′t (o′′)�ob jv(o), and
v′′t (o′′)�ob jv′(o′), for v′′t ∈ total(v′′).

In order to identify similar worlds we introduce the notion of
worlds compatibility.

Definition 8 (Worlds compatibility). Let w,w′ ∈W be worlds,
and let w = (O, v), and w′ = (O′, v′). We say that the world
w′ is compatible with the world w, denoted by w′�wrlw, iff
there exists a one-to-one mapping map : O 7−→ O′ such that
∀o∈Ov′(map(o))�ob jv(o).

The intuition behind this definition is that a world w′ is com-
patible with a world w when their sizes are the same and each
object of w has a compatible counterpart in w′. Our plan-
ning process requires also identifying similar worlds of dif-
ferent sizes. To this aim we define the notion of worlds sub-
compatibility.

Definition 9 (Worlds sub-compatibility). Let w,w′ be worlds
such that w = (O, v) and w′ = (O′, v′). The world w′ is called
sub-compatible with the world w, denoted by w′�swrlw iff there
exists a sub-world of w′ compatible with w.

6

2.5. World Transformations

World transformation is an important notion in our approach.
A service type s of specification specs can transform a world
w, called world before, if w is sub-compatible with some in-
put world of s. The resulting world w′, called a world after,
contains the objects of outs which together with the objects of
inouts, are in the states consistent with some output world of s.
The states of the other objects of w are not changed. In general
there can be more than one world which results from transform-
ing a given world by a service type as more than one sub-world
of w can be compatible with an input world of s. This is the rea-
son for introducing a context function which, for each service
type s, maps the objects of the worlds before and after, and the
objects of the input and output worlds.

Definition 10 (Context function). A context function ctxs
O :

ins ∪ inouts ∪ outs 7−→ O is an injection which for a given
service type s and a set of objects O assigns an object from O
to each object from ins, inouts, and outs.

It should be noticed that the above function can be defined
if the number of objects in the set O is at least the same as in
the union of sets defined by the service type s, i.e., if |O| ≥
|ins ∪ inouts ∪ outs|. World transformation is defined below.

Definition 11 (World transformation). Let w,w′ ∈ W be
worlds, called a world before and a world after, respectively,
and s = (W s

pre,W
s
post) be a service type. Assume that w = (O, v),

w′ = (O′, v′), where O ⊆ O′ ⊆ O, and v, v′ are valuation func-
tions.

Let ctxs
O′ be a context function, and the sets IN, IO, OU be

the ctxs
O′ images of the sets ins, inouts, and outs, respect., i.e.,

IN = ctxs
O′

(
ins

)
, IO = ctxs

O′
(
inouts

)
, and OU = ctxs

O′
(
outs

)
.

Moreover, let IN, IO ⊆ (O ∩ O′) and OU = (O′ \ O).
We say that a service type s transforms the world w into w′ in

the context ctxs
O′ , denoted by w

s,ctxs
O′
→ w′, if for some vs

pre ∈ V
s
pre

and vs
post ∈ V

s
post, all the following conditions hold:

1.
(
IN, v(IN)

)
�wrl(ins, vs

pre(ins)
)
,

2. (IO, v(IO))�wrl(inouts, vs
pre(inouts)

)
,

3. (IO, v′(IO))�wrl(inouts, vs
post(inouts)

)
,

4. (OU, v′(OU))�wrl(outs, vs
post(outs)

)
,

5. ∀o∈(O\IO) ∀a∈attr(o) v(o, a) = v′(o, a).

Let’s explain shortly the conditions above. 1. (2., respec-
tively) specify that the world before contains a sub-world built
over IN (IO, resp.) which is compatible with a sub-world of
some input world of s, built over the objects of ins (inouts,
resp.). The objects state of IN (IO, resp.) is consistent with
pres. 3. (4.) say that the world after contains a sub-world built
over IO (OU, resp.) which is compatible with a sub-world of
some output world of s, built over the objects of inouts (outs,
resp.). The objects state of IO (OU, resp.) is consistent with
posts. 5. expresses that the objects of IO can change their
states, only.

Next, we define a sequence of world transformations.

Definition 12 (Transformation sequences). Let seq =(
(s1, ctxs1

O1
), . . . , (sk, ctxsk

Ok
)
)

be a sequence of length k, where,
for 1 ≤ i ≤ k, si ∈ S, Oi ⊆ O, and ctxsi

Oi
is a context function.

We say that a world w0 is transformed by the sequence seq into
a world wk, denoted by w0

seq
 wk, iff there exists a sequence

of worlds (w1,w2, . . . ,wk−1) such that ∀1≤i≤k wi−1

si,ctxsi
Oi
→ wi =

(Oi, vi) for some vi.
A sequence seq is called a transformation sequence, if there

are two worlds w,w′ ∈W such that w is transformed by seq into
w′, i.e., w

seq
 w′. The set of all the transformation sequences is

denoted by S?.

Quasi-transformation sequences. Let seq =
(
(s1, ctxs1

O1
), . . . ,

(sk, ctxsk
Ok

)
)

be a sequence of length k, where, for 1 ≤ i ≤ k we
have si ∈ S, Oi ⊆ O, and ctxsi

Oi
is a context function. Then,

seq is a quasi-transformation sequence for w, if there is 1 ≤
j < k such that

(
(s1, ctxs1

O1
), . . . , (s j, ctxs j

O j
)
)

is a transformation
sequence for w. By the q-length of seq we mean such a maximal
j, whereas the executable prefix of seq (denoted seqE) is the
prefix of seq of length j. The final world of seq of q-length is
the world obtained by transformation of w by seqE . So, seq is a
quasi-transformation sequence for w if it is not a transformation
sequence, but some its non-empty prefix is so.

After defining the transformation sequences we are ready to
give definitions of user query solutions or simply solutions, as
a step towards defining a plan.

Definition 13 ((User query) solution). Let seq be a transfor-
mation sequence and q = (Wq

init,W
q
exp) be a user query. We say

that seq is a solution of q (or a q-solution), if for w ∈ Wq
init

and some world w′ such that w
seq
 w′, we have w′�swrlwq

exp, for
some wq

exp ∈ Wq
exp. The set of all the solutions of the user query

q is denoted by QS (q).

Intuitively, a solution of q is a transformation sequence which
transforms some initial world of q to a world sub-compatible to
some expected world of q.

2.6. Plans
Using the definition of a solution to the user query q we can

introduce the notion of an (abstract) plan. By such a plan we
mean an equivalence class of the solutions of q that are built
over the same service types. This means that we neglect the or-
dering of service type occurrences, which has two advantages:
1) the user receives essentially different plans, and 2) plans are
exponentially more compact than solutions. In order to define
plans we need an equivalence relation on the solutions.

Definition 14 (Equivalence of user query solutions). Let the
function count : S? × S 7−→ N be such that count(seq, s)
returns the number of occurrences of the service type s in
the transformation sequence seq. The equivalence relation
∼ ⊆ QS (q) × QS (q) is defined as follows: seq ∼ seq′ iff
count(seq, s) = count(seq′, s) for each s ∈ S.

This means that each two query solutions built over the same
number of the service types belong to the same equivalence
class. Their contexts are not taken into account.

7

Definition 15 (Abstract plans). Let seq ∈ QS (q) be a solution
of some user query q. An abstract plan is a set of all the solu-
tions equivalent to seq, i.e., it is equal to [seq]∼.

It should be noticed that all the solutions within an abstract
plan are built over the same multiset of service types. By the
length of an abstract plan [seq]∼ we mean the length of its rep-
resentative, i.e., length(seq).

Example 3. Assume, we have an ontology containing the
following service types: S elect, S elling, Transport, and
WoodBuilding, while the object types are shown in Fig. 5. Let
S elect be a service type corresponding to selecting wares to be
bought, and let S elling change the owner of a given ware. The
Transport service type is able to change the location of some
ware, while WoodBuilding produces an arbour using all the
available boards and nails.

Assuming that the user wants to have an arbour and an
appropriate query is specified, the shortest abstract plan is
represented by the multiset M1 = [S elect, S elling]. This
plan consists of one solution only where an arbour is se-
lected and bought. Another plan is represented by the mul-
tiset M2 = [S elect, S elling,Transport], where the arbour is
additionally delivered to the client. An example plan using
the WoodBuilding service type is represented by the multi-
set M3 = [S elect : 2, S elling : 2,WoodBuilding], where
boards and nails needed to construct the arbour are first
selected and bought. Note that this plan consists of two
solutions, that is, ignoring the contexts, these are the se-
quences (S elect, S elect, S elling, S elling,WoodBuilding) and
(S elect, S elling, S elect, S elling,WoodBuilding).

An extended version of this example, including the full for-
malisation, can be found in part I of [19] (Example 13).

It should be noticed that the set of transformation se-
quences built over a multiset of service types can include
not only the sequences having different orders, but also
having different contexts. More precisely, if a world con-
tains several similar objects even the same linearisation of
service types can lead to a slightly different result when
it is applied to different object instances. To see an ex-
ample, consider an extended solution of Example 3, i.e.,
(S elect, S elect, S elling, S elling,Transport,WoodBuilding).
There are two transformation sequences which match the
solution, i.e., the ones in which either boards or nails are trans-
ported. This difference does not need (but can) be important at
the stage of abstract planning, but definitively it matters in the
next planning phases, when the concrete values are taken into
account.

In order to cope with this problem we developed an algorithm
which uses the combinatorial structure of a given multiset and,
abstracting from the object attributes, browses the space of all
potential solutions taking into account only the indistinguish-
able ones. Finally, the reported results are validated by check-
ing the attribute valuation and the presumed constraints [59].
The algorithm has been implemented as a module of Planics
called MultisetExplorer.

According to the theorem below, APP is a hard problem.

Theorem 1. The abstract planning problem is NP-hard.

Proof. See part II of [19].

Notice that if we limit the length of plans to some constant n,
then APP is clearly in NP, so it is NP-complete. This follows
from the fact that we can non-deterministically generate all the
sequences of service types of length n and for each of them
check in polynomial time whether it is a solution.

3. SMT-based Approach

In this section we present a translation of APP to an SMT
formula, which is checked for satisfiability by an SMT-solver.
First, we give a brief introduction to SMT-LIB v2 language,
which is used to incorporate an SMT-solver into our planning
engine. Next, we present an overview of our planning algo-
rithm, and show how to construct the formula ϕq

k corresponding
to APP. Then, we discuss the symbolic object and world repre-
sentations, followed by the encoding of the components of ϕq

k .

3.1. Introduction to SMT-LIB v2 language

The main motivation for defining the SMT-LIB language
is the need of having a language common across the solvers
in which one can express benchmark problems for the SMT-
Competition event. The first version of the language was pro-
posed in 2003 [60] by Ranise and Tinelli, but its succesive re-
visions led to SMT-LIB version 2, which was announced in
2010 [61]. SMT-LIB v2 language is based around a set of com-
mands interpreted by an SMT-solver. These commands change
a solver state or return properties of the solver state.

In order to encode APP introduced in the previous section,
we build a formula over Boolean and integer variables. Then,
this formula is given to a solver to check whether the formula
is satisfiable, i.e., whether there is an interpretation of the vari-
ables used that evaluates the formula to true.

An example introducing several basic SMT-LIB v2 com-
mands is given in part III of [19]. A comprehensive tutorial
on SMT-LIB v2 can be found in [62].

3.2. Abstract Planning Algorithm

The core of our SMT-based abstract planner is an adaptation
of a symbolic Bounded Model Checking (BMC) method [63].
The main idea behind BMC is to search for a finite execution
of a system satisfying a required property. In the case of APP,
given an ontology, a user query q, and some additional param-
eters kmin and kmax, the planner seeks for solutions of length k,
where kmin ≤ k ≤ kmax. The algorithm starts with k = kmin

and encodes APP as an appropriate SMT formula ϕq
k which is

checked for satisfiability. If the solver returns SAT, then a solu-
tion, i.e., a representative of some abstract plan, has been found.
In order to eliminate the other solutions representing the same
abstract plan, a blocking formula is computed (see Section 3.6).
When the tested formula is unsatisfiable, it means that there are
no other plans of length k. Then, until k does not exceed kmax,
k is incremented, and the planner looks for a possibly longer

8

plan. Overall, the following SMT-formula ϕq
k encodes the plans

of length k satisfying the query q:

ϕ
q
k = Iq ∧

∧
i=1..k

(
Ci ∧

∨
s∈S
T s

i

)
∧ E

q
k (1)

where Iq and Eq
k are formulas encoding the initial and the ex-

pected worldsets, respectively, Ci encodes the i-th context func-
tion, and T s

i encodes worlds transformation by a service type
s.

In order to find all plans of length k we check the satisfiability
of the conjunction ϕ

q
k ∧ B

q
k , where Bq

k stands for a blocking
formula (see Section 3.6).

3.3. Objects and Worlds

The formulas mentioned in the previous subsection are built
over variables which have to be first allocated in the SMT-
solver memory. These variables are organized in structures rep-
resenting objects and worlds, called symbolic objects and sym-
bolic worlds, respectively. A symbolic object is represented by
an integer variable encoding its type, called a type variable, and
a number of Boolean variables to represent the object attributes,
called the attribute variables. In order to encode the identi-
fiers and types as numbers, we introduce an auxiliary function
num : A∪T∪ S∪O 7−→ N, which assigns a natural number to
every attribute, object type, service type, and object.

Each symbolic world, consisting of a number of symbolic
objects, is indexed by a natural number from 0 to k. The i-th
symbolic object belonging to the j-th symbolic world is a tu-
ple: oi, j = (ti, j, ai,0, j, ai,1, j, ..., ai,maxat−1, j), such that ti, j is a type
variable, ai,x, j is an attribute variable for 0 ≤ x < maxat, where
maxat is the maximal number of the attribute variables needed
to represent the object. It is important that each symbolic world
represents a set of worlds, and we obtain a single world when
we interpret its variables according to some valuation. The j-th
symbolic world is denoted by w j, while the number of the sym-
bolic objects in w j - by |w j|. Fig. 2 shows subsequent symbolic
worlds of a transformation sequence.

3.4. User Query

o
0,0

o
1,0

o
3,0

o
4,0

o
2,0

 s
1

Initial Final

inout
q

o
0,1

o
1,1

o
3,1

o
4,1

o
2,1

 s
2

w
0

w
1

o
5,1

o
6,1

o
0,1

o
1,1

in
q

out
s1

o
0,1

o
1,1

o
3,2

o
4,2

o
2,2

 s
k

w
2

o
5,2

o
6,2

o
0,2

o
1,2

o
7,2

o
8,2

out
s2

...

o
0,1

o
1,1

o
3,k

o
4,k

o
2,k

w
k

o
5,k

o
6,k

o
0,k

o
1,k

o
7,k

o
8,k

o
x-1,k

o
x,k

...
out

s1...sk

o
0,e

o
1,e

o
2,e

w
e

out
q

Expected

m
0,e

m
1,e

m
2,e

Figure 2: Symbolic worlds

In order to encode the worldset Wq
init by a symbolic world

w0, the variables used to represent the objects of inq ∪ inoutq
are declared. Then, using these variables, the formula Iq is
built. It encodes the types and the states of the objects of the
initial worldset:

Iq = tpF
(
w0, inq ∪ inoutq

)
∧ stF

(
w0,W

q
init

)
(2)

The formula tpF(wi,O) encodes the types of the objects of the
set O over a symbolic world wi:

tpF(wi,O) =
∧
o∈O

tnum(o),i = num
(
Tp(o)

)
Next, we define the formula stF(wi,W) which is used to encode
the states of the objects of the worldset W = (O,V) over the
symbolic world wi:

stF(wi,W) =
∨
v∈V

∧
o∈O

∧
a∈attr(o)

vF(wi, v, o, a),

where the expression vF(wi, v, o, a) encodes the valuation v of
the attribute o.a over the variables constituting the symbolic
world wi. It is defined as follows:

vF(wi, v, o, a) =


anum(o),num(a),i, if v(o, a) = true,
¬anum(o),num(a),i, if v(o, a) = false,
true, if v(o, a) is undef.

(3)

Thus, the symbolic world w0 represents the initial world-
set. Then, after the first transformation we obtain the symbolic
world w1, enriched by the objects produced during the transfor-
mation (see Fig. 2). At the k-th composition step, the symbolic
world is transformed by a service type sk which results in the
symbolic world wk, representing the final worlds that are pos-
sible to obtain after k transformations of the initial worldset.
The symbolic world wk contains a number of “new” objects,
produced in result of the subsequent transformations. If the
consecutive transformations form a solution of the user query
q, then among the “new” objects are these from outq, requested
by the user.

Following Def. 6 we have Wq
exp =

(
inq∪ inoutq∪outq,V

q
post

)
.

First, we deal with the objects from inq ∪ inoutq, which are en-
coded directly over the symbolic world wk. Since these are the
same objects as in the initial worldset, we know their indices,
and therefore their states are encoded by the formula ioExp,
defined as follows:

ioExp(wk,W
q
exp) = (4)

stF
(
wk,

(
inq ∪ inoutq,V

q
post(inq ∪ inoutq)

))
,

where Vq
post

(
inq ∪ inoutq

)
is the family of the valuation func-

tionsVq
post restricted to the objects from inq ∪ inoutq. Note that

the formula encoding the types of the objects from inq ∪ inoutq
is redundant here. The types are initially set by the formula
encoding the initial worldset and the types are maintained be-
tween the consecutive worlds by the formulas encoding the sub-
sequent world transformations (see Sec. 3.5).

9

Next, the objects of outq need to be identified among the re-
maining objects of the symbolic world wk, i.e., among these
represented by the symbolic objects of indices greater than
|w0|. To this aim, we allocate a new symbolic world we with
e = kmax + 1, containing all the objects from outq (see Fig. 2).
We encode their states by the formula outExp:

outExp(we,W
q
exp) = stF

(
we,

(
outq,V

q
post(outq)

))
, (5)

whereVq
post

(
outq

)
is the family of the valuation functionsVq

post
restricted to the objects from outq.

Next, we need to encode the types of these objects. Accord-
ing to Def. 7, 9, and 13, a user query solution ends with a world
(call it final) sub-compatible with an expected world. Notice
that the objects from the final world matched to the objects from
outq, can be their subtypes. This is the reason for introducing
the function subT : O 7−→ 2N \ ∅, which with every object o
assigns the set of natural numbers corresponding to the type of
o and all its subtypes.

Now, we define two formulas used for encoding objects com-
patibility. The first one encodes all subtypes of the objects from
a given set O over a symbolic world wi:

sbF(wi,O) =
∧
o∈O

∨
t∈subT(o)

tnum(o),i = t (6)

The second formula encodes the compatibility of the attribute
valuations of two symbolic objects:

eqF(oi, j, om,n) =

maxat∧
d=0

(ai,d, j = am,d,n) ∧ (ti, j = tm,n)

Finally, to complete the encoding of the expected worldset,
we need a mapping between the objects from we and those from
a final world wk, produced by the consecutive transformations.
Thus, in the symbolic world we, we allocate p = |outq| addi-
tional mapping variables, denoted by m0,e, . . . ,mp−1,e. These
variables store the indices of the objects from a final world com-
patible with the objects encoded over we. Thus, the last part of
the expected worlds encoding is the formula:

mpF(we,wk) = distinct(m0,e, . . . ,mp−1,e)∧
p−1∧
i=0

|wk |−1∨
j=|w0 |

(
eqF(oi,e, o j,k) ∧mi,e = j

)
(7)

where distinct(i1, . . . , in) is a formula encoding pairwise in-
equality of variables i1, . . . , in, i.e., it is true only when every
variable is assigned a different value.

For example, the arrows from the expected symbolic world
to the final one in Figure 2 depict an exemplary valuation of the
mapping variables, where m0,e = 5, m1,e = 7, and m2,e = x.

Now, we can put all the components together and give the
encoding of the expected worldset:

E
q
k = ioExp(wk,W

q
exp) ∧ sbF

(
we, outq

)
∧

outExp(we,W
q
exp) ∧ mpF(we,wk) (8)

o
0,1

o
1,1

o
3

o
4

o
2

w

o
n-2

o
n-1

o
0

o
1

w'

o'
n

o'
n+1

out

...

o
0,1

o
1,1

o'
3

o'
4

o'
2

o'
n-2

o'
n-1

o'
0

o'
1

...

in
0

in
1

io
1

io
2

io
0

io'
1

io'
2

io'
0

pin
0

pin
0

pin
1 pin

1

pio
0

pio
0

pio
1

pio
2

pio
1

pio
2

state
change

Transformation template

production

vs

Figure 3: Transformation template

3.5. World Transformation
Following Def. 11, given a world w, a service type s, and a

context function, the world after the transformation w′, can be
computed. In the previous subsection we presented the encod-
ing of the initial and the expected worldsets. Now, our aim is
to show how to construct a formula which encodes all possible
transformations w

s
→ w′ over two subsequent symbolic worlds

wi and wi+1, and then to extend the encoding on the consecu-
tive pairs of intermediate symbolic worlds. If this formula is
satisfiable, then from the obtained valuation we can identify the
subsequent service types and the context functions.

For each transformation, we introduce a transformation tem-
plate (see Fig. 3) which consists of the three sets of symbolic
objects ini, ioi, and io′i , the two sets of integer mapping vari-
ables pini and pioi, and the additional integer variable vsi. The
type of a service which transforms the worlds is encoded by vsi.
Its input worlds are represented by symbolic objects of ini and
ioi, and they strictly correspond to the sets IN and IO of Def. 11.
The variables of pini and pioi are used to encode the context
functions, i.e., mappings between symbolic objects from ini,
ioi, io′i and symbolic objects from w and w′ (see Fig. 3).

Finally, the modified objects are encoded using variables of
io′i , and the new objects, i.e., these produced during the transfor-
mation, are encoded directly over the resulting symbolic world,
because we know a-priori their indexes. Moreover, for every
object oi, j ∈ wi we introduce a pair of the auxiliary Boolean
variables (isIni, j, isIoi, j). At most one of them evaluates to true
if the j-th object is the value of the i-th context function: isIni, j

is true if the j-th object is taken as read-only (in) object, or
isIoi, j is true if it plays a role of one of the inout objects.

We take advantage of the fact that several aspects of the
worlds transformations can be encoded in the same way, re-
gardless of the service type. Thus, the formula Ci responsi-
ble for assigning objects from worlds to the i-th transformation
template is as follows:

Ci = distinct
(
{p | p ∈ pin ∪ pio}

)
∧∧

oi, j∈wi

(¬isIni, j ∨ ¬isIoi, j) ∧ Ain(oi, j) ∧ Aio(oi, j) (9)

where:

10

• the distinct clause ensures that every object from w is as-
signed to at most one object from the transformation tem-
plate,

• the disjunction of the negated variables isIn and isIo,
which should be satisfied for each object oi, j, states that
the object is not assigned as in object, or is not assigned as
inout object of the transformation template,

• the Ain(oi, j) and Aio(oi, j) formulae encode the assignments
of the objects from the worlds to the transformation tem-
plate. They are defined as follows:

Ain(oi, j) = (¬isIni, j ∧

maxin−1∧
k=0

pini,k , j) ∨

(
isIni, j ∧

maxin−1∨
k=0

(eq(oi, j, ini,k) ∧ pini,k = j)
)

(10)

Aio(oi, j) =
(
¬isIoi, j ∧ eq(oi, j, oi+1, j) ∧

m∧
k=0

pioi,k , j
)
∨ (11)

(
isIoi, j ∧

m∨
k=0

(
eq(oi, j, ioi,k) ∧ pioi,k = j ∧ eq(io′i,k, oi+1, j)

))
,

for m = maxinout − 1.
Note that according to Formula (11) every object which is not

assigned to inout is passed unchanged to the next world. Thus,
the formula Ci deals with the i-th context function, as well as
with copying the unchanged objects to the next world of the
symbolic path.

Now, we encode the part of the i-th world transformation spe-
cific to a service of type s:

T s
i = sRestr(s, i) ∧ sTrans(s, i) (12)

where

sRestr(s, i) =
∧

j=0..|ins |−1

(pini, j ≥ 0 ∧ pini, j < |wi|)∧ (13)∧
j=0..|inouts |−1

(pioi, j ≥ |inq| ∧ pioi, j < |wi|) ∧ vsi = num(s)

encodes the restrictions on the number of objects needed by the
service type s, and sets the value of the variable vsi to the value
corresponding to the service type s, and

sTrans(s, i) = inF(ini, ioi,W s
pre) ∧ ouF(wi+1, io′i ,W

s
post) (14)

encodes the preconditions and the changes introduced by the
transformation, according to the specification of service type s.
Moreover, inF encodes input worldset:

inF(ini, ioi,W s
pre) = stF

(
ini,

(
ins,V

s
pre(ins)

))
∧

stF
(
ioi,

(
inouts,V

s
pre(inouts)

))
∧

sbF(ini, ins) ∧ sbF(ioi, inouts),

and ouF stands for output worldset:

ouF(wi+1, io′i ,W
s
post) =sbF(wi+1, outs) ∧

stF
(
io′i ,

(
inouts,V

s
post(inouts)

))
∧

stF
(
wi+1,

(
outs,V

s
post(outs)

))
,

Theorem 2 (Correctness of the encoding). The formula ϕq
k is

satisfiable iff there is a solution to user query q of length k.

Proof. See part II of [19].

3.6. Multiset Blocking
A blocking formula is the final element of our encoding. It is

aimed at eliminating the solutions of the plans already known
from a further search. To this aim, a convenient representation
of an abstract plan is a multiset of the service types occurring
in a user query solution.

We encode counting of the service types instances in trans-
formation sequences, in order to represent multisets. Let the set
of all possible sequences of Boolean values be denoted by B?,
and let cnt : B? 7−→ N be a function assigning the number of
occurrences of the value true to every Boolean sequence. The
encoding of this function is as follows:

ct(b1, . . . , bi) =

ite(bi, 1, 0), for i = 1
ite(bi, 1, 0) + ct(b1, . . . , bi−1), for i > 1

where ite means if-then-else, and the expression ite(bi, 1, 0)
returns 1 if bi equals true and 0 otherwise. When a user
query solution is found, the sequence of service types s =

(s1, . . . , sk) is extracted and its multiset representation Ms =(
(s1, c1), . . . , (sn, cn)

)
is computed, where si ∈ S, ci stands for

the number of instances of si in the sequence, and 1 ≤ i ≤ n ≤ k.
The following formula blocks all solutions built over Ms:

block(Ms) = ¬

n∧
i=1

ct
(
(vs1 = si), . . . , (vsk = si)

)
= ci

Assume that at some point of a computation j abstract plans
have been found. The formula Bq

k which blocks the solutions of
j plans (represented by multisets) is as follows:

B
q
k =

j∧
i=1

block(Msi) (15)

3.7. Experimental Evaluation of Multiset Blocking
Our experimental results are given in the last section and

compared with these of other approaches. Here we only evalu-
ate the efficiency of the encoding of the multiset blocking by
comparing it with the sequence blocking. To this aim sev-
eral experiments have been performed, where (15) has been re-
placed by the formula blocking the user query solutions found
so far, regardless of their contexts:

B
q
k =

j∧
l=1

(
¬

k∧
i=1

(vsi = sl,i)
)

(16)

11

The overall conclusion is that the multiset blocking outper-
forms the sequence blocking when there is a large number of
solutions, e.g., when a single plan has many possible linearisa-
tions. Despite the multiset encoding is more expensive than the
sequence blocking, it is already more efficient when the num-
ber of plan linearisations exceeds several hundreds. However,
we compare here only the CPU time consumed by the SMT
solver. If we take additionally into account the computation
time needed to process every plan found (getting model from
the solver, decoding and storing the plan, updating the block-
ing formula), then the multiset blocking is even more superior
than the sequence blocking. Some conclusions of the experi-
mental evaluation of the multiset blocking and a description of
the implementation is given in Part III of [19].

4. GA-based Approach

In this section we aim at using Genetic Algorithms for find-
ing abstract plans for a given user query q. We start with pre-
senting the general idea of the approach.

4.1. General Idea

The overall Genetic Algorithm scheme is presented in Alg. 1.
An abstract plan to be found is modelled by an individual, each
gene of which corresponds to a service type. The number of the
genes of an individual and the number of service types in the
abstract plan are therefore equal.

In each iteration of GA, individuals are selected using the
roulette selection operator for a temporary population. Next,
they are mixed using standard one point crossover and then mu-
tated taking advantage of our mutation operator (see Sec. 4.5).
A temporary population becomes a current population in the
next iteration of GA. At the end of the iteration all individuals
are evaluated using a fitness function (see Sec. 4.4).

Genetic Algorithm(N, I, Cp, Mp)
Input: number of individuals in population: N, number of

iterations: I, crossover probability: Cp, mutation
probability: Mp

Result: an individual with the highest fitness value

begin
P← generateInitPop(N) ; // the initial population

evaluate(P) ; // evaluate individuals of P
for i← 1..I do

T ← selection(P) ; // a temporary population

T ← crossover(T); // apply genetic operators

T ← mutation(T); // w.r.t.Cp and Mp values

P← T ; // a new population obtained

evaluate(P);
bi← f indBI(P) ; // find the best individual

return bi
Algorithm 1: The general scheme of GA

The fitness function for an individual is calculated for each
possible combination of an initial and an expected world. Then,

the maximum value of all these calculations is set for an indi-
vidual. This allows to obtain abstract plans related to any pair
of an initial and an expected world.

While GA maintains a population of individuals, each repre-
sented by a multiset M of service types (rather than a sequence
of them), it is necessary to test whether M really corresponds to
an abstract plan. This is done by running the procedure seqGen
(see Sec. 4.3) for M and an initial state w. If the resulting se-
quence seq(M,w) is a solution to the user query q, then M repre-
sents an abstract plan. In what follows we present our approach
in detail.

4.2. Encoding Abstract Plans
The first step towards the encoding consists in assigning a

unique natural number to each service type defined in the on-
tology and defining an individual to be a multiset over the set
of the above numbers. The initial population for GA is a set of
randomly generated individuals, which implies that at the be-
ginning of the algorithm the population contains multisets of
service types which do not necessarily represent abstract plans.
The non-standard form of a GA individual, in which we do not
care about the order of the genes, allows for performing genetic
operations in such a way that we do not have to receive off-
spring containing service types in the correct order. However,
before applying the fitness function the multiset is transformed
into a sequence of service types. The fact that we do not gen-
erate all the sequences results in a substantial reduction of the
state space, which allows to obtain user query solutions even in
search spaces of sizes greater than 2100 (see Sec. 7).

4.3. From a Multiset to a Sequence
In order to compute the fitness function value for an individ-

ual we need to generate a transformation sequence built over the
elements of its multiset. The sequence should be a user query
solution, and therefore we are interested only in these sequences
which transform some initial world. Due to the fact that the in-
dividuals should be evaluated against all the combinations of
the initial and expected worlds, the procedure seqGen (given
below), aimed at obtaining such sequences from a multiset, is
applied later to all the initial worlds.

Alg. 2 iterates, building a resulting sequence in the following
way: it chooses a service type s belonging to the multiset M
and able to transform1 a current world w f , and removes s from
M appending it to the resulting sequence instead. The process
is started for w f being an initial world w ∈ Wq

init; in further
iterations the current world becomes the one obtained by trans-
forming w f by s chosen recently. If M contains no more service
types which can be executed in the current world, then the ele-
ments which remained in M are appended in a random order at
the end of the sequence. Besides the sequence seq(M,w) the pro-
cedure returns also a world w f and a natural number l, where w f

is the final world of seq(M,w), and l is the (q-)length of seq(M,w) if
seq(M,w) is a (quasi-)transformation sequence, respectively. The

1If there are more than one such a service type, then one of them is chosen
randomly.

12

Procedure seqGen(M, w)
Input: a multiset of service types: M, an initial world: w
Result: a triple (seq(M,w), l,wf), where seq(M,w) is a (quasi)

transformation sequence, l is the (q-)length of seq(M,w),
and w f stands for the final world of seq(M,w)

begin
seq(M,w) ← ε ; // empty sequence

l← 0;
w f ← w;
while M contains s that can be executed in w f do

seq(M,w) ← seq(M,w) · s ; // append s to seq(M,w)

l← l + 1;
M ← M \ {s} ; // remove s from M
w f ← trans f orm(w f , s);

while M is not empty do
M ← M \ {s} ; // remove some s from M
seq(M,w) ← seq(M,w) · s ; // append s to seq(M,w)

return (seq(M,w), l,w f)

Algorithm 2: Proc. seqGen generating a sequence from a
multiset

above results are used later to compute the fitness value of the
individual.

It should be also explained why not all sequences which can
be constructed from a given multiset M are taken into account.
The first reason is a large number of all possible sequences, i.e.,
k! for M of cardinality k. Moreover, we clearly give priority to
the sequences which transform some initial world of the user
query. The final reason is that constructing another sequence
from the same multiset is still possible if an individual passes
to the next generation.

4.4. Fitness Function

In order to evaluate an individual we need to calculate its fit-
ness value. Intuitively, the value of the fitness function for a
given individual corresponds to how close the individual is to a
solution. This means that the fitness value of an individual rep-
resenting a solution is the greatest. So, by iteratively generating
new sets of individuals having bigger fitness values than their
”predecessors”, the algorithm is trying to obtain user query so-
lutions. The selection operator of GA selects individuals for
genetic operators according to their fitness values. This means
that the bigger fitness value of an individual the more likely it
is selected for the next iteration of GA.

Before we get to the details, we introduce first the notion
of a good service type. Intuitively, a service type is good if
it produces objects of types that either can be a part of some
expected world, or can be an input for another good service
type. To define this formally, assume that q is a user query, and
M is a multiset of k service types such that seqM = (s1, . . . , sk)
is a sequence of the service types of M. Consider two different
service types si and s j, where i, j ∈ {1, . . . , k}, and denote by
insi , inoutsi , and outsi respectively the sets of the objects used,
modified, and produced by the service type si, and by inoutq and
outq - the objects requested to be modified and produced by the
user query q. Next, we define the function Tp↓ : 2O 7−→ 2T

Procedure GST(M, q)
Input: a multiset of service types: M, a user query: q
Result: a set of good service types occurring in M: GS
begin

GS ← ∅;
S ← M ; // set of all types occurring in M
while S , ∅ do

s← x ∈ S ; // an arbitrary element of S
S ← S \ {s} ; // remove s from S
if Tp↓(inouts ∪ outs) ∩ Tp↓(inoutq ∪ outq) , ∅ then

GS ← GS ∪ {s} ; // add s to GS
S ′′ ← GS ;
repeat

S ′ ← ∅;
S ← M \GS ;
while S , ∅ do

s← x ∈ S ; // an arbitrary element of S
S ← S \ {s} ; // remove s from S
foreach g ∈ S ′′ do

if Tp↓(inouts ∪ outs) ∩ Tp↓(ing ∪ inoutg) , ∅
then

S ′ ← S ′ ∪ {s} ; // add s to S ′

break;
GS ← GS ∪ S ′ ; // add S ′ to GS
S ′′ ← S ′;

until S ′ = ∅;
return GS

Algorithm 3: Proc. GS T computing a set of good service
types in a multiset M for a given user query q

which Tp↓ assigns a set of the types as well as their subtypes to
a set of objects O. Formally:

• Tp↓(O) =
{
t ∈ T | ∃o ∈ O : t = Tp(o) ∨ (Tp(o), t) ∈ Ext

}
,

We say that si is a good service type for the sequence seq and
the user query q, if Tp↓(inoutsi ∪outsi)∩Tp↓(inoutq∪outq) , ∅,
or there exists s j in seq, such that s j is a good service type and
Tp↓(inoutsi ∪ outsi) ∩ Tp↓(ins j ∪ inouts j) , ∅. A set of the good
service types for a user query q and a multiset M is computed
by the procedure GST presented as Alg. 3.

Next, for a triple (seq(M,w), l,w f) returned by seqGen(M,w)
and an expected world wq, the level of usefulness of an individ-
ual is calculated according to Eq. 17:

Useq(M,w),l,w f ,wq =
|w′f ,q| ∗ δ + coutq

f ,q ∗ α + l ∗ β + gseq(M,w) ∗ γ

|wq| ∗ δ + |outq| ∗ α + k ∗ β + k ∗ γ
(17)

where:

• |w′f ,q| is the number of the objects in w′f ,q which is the max-
imal sub-world of w f compatible with a subworld of wq,

• coutq
f ,q is the number of the objects from w f whose types

are consistent with the types of the objects from wq and
included in the outq list of the user query q,

• gseq(M,w) is the number of the good service types in seq(M,w),

13

• |outq| is the number of the objects in the set outq list of the
user query q,

• k is the length of seq(M,w),

• α, β, δ, γ are the parameters of the fitness function, ex-
plained below.

In all the experiments presented in Sec. 7 the following values
of the parameters are used: α = 5, β = 4, γ = 4, and δ = 1. An
inspiration for such values of the parameters is the evolutionary
process of searching abstract plans. The values of α, β, and γ
are significantly greater than value of δ, in order to better assess
the individuals having more good services, longer executable
prefix, or providing objects satisfying the user query. The val-
ues of all parameters have been evaluated experimentally. We
have made dozens of experiments changing slightly one value
at a time. In order to tune the parameter values we have used
several additional benchmarks not reported in Sec. 7. After the
results have been compared, we found these values optimal2.

After GA finds a user query solution and stores it in mem-
ory, its next task is to ensure that other solutions remaining in
the search space can be found. Moreover, each individual rep-
resenting a solution equivalent to one already found should be
eliminated. The basis of the elimination is the measure of sim-
ilarity between the plans found so far and the individual evalu-
ated. The measure grows together with the number of service
types which are common for the multiset considered and one of
the plans stored in the memory.

The measure of similarity between a multiset M and a non-
empty set S ol of plans (given by multisets) is computed as

simS ol
M = max

({
|M ∩ S |
|M|

 S ∈ S ol
})

(18)

where the operation ∩ is applied to multisets.
The resulting measure computed for a multiset identical to

some plan of S ol is equal to 1, while the result 0 is returned for
a multiset built over a set of service types completely different
from these constituting the plans found so far.

Finally, when there are already some solutions found, the fit-
ness value of the individual M for a given initial world w and
an expected world wq is calculated according to Eq. 19:

f itM,w,wq =
Useq(M,w),l,w f ,wq

D(simS ol
M)

. (19)

GA is supposed to find many different abstract plans in one
run. If an individual represents an abstract plan which has been
already found, then its fitness is decreased. Different abstract
plans may vary by a few service types only. This leads to the
following requirement. While an evolutionary process finds

2However, the values found are obviously not universal for every ontology
and every query. During the search we found, e.g., values α = 7, β = 1, γ = 2,
and δ = 1 giving also very good results for benchmarks having one solution
only, and slightly worse for finding many alternative plans. In our future work,
we plan to search for a more general solution, e.g., to make the parameter values
dependent on some measurable features of ontologies and queries.

subsequent good services, building a new solution is essential,
but at the same time the algorithm should prevent from obtain-
ing a currently known abstract plan. Thanks to the exponential
component in the divider of Eq. 19 GA tries to find a new ab-
stract plan accepting some number of the same services which
are elements of the abstract plans obtained so far. Moreover,
increasing the number of the same service types included in an
individual and the obtained abstract plans leads to decreasing
fitness value of an individual. The value of the parameter D has
been chosen experimentally and set to 1.5.

The greater the similarity between the individual and a
known plan, the more the fitness value of this individual is de-
creased due to DsimS ol

M .
According to Eq. 19 the value of the function f itM,w,wq is cal-

culated for each initial and expected world, denoted by w and
wq, respectively. Eventually, the maximal value of the function
f itM,w,wq is set as the fitness of an individual M (see below).

f itness(M) = max
{

f itM,w,wq | w ∈ Wq
init,wq ∈ Wq

exp

}
(20)

4.5. Mutation Operator

The mutation operator used in our approach is specialised to
the problem to be solved, i.e., it makes use of the concept of
good service types. A mutation of a gene m is performed only
if m does not represent a good service type and if there exists a
good service type for the sequence we consider (generated by
the procedure seqGen). Therefore, we need first to compute a
set of all service types which are good for the given sequence
(see Alg. 4). If this set is nonempty, the algorithm replaces the
mutated gene by its randomly selected element. The mutation

Procedure mutGST(M, q)
Input: multiset of service types: M, user query: q
Result: set of the good service types for M and q to be used by

the mutation operator: GS

begin
GS ← GS T (M, q);
S ← S \GS ;
foreach s ∈ S do

if Tp↓(inouts ∪ outs) ∩ Tp↓(inoutq ∪ outq) , ∅ then
GS ← GS ∪ {s} ; // add s to GS
continue;

foreach g ∈ GS do
if Tp↓(inouts ∪ outs) ∩ Tp↓(ing ∪ inoutg) , ∅ then

GS ← GS ∪ {s} ; // add s to GS
break;

return GS
Algorithm 4: Proc. mutGS T computes a set of the good ser-
vice types for a multiset and a user query to be used by the
mutation operator

algorithm presented as Alg. 5 is therefore nondeterministic, and
does not work in a greedy way.

14

Mutation algorithm(M, pr, q)
Input: multiset of service types: M, probability of mutation: pr,

user query: q
Result: mutated individual as a new multiset of service types: Mo

begin
GS ← GS T (M, q);
AGS ← mutGS T (M, q);
Mo ← ∅;
foreach m ∈ M do

x← m
if random(0, 1) < pr then

if m < GS then
x← s ∈ AGS ; // choose randomly

service from AGS
Mo ← Mo ∪ {x}

return Mo

Algorithm 5: Mutation algorithm of an individual

5. Hybrid Algorithm

The third approach to APP is the hybrid algorithm, combin-
ing the SMT and the GA approach. A motivation for devel-
oping this solution comes from analysing experimental results
for both the methods mentioned. The experiments, presented in
Section 7, show that the main advantage of GA is a short com-
putation time, but, concerning drawbacks, it can be observed
that the longer the abstract plan the lower is the probability of
finding a solution. Moreover, for the SMT-based algorithm the
computation time is longer compared to GA, but all the plans
are found also for instances with a greater number of services.
Furthermore, only the SMT-based planner (symbolically) ex-
plores the whole state space to determine that there are no other
plans limited by the given length. This check, however, is not
always successful due to the timeout imposed. For large in-
stances the SMT solver finishes computations within the time
limit only when a single plan exists. If there are more plans
it returns at least a single solution, but this does not guaran-
tee that there are no more plans. Thus, both the methods have
advantages and disadvantages, which leads to an obvious con-
clusion that the most promising approach should combine the
algorithms, trying to profit from their advantages. We do this by
identifying (and encoding as SMT formulas) the sub-problems
of APP which are quickly solvable by an SMT-solver.

One of the main problems we have faced for some hard APP
instances was that GA ends up quite frequently with unfeasible
solutions containing only a few “unmatched” (i.e., not good)
service types. The idea of our hybrid approach was therefore to
solve the above problem by trying to improve, in every iteration
of GA, some number of best individuals by means of the SMT-
based algorithm. Thus, we replace their genes corresponding to
unmatched services by appropriate good service types. Search-
ing for these service types is performed using SMT; if they can
be found, then an abstract plan is represented by the modified
individual. Algorithm 6 presents the outline of the hybrid algo-
rithm.

Going into details, our hybrid algorithm mimics the standard
steps of GA, modifying them as follows: in every GA iteration,

Hybrid Algorithm(k, N, I, Cp, Mp, G)
Input: individual length: k, number of individuals in population:

N, number of iterations: I, crossover probability: Cp,
mutation probability: Mp, number of individuals passed
to SMT: G

Result: a set of abstract plans

begin
P← generateInitPop(N) ; // the initial population

evaluate(P) ; // compute fitness of inds. from P
initialise S MT solver;
Plans← ∅ ;
for i← 1..I do

T ← selection(P) ; // a temporary population

T ← crossover(T); // apply genetic operators

T ← mutation(T); // w.r.t.Cp and Mp values

P← T ; // a new population obtained

foreach ind ∈ P do // evaluate population

evaluate(ind) ; // fitness and similarity

if ind is a solution then
Plans← Plans ∪ {ind} ; // a new plan

Top← getTopInds(P,G) ; // candidates for SMT

foreach ind ∈ Top do // check conditions

eind ← getExecPre f ixLen(ind) ;
gind ← getGoodS erviceNum(ind) ;
if (d k

2 e ≤ eind < k) ∧ (gind ≥ d
k
2 e) then

ind′ ← smtImprove(ind, Plans) ; // run SMT

if ind′ is a solution then
Plans← Plans ∪ {ind′} ; // a new plan

ind ← ind′
stop S MT solver;
return Plans
Algorithm 6: Pseudocode of the hybrid algorithm

after completing an evaluation step, some fixed number of best
individuals are candidates to be improved by SMT-based algo-
rithm. None of them represents a complete abstract plan at this
stage. The individuals are selected according to the following
criteria: let I denote an individual composed of k genes, g(I)
represent the number of good service types of I, and e(I) be the
length of the maximal executable prefix of I. The SMT-based
procedure is called for the individual I if

• d k
2 e ≤ e(I) < k, and

• g(I) ≥ d k
2 e.

This means that each candidate for an improvement has a set of
genes at least a half of which are good service types, at least a
half of which constitutes an executable prefix, and which con-
tains one or more genes to be changed. If a solution “correct-
ing” the “bad” genes is found by SMT, the improved individual
is returned to the GA population.

In order to avoid a too long computation time we use the pro-
cedure of selecting “best” individuals as well as a fixed number
of individuals to be passed to the SMT procedure.

However, it should be mentioned that the criteria for “best”
individuals are based on a numeric evaluation only (i.e., on
comparing the number of good service types and the length of
the longest executable prefix with the maximal values, which

15

for a k-gene individual are k). In fact, if a solution is not known,
it is difficult to estimate how close an individual is from an ab-
stract plan and whether it can be improved.

5.1. SMT-based Problem Encoding

Some technical details of our implementation of hybrid algo-
rithm are as follows.

The symbolic SMT encoding to be combined with GA is
based on the generic SMT-based method (see Section 3). How-
ever, the aim here is not just to find a solution, but to check for
a given individual whether its maximal (non-executable) suf-
fix can be modified so that the improved individual is an APP
solution. Thus for the SMT procedure, the list of arguments in-
cludes not only the user query q and the ontology, but also the
individual and the length of its maximal executable prefix. The
role of SMT in the hybrid algorithm is shown in Figure 4.

S1 S2 S3 S4 S5 S6

Individual

Initial
worlds

Executable prefix SMT task

Expected
worlds

Final
worlds

Figure 4: SMT role in the hybrid algorithm

For an individual I, let I j be the j-th service type in I. Let k
be the total length of I, and e denote the length of the maximal
executable prefix. Then, the SMT encoding is represented by
the following formula:

ϕ
q
k =Iq∧

∧
j=1..e

(
C j∧(num(s) = I j)∧T s

j

)
∧
∧

i=(e+1)..k

(
Ci∧

∨
s∈S
T s

i

)
∧E

q
k ∧B

q
k

(21)
where Iq and Eq

k encode the initial and the expected worldset
of the user query, respectively, Ci encodes the i-th context func-
tion, and T s

i encodes the worlds transformation by a service
type s. Bq

k blocks the solutions found so far. Thus, the SMT-
solver searches for a sequence of at most (k − e) service types,
replacing the non-executable suffix of I so that the improved
individual is an (unknown so far) solution of APP.

6. Pruning ontologies using a graph database

Typically, an ontology is very large while user queries tend
to be local, producing plans containing small numbers of ser-
vices and objects, compared to the overall ontology size. The
Planics planners developed so far worked on whole ontologies
what hindered their performance and left a lot of space for im-
provements. In this section we show that the abstract planning
problem (restricted to matching types of services) can be trans-
lated to the reachability problem for graphs. Then we present
an approach of using a graph database to pruning ontologies for
given user queries.

6.1. Graphs

Standard definitions of graphs and graph related notions are
used in this section (see part IV of [19]). We start with intro-
ducing subgraphs induced by paths and graph databases. A set
of paths S P in a graph G induces the subgraph G′ such that each
vertex and each transition of G′ is an element of some path of
S P. This intuition is captured by the following definition:

Definition 16 (Subgraph induced by paths). Let S P be a set of
paths of a graph G = (V, E). The subgraph G′ = (V ′, E′) of G
induced by S P is defined as follows:

• V ′ = {v ∈ V | ∃p ∈ S P : v ∈ p} and

• E′ = {(v, v′) ∈ E | ∃p ∈ S p : (v, v′) ∈ p}.

6.2. Graph Databases

A graph database is a tool for storing directed graphs and
finding their subgraphs satisfying certain properties, defined
over vertices and edges that are expressed by database queries3.
From a formal point of view, this is a graph algorithm with
a precisely defined semantics. For example, one could map a
group of persons to vertices, friendship relations between these
persons to edges, and formulate a database query to find every-
one who is female, older than 50 years (assuming that every
vertex has an attribute for the age of the person it represents)
and has at least two friends shared with another person.

For some applications, it is more convenient to consider a
variant of the reachability problem of finding all the paths be-
tween two explicitly known sets of vertices: the initial and the
final set. This can be easily reduced to finding all the paths be-
tween a pair of vertices, one with an outcoming edge to every
element of the initial set, and the other one with an incoming
edge from every vertex of the final set. The latter approach is
conceptually simpler and sometimes more efficient. Since it can
be applied to pruning ontologies, we describe it formally. To
this aim, we begin with showing how a given graph is stored in
the database, where the operations addNode() and addEdge(),
having a clear meaning related to their names, are applied.

Definition 17 (Graph database). Given a directed graph G =

(V, E). G is said to be stored in a graph database DB
if addNode(v) is executed for every vertex v ∈ V and
addEdge(v, v′) is executed for every edge (v, v′) ∈ E.

Then, searching a stored graph is defined.

Definition 18 (Graph database query result). Let G = (V, E)
be a directed graph stored in a graph database DB. Let qk

DB =

(vI , vF , k) be a database query, where vI , vF ∈ V and k ∈ N. The
result of the query qk

DB applied to DB is the subgraph Gq ⊆ G,
induced by the set of paths of G of length at most k, which begin
with vI and end with vF . We refer to Gq by result(G, qk

DB).

3One should not confuse a database query (specifying what is to be found in
the database) and a user query (specifying the task of the composition process).

16

From a practical perspective, graph databases can be used for
storing and search effectively very big state spaces. In addition,
the graph representation enables for a graphical visualization
of the graphs stored in the database as well as the query results.
Advanced features are available in the area of guaranteeing data
redundancy, distributing data between multiple machines, and
optimizing the database performance.

6.3. Pruning an Ontology
Our graph-based approach to pruning ontologies for abstract

planning consists of the following stages:

1. Choosing an upper bound (k) on the plans length for which
the search is to be performed.

2. Encoding the ontology in the graph database. Every object
type and service type of the ontology is represented by a
distinguished vertex. The edges connect pairs of vertices,
where one vertex models a service type while another one
an object type. For a vertex representing a service type
s, an incoming edge from a vertex representing an object
type models that this object type is an input for the service
type s. Similarly, an outgoing edge to a vertex representing
an object type models that this object type is an output of
the service type s. The rules are also applied to the object
types derived from every object type occurring in the input
and output lists of a service type. After application of these
rules we get the ontology graph GOnt.

3. Extending the ontology graph GOnt to the query graph Gq,
where GOnt ⊆ Gq, by adding the initial vertex and the
final vertex, for a user query q. The outgoing edges of
the initial vertex are connected to the vertices represent-
ing the object types of the initial worldset of q and to the
vertices representing the service types having empty input
lists. The edges ingoing to the final vertex start from the
vertices representing the object types and subtypes of the
expected worldset of q.

4. Searching for a set of the paths (of length restricted to k)
between the initial and the final vertex of the query graph
Gq. This objective is expressed by a database query fed
to the graph database. The result is the query subgraph
Gqs ⊆ Gq.

5. (Optional Postprocessing) Removing recursively from the
query subgraph Gqs the vertices representing service types,
for which some object types of their input lists have not
been identified by the search. Removing them is not nec-
essary, because we will add missing types when building
the pruned ontology. However, those service types cannot
be executed in the reduced ontology, so filtering them out
makes it smaller and, hopefully, easier to handle for the
planners. We can also remove the vertices of object types
not connected to any vertices representing service types.

6. Pruning the original ontology to the service and objects
types represented by the vertices of the query subgraph
Gqs. Then, adding the types of the objects possibly pro-
duced by the service types in the reduced ontology and not
relevant for any abstract plan which can be found, but re-
quired for an ontology to be complete. The pruned ontol-
ogy can replace the full ontology in the planning process.

The algorithm described above can be repeated for an incre-
mented depth k or run for any depth. It is complete and sound
for the minimal abstract plans of length restricted by the depth
k chosen as a parameter. This means that the ontology pruned
preserves all the minimal abstract plans of length k and does
not introduce any abstract plans which could not be generated
starting with the original ontology.

Now we are in a position to describe the algorithm formally.

6.3.1. Ontology Graph: Encoding an Ontology
For the purpose of this section we recall some notions related

to Planics, which are used in the formalism below.

Definition 19 (Ontology). By an ontology we mean a triple
Ont = (S,T, Ext), where

• S is the set of all the service types,

• T is the set of all the object types, i.e., the types of Arti f act
and S tamp, and their descendants,

• Ext is the inheritance relation of the object types.

Moreover, we recall the function Tp↓ : 2O 7−→ 2T, such that
Tp↓(O) =

⋃
o∈O

{
t ∈ T | t = Tp(o) ∨ (Tp(o), t) ∈ Ext

}
which

assigns the set of the types and subtypes to each set of objects.
Assume we are given an ontology Ont. Our first task is to

encode Ont as a graph. It is quite common to use graphs for
modeling the inheritance of classes (see Fig. 1). We extend this
approach by modeling service and object types as vertices of a
graph stored in the graph database, and encoding with the edges
the relation of processing and producing the objects by service
types. In particular, we introduce the directed edges connect-
ing the vertices representing the service types with the vertices
corresponding to the (sub)types of the objects processed, in the
way captured by the following definition.

Definition 20 (Ontology graph). Given an ontology Ont. By the
ontology graph we mean the graph GOnt = (VOnt, EOnt), where

• VOnt = VS∪VT with VS = {vs | s ∈ S} and VT = {vt | t ∈ T},

• EOnt = ES ∪ ET with

ES = {(vs, vt) | s ∈ S ∧ t ∈ Tp↓(outs ∪ inouts)},
ET = {(vt , vs) | s ∈ S ∧ t ∈ Tp↓(ins ∪ inouts)}.

Example 4. Ontology graph. In Fig. 5 we show an example
of the ontology graph for object types introduced in Section 2
extended with the type Certi f icate (derived from Arti f act).
Moreover, the service type Inspection has been introduced,
which is defined as follows:
specInspection =

(
in = {(a, Arbour)}, inout = ∅,

out = {(c,Certi f icate), (stamp, PriceS tamp)},
pre = isSet(a.id) and isSet(a.owner)and isSet(a.location),
post = isSet(c.owner) and isSet(stamp.price)

)
.

The rectangles correspond to the object types, the ovals rep-
resent service types. The dashed arrows model the ontology
types hierarchy, while solid arrows correspond to the edges of
the ontology graph. Note, that only black nodes and arrows are
members of the ontology graph. For better readability we show
here only two service types.

17

Thing

Artifact

Stamp

Certificate
Ware

Permit

Boards
Nails

Arbour

Service

WoodBuilding

PineBoards PriceStamp

Inspection

Figure 5: A fragment of example ontology graph.

6.3.2. Query Graph
The ontology graph GOnt (stored in the graph database) rep-

resents the ontology Ont. The next step is to extend GOnt with a
representation of a user query q by constructing a query graph,
which contains also the initial vertex vI and the final vertex vF .
The initial vertex is connected to the vertices corresponding to
the types of the objects from the initial worldset. The vertices
corresponding to the types and subtypes of the objects of the
expected worldset of the user query are connected to the final
vertex. Notice that vI is also connected to the vertices corre-
sponding to each service type having the list in and inout empty.

For the following definition of a query graph, we need an
extension of the function Tp to sets of objects, i.e., the function
Tp assigns a set of the types to all object of each set O ⊆ O.
Formally: Tp : 2O 7−→ 2T such that

• Tp(O) =
{
t ∈ T | ∃o ∈ O : t = Tp(o)

}
,

Definition 21 (Query graph). Given the ontology graph
GOnt = (VOnt, EOnt) and a user query specification q =

(inq, inoutq, outq, preq, postq), where inoutq ∪ outq , ∅4. By
the query graph we mean the graph Gq = (Vq, Eq), where:

• Vq = VOnt ∪ {vI , vF}, where VOnt ∩ {vI , vF} = ∅,

• Eq = EOnt ∪ {(vI , vt) | vt ∈ VT ∧ (t ∈ Tp(inq ∪ inoutq)} ∪

{(vI , vs) | vs ∈ VS ∧ (ins ∪ inouts = ∅)}∪

{(vt , vF) | vt ∈ VT ∧ (t ∈ Tp↓(outq ∪ inoutq))}.

Notice that the subtypes are added only for the object types
of the expected worldset which corresponds to the fact the the
user accepts ’more’ than he requires. Clearly, one cannot as-
sume that the user possesses ’more’ than specified by the initial
worldset, so no subtypes of the initial worldset objects are in-
troduced.

4For the empty inoutq ∪ outq there is no need to search for a solution, so to
reduce an ontology.

6.3.3. Query k-subgraph: Pruning Query Graph
Our next step consists in pruning the query graph leaving

only its subgraph (called the query k-subgraph) induced by all
the paths of length k from the initial vertex to the final one.
This subgraph is produced as the result of a database query to
the graph database storing the query graph. In this query the
depth is given by 2k + 2 to reflect the fact that a solution of
length k corresponds to a path of length 2k + 2 in the query
graph because of its construction.

Below we formalize the above concept.

Definition 22 (Query k-subgraph). Let Gq = (Vq, Eq) be the
query graph and k ∈ N. The query k-subgraph Gk

qs ⊆ Gq is
the result of executing the database query Q2k+2 = (vI , vF , 2k +

2) onto the query graph, where vI , vF are the initial and final
vertices of Gq, respectively.

In order to define formally the ontology pruned we need the
notion of supertypes of a set object types. Formally, for T ⊆ T
we define Tp↑(T) =

⋃
t∈T {t′ ∈ T | (t′, t) ∈ Ext∗}.

The pruned ontology is the final result of the graph reduction.
As a special case, the empty sets of service and object types are
returned if there exists an object type of the expected world
which cannot be produced (i.e., there is no path in the query
subgraph leading to the node modeling it, and the same holds
for all its subtypes).

We say that Ontk is an empty ontology if it has empty sets of
services and object types. Sometimes, empty ontologies can be
identified by a simple property of the query k-subgraph:

Definition 23 (query k-subgraph generating empty ontology).
Let Gqs = (Vqs, Eqs) be the query k-subgraph. We say that Gqs

generates the empty ontology if ∃o ∈ outq (so Tp(o) is repre-
sented in Gqs) and for ∀t ∈ Tp↓({o}), there are no incoming
transitions to vt ∈ Vqs.

The pruned ontology is formally defined as follows:

Definition 24 (k-Reduced ontology). Let Ont = (S,T, Ext) be
an ontology and Gqs = (Vqs, Eqs) be the query k-subgraph.
By the k-reduced ontology we mean the ontology Ontk =

(Sk,Tk, Extk), which is empty iff Gqs generates the empty on-
tology, and otherwise defined as follows:

• Sk = {s ∈ S | vs ∈ Vqs},

• Tk = Tp↑
(
inq ∪ inoutq ∪

⋃
s∈Sk
Tp↓(ins ∪ inouts ∪ outs)

)
,

• Extk = Ext ∩ (Tk × Tk).

The k-reduced ontology contains all the service types and
all the object types corresponding to the vertices of Gk

qs. In
addition, it contains all the supertypes of the subtypes of the
sets of the input and output object types of each its service type.
An example fragment of a query subgraph is shown in Fig. 6.

Note that the subtypes of outq, with their supertypes, are al-
ready present in the pruned ontology, since otherwise the ontol-
ogy would be empty. However, the objects types of inq ∪ inoutq
are explicitly added to the reduced ontology since there could

18

be a solution which does not use these types, but the reduced
ontology needs to be complete.

In Definition 24, the motivation for adding the supertypes of
the object types from service argument lists is the same as for
types from the user query, i.e., so that the type system in the
ontology pruned should be complete.

6.4. Correctness of the Reduction
Now we prove that the reduction of the ontology preserves all

the minimal user query solutions, i.e., intuitively, such solutions
which contain only service types necessary for satisfying the
user query. In order to prove the correctness, for each solution
we define a set of object type derivation sequences (OTDSs),
which are subsequences of the solution (without contexts), in
which all two consecutive service types share an object type
between their inputs and outputs. We show that each service
type s of a minimal solution is present in some OTDS. Finally,
we show that each OTDS can be mapped to a path in the query
k-graph, so all the object and service types needed to preserve
the minimal user query solutions are present in the reduced on-
tology.

Definition 25 (Object type derivation sequence (OTDS)).
Given an ontology Ont, a user query q, a q-solution seq =(
(s1, ctxs1

O1
), . . . , (sk, ctxsk

Ok
)
)

of length k, and m ≤ k. A quasi
object type derivation sequence (QOTDS for short) qotds =

(si1 , si2 , . . . , sim) is a subsequence of (s1, . . . , sk), satisfying the
following two conditions:

1. Tp(inq ∪ inoutq) ∩ Tp↓(insi1
∪ inoutsi1

) , ∅,
if insi1

∪ inoutsi1
, ∅,

2. Tp↓(outsi j
∪ inoutsi j

) ∩ Tp↓(insi j+1
∪ inoutsi j+1

) , ∅,
for 1 ≤ j ≤ m − 1.

A QOTDS qotds is called an object type derivation sequence
(OTDS for short) if qotds satisfies also the following condition:

3. Tp↓(outsim
∪ inoutsim

) ∩ Tp↓(inoutq ∪ outq) , ∅.

Note that the definition of OTDS is not using context func-
tions of seq as we are working only at the level of matching
object types without referring to their actual values. It is easy
to show that for each q-solution there is at least one OTDS, but
there could be many of them of different lengths.

We write (Q)OT DS (seq)) for all the (Q)OTDSs for a q-
solution seq for a given implicitly ontology Ont.

Our ontology pruning method preserves the minimal q-
solutions only, where every service type is necessary for sat-
isfying q. This notion is captured by the following definition:

Definition 26. [Minimal solution] Let seq =(
(s1, ctxs1

O1
), . . . , (sk, ctxsk

Ok
)
)

be a q-solution. We say that
seq is a minimal solution, if no strict subsequence of seq is a
q-solution.

It is easy to show that for each q-solution, there is always a
corresponding minimal q-solution

Lemma 1. Let seq =
(
(s1, ctxs1

O1
), . . . , (sk, ctxsk

Ok
)
)

be a q-
solution. There is a subsequence seq′ of seq which is a minimal
q-solution.

Proof. If seq is not minimal, then by the above definition we
can remove from seq elements until we reach seq′ which is a
minimal q-solution.

Notice that a q-solution may contain many minimal q-
solutions.

Lemma 2 (Characterisation of OTDSs). Let seq =(
(s1, ctxs1

O1
), . . . , (sk, ctxsk

Ok
)
)

be a q-solution. Consider any si

with 1 ≤ i ≤ k. If si < otds for each otds ∈ OT DS (seq),
then for some c: i ≤ c ≤ k, (sc, ctxsc

Oc
) can be removed from seq

and the resulting sequence seq′ is still a q-solution.

Proof. See part II of [19].

The next lemma states that OTDSs of OT DS (seq) contain
the service types of every minimal solution seq.

Lemma 3. Let seq =
(
(s1, ctxs1

O1
), . . . , (sk, ctxsk

Ok
)
)

be a minimal
q-solution, for k ∈ N. Then, for every 1 ≤ i ≤ k, si belongs to
some otds ∈ OT DS (seq) .

Proof. Let seq be a minimal q-solution and suppose that for
some 1 ≤ i ≤ k si is not an element of any otds ∈ OT DS (seq).
So, by Lemma 2 we know that for some c ≥ i, (sc, ctxsc

Oc
) can be

removed from seq and the resulting sequence seq′ is still a q-
solution, which is a contradiction to the fact that seq is minimal.

Note that in general, there are more than one otds for each
solution. Now we show that every element of OT DS (seq) is
represented by a path in the query k-subgraph.

Lemma 4. Let seq be a q-solution. For each otds =

(si1 , si2 , . . . , sim) ∈ OT DS (seq) there exists a path p in Gk
qs,

where m ≤ k, such that p contains a vertex vsi j
for all 1 ≤ j ≤ m,

i.e., all the service types of otds are represented in Gk
qs.

Proof. See part II of [19].

Note that if follows from the above lemmas that the reduc-
tion depth equal to the length of the longest OTDS is sufficient
to preserve all minimal plans. This observation enables further
optimisations by iteratively increasing the reduction depth, es-
pecially when we deal with huge ontologies and the priority is
to find a plan, but not necessarily all of them have to be pre-
served.

Example 5. Assume the ontology from Example 4 and the
query (inq = {(P, Permit)}, inoutq = {(N,Nails), (B, Boards), },
preq = true, outq = {(A, Arbour), (S t, PriceS tamp)}, postq =

isSet(A.owner)). Fig. 6 illustrates the reduction on depth 1
(the white nodes), and 2 (the white and gray nodes). The tri-
angle nodes labelled with S and F correspond to the initial and
final nodes, respectively. It is easy to see that the reduction of
depth 1 is enough for finding a solution, since we consider all
the paths from S to F of maximal length 2∗1+2 = 4. Increasing
the reduction depth introduces additional types (Certi f icate,
Inspection) which are not necessary for the plan.

19

Artifact Stamp
Certificate

Ware

Permit

Boards

Nails

Arbour

WoodBuilding

PineBoards PriceStamp

InspectionS

F

Figure 6: A fragment of query ontology graph.

It can be easily seen that the presented abstraction is in fact an
over-approximation. Some of the paths in the query k-subgraph
returned by the database can have no corresponding object type
derivation sequences for any solution.

When, for every expected world, there is no path to at least
one of its object types in the query subgraph, this means that
no valid solution exists. However, the existence of such paths
for all the object types of an expected world does not guarantee
that there is a solution. This is because the graph approach
works at the level of types, and does not take into account the
issues such as checking pre- and postconditions, and providing
enough objects for cardinality constraints. Checking the pruned
ontology by an abstract planner is still needed, but usually the
scope of this search is significantly reduced. Thus, the method
is complete and sound, and every valid plan will be found in the
query subgraph for the chosen depth.

6.4.1. Implementing the Algorithm in the Graph Database

As we have described above, the graph database is to repre-
sent the ontology graph and, for every user query, to extend it
to the query graph to find the query subgraph. We have used the
graph database Neo4j, working in the standalone mode (that is,
without the server installation, but run over a Java API com-
municating with the database, performing operations such as
adding vertices and edges, and labeling them). The graphs are
directly represented by the graph database following their se-
mantical model, without any transformations. The general way
of interaction with the database is as follows: first the ontology
graph is stored in the database. It can be expected to be of a
significant size, but its construction is performed only once, in-
dependently of the user queries. Then, for each user query, the
query graph is constructed by adding the initial and final ver-
tex, with respective edges. Next, the database query expressed
in the Cypher language is passed to Neo4j. The database query
is the same regardless of the user query, and has the following
meaning: find all the paths of depth at most 2k + 2, between the
start and the final vertices. Then, the resulting query subgraph
is a basis for construction of the pruned ontology. Finally, the
start and final vertices with their edges are removed from the
database, and the system is ready for the next user query.

7. Experimental Results

We have implemented all our planners and evaluated their ef-
ficiency using the ontologies and the user queries produced by
the customizable Ontology Generator (OG). The benchmarks
are parametrized, thus convenient for checking scalability of
our planners in finding plans. This is achieved by fixing differ-
ent values of several parameters and characterizing the exem-
plary ontologies. We continue with a short description of OG.

7.1. Ontology Generator

OG produces ontologies and user queries in accordance with
its input parameters and the semantics rules. Also the corre-
sponding user queries are provided, guaranteeing the requested
number and format of solutions.

Parameter Explanation – number of:
Default
value

n|O| object types 100

nmin
OA the object attributes (minimal) 1

nmax
OA the object attributes (maximal) 2

n|S| service types in ontology 64

nmin
OinS objects in service type input lists

(minimal)
nmax

OinS objects in service type input lists
(maximal)

n|EW | the objects required by a user in the
expected world (thus branches)

len service types in every branch (both
extended and not extended)

next extended branches 0

n|ext| independent sub-branches in every ex-
tended branch (including the original
single sub-branch)

0

Table 1: Meaning of the parameters characterizing benchmarks.

Table 1 describes the parameters characterizing the bench-
marks. The parameters listed above the bold line were used
in some previous papers about Planics [11, 20, 12, 21]. How-
ever, the benchmarks generated using these parameters appear
to have a very specific structure, which, in many cases, may
facilitate finding plans. Namely, for every plan, each object of
the expected worldset is produced by a sequence of services
(called a branch), which is independent of all the other services
in the plan. By being independent we mean that the services
belonging to a branch do share neither produced nor consumed
objects with any other services, possibly with the exception of
some objects of the initial worldset. Thus, we have modified
the ontology generator introducing additional parameters in or-
der to obtain benchmarks closer to real-life examples.

20

7.1.1. Extending Branches
First, OG is modified in order to provide more ways to pro-

duce objects of an expected world. Now, we can easily increase
the number of plans by manipulating the values of the two pa-
rameters: next and n|ext|, where 0 ≤ next ≤ n|EW |. Thus, every
object can be produced not only by a single branch, but also by
n|ext| sub-branches for every branch extended in this way. By an
extended branch we mean all the sub-branches producing a sin-
gle object of an expected world. Every sub-branch is indepen-
dent of all other sub-branches and branches. This modification
allows to check how the planners deal with a large number of
plans.

7.2. Configuration of the Experiments

The experiments have been conducted on a virtual machine
with assigned 4 CPUs and 16 GB RAM running Ubuntu Linux
deployed on a server equipped with two 2.40 GHz processors
Intel Xeon E5-2630v3. The version 4.4.1 of Z3 [14] has been
used as an SMT-solving engine. The GA and Hybrid plan-
ners have been run 30 times for each benchmark, while SMT
three times5 in order to report the average times at this basis.
We have imposed the 2000 sec. CPU time limit for every ex-
periment. The memory usage remains below 2 GB even for
the “pure SMT” planning on the largest instances. The mem-
ory consumption by the SMT-solver increases at the end of the
search, i.e., while determining that there no more plans exist.
The memory usage for the GA algorithm is usually below sev-
eral hundred MBs, and the hybrid algorithm does not need more
than 1 GB, even for the largest instances.

7.3. Evaluation of Experimental Results

In this section we give descriptions of the experiments,
benchmark definitions, and the corresponding results6. We have
performed several experiments in order to investigate how se-
lected features affect the planning efficiency. Note that some
features might be influenced by more than one parameter. Thus,
in every experiment we scale these parameters which influ-
ence the observed benchmark features. Since each planning
method has advantages and drawbacks that become apparent
in some specific situations, we divide each experiment into sev-
eral benchmark groups corresponding to low, medium, and high
values of the scaled parameters7. Another reason for the bench-
mark grouping is their large number. We have run over seventy
benchmarks, but their clustering facilitates the overall results
analysis as well.

For every experiment we report the results of applying all
our planners to complete and pruned ontologies. We evaluate

5The results returned by the SMT-based planner are deterministic and “sta-
ble”, i.e., since the differences of CPU time consumption are negligible, a few
repetitions of each experiment is sufficient.

6All the resources needed to reconstruct the experiments, i.e.,
the tools and the benchmark files, are available for download from
http://planics.uph.edu.pl/asoc/asoc.zip

7Or low and high values only, depending on the number of benchmarks in
each experiment.

the computation time, the number of plans found, and the prob-
ability of finding a solution. Moreover, in order to compare ef-
ficiency of our planning algorithms with other tools, we present
also the results of the Fast Downward (FD) tool [18] applied to
the same benchmarks. Since FD is aimed at solving problems
specified in PDDL [53], we have translated our ontologies and
queries into PDDL. More details on the translation is given in
Section 7.4.

We start with investigating how the number of plans influ-
ences the planning efficiency.

7.3.1. Experiment 1: scaling the number of plans
The two parameters of the modified OG affect the number of

plans: n|ext| and next. In Experiment 1.1, we scale the parameter
n|ext|, while Experiment 1.2 and 1.3 show the impact of next on
the planners performance. Table 2 presents the parameters and
features of Experiment 1.1 where n|ext| ranges from 2 to 10 and
all the other parameters remain constant. The double column
separators indicate the division of the benchmarks into three
groups. The two last rows of the table show the number of
service and object types remaining after the GDB reduction.
As one should expect, the more plans, the more types have to be
kept in order to preserve all minimal solutions. All benchmarks
from this group yield from 4 to 100 abstract plans of length 6.

Table 3 presents the planning results on complete ontologies.
The columns from left to right display the benchmark id, the
performance of the GA planner described by the probability of
finding a solution, the average and maximal number of plans
found, and the computation time. Next, we give the results of
the SMT-based planning. That is, the number of plans found,
the time of finding the first and all the other plans, the time
of checking whether more plans exist, and the total computa-
tion time. The next columns show the performance of the hy-
brid planer in terms of the probability, the average and maximal
number of plans found, the time consumed by the SMT and
GA parts of the algorithm, and the total computation time. Fi-
nally, we show the results of the FD tool, i.e., the number of
plans found, the computation time, and the memory consump-
tion. Note that FD is aimed at finding only one plan, thus the
number of plans found is either 1 or 0. We show also the mem-
ory consumption of FD, because, contrary to our algorithms,
in some cases FD consumes all the memory available, and the
computation fails. Note that by the computation time we mean
solely the consumed CPU time.

Concerning the planers’ time consumption, it is easy to ob-
serve that these are almost constant in the case of GA (about 4
sec.) and the hybrid planner (about 7 sec.). These facts match
our expectations, because the GA runtime depends mostly on
the length of the plan, which is constant here. The time con-
sumption of the hybrid planner is determined mostly by the
SMT component runtime. Since in this benchmark group the
tasks for the solver are quite easy (there is only a few genes
to improve), the SMT-based procedure does not consume more
time than the GA part, and the overall runtime is satisfactory. In
the case of the SMT-based planner, the total computation time
grows together with the number of plans. This is a consequence
of two factors. Firstly, decoding of a plan takes some time due

21

Table 2: Experiment 1.1: the parameters and properties of the benchmarks.

k = 6, len = 2, n|EW | = 3, next = 2, |O| = 102, |S| = 64, sp = 236

id 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19
n|ext| 2 3 4 5 6 7 8 9 10
|CAP| 4 9 16 25 36 49 64 81 100
|Spr | 10 14 18 22 26 30 34 38 42
|Opr | 12 15 18 21 24 27 30 32 35
sppr 220 223 225 227 228 229 231 231 232

Table 3: The results of Experiment 1.1 for the unreduced ontologies

GA SMT Hybrid FD
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
1.11

100
3.5/4 3.9 4 3.9 1.6 3.2 8.7

100

3.7/4 3.2 3.8 7.0

1

15.02 320
1.12 4.8/9 3.8 9 4.3 1.5 6.9 12.7 7.2/9 3.7 3.9 7.6 4.89 160
1.13 6.2/13 3.9 16 4.1 4.2 5.8 14.1 9.2/14 3.4 3.8 7.2 6.16 183
1.14 90 3.1/12 4.1 25 4.7 4.9 9.1 18.7 8.1/21 3.6 4.1 7.6 6.72 191
1.15 77 2.1/9 4.2 36 3.8 4.7 9.3 17.9 8.6/25 3.7 4.2 7.9 8.41 216
1.16 80 2.3/6 6.2 49 3.1 7.1 8.8 19.1 7.3/18 3.2 4.1 7.3 10.41 256
1.17 77 1.8/5 4.1 64 2.3 7.7 12.6 22.6 97 8.4/36 2.7 4.1 6.8 13.5 301
1.18 70 2.2/5 4.1 81 2.0 11.1 18.5 31.6 100 10.0/38 2.8 4.0 6.8 15.44 382
1.19 2.3/5 4.1 100 1.7 11.2 25.6 38.6 10.5/27 3.0 4.1 7.1 18.67 380

Table 4: The results of the Experiment 1.1 for the pruned ontologies. The probability of finding a plan by the Hybrid planner equals 100%.

DB GA-pruned SMT-pruned Hybrid-pruned FD-pruned
id time Pr. plans. time plans first other unsat Σ plans smt ga Σ plan time mem

[s] [%] avg/max [s] [s] [s] [s] [s] avg/max [s] [s] [s] [s] [MB]
1.11 1.6

100

4.0/4 2.8 4 0.6 1.0 1.0 2.6 3.9/4 0.5 2.9 3.4

1

0.11 71
1.12 1.5 6.0/9 3.4 9 0.8 1.9 2.5 5.3 7.9/9 0.8 3.0 3.8 0.39 73
1.13 1.9 6.7/12 2.9 16 1.2 2.7 4.3 8.2 10.5/16 1.0 3.1 4.1 0.68 81
1.14 1.5 3.6/9 3.2 25 1.5 3.5 5.4 10.4 10.9/21 1.2 3.6 4.8 1.57 99
1.15 1.5 2.8/7 3.2 36 1.0 4.7 5.3 11.1 11.1/21 1.3 3.5 4.8 2.46 118
1.16 1.6 83 3.5/8 5.0 49 1.2 5.8 6.4 13.5 10.4/20 1.5 3.5 5.0 3.89 145
1.17 1.6 90 3.3/10 3.4 64 1.6 6.2 9.0 16.8 12.1/28 1.7 3.6 5.3 5.7 179
1.18 1.5 87 2.8/8 5.2 81 2.3 11.7 10.9 24.9 11.8/27 1.9 3.6 5.5 7.87 213
1.19 1.6 70 3.0/8 3.5 100 1.7 9.0 14.7 25.5 14.5/58 2.0 3.7 5.7 10.81 264

to additional interactions with the solver. Secondly, after find-
ing a plan the blocking formula is extended and thus (usually)
becomes harder to solve.

Concerning the probability of finding a plan, only the GA-
based planner is affected with the growing number of solutions:
one can observe that the probability decreases with the increase
of the number of existing plans. This is caused by the fact that
in the presence of a large number of existing plans, the solu-
tions being “a mix” of two (or more) slightly different plans
are assessed high, but sometimes it is hard for GA to direct the
search into one of them. In such situations GA ends up with
many individuals having only one mismatched gene, but not
with a complete solution. This drawback is offset by the SMT-
based component of the hybrid algorithm, and for this group
of the benchmarks the hybrid planner is able to find plans with
almost 100% probability, with just one little exception. The
SMT-based planner always finds a plan.

As to the number of plans found, there is no surprise that
the SMT-based planner finds all of them, since the computation
times are all far below the imposed time limit. On the other
hand, it is interesting to notice that the (average, as well as max-
imal) number of plans found by GA initially increases, but then
decreases significantly. The explanation is the measure of sim-

ilarity used to compute the fitness function which lowers the
assessment of the individuals which only slightly differ from
some plan found. The more plans exist, the more similarity be-
tween them. Thus, from some point GA is unable to find more
than several plans. Again, the hybrid algorithm shows its supe-
riority over GA in this area, because the number of plans found
by the hybrid is much higher, and there is no such a downward
trend like in the case of GA.

Concerning the results yielded by FD, in general both the
consumed time and memory grows with increasing the number
of possible plans. However, FD finds a plan for each bench-
mark, the runtimes are acceptable, and the consumed memory
amount stays below 400MB.

Now, we let’s summarize the results of Experiment 1.1 for
the pruned ontologies of Table 4. The general conclusion is ev-
ident. The GDB substantially reduces the search space, which
improves all the assessed features of the algorithms like time,
probability, and the number of solutions found, in comparison
to dealing with the complete ontologies. Moreover, most of the
trends identified before still holds after the pruning has taken
place. The same, but to an even greater extent, holds for the
FD results: the consumed time and memory drops significantly
after the ontology reduction. The GBD reduction time is ac-

22

Table 5: Experiment 1.2 (left) and 1.3 (right): the parameters and properties of the benchmarks for n|ext| = 2, |O| = 102, and |S| = 64.

len = 2, n|EW | = 5, k = 10, sp = 260 len = 3, n|EW | = 4, k = 12, sp = 272

id 1.21 1.22 1.23 1.24 1.25 1.31 1.32 1.33 1.34 1.35
next 1 2 3 4 5 1 2 3 4 5
|CAP| 2 4 8 16 32 2 4 8 16 32
|Spr | 12 14 16 18 20 15 18 24 30 30
|Opr | 17 18 19 21 23 20 22 28 32 35
sppr 236 238 240 242 243 247 250 255 259 259

Table 6: The results of Experiment 1.2 and 1.3 for complete ontologies

GA SMT Hybrid FD
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
1.21 100 1.8/2 7.0 2 26.4 4.1 1296 1326.5 100 1.8/2 17.0 7.3 24.3

1

5.29 169
1.22 90 2.1/4 7.1 4 24.0 13.5 748.3 785.8 3.1/4 16.8 7.6 24.5 10.43 257
1.23 93 3.0/5 6.6 8 24.0 15.8 1571 1610.8 97 4.1/7 18.5 7.2 25.7 14.13 311
1.24 3.4/6 6.7 16 25.3 29.8 tmOut tmOut 100 6.2/13 20.3 7.2 27.4 4.97 163
1.25 80 2.7/6 10.4 32 16.6 45.8 7.3/13 19.3 7.4 26.7 5.26 165

1.31 53 1.2/2 10.1 2 49.2 12.6

tmOut tmOut

77 1.5/2 38.1 11.2 49.3

1

4.97 158
1.32 33 10.4 4 51.8 40.7 87 1.8/4 42.0 11.3 53.2 5.01 159
1.33 27 1.4/2 9.9 9 39.5 70.0 83 2.4/6 41.8 11.4 53.2 4.94 158
1.34 10 1 14.8 16 42.4 165 97 3.4/9 43.3 11.7 54.9 5.33 167
1.35 17 15.6 32 142 793 87 3.4/9 132 20.0 152 5.9 173

Table 7: The results of Experiment 1.2 and 1.3 for pruned ontologies
GA-pruned SMT-pruned Hybrid-pruned FD-pruned

id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem
[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]

1.21 100 1.8/2 4.8 2 11.9 4.9 533.1 549.9 100 2.0/2 6.6
4.3

10.9

1

0.24 73
1.22 97 2.7/4 4.7 4 13.1 3.2 367.7 384.0 97 3.1/4 7.1 11.4 0.23 73
1.23 100 3.2/6 5.2 8 11.7 12.2 837.5 861.5

100
5.0/8 8.5 12.8 0.39 72

1.24 97 3.6/7 7.5 16 11.9 13.2 tmOut tmOut 7.9/12 10.1 4.6 14.7 0.53 79
1.25 2.9/6 5.3 32 14.3 20.0 9.7/19 12.2 4.8 17.1 0.84 85

1.31 63 1.4/2 6.3 2 22.0 6.0 1237 1265 100 1.7/2 17.5 5.8 23.3

1

0.39 73
1.32 40 1.3/3 5.7 4 25.1 19.7

tmOut tmOut

97 2.6/4 21.3 6.1 27.4 0.53 79
1.33 27 1.1/2 7.4 9 25.2 25.7 100 3.8/7 24.9 7.0 31.9 1.12 90
1.34 13 1 8.0 16 24.7 74.2 4.7/10 28.9 7.5 36.4 1.72 104
1.35 9.8 32 77.9 220 97 5.1/13 88.4 12.6 101 1.72 102

0%

20%

40%

60%

80%

100%

G
A

 p
r

G
A

 a
vg

G
A

 m
ax

G
A

 t
im

e

SM
T

p
la

n
s

SM
T

ti
m

e

H
 p

r

H
 a

vg

H
 m

ax

H
 t

im
e

FD
 p

l

FD
 t

im
e

FD
 m

em

Performance ratio: pruned/complete Reduction gain

Figure 7: The influence of GDB reduction on the planning efficiency in Experi-
ment 1. On the X-axis, from left to right: GA probability, average and maximal
number of plans, and runtime; SMT plans and time; Hybrid probability, aver-
age and maximal number of plans, and time; FastDownward plans, time, and
memory.

ceptable low (from 1.5 to 1.9 sec) and is fully compensated by
the delivered benefits in the planners behaviour.

The two next experiments concern instances where the num-
ber of extended branches is scaled from 1 to 5. These yield
from 2 to 32 plans of length 10 (Exp. 1.2) and of length 12

(Exp. 1.3). The benchmark parameters and features are given
in Table 5, while the results for complete and reduced ontolo-
gies are given in Tables 6 and 7, respectively. In comparison
to the benchmarks of Exp. 1.1, these of Exp. 1.2 and 1.3 are
harder to solve due to the increased length of the plans.

It is also easy to see that the benchmarks of group 1.3 are
more difficult than these of group 1.2, which results in higher
computation times as well as lower probabilities and finally in
less plans found by the GA and Hybrid planners. Surprisingly,
the FD tool seems to be invulnerable to the length of the plans,
because its runtime and memory consumption is not higher than
in Exp. 1.1. Overall, the general trends of the planners’ be-
haviour are similar to those of Exp. 1.1. After the ontology
reduction the planning performance increases while the GDB
pruning time stays low, between 1.4 and 1.7 sec.

Figure 7 summarizes the influence of the reduction on the
planners’ performance taking into account all benchmarks of
Exp. 1. The black bars show the relative improvement of the
planners behaviours taking into account all the assessed fea-
tures. It is easy to observe that the reduction has the highest

23

0

0,2

0,4

0,6

0,8

1

1.1 1.1 1.1 1.2 1.2 1.3 1.3

GA SMT Hybrid FD

0

0,2

0,4

0,6

0,8

1

1.1 1.1 1.1 1.2 1.2 1.3 1.3

GA-pruned SMT-pruned Hybrid-pruned FD-pruned

Figure 8: Experiment 1. Comparison of the planners efficiency using the score
function.

impact on the FD’s consumption of time and memory,but also
on runtime of GA and Hybrid. One can observe also that all
features, but the number of plans found by SMT and FD, are
slightly improved.

In general, our goal is to find as many plans as possible.
Thus, to compare the overall planner’s efficiency taking into
account also the number of plans found, we use the score func-
tion that rewards the results with many plans found. For each
method (x) and each benchmark group (i) we calculate the value
of the score function Mi

x which inputs (a sum of) the probabil-
ities, the numbers of plans found, and the computation times.
Then, the obtained values are normalized such that the value 1
is assigned to the results of the best method according to the
value of Mi

x, computed as follows:

planRewardi
x =


1 for avgPlansi

x ≤ 0.5
2 for 0.5 < avgPlansi

x ≤ 0.75
3 for avgPlansi

x > 0.75

Mi
x =

planRewardi
x ∗ probabilityi

x ∗ maxPlansi
x ∗ avgPlansi

x

computationT imei
x

Ef f i
x =

Mi
x

max(Mi
Hybrid,M

i
GA,M

i
S MT ,M

i
FD)

for x ∈ {Hybrid,GA, S MT } and i ∈ {1, . . . , numO fGroups},
where avgPlans and maxPlans are the average and the maxi-
mal number of plans found, respectively, and numO fGroups
is the total number of benchmark groups from all experiments.
The meaning of the remaining variables is consistent with their
names.

The comparison of the planners efficiency using the score
function is presented in Figure 8. It is easy to observe a great ad-
vantage of SMT in Experiment 1.1, since it is able to found all
the plans, much more than any other planning method. More-
over, after the ontology reduction, Hybrid and FD are superior
in the Experiments 1.2 and 1.3.

7.3.2. Experiment 2: scaling the lengths of the plans
In the following experiment we change values of parameters
len and n|EW | affecting the lengths of plans. In fact, our gener-
ated benchmarks satisfy the following property: k = n|EW | ∗ len,
that is, the length of the plan is a product of the two param-
eter values. The benchmark definitions are given in Table 8.
In Experiment 2.1 we scale the value of len from 2 to 8 ob-
taining benchmarks yielding four plans of length from 6 to 24.

Every generated query demands three objects to be produced
(n|EW | = 3), each of them by a sequence of len service types.

Experiment 2.2 scales the parameters in an opposite way. It
consists of eight benchmarks where len = 3, but the number of
objects to be produced (n|EW |) changes from 2 to 9. Note that
the benchmark 707 yields very long plans (k = 27), and the
search space size reaches even 2162. The sizes of search spaces
for complete and pruned ontologies are given in the last two
rows of Table 8

The planning results for complete and pruned ontologies are
provided in Tables 9 and 10, respectively. The obvious con-
clusion is that the longer plan, the worse planners efficiency.
This follows directly from the APP complexity which can be
roughly estimated as |S|k. Thus, with the length of the plan also
increases the computation time, but the probability decreases,
and so the number of plans found. However, it is worth notic-
ing a subtle difference in the planners behaviour dealing with
benchmarks of different groups. Comparing the GA perfor-
mance on benchmarks of Exp. 2.1 and 2.2 one can conclude
that GA is more sensitive to the length of branches (len) than to
the number of branches (n|EW |). In the first case GA is unable to
found any solution for plans of length 15 (len = 5), while in the
second benchmark group GA finds a plan with an acceptable
probability even up to length 21.

The conclusion is just opposite for the SMT-based planner.
It deals a little better with the first benchmark group than the
second. SMT is able to found all plans within the given time-
out up to the depth 18 for the first benchmarks group, but only
up to the depth 15 for the second group. This behaviour can
be explained by two main factors. Firstly, the encoding of the
expected worlds is more expensive in the presence of higher
number objects, and thus the formula is then harder to solve.
Secondly, the longer branch, the more dependencies between
service types, the more logical inference can be used by an
SMT-solver for efficient plan search by early-pruning the so-
lution space. The latter fact can be seen even more clear in
analysis of Experiment 3.1 and 3.2, and in particular in the re-
sults of benchmarks 215 and 206.

The hybrid planner shows here a behaviour similar to GA,
because it deals better with the second benchmark group. How-
ever, due to support of the SMT-component the Hybrid algo-
rithm is able to find more and longer plans than GA.

The FD performance in this experiment is quite impressive.
The memory consumption stays quite low and in most cases
the runtime is lower than for any other method. This experi-
ment confirms the conclusion that FD is not so vulnerable to
the length of the plan contrary to the other planners, which is
a great advantage. However, the main FD drawback of finding
at most one plan only remains unchanged. However, according
to the score function, FD is superior for the medium and high
values of the scaled parameters what is confirmed by Figure 9a.

The results for reduced ontologies are again significantly im-
proved, for a low price of GDB computation - about 1.5 sec.
Figure 9b summarizes the influence of the ontology reduction
on the planners efficiency, taking into account all benchmarks
of Experiment 2.

24

Table 8: Experiment 2.1 (left) and 2.2 (right) - benchmark parameters. Complete ontologies size: |O| = 102, |S| = 64.

next = 2, n|ext| = 2, n|EW | = 3, |CAP| = 4 next = 2, n|ext| = 2, len = 3, |CAP| = 4
id 2.11 2.12 2.13 2.14 2.15 2.16 2.17 id 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28
len 2 3 4 5 6 7 8 n|EW | 2 3 4 5 6 7 8 9
k 6 9 12 15 18 21 24 k 6 9 12 15 18 21 24 27
|Spr | 10 15 20 25 30 35 40 |Spr | 12 15 18 21 24 27 30 33
|Opr | 12 18 27 36 45 49 60 |Opr | 15 18 22 26 33 33 39 43
sp 236 254 272 290 2108 2126 2144 sp 236 254 272 290 2108 2126 2144 2162

sppr 220 235 252 270 288 2108 2128 sppr 222 235 250 266 283 2100 2118 2136

Table 9: The results of Experiment 2.1 and 2.2 for complete ontologies.

GA SMT Hybrid FD
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
2.11 100 3.5/4 3.9

4

4.3 0.7 2.7 7.7 100 3.3/4 2.8 3.9 6.7

1

14.9 320
2.12 83 1.8/4 6.4 18.9 5.8 63.8 88.5 97 2.5/4 12.1 6.9 19.1 9.32 255
2.13 53 1.1/2 12.1 42.0 29.0 954 1025 73 1.7/3 41.5 14.7 56.2 6.34 182
2.14

0 0

20.6 188 347

tmOut tmOut

37 1.6/3 103.6 26.6 130.2 7.74 205
2.15 32.7 524 1468 13 1.3/2 429.9 44.6 474.5 9.08 218
2.16 50.7 1 1221 tmOut 7 1 414.1 61.4 475.5 7.29 195
2.17 73.9 0 tmOut 0 0 1225 95.6 1321 9.89 111

2.21 90 2.2/4 6.4

4

3.2 1.3 1.3 5.9 100 3.4/4 3.7 4.1 7.8

1

12.8 289
2.22 63 1.5/3 10.3 15.8 14.1 56.2 86.2 93 2.5/4 12.1 7.3 19.3 9.37 258
2.23 47 1.5/2 9.6 49.5 16.8

tmOut tmOut

100 2.0/4 44.0 11.6 55.7 4.78 159
2.24 37 1.2/2 14.8 140 468 67 1.4/3 93.3 19.4 112.6 4.84 155
2.25 20

1

21.6 1 568

tmOut

50 1.5/3 225.0 27.7 252.6 6.05 179
2.26 27 45.0 750 30 1.3/2 493.2 40.9 534.1 5.44 165
2.27 3 41.8 0 tmOut 27 1.3/2 865 63 928 6.15 176
2.28 58.2 10 1 1317 91 1408 5.11 162

Table 10: The results of Experiment 2.1 and 2.2 for reduced ontologies.

GA-pruned SMT-pruned Hybrid-pruned FD-pruned
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
2.11 100 3.8/4 2.7

4

0.6 0.7 1.9 3.2
100

4 0.5 3.0 3.5

1

0.1 71
2.12 97 2.0/3 4.4 7.1 3.1 24.6 34.8 3.8/4 5.7 4.4 10.1 0.39 73
2.13 30 1.8/3 6.9 26.0 19.3 514.7 560 3.0/4 24.8 7.5 32.3 0.83 85
2.14 7 1 11.9 81.3 171

tmOut tmOut

73 1.8/4 85.5 14.5 100 1.74 100
2.15

0 0
19.8 217 539 43 1.6/3 270 27.0 297 2.91 122

2.16 30.2 3 473 1422 27 1 510 42.0 552 3.21 127
2.17 49.3 1 1174 tmOut 30 1547 82.0 1629 5.3 162

2.21 100 3.1/4 3.2

4

0.7 0.7 0.9 2.2 100 4 1.2 3.5 4.7

1

0.25 73
2.22 90 1.9/4 5.1 6.8 3.6 22.1 32.4 3.5/4 5.9 4.5 10.4 0.39 72
2.23 50 1.5/3 5.7 20.6 16.1

tmOut tmOut

93 2.9/4 22.7 6.0 28.7 0.55 79
2.24 23 1.4/2 9.5 53.6 44.9 2.3/4 43.6 10.3 53.9 0.7 81
2.25 17 1 11.8 174 251 73 1.5/3 126.6 15.1 141.7 1.3 92
2.26 10 1.3/2 15.6 3 428 1170 37 1.2/2 228.1 20.6 248.7 1.12 93
2.27 3 2 36.2 1 723.4 tmOut 13 1 463.9 34.0 497.9 1.52 100
2.28 0 0 35.5 0 tmOut 10 978 55.0 1033 1.99 109

7.3.3. Experiment 3: constant length and number of plans
Now we proceed to testing some combinations of parame-

ters, which can be independently changed while maintaining

the constant length of plans and the number of plans. Interest-

0

0,2

0,4

0,6

0,8

1

2.1 2.1 2.1 2.2 2.2 2.2

GA SMT Hybrid FD

0

0,2

0,4

0,6

0,8

1

2.1 2.1 2.1 2.2 2.2 2.2

GA-pruned SMT-pruned Hybrid-pruned FD-pruned

(a) Comparison of the planners efficiency using the score function.

0%

20%

40%

60%

80%

100%

G
A

 p
r

G
A

 a
vg

G
A

 m
ax

G
A

 t
im

e

SM
T

p
la

n
s

SM
T

ti
m

e

H
 p

r

H
 a

vg

H
 m

ax

H
 t

im
e

FD
 p

l

FD
 t

im
e

FD
 m

em

Performance ratio: pruned/complete Reduction gain

(b) The influence of GDB reduction on the planning efficiency.

Figure 9: Graphical summary of Experiment 2.

25

ingly, the performance of planners changes as a result of these
settings.

0%

20%

40%

60%

80%

100%

G
A

 p
r

G
A

 a
vg

G
A

 m
ax

G
A

 t
im

e

SM
T

p
la

n
s

SM
T

ti
m

e

H
 p

r

H
 a

vg

H
 m

ax

H
 t

im
e

FD
 p

l

FD
 t

im
e

FD
 m

em

Performance ratio: pruned/complete Reduction gain

Figure 10: The influence of the GDB reduction on the planning efficiency in
Experiment 3.

0

0,2

0,4

0,6

0,8

1

3.1 3.1 3.2 3.2

GA SMT Hybrid FD

0

0,2

0,4

0,6

0,8

1

3.1 3.1 3.2 3.2

GA-pruned SMT-pruned Hybrid-pruned FD-pruned

Figure 11: Experiment 3. Comparison of the planners efficiency using the score
function.

Let us recall that k = n|EW | ∗ len, i.e., the length of a plan
depends on the number of objects to be produced multiplied by
the length of a sequence of service types delivering an object. In
the first two experiments (3.1 and 3.2) we balanced the values
of these two parameters in order to obtain plans of length 12.

The benchmark definitions and properties are given in Table
11. The results for complete and pruned ontologies are pro-
vided in Table 12 and Table 13, respectively. The GDB re-
duction time varies between 1.4 and 1.8 sec., similarly to the
previous experiments.

The results of Experiment 3.1 and 3.2 provide a very inter-
esting conclusion. One can observe that the subsequent bench-
marks, where len is increased and n|EW | is decreased, are getting
harder to solve by GA and Hybrid. This is confirmed by the de-
creasing probability. On the other hand, the same benchmarks
are getting easier to solve by the SMT-based planner, as con-
firmed by the decreasing runtime. Thus, the conclusion is that
SMT performs better for benchmarks composed of a smaller
number of longer branches, while GA and Hybrid perform bet-
ter for shorter branches even if the number of produced ob-
jects is high. This quite interesting behaviour can be explained
twofold, like already mentioned in the discussion on Experi-
ment 2. For SMT, a large number of expected objects makes
the symbolic encoding more expensive and the resulted formula
harder to solve. On the other hand, longer branches contain
more dependencies that can be used to early pruning the solu-
tion space and boost the logical inference, what in consequence
improve the symbolic planning.

The FD tool, similarly to GA and Hybrid, also performs bet-
ter for shorter branches what is confirmed by relatively low run-
times and memory consumption for the first benchmark group
increasing with the length of the branches for the subsequent

instances. The GDB reduction improves the performance of all
planning methods, but relatively the FD tool gains the most on
the ontology pruning.

7.3.4. Experiment 4: scaling the number of attributes, service
types, and object types.

Finally, let us discuss the parameters influencing neither the
plan length nor the number of plans. We start with scaling the
number of service types (Experiment 4.1) and object types (Ex-
periment 4.2). The benchmark definitions are given in Table 14.
The results for complete and pruned ontologies are provided in
Table 15 and Table 16, respectively.

0%

20%

40%

60%

80%

100%

G
A

 p
r

G
A

 a
vg

G
A

 m
ax

G
A

 t
im

e

SM
T

p
la

n
s

SM
T

ti
m

e

H
 p

r

H
 a

vg

H
 m

ax

H
 t

im
e

FD
 p

l

FD
 t

im
e

FD
 m

em

Performance ratio: pruned/complete Reduction gain

Figure 12: The influence of GDB reduction on the planning efficiency in Ex-
periment 4.

0

0,2

0,4

0,6

0,8

1

4.1 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4

GA SMT Hybrid FD

0

0,2

0,4

0,6

0,8

1

4.1 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4

GA-pruned SMT-pruned Hybrid-pruned FD-pruned

Figure 13: Experiment 4. Comparison of the planners efficiency using the score
function.

Increasing the number of service types in the ontology makes
the planning harder for all the methods, with respect to running
times. Moreover, concerning GA, the probability and the num-
ber of plans found also drops with the increase of the number
of service types. As to the performance of the FD tool, one can
observe that it is able to found a plan only for the smallest on-
tologies. Otherwise, it runs out of memory. Thus, Experiment
4.1 shows a great advantage of Planics for planning in large on-
tologies.

The number of object types in the ontology has much less in-
fluence than the number of service types on the planning, what
is confirmed by the results of Experiment 4.2. The planning
times grow slightly, but the probabilities and numbers of plans
found remain comparable. This can be explained by the fact
that a fixed number of service types involves only a constant
number of object types. All the ’excess’ object types introduced
are not associated with any services, so the planners do not con-
sider them.

The ontology pruning reduces the ontologies to the relevant
’core’, so the results are similar irrespectively of the number of
service and object types in the full ontology. Again, the over-
head associated with the pruning is relatively small (between 1
and 2 sec.) in comparison with the efficiency gain.

26

Table 11: Experiments 3.1 and 3.2 - benchmark parameters for k=12. The complete ontologies size is |O| = 102, and |S| = 64.

next = 0, n|ext| = 0, |CAP| = 1 next = 2, n|ext| = 3, |CAP| = 9
id 3.11 3.12 3.13 3.14 3.15 3.16 3.21 3.22 3.23 3.24 3.25
len 1 2 3 4 6 12 1 2 3 4 6
n|EW | 12 6 4 3 2 1 12 6 4 3 2
|Spr | 12 12 12 12 12 12 16 20 24 28 36
|Opr | 13 17 16 20 17 21 13 23 28 37 46

Table 12: The results of Experiment 3.1 and 3.2, for complete ontologies.

GA SMT Hybrid FD
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
3.11 100

1

6.6

1

55.1

-

tmOut tmOut 100

1

15.9 7.1 23.0

1

4.73 156
3.12 90 8.8 45.1 90 32.0 9.9 41.9 6.82 186
3.13 67 10.8 44.3 1553 1597.3 67 33.5 11.7 45.1 6.65 194
3.14 60 13.2 51.4 250.3 301.7 57 32.6 13.5 46.1 5.08 161
3.15 47 12.6 50.8 52.0 102.8 47 38.2 15.1 53.3 12.89 283
3.16 3 13.7 59.9 5.6 65.5 0 0 33.1 15.8 48.9 22.23 569

3.21 90 2.4/6 6.6

9

41.7 15.4

tmOut tmOut
97 2.4/6 11.0 7.1 18.1

1

2.88 130
3.22 97 2.0/5 8.3 35.8 74.6 2.6/7 30.4 9.5 39.9 6.58 195
3.23 17 1 10.0 52.2 88.1 83 2.9/8 42.5 11.5 54.0 4.8 158
3.24 7 12.7 48.6 81.3 57 2.6/5 56.1 16.1 72.3 8.21 214
3.25 0 0 14.3 45.4 97.7 336.2 479.3 17 1 45.7 16.0 61.7 7.61 200

Table 13: The results of Experiments 3.1 and 3.2, for reduced ontologies.

GA-pruned SMT-pruned Hybrid-pruned FD-pruned
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
3.11 97

1

3.5

1

5.7

-

tmOut tmOut 93

1

0.1 4.7 4.8

1

0.1 41
3.12 83 5.7 25.6 80 0.1 6.3 6.3 0.24 72
3.13 90 6.0 26.7 603 629.7 77 20.4 6.3 26.7 0.24 73
3.14 63 7.1 23.1 95.4 118.5 73 17.8 6.9 24.7 0.38 72
3.15 73 7.5 37.8 25.7 63.6 67 27.3 8.0 35.3 0.48 78
3.16 100 8.7 29.9 2.0 31.9 97 23.7 10.0 33.7 0.38 73

3.21 83 2.1/5 4.3

9

7.0 10.7
tmOut tmOut

83 1.6/4 0.1 4.7 4.8

1

0.42 73
3.22 80 2.0/6 5.1 31.7 19.3 97 2.6/7 17.5 5.0 22.6 0.68 80
3.23 27 1.3/2 9.7 28.2 47.0 100 3.1/8 23.6 6.8 30.4 1.13 90
3.24 10 1.3/2 13.0 39.8 38.8 1728.4 1807 4.2/8 35.9 9.8 45.7 2.18 109
3.25 0 0 10.3 32.5 56.5 151 240 90 3.1/8 33.4 12.2 45.6 3.41 129

In Experiment 4.3 the number of objects in input lists is
scaled. One can observe that the values of this parameter sig-
nificantly influence the performance of the planners, except GA
which behaves quite stable in comparison with the other meth-
ods. The FD tool appears to be very vulnerable to increasing
the number of input objects, because it is able to found a plan
only for the easiest benchmark. Ontology pruning improves the
planners’ performance, especially in the case of FD. After the
reduction FD finds a plan in all but one hardest case.

Experiment 4.4 aims at scaling the number of object at-
tributes. It has hardly any influence on the effectiveness of
Planics modules, but the FD tool seems to be vulnerable to this
parameter values what results in the increase of the time and/or
memory consumption.

The graphical summary of Experiment 4 is presented in Fig-
ure 12 and 13.

7.3.5. General Conclusions
Concerning the characteristics of each planning method,

some general conclusions can be drawn. As one could expect,
each method has advantages and disadvantages, and the meth-

ods are often complementary. In the case of GA, its greatest
advantage is a relatively short running time, which depends on
the benchmark size only to a limited degree. The SMT-based
planner finds all plans while it is the only one able to determine
whether more plans exist or not. This is confirmed, e.g., by
Experiment 1. The hybrid algorithm often benefits from both
its components compensating their disadvantages, as shown in
Experiment 4.

In general, all the Planics planners are very sensitive to the
lengths of plans, contrary to the FD tool, as shows Experiment
2. Another advantage of FD is a low runtime, in many cases
unavailable for other methods. To its drawbacks one should
include the inability of finding more than one plan and poor
results in dealing with complex services demanding many input
objects, as confirmed by Experiment 4.4. The large number of
services in the ontology is also prohibitive for FD and results in
running out of memory quickly.

However, in many cases, the ontology pruning is to able to
resolve these issues to a great extent and increase the planners
performance. In Figure 14 we show the summary of the total re-
duction gain in all experiments. Surprisingly, the FD tool seems

27

Table 14: Experiments 4.1 (left) and 4.2 (right) - benchmark parameters

next = 2, n|ext| = 2, next = 2, n|ext| = 2, n|EW | = 3
n|EW | = 3, n|O| = 102 |CAP| = 4, |S| = 64

id 4.11 4.12 4.13 id 4.21 4.22 4.23 4.24 4.25 4.26
|S| 64 128 256 |O| 102 152 202 252 302 352
|Spr | 15 15 15 |Spr | 10 10 10 10 10 10
|Opr | 18 18 18 |Opr | 12 12 13 15 14 16

Table 15: The result of Experiment 4.1 and 4.2, for complete ontologies.

GA SMT Hybrid FD
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
4.11 83 1.8/4 6.4

4
18.9 5.8 63.8 88.5 97 2.5/4 12.1 6.9 19.1 1 9.32 255

4.12 57 1.5/3 8.3 23.5 10.4 57.6 91.5 2.6/4 21.6 10.4 32.0 0 213 memOut4.13 70 1.1/2 14.9 38.1 13.3 98.6 150 100 2.4/4 31.5 18.8 50.2 133

4.21 100 2.9/4 4.2

4

4.0 1.3 3.8 9.0

100

3.8/4 3.2 3.9 7.1

1

15.1 322
4.22 97 2.7/4 4.3 4.2 1.4 2.4 8.0 3.5/4 3.3 4.1 7.3 4.49 150
4.23

100

3.5/4 5.2 4.7 0.9 4.0 9.6 3.7/4 3.8 5.3 9.2 4.77 119
4.24 3.2/4 6.1 4.3 0.4 2.9 7.7

3.6/4
4.0 6.3 10.3 6.1 115

4.25 2.8/4 6.7 5.2 2.1 5.2 12.5 3.5 7.1 10.6 7.93 120
4.26 3.4/4 6.8 6.1 1.3 3.1 10.4 4.1 7.3 11.4 10.6 117

Table 16: The result of Experiment 4.1 and 4.2, for reduced ontologies.

GA-pruned SMT-pruned Hybrid-pruned FD-pruned
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
4.11 97 2.0/3 4.4

4
7.1 3.1 24.6 34.8

100
3.8/4 5.7 4.4 10.1

1
0.39 734.12 80 1.8/4 4.7 6.4 5.7 20.8 32.9 3.6/4 4.5 10.2 0.38

4.13 87 1.9/4 4.8 6.9 3.0 23.9 33.9 3.3/4 5.1 4.5 9.5 0.37 72

4.21

100

3.8/4 3.0

4

0.7 0.3 1.8 2.8

100

4 0.5 3.1 3.6

1

0.1 72
4.22 3.6/4 2.8 1.0 1.0 1.3 3.3 3.8/4 0.6 2.7 3.3 0.24 74
4.23 3.9/4 2.6 0.9 1.6 1.0 3.6

3.9/4
0.1 71

4.24 3.8/4 2.9 1.9 0.4 1.3 3.7 0.9 3.2 4.1
0.24 724.25 3.5/4 3.2 2.2 0.6 2.2 5.0 1.0 3.3 4.3

4.26 4.0/4 2.9 1.7 1.0 1.5 4.2 3.8/4 3.1 4.1

0%

20%

40%

60%

80%

100%

G
A

 p
r

G
A

 a
vg

G
A

 m
ax

G
A

 t
im

e

SM
T

p
la

n
s

SM
T

ti
m

e

H
 p

r

H
 a

vg

H
 m

ax

H
 t

im
e

FD
 p

l

FD
 t

im
e

FD
 m

em

Performance ratio: pruned/complete Reduction gain

Figure 14: The total GDB reduction gain, in all experiments.

to benefit the most on the ontology pruning. Thus, the reduc-
tion not only improves performance of our planners, but could
do it for external algorithms as shown at the example of FD.
Sometimes, the reduction even enables the use of them, like in
Experiments 4.1 and 4.3. For GDB the running times are rel-
atively small and similar for all the benchmarks, only slightly
depending on their size and other properties.

7.4. Comparison with other approaches
We have attempted to compare the performance of Planics

with other tools. As the abstract planning is our original idea,
there seem to be no other tools implementing it directly. In [6]
there is a description of 7 SAT-based composition experiments
performed with 413 concrete Web services, for which a SAT
solver consumes between 40 and 60 sec. for every composi-
tion. However, only basic type matching has been considered
with plans composed of only a couple of services, and the main
objective was to find the shortest sequence satisfying the user
query. We reproduced these experiments by modelling them
in Planics, as follows. The web services became the service
types, and the hierarchy of types used as web service parame-
ters became the Planics object types. Our planner significantly
outperforms those reported in the paper, finding a plan in only
a few seconds out of which only a fraction of a second was
the SAT time. In general, the presented solution is a simplified
form of the Planics planning. Moreover, we search not only for
a shortest solution, but we are aiming at finding all the plans.

In order to perform the second comparison, we translated
Planics ontologies and queries to the PDDL language, and ap-

28

Table 17: Experiments 4.3 and 4.4 - benchmark parameters

|S| = 64, |O| = 102, next = 2, n|ext| = 2 |S| = 64, |O| = 102, next = 2
id 4.31 4.32 4.33 4.34 4.35 4.36 id 4.41 4.42 4.43 4.44 4.45
nmin

OinS 1 3 4 5 6 10 nmin
OA 2 5 10 15 20

|Spr | 14 14 14 14 14 14 |Spr | 14 14 14 14 14
|Opr | 15 30 39 48 48 90 |Opr | 15 16 15 15 16

Table 18: The result of Experiment 4.3 and 4.4, for complete ontologies.

GA SMT Hybrid FD
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
4.31 100 4.8/9 3.8

9

4.3 1.5 6.9 12.7 100 7.2/9 3.7 3.9 7.6 1 4.89 160
4.32 90 2.9/7 7.4 15.6 3.2 13.4 32.2 93 4.5/9 9.5 4.8 14.3

0

116

memOut
4.33

100
5.2/8 6.9 24.9 7.2 24.4 56.5

100

5.8/8 19.1 6.8 25.9 175
4.34 4.7/7 8.1 54.4 12.3 23.0 89.8 5.4/7 37.6 8.3 46.0 115
4.35 4.0/7 8.1 64.6 14.1 26.7 105.4 5.5/8 35.9 8.5 44.4 115
4.36 97 3.3/6 15.2 814 138 51.0 1003 3.5/7 482 23 505 127

4.41

100

4.8/9 3.8

9

4.3 1.5 6.9 12.7

100

7.2/9 3.7 3.9 7.6

1

4.89 160
4.42 5.1/8 6.8 4.5 2.0 3.3 9.8 6.3/9 3.5 6.8 10.3 4.46 155
4.43 5.2/8 4.6 5.0 3.5 4.1 12.6 7.2/9 4.5 4.3 8.8 5.77 174
4.44 5.5/9 6.3 4.3 2.8 4.5 11.6 6.9/9 5.3 5.7 11.0 26.2 244
4.45 5.6/9 5.7 6.3 3.6 5.6 15.5 6.3/9 5.2 5.3 10.6 50.8 109

Table 19: The result of Experiment 4.3 and 4.4, for reduced ontologies.

GA-pruned SMT-pruned Hybrid-pruned FD-pruned
id pr. plans time plans first other unsat Σ pr. plans smt ga Σ plan time mem

[%] avg/max [s] [s] [s] [s] [s] [%] avg/max [s] [s] [s] [s] [MB]
4.31

100

6.0/9 3.4

9

0.8 1.9 2.5 5.3

100

7.9/9 0.8 3.0 3.8

1

0.39 73
4.32 4.2/9 4.2 6.0 1.6 4.2 11.8 5.2/9 4.1 3.7 7.8 1.28 94
4.33 6.0/9 5.6 23.5 4.9 9.0 37.3 6.0/9 7.4 5.3 12.7 2.93 126
4.34 5.7/9 9.5 26.0 5.3 8.1 39.4 5.9/9 12.1 6.6 18.7 7.76 203
4.35 5.6/9 5.8 41.5 8.3 13.3 63.2 5.7/9 9.2 6.6 15.8 6.3 191
4.36 11.9 513 125 48.0 686 5.1/8 122 17 139 0 310 memOut

4.41

100

6.0/9 3.4

9

0.8 1.9 2.5 5.3

100

7.9/9 0.8 3.0 3.8

1

0.39 73
4.42 6.5/9 5.4 1.6 2.9 3.4 7.9 7.3/9 1.4 5.0 6.4 0.4 77
4.43 5.7/8 3.4 1.1 1.9 2.5 5.5 7.9/9 1.1 3.5 4.7 0.39 76
4.44 6.5/9 4.9 2.3 3.4 1.9 7.6 2.1 4.6 6.7 21.55 186
4.45 5.7/9 4.6 1.9 1.9 4.3 8.1 7.8/9 1.5 4.6 6.1 0.39 76

plied the Fast Downward tool [18, 64] as a planner. FD is one
of the best planning tools (available for free), following the re-
sults of International Planning Competition 2011. PDDL [65]
is one of the leading standards in the AI planning community.
A PDDL planning problem definition is divided into two parts.
The first one is a domain description which consists of, among
others, definitions of types, predicates, and actions. The second
one is a problem description defining objects, initial conditions,
and goal states. Thus, in order to fairly confront Planics and FD
we implemented a tool called Planics2PDDL. It takes an ontol-
ogy and a user query as input and translates them into PDDL
domain and problem files, respectively. The translation schema
is the following. The object types from Planics ontology, as
well as the (abstract) values of their attributes are encoded using
PDDL predicates. The services are mapped as PDDL actions,
while the query is translated into PDDL initial and goal clauses.
An example of the translation is given in part V of [19].

For the comparison we used the benchmarks generated by

our Ontology Generator. The tests have been run on the same
machine with 2000 sec. time-out and memory limit of 12GB.
The results are presented and discussed in the former section.
One has to admit, that if the goal is to find one plan as quickly
as possible, the FD tool could be superior in many cases when
it works on small or reduced ontologies. However, it is note-
worthy that usually GA finds the first solution quite quickly,
not later than after a third or a half of the total computation
time, but, contrary to FD, it does not stop and looks for another
solution.

We have also adapted the Low Level Petri Net Analyser tool
(LoLA) to deal with the abstract planning problem, as reported
in [66]. To this aim we implemented a translation of the Planics
ontologies and queries to high level Petri net specification ac-
cepted by LoLA augmented with a reachability property to test.
Our overall conclusions of dealing with LoLA are quite similar
to those concerning FD. Both the tools can be sometimes more
efficient than Planics modules when dealing with small ontolo-

29

gies and long paths, but they are unable to find more than one
plan and to search for plans in large ontologies.

8. Final Remarks

We have presented three new solutions to the abstract plan-
ning problem, based on SMT, GA, and their hybrid combina-
tion. All the three methods have been combined with an ontol-
ogy pruning method based on a graph database.

The key concept is that different abstract plans are found by
dealing with equivalence classes of user query solutions repre-
sented by multisets of service types. In case of the SMT-based
algorithm, our idea consists in introducing formulas encoding
multisets which represent abstract plans, and block all the solu-
tions corresponding to the plans already found.

The GA-based algorithm proved to be highly efficient thanks
to generating only some of possible linearisations of multisets,
and applying the fitness function and mutation operator devel-
oped solely to APP. In result, the similarity measure built in the
fitness function enables finding several plans in a single run, and
the algorithm prefers the individuals composed of service types
which produce object types requested in a user query, directly
or indirectly (via other service types).

Our extensive experimental study shows that the combina-
tion of GA- and SMT-based approaches produces fairly good
results, in particular for instances hard to solve by each of these
algorithms applied separately. These problems have usually
large search spaces containing many solutions.

Moreover, a novel combination of our planning approaches
with the ontology pruning method appears to be a very efficient
method to abstract planning in Planics as well in the FD tool.

Concerning the future work, we plan to extend the graph
database approach, so that the whole planning, including
matching of pre- and post-conditions, would be performed by
the database. We also plan to experimentally check how the al-
gorithms perform in a typical setting in which the composition
works, i.e., when the ontology is modified relatively rarely and
to a minor degree, but there are many queries to be answered
concurrently. We expect the graph-based approach to perform
well in this case, because databases are optimised to work in
such conditions.

References

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[2] S. Ambroszkiewicz, Entish: A language for describing data processing in
open distributed systems, Fundam. Inform. 60 (1-4) (2004) 41–66.

[3] J. Rao, X. Su, A survey of automated web service composition methods,
in: Proc. of SWSWPC’04, Vol. 3387 of LNCS, Springer, 2005, pp. 43–54.

[4] G. De Giacomo, M. Mecella, F. Patrizi, Automated service composition
based on behaviors: The roman model, in: A. Bouguettaya, Q. Z. Sheng,
F. Daniel (Eds.), Web Services Foundations, Springer, 2014, pp. 189–214.
doi:10.1007/978-1-4614-7518-7 8.

[5] Z. Li, L. O’Brien, J. Keung, X. Xu, Effort-oriented classification matrix of
web service composition, in: Proc. of the Fifth International Conference
on Internet and Web Applications and Services, 2010, pp. 357–362.

[6] W. Nam, H. Kil, D. Lee, Type-aware web service composition using
boolean satisfiability solver, in: Proc. of the CEC’08 and EEE’08, 2008,
pp. 331–334.

[7] D. Berardi, F. Cheikh, G. De Giacomo, F. Patrizi, Automatic service com-
position via simulation, Int. J. Found. Comput. Sci. 19 (2) (2008) 429–
451. doi:10.1142/S0129054108005759.

[8] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, F. Patrizi, Au-
tomatic service composition and synthesis: the roman model, IEEE Data
Eng. Bull. 31 (3) (2008) 18–22.

[9] D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek,
A. Półrola, J. Skaruz, HarmonICS - a tool for composing medical ser-
vices, in: ZEUS, 2012, pp. 25–33.

[10] D. Doliwa, et al., PlanICS - a web service compositon toolset, Fundam.
Inform. 112(1) (2011) 47–71.

[11] A. Niewiadomski, W. Penczek, Towards SMT-based Abstract Planning in
PlanICS Ontology, in: Proc. of KEOD 2013 International Conference on
Knowledge Engineering and Ontology Development, 2013, pp. 123–131.
doi:10.5220/0004514901230131.

[12] J. Skaruz, A. Niewiadomski, W. Penczek, Evolutionary algorithms for ab-
stract planning, in: R. Wyrzykowski, J. Dongarra, K. Karczewski, J. Was-
niewski (Eds.), PPAM (1), Vol. 8384 of Lecture Notes in Computer Sci-
ence, Springer, 2013, pp. 392–401.

[13] A. Niewiadomski, J. Skaruz, P. Switalski, W. Penczek, Concrete plan-
ning in planics framework by combining SMT with GEO and simulated
annealing*, Fundam. Inform. 147 (2-3) (2016) 289–313. doi:10.3233/FI-
2016-1409.
URL http://dx.doi.org/10.3233/FI-2016-1409

[14] L. M. de Moura, N. Bjørner, Z3: An efficient SMT solver, in: Proc. of
TACAS’08, Vol. 4963 of LNCS, Springer-Verlag, 2008, pp. 337–340.

[15] D. Dasgupta, Z. Michalewicz, Evolutionary algorithms in engineering ap-
plications, Springer, 1997.

[16] J. Muszynski, S. Varrette, P. Bouvry, F. Seredynski, S. U. Khan, Con-
vergence analysis of evolutionary algorithms in the presence of crash-
faults and cheaters, Computers & Mathematics with Applications 64 (12)
(2012) 3805–3819. doi:10.1016/j.camwa.2012.03.004.

[17] X. Li, Q. Zhao, Y. Dai, A semantic web service composition method
based on an enhanced planning graph., ICEE, 2288-2291(2010) (2010).
doi:10.1109/ICEE.2010.578.

[18] M. Helmert, The fast downward planning system, Journal of Artificial
Intelligence Research 26 (2006) 191–246.

[19] Online supplementary materials, http://planics.uph.edu.pl/asoc/
supplement.pdf (2016).

[20] J. Skaruz, A. Niewiadomski, W. Penczek, Automated abstract planning
with use of genetic algorithms, in: GECCO (Companion), 2013, pp. 129–
130.

[21] A. Niewiadomski, W. Penczek, J. Skaruz, Hybrid approach to abstract
planning of web services, in: Service Computation 2015 : The Seventh
International Conferences on Advanced Service Computing, 2015, pp.
35–40.

[22] S. Mitra, R. Kumar, S. Basu, Automated choreographer synthesis for web
services composition using I/O automata, in: ICWS, 2007, pp. 364–371.

[23] V. Chifu, I. Salomie, E. St. Chifu, Fluent calculus-based web service com-
position - from OWL-S to fluent calculus, in: Proc. of the 4th Int. Conf.
on Intelligent Computer Communication and Processing, 2008, pp. 161
–168.

[24] V. Gehlot, K. Edupuganti, Use of Colored Petri Nets to model, analyze,
and evaluate service composition and orchestration, in: System Sciences,
2009. HICSS ’09., 2009, pp. 1 –8. doi:10.1109/HICSS.2009.487.

[25] J. Rao, P. Küngas, M. Matskin, Composition of semantic web services
using linear logic theorem proving, Inf. Syst. 31 (4) (2006) 340–360.
doi:10.1016/j.is.2005.02.005.

[26] P. Traverso, M. Pistore, Automated composition of semantic web services
into executable processes, in: The Semantic Web ISWC 2004, Vol. 3298
of LNCS, Springer, 2004, pp. 380–394.

[27] B. Schlingloff, A. Martens, K. Schmidt, Modeling and model check-
ing web services, Electr. Notes Theor. Comput. Sci. 126 (2005) 3–26.
doi:10.1016/j.entcs.2004.11.011.

[28] A. Lomuscio, H. Qu, M. Solanki, Towards verifying contract regu-
lated service composition, Autonomous Agents and Multi-Agent Systems
24 (3) (2012) 345–373. doi:10.1007/s10458-010-9152-3.

[29] M. Elwakil, Z. Yang, L. Wang, Q. Chen, Message race detection for web
services by an SMT-based analysis, in: Proc. of the 7th Int. Conference
on Autonomic and Trusted Computing, ATC’10, Springer, 2010, pp. 182–
194.

30

[30] L. Bentakouk, P. Poizat, F. Zaidi, Checking the behavioral conformance
of web services with symbolic testing and an SMT solver, in: Tests and
Proofs, Vol. 6706 of LNCS, Springer, 2011, pp. 33–50.

[31] M. M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella, M. Rossi, SMT-
based verification of LTL specification with integer constraints and its ap-
plication to runtime checking of service substitutability, in: SEFM, 2010,
pp. 244–254.

[32] G. Monakova, O. Kopp, F. Leymann, S. Moser, K. Schäfers, Verifying
business rules using an SMT solver for BPEL processes, in: BPSC, 2009,
pp. 81–94.

[33] F. Lecue, M. D. Penta, R. Esposito, M. Villani, Optimizing QoS-aware se-
mantic web service composition., in: Proceedings of the 8th International
Semantic Web Conference, 2009, pp. 375–391.

[34] I. Garibay, A. S. Wu, O. Garibay, Emergence of genomic self-similarity in
location independent representations, Genetic Programming and Evolv-
able Machines 7(1) (2006) 55–80.

[35] S. V. Hashemian, F. Mavaddat, A graph-based framework for compo-
sition of stateless web services., in: ECOWS, IEEE Computer Society,
2006, pp. 75–86.
URL http://dblp.uni-trier.de/db/conf/ecows/ecows2006.

html#HashemianM06

[36] A Graph-Based Web Service Composition Technique Using Ontological
Information.

[37] C. B. Mahmoud, F. Bettahar, H. Abderrahim, H. Saidi, Towards a graph-
based approach for web services composition, CoRR abs/1306.4280.
URL http://arxiv.org/abs/1306.4280

[38] H. Elmaghraoui, I. Zaoui, D. Chiadmi, L. Benhlima, Graph based e-
government web service composition, CoRR abs/1111.6401.
URL http://arxiv.org/abs/1111.6401

[39] S. Deng, B. Wu, J. Yin, Z. Wu, Efficient planning for top-k web service
composition, Knowledge and Information Systems 36 (3) (2013) 579–
605. doi:10.1007/s10115-012-0541-6.
URL http://dx.doi.org/10.1007/s10115-012-0541-6

[40] H. N. Talantikite, D. Aissani, N. Boudjlida, Semantic anno-
tations for web services discovery and composition, Com-
puter Standards & Interfaces 31 (6) (2009) 1108 – 1117.
doi:http://dx.doi.org/10.1016/j.csi.2008.09.041.
URL http://www.sciencedirect.com/science/article/pii/

S0920548908001591

[41] I. Robinson, J. Webber, E. Eifrem, Graph Databases, O’Reilly Media,
Inc., 2013.

[42] R. Angles, C. Gutierrez, Survey of graph database models, ACM Comput.
Surv. 40 (1) (2008) 1:1–1:39. doi:10.1145/1322432.1322433.
URL http://doi.acm.org/10.1145/1322432.1322433

[43] S. Shetty, S. P. R, A. K. Sinha, Article: A novel web service compo-
sition and web service discovery based on map reduce algorithm, IJCA
Proceedings on International Conference on Information and Communi-
cation Technologies ICICT (4) (2014) 41–45, full text available.

[44] G. Kardas, A. Goknil, O. Dikenelli, N. Y. Topaloglu, Model driven devel-
opment of semantic web enabled multi-agent systems, Int. J. Cooperative
Inf. Syst. 18 (2) (2009) 261–308. doi:10.1142/S0218843009002014.
URL http://dx.doi.org/10.1142/S0218843009002014

[45] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas, T. Kosar,
On the use of a domain-specific modeling language in the develop-
ment of multiagent systems, Eng. Appl. Artif. Intell. 28 (2014) 111–141.
doi:10.1016/j.engappai.2013.11.012.
URL http://dx.doi.org/10.1016/j.engappai.2013.11.012

[46] S. Getir, M. Challenger, G. Kardas, The formal semantics of
a domain-specific modeling language for semantic web en-
abled multi-agent systems, Int. J. Cooperative Inf. Syst. 23 (3).
doi:10.1142/S0218843014500051.
URL http://dx.doi.org/10.1142/S0218843014500051

[47] A. Lomuscio, W. Penczek, B. Wozna, Bounded model checking for
knowledge and real time, Artif. Intell. 171 (16-17) (2007) 1011–1038.
doi:10.1016/j.artint.2007.05.005.
URL http://dx.doi.org/10.1016/j.artint.2007.05.005

[48] Web Service Modelling Ontology D2v1.0, http://www.wsmo.org/2004/
d2/v1.0/ (2004).

[49] M. Klusch, B. Fries, K. Sycara, Owls-mx: A hybrid semantic web
service matchmaker for owl-s services, Web Semantics: Science,
Services and Agents on the World Wide Web 7 (2) (2009) 121 – 133.

doi:http://dx.doi.org/10.1016/j.websem.2008.10.001.
URL http://www.sciencedirect.com/science/article/pii/

S1570826808000838

[50] OWL 2 web ontology language document overview, http://www.w3.org/
TR/owl2-overwiew/ (2009).

[51] R. Lara, D. Roman, A. Polleres, D. Fensel, A Conceptual Comparison
of WSMO and OWL-S., in: L. J. Zhang (Ed.), ECOWS, Vol. 3250 of
Lecture Notes in Computer Science, Springer, 2004, pp. 254–269.
URL http://springerlink.metapress.com/openurl.

asp?genre=article{\&}issn=0302-9743{\&}volume=

3250{\&}spage=254

[52] M. Klusch, A. Gerber, Semantic web service composition planning with
owls-xplan, in: Proceedings of the 1st Int. AAAI Fall Symposium on
Agents and the Semantic Web, 2005, pp. 55–62.

[53] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, D. Wilkins, PDDL - the Planning Domain Definition Language -
version 1.2, Tech. Rep. TR-98-003, Yale Center for Computational Vision
and Control (1998).

[54] T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. S. Nau, D. Wu, F. Yaman,
SHOP2: an HTN planning system, CoRR abs/1106.4869.
URL http://arxiv.org/abs/1106.4869

[55] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation
through heuristic search, J. Artif. Int. Res. 14 (1) (2001) 253–302.
URL http://dl.acm.org/citation.cfm?id=1622394.1622404

[56] Resource Description Framework: Concepts and Abstract Syntax, http:/
/www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (2004).

[57] J. Dunkel, C. Kleiner, On managing services in service-oriented architec-
tures, in: E. Ariwa, E. El-Qawasmeh (Eds.), Digital Enterprise and In-
formation Systems - International Conference, DEIS 2011, London, UK,
July 20 - 22, 2011. Proceedings, Vol. 194 of Communications in Com-
puter and Information Science, Springer, 2011, pp. 410–424.
URL http://dx.doi.org/10.1007/978-3-642-22603-8_37

[58] Semantic Annotations for WSDL and XML Schema. W3C Recommen-
dation., https://www.w3.org/TR/sawsdl/ (2007).

[59] L. Mikulski, A. Niewiadomski, M. Piatkowski, S. Smyczynski, On gen-
eration of context-abstract plans, in: Software Engineering and For-
mal Methods - SEFM 2014 Collocated Workshops: HOFM, SAFOME,
OpenCert, MoKMaSD, WS-FMDS, Grenoble, France, September 1-2,
2014, Revised Selected Papers, 2014, pp. 376–388.

[60] S. Ranise, C. Tinelli, The SMT-LIB format: An initial proposal, in: In
Proc. of the 1st Workshop on Pragmatics of Decision Procedures in Au-
tomated Reasoning (Miami Beach, USA), 2003.

[61] C. Barrett, A. Stump, C. Tinelli, The SMT-LIB standard – version 2.0,
in: Proc. of the 8th Int. Workshop on Satisfiability Modulo Theories
(SMT’10), 2010.

[62] D. R. Cook, The SMT-LIBv2 Language and Tools: A Tuto-
rial, http://www.grammatech.com/resource/smt/ jSMTLIBTutorial.pdf
(2012).

[63] A. Biere, A. Cimatti, E. Clarke, M. Fujita, Y. Zhu, Symbolic model check-
ing using SAT procedures instead of BDDs, in: In Proc. of the ACM/IEEE
Design Automation Conference (DAC), 1999, pp. 317–320.

[64] M. Helmert, Concise finite-domain representations for PDDL
planning tasks, Artif. Intell. 173 (5-6) (2009) 503–535.
doi:10.1016/j.artint.2008.10.013.

[65] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, Y. Dimopoulos, Determin-
istic planning in the fifth international planning competition: PDDL3 and
experimental evaluation of the planners, Artificial Intelligence 173 (5)
(2009) 619–668.

[66] A. Niewiadomski, K. Wolf, Lola as abstract planning engine of planics,
in: Proceedings of the International Workshop on Petri Nets and Software
Engineering, co-located with 35th International Conference on Applica-
tion and Theory of Petri Nets and Concurrency (PetriNets 2014) and 14th
International Conference on Application of Concurrency to System De-
sign (ACSD 2014), Tunis, Tunisia, June 23-24, 2014., 2014, pp. 349–350.
URL http://ceur-ws.org/Vol-1160/paper26.pdf

31

