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1. INTRODUCTION
Multi-Agent Systems (MAS) describe interactions of agents

that are often assumed to be intelligent and autonomous.
Alternating-time temporal logic ATL* [4] and its fragment
ATL are logics that allow for reasoning about strategic in-
teractions in MAS. ATL is typically interpreted over Con-
current Game Structures (CGS), which are used to model
MAS [6, 26, 7, 14, 19] and their strategic properties to be
verified [3, 2, 28, 29, 32, 17, 24, 15, 31, 25]. However, the
“vanilla” ATL does not support timing constraints.

In this paper, we investigate Timed Alternating-Time Tem-
poral Logic (TATL) [30] which allows for expressing strategic
properties that depend on both the visited locations and the
time measured along the paths. In what follows, we provide
a hierarchy of timed and untimed strategies and show that,
unless a strict punctuality is needed, tracking the passage of
time can be replaced with counting the number of visits.

The work presented in this paper fits within the broad
context of research on timed games [1, 9, 16, 18, 33]. We
build upon the theory introduced in [30] which in turn can
be seen as the simplest discrete-time extension of ATL [4].
Real-time extensions of ATL and, more generally, dense-
timed games are explored in e.g. [8, 10, 20, 21, 22, 23, 27].

2. TATL AND ITS SEMANTIC VARIANTS
TATL [30] extends ATL [4] with timing constraints.

Definition 1 (TATL Syntax). Let AP be a set of ato-
mic propositions, and Agt the set of all agents. The language
of TATL is defined by the following grammar:

φ ::= p | ¬φ | φ∨φ | φ∧φ | 〈〈A〉〉X φ | 〈〈A〉〉φU∼ηφ | 〈〈A〉〉φR∼ηφ

where p ∈ AP, A ⊆ Agt, ∼ ∈ {≤,=,≥}, and η ∈ N.

As usual, we read 〈〈A〉〉ψ as “the coalition A can enforce
ψ along each path”, X stands for “in the next state”, U for
“until”, and R for “release”. We introduce the additional
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Figure 1: Punctuality needs clocks

modality 〈〈A〉〉F∼ηφ := 〈〈A〉〉>U∼ηφ, where F is interpreted
as “eventually”. The additional subscript denotes the timing
constraints imposed on modalities. TATL≤,≥ is the subset
of TATL with ∼ ∈ {≤,≥}, i.e. disallowing equality.

We interpret our logic over Timed Durational CGS (TD-
CGS), i.e. graphs with vertices (set Q) labeled with propo-
sitions and edges labeled with tuples of actions selected from
Act , one per agent, and time durations. It is assumed that
traversing an edge is an atomic action, taking as long as indi-
cated by its time label. A path in the TDCGS is a sequence
of states S = Q×N, i.e. pairs of current locations and time
snapshots. We refer to [30] for details and focus on Fig. 1 to
provide some further intuitions: This model contains three
locations and its transitions are controlled by two agents.
For example, in location q0 agents 1 and 2 can first select
actions a and x, respectively, to traverse the loop on q0 in
1 time unit. Next, the agents can choose actions c and x,
respectively, and move to location q2 in 2 time units. This
way, the system follows a finite path π = (q0, 0)(q0, 1)(q2, 3).

Strategic abilities of coalitions of agents, i.e. the paths
that can be enforced, depend on the allowed strategies. Fol-
lowing [9, 13, 34], we consider here several variants. Let
π ∈ S+ be a finite sequence of states. By πF we denote
the final state of π, lc(πF ) is the location of πF , and #F (π)
denotes how the number of times lc(πF ) appears along π.

Definition 2 (Classes of strategies).

• A timed perfect recall strategy for agent a is a function
σa : S+ → Act. ΣT denotes the set of such strategies.

• A timed memoryless strategy is a strategy σa ∈ ΣT

that assigns to π ∈ S+ an action based only on the
final state πF . These are denoted by Σt.
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Figure 2: Correspondence between TATL semantics

• A timeless perfect recall strategy is a strategy σa ∈ ΣT

that assigns to π ∈ S+ an action based on the sequence
of locations visited along π. The temporal component
of π is ignored. These are denoted by ΣR.

• Timeless memoryless strategies, denoted by Σr, depend
only on the final location lc(πF ).

• A counting strategy is a strategy σa ∈ ΣT such that,
for each π, π′ ∈ S+, if lc(πF ) = lc(π′F ) and #F (π) =
#F (π′), then σa(π) = σa(π′). The set of such strate-
gies is denoted by Σ# .

Moreover, each counting strategy σa can be defined by a
function σ#

a : Q× N+ → Act such that σ#
a (q, n) := σa(π) if

q = lc(πF ) and n = #lc(πF )(π), for some π.
In addition to general counting strategies, we use those

that are bounded by a threshold.

Definition 3 (Threshold strategies). Let n ∈ N+.
A counting strategy σa for a is called n–threshold iff for
each q ∈ Q there exist actions act1, . . . , actn+1 ∈ Act, and
integer intervals I1 = [1, i1), I2 = [i1, i2), . . . , In+1 = [in,∞)
such that for all 1 ≤ j ≤ n+ 1: σ#

a (q, k) = actj if k ∈ Ij.
The set of n–threshold strategies is denoted by Σ#n .

Intuitively, a counting strategy is n–threshold if for each
location there exists a sequence of n thresholds, such that
when the next threshold is exceeded, another action is used.

A strategy for a coalition A ⊆ Agt is a set of strategies,
one per agent. In what follows, for each type of strategy
σ ∈ {ΣT,Σt,ΣR,Σr,Σ#}∪

⋃
n∈N+

Σ#n , we mean the corre-

sponding satisfaction relation by using the appropriate sub-
script. For example, q |=# 〈〈1〉〉F≤5srv1 ∧ ¬〈〈2〉〉F≤5srv2 may
denote that the system is serviceable in five or less time
units for agent 1 but not for agent 2, where the agents can
use only counting strategies.

3. ANALYSIS OF SEMANTIC VARIANTS
Let us again refer to the model in Fig. 1. Observe that

q0 |= 〈〈1〉〉F=5p. Indeed, agent 1 can follow a simple strategy
of enforcing the loops on q0 until the time reaches either 3
or 4, depending on the response of the second agent. Then,
agent 1 selects action c or b, respectively, to reach one of
the states labelled with p precisely at time 5. On the other
hand, it is easy to see that q0 6|=# 〈〈1〉〉F=5p, as there is
no counting strategy that allows to decide when to leave q0
for a location labelled with p and which branch to take in

order to reach the target in 5 time units. We have, however,
q0 |= 〈〈1〉〉F∼5p and q0 |=# 〈〈1〉〉F∼5p for ∼ ∈ {≤,≥}.

In Fig. 2 we present the main contribution of this paper:
a roadmap of correspondences between semantic variants
of TATL. A single-direction arrow between two semantic
relation symbols indicates that the satisfaction of a given
TATL (or TATL≤,≥, in two cases) formula in the source
semantics implies the satisfaction in the target semantics.
A double-direction arrow indicates that the semantics are
equivalent.

As it turns out, despite the removal of the timed compo-
nent from the semantics, the counting strategies can imple-
ment properties expressed in TATL≤,≥, i.e. without strict
punctuality. Moreover a detailed analysis of counting strate-
gies that result from the presented reduction revealed the
simplicity of their structure. In fact, it is sufficient to con-
sider 1-threshold strategies that utilise only two actions per
location to implement any TATL≤,≥ property. If equality is
permitted, then counting and timed semantics do not coin-
cide, the latter being more expressive. In general, there is
no threshold that would allow for the counting strategies to
be as powerful as the timed strategies.

Theorem 1 (Comparing semantics of TATL). The
following equivalences hold:

• |=T ⇐⇒ |=t, for TATL,

• |=#1 ⇐⇒ |=# ⇐⇒ |=R ⇐⇒ |=T , for TATL≤,≥.

4. CONCLUSIONS AND FUTURE WORK
In this paper we investigated TATL, a basic, natural ex-

tension of ATL with discrete time. We introduced a new
type of semantics, where agents’ decisions are based on the
number of visits at locations encountered along the current
execution path. We investigated in detail the correspon-
dence between the semantic variants of the logic.

This work opens several research avenues that we plan to
explore in future. Firstly, the strict binding of coalition se-
lectors and temporal modalities in TATL can be loosened
to obtain TATL?, similarly to ATL vs. ATL?. We feel that
the correspondence between timed and counting semantics
of TATL? is worth investigating. It is not difficult to see
that in TATL? equality can be expressed using inequalities.
Secondly, in this work we deal with agents equipped with
perfect knowledge about their environment. Following [34]
we plan to analyse the consequences of introducing indis-
tinguishability relations to TDCGS. We expect that this
modification will significantly influence the decidability of
the model checking problem. Another natural extension of
TATL consists in extending the logic [11], the models [5],
or both [12] with parameters. Our preliminary analysis sug-
gests that the decidability of associated emptiness problem,
i.e. the existence of parameter valuations under which a
given formula holds, depends both on the formula syntax
and on the choice of place for parameter injection.
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