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Abstract

A general semantics of strategic abilities of agents in asynchronous
systems with and without perfect information is proposed, and
some general complexity results for verification of strategic abil-
ities in asynchronous systems are presented. A methodology for
partial order reduction (POR) in verification of agents with im-
perfect information is developed, based on the notion of traces
introduced by Mazurkiewicz. Two semantics of ATL∗−X are con-
sidered and it is shown that for memoryless imperfect information
(|=ir) contrary to memoryless perfect information (|=Ir), one can
apply techniques known for LTL−X.

Keywords: Alternating-Time Temporal Logic, asynchronous sys-
tems, partial order reduction, traces

Streszczenie

O redukcjach częścio-porządkowych dla fragmentów logiki
temporalnej czasu alternującego

Raport definiuje ogólną semantykę dla strategicznych umiejętno-
ści agentów w systemach asynchronicznych z pełną i niepełną
informacją, oraz prezentuje ogólne wyniki dotyczące złożoności
weryfikacji strategicznych umiejętności w systemach asynchro-
nicznych. Metoda redukcji częścio-porządkowych, wykorzystu-
jąca ślady Mazurkiewicza, została zastosowana do weryfikacji
agentów z niepełną informacją. Dla rozważanych semantyk lo-
giki ATL∗−X zostało pokazane, że dla bezpamięciowej niepełnej
informacji (|=ir) w przeciwieństwie do bezpamięciowej pełnej
informacj (|=Ir), można zastosować metody znane dla LTL−X.

Słowa kluczowe: Logika temporalna czasu alternującego, sys-
temy asynchroniczne, redukcje częściowo-porządkowe,
ślady
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1 Introduction

Multi-agent systems describe interactions of multiple entities called agents,
often assumed to be intelligent and autonomous. Alternating-time temporal
logic ATL∗ and its fragment ATL [3, 6] are logics which allow for reason-
ing about strategic interactions in such systems. The main idea is to extend
the framework of temporal logic with the game-theoretic notion of strategic
ability. Hence, ATL∗ enables to express statements about what agents (or
groups of agents) can achieve. For example, 〈〈a〉〉Fwina says that agent a
has the ability to eventually win no matter what the other agents do, while
〈〈a, b〉〉Gsafe expresses that agents a and b together can force the system to al-
ways remain in a safe state. Such properties can be useful for specification,
verification, and reasoning about interaction in agent systems. They have be-
come especially relevant due to active development of algorithms and tools
for verification where the “correctness” property is given in terms of strategic
ability [4, 5, 36, 45, 14, 28, 11, 59, 50]. However, there are two caveats.

First, most of the tools and algorithmic solutions focus on agents with
perfect information, i.e., agents who at any point of the game know exactly
the global state of the game. This assumption is clearly unrealistic in all but
the simplest multi-agent scenarios. Still, the tendency is somewhat easy to
understand, since model checking of ATL variants with imperfect informa-
tion has been proved ∆P

2 - to PSPACE-complete for agents playing mem-
oryless (a.k.a. positional) strategies [62, 33, 10] and EXPTIME-complete
to undecidable for agents with perfect recall of the past [18, 26]. Moreover,
the imperfect information semantics of ATL does not admit alternation-free
fixpoint characterizations [8, 19, 20], which makes incremental synthesis of
strategies impossible, or at least difficult to achieve. Some early attempts at
verification of imperfect information strategies made their way into the MC-
MAS model-checker [46, 60, 47, 50], but the issue has never been at the
heart of the tool. More dedicated attempts have begun to emerge only re-
cently [59, 11, 28, 12, 35]. Up until now, experimental results confirm that
the initial intuition was right: model checking strategic modalities for imper-
fect information is hard, and dealing with it requires innovative algorithms and
verification techniques.

Secondly, the semantics of strategic logics are almost exclusively based
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1 Introduction

on synchronous concurrent game models. That is, one implicitly assumes the
existence of a global clock that triggers subsequent global events in the sys-
tem. At each tick of the clock, all the agents choose their actions, and the
system proceeds accordingly with the corresponding global transition. How-
ever, many real-life systems are inherently asynchronous, and do not operate
on a global clock that perfectly synchronizes the atomic steps of all the com-
ponents. As an example, consider robots interacting in an environment with
faulty communication and/or non-negligible delays in execution of actions. No
less importantly, many systems whose implementation may be synchronous at
the implementation level (say, the level of the virtual machine) can be conve-
niently modeled as asynchronous on a more abstract level, because when we
abstract away the implementation details it is not clear anymore how transi-
tions initiated by different agents are exactly arranged in a particular temporal
order. For instance, the actual implementation of a soccer match in the simu-
lated RoboCup competition can be executed on a single computer with a global
clock ticking every 0.3 ns, but the corresponding synchronous model would be
huge and in consequence useless for any kind of analysis. Instead, one can
remove a lot of unnecessary details by assuming that the players execute their
actions asynchronously – without clear temporal relationship between their
execution times – and synchronize only when a particular event has to be ex-
ecuted jointly. In many scenarios, both aspects combine. For example, when
modeling a national election, one must take into account both the truly asyn-
chronous nature of events happening at different polling stations, and the best
level of granularity for modeling the events happening within a single polling
station.

In this paper, we make the first step towards strategic analysis of such
systems. Our contribution is threefold:

1.

2. We propose a general semantics of strategic abilities of agents in asyn-
chronous systems, with and without perfect information.

3. We present some general complexity results for verification of strategic
abilities in asynchronous systems.

4. We develop a methodology for partial order reduction (POR) in ver-
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ification of agents with imperfect information, based on the notion of
traces introduced by Mazurkiewicz in [53]. We also observe that, inter-
estingly, the scheme does not work for verification of agents with perfect
information.

Partial order reduction is one of the most widely known techniques in verifi-
cation of reactive systems. Our main goal is to obtain a variant of POR that
can be used for verification of strategic properties in multi-agent systems.

Related work. Related relevant work is relatively scarce. Alur, Henzinger
and Kupferman mentioned asynchronous systems in their seminal paper on
ATL [6], but they modeled them as a special case of synchronous systems.
Reactive modules [2], the class of representations behind the Mocha model
checker [4, 5], feature several modes of asynchronous execution, but – to the
best of our knowledge – this aspect has never been given a more systematic
analysis.

Asynchronous semantics and partial order reduction were extensively stud-
ied in [54, 55, 56, 38, 24, 23, 57, 22, 40, 58]. The most recent approaches
include dynamic POR [21, 1, 13] and combine POR with symbolic meth-
ods [37, 39]. Still, the only efficient approach to partial order reduction in
a MAS context [48, 49] presents results for standard epistemic-temporal log-
ics (LTLK−X , CTL*K−X ) interpreted over interleaved interpreted systems. It
is by no means immediately clear how those approaches extend to modeling
and verification of strategic play from autonomous, rational, and purposeful
players.

The work that comes closest to our new proposal is [17] where a variant
of ATL was proposed for the special case of agent-oriented agent programs
written in 2APL with asynchronous execution semantics. A very crude and
rather impractical notion of stuttering equivalence was also proposed there, as
the first step towards a partial order reduction scheme.

It should also be mentioned that our complexity results largely coincide
with the pattern already known for model checking of synchronous systems,
cf. e.g. [10].
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2 Preliminaries

2 Preliminaries

We begin with defining asynchronous multi-agent systems and their semantics
in terms of interleaved interpreted systems.

2.1 Asynchronous Multi-Agent Systems

We will model multi-agent systems as networks of automata that execute asyn-
chronously by interleaving of local transitions, and synchronize their moves
whenever a shared action is executed. Formally, consider a MAS composed
of n agents A = {1, . . . , n}.1 Each agent i ∈ A is associated with a set
of possible local states Li = {l1i , l2i , . . . , l

nli
i } and a set of actions Acti =

{ε, a1i , a2i , . . . , a
nai
i }. The special action ε, called the “null” action of agent i,

does not change the local state of i, for each i ∈ A. Notice that the sets of
actions of the agents do not need to be disjoint also for actions different than
ε. Act =

⋃
i∈AActi is the union of all the sets Acti, whereas Loc =

⋃
i∈A Li

is the union of all the sets Li. For each action a ∈ Act the set Agent(a) ⊆ A
contains these agents i for which a ∈ Acti, i.e., these which can potentially
execute a.

We define the independency I on Act as follows: I = {(a, b) ∈ Act ×
Act | Agent(a) ∩ Agent(b) = ∅}. Notice that ε is dependent on all the other
actions of Act.

Following the interpreted system model, for each agent, a local protocol
is defined, which models the program the agent is executing. Formally, a lo-
cal protocol Pi : Li → 2Acti for each agent i, selects actions which can be
executed at each local state. For each agent i, we define an evolution (partial)
function ti : Li ×Ai → Li, where ti(li, ε) = li if ε ∈ Pi(li), for each li ∈ Li.

A global state q = (l1, . . . , ln) ∈ L1× . . .×Ln is a tuple of local states for
all the agents in the MAS. By qi = li we mean the local component of agent
i ∈ A in q. Now the global transitions are defined.

Definition 1 (Interleaved semantics). Let St = L1×. . .×Ln be a set of global
states. The global interleaved evolution function T : St×Act→ St is defined

1Note that we do not consider the environment component, which may be added with no
technical difficulty.

Prace IPI PAN • ICS PAS Reports 7



as follows: T (q, a) = q1 iff ti(qi, a) = qi1 for all i ∈ Agent(a), and qi = qi1
for all i ∈ A \Agent(a). The above is denoted as q a−→ q1.

Notice that q ε−→ q if ε ∈ Pi(q
i) for each i ∈ A. The global transition

relation is assumed to be total, i.e., for each q ∈ St there exists an a ∈ Act
such that q a−→ q1, for some q1 ∈ St. An infinite sequence of global states
and actions π = q0a0q1a1q2 . . . is called an (interleaved) path, starting at q0 if
there is a sequence of global transitions from q0 onwards, i.e., if qi

ai−→ qi+1

for every i ≥ 0. By Act(π) = a0a1a2 . . . we denote the sequence of actions
of π, while by Π(q) - the set of all interleaved paths starting at q.

2.2 Interleaved Interpreted Systems

In order to define a semantics of ATL∗ we need a notion of model.

Definition 2 (Interleaved Interpreted System). Let PV be a set of proposi-
tional variables. An interleaved interpreted system (IIS) or a model, is a 4-
tuple M = (St, ι, T, V ), where St is a set of global states, ι ∈ St is an initial
(global) state, T is the global transition relation, and V : St → 2PV is a
valuation function.

Figure 1 presents the three agents of the interleaved interpreted system
(the untimed version of the original Train-Gate-Controller (TGC) [4, 27]): a
controller and two trains. Each train runs on a circular track and both tracks
pass through a narrow tunnel (state “T”), allowing one train only to go through
it (to state “A” - (Away) at any time. The controller operates the signal (Green
(“G”) and Red (“R”)) to let trains enter and leave the tunnel. In the figure,
the initial states of the controller and the train are “G” and “W” (Waiting)
respectively, and the transitions with the same label are synchronised. Silent ε
actions are omitted in the figure.

Definition 3 (Reduced Model). Given two IIS (models) M = (St, ι, T, V )
and M ′ = (St′, ι′, T ′, V ′). If St′ ⊆ St, ι′ = ι, T is an extension of T ′, and
V ′ = V |St′, then we write M ′ ⊆M and call M ′ a submodel of M , and M ′ -
a reduced model of M .

It is easy to show that for each q ∈ St′ we have Π′(q) ⊂ Π(q), where Π(q)
(Π′(q)), is the set of al interleaved paths of M (M ′, resp.) starting at q.
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3 Reasoning about Agents’ Abilities

W

T

A

G

R

W

T

A

Train1 Train2Controller

a1
a1a2

a2
a3

b1
b1b2

b2
b3

Figure 1: An IIS of TGC composed of two trains [48, 49]

In order to generate reduced models we will need a notion of invisibility
of actions with respect a subset PV ′ of PV .

Definition 4. Given a modelM = (St, ι, T, V ). An action a ∈ Act is invisible
for PV ′ if for each two global states q, q′ ∈ St: if q a−→ q′, then V (q)∩PV ′ =
V (q′) ∩ PV ′.
The set of all actions invisible for PV ′ is denoted by InvisPV ′ and its closure
by V isPV ′ = Act \ InvisPV ′ .

Intuitively, invisible actions do not change valuations of the propositions
of PV ′ in M .

3 Reasoning about Agents’ Abilities

Many important properties in a MAS can be specified in reference to the ex-
istence strategic ability (or inability) of some agents to achieve a given goal.
Examples include the ability of a voter to cast her vote according to her in-
tent in an election, the inability of a coercer to disturb the outcome of the
election by coercion and/or vote buying, the ability of two parties to success-
fully communicate or sign a contract, and the existence of a suitable collective
strategy for trains in a railway network so that neither a crash nor a deadlock
can occur. Such properties can be specified by formulae of alternating-time
logic (ATL). The semantics of ATL is typically defined for models of syn-
chronous systems. In this section, we show how the semantics can be redefined
for interleaved interpreted systems.
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3.1 Alternating-Time Temporal Logic

Alternating-time temporal logic [3, 6] generalizes the branching-time tempo-
ral logic CTL [15] by replacing path quantifiers E,A with strategic modalities
〈〈A〉〉. Informally, 〈〈A〉〉γ expresses that the group of agents A has a collective
strategy to enforce temporal property γ. Formulas of ATL make use of tem-
poral operators: “X” (“in the next state”), “G” (“always from now on”), “F”
(“now or sometime in the future”), U (“strong until”), and R (“release”). The
logic comes in several syntactic variants, the most popular of which are ATL∗

and “vanilla ATL” (the latter often called simply “ATL”).

Definition 5 (Syntax of ATL∗). Let PV be a set of propositional variables
and A the set of all agents. The language of ATL∗ is defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γU γ.

where p ∈ PV and A ⊆ A.

Disjunction and Boolean constants are defined as usual. The “release”
operator can be defined as γ1 R γ2 ≡ ¬((¬γ1) U (¬γ2)). The “sometime” and
“always” operators can be defined as Fγ ≡ >U γ and Gγ ≡ ⊥R γ.

Definition 6 (Syntax of ATL). In “vanilla ATL,” every occurrence of a
strategic modality is immediately followed by a temporal operator. Note that,
in that case, “release” is not definable from “until” anymore [44], and it must
be added to the syntax as another primitive operator. Formally, the language
of ATL is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ.

In the rest of the paper, we will be mainly interested in formulae that do
not use the next step operator X, and do not contain nested strategic modalities.
We denote the corresponding subsets of ATL∗ and ATL by sATL∗ (“simple
ATL∗”) and sATL (“simple ATL”), respectively. Moreover, 1ATL∗ de-
notes the fragment of sATL∗ that admits only formulae consisting of a strate-
gic modality, followed by an LTL formula (i.e., 〈〈A〉〉γ, where γ ∈ LTL).
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3 Reasoning about Agents’ Abilities

3.2 Strategies and Outcomes

Let M = (St, ι, T, V ) be an IIS and i ∈ A. A strategy of agent i is a con-
ditional plan that specifies what i is going to do in any potential situation. A
number of semantic variations are possible. Here, we follow Schobbens [62],
and adopt his taxonomy of four “canonical” strategy types: IR, iR, Ir, and ir.
In the notation, R (resp. r) stands for perfect (resp. imperfect) recall, and I
(resp. i) refers to perfect (resp. imperfect) information.

In this paper, we consider strategies of types Ir and ir. Formally:

• A memoryless perfect information strategy for agent i is a function
σi : St→ Ai such that σi(q) ∈ Pi(qi) for each state q ∈ St. We denote
the set of such strategies by ΣIr.

• A memoryless imperfect information strategy for agent i is a function
σi : St → Ai such that σi(q) ∈ Pi(q

i) for each state q ∈ St, and for
each q, q1 ∈ St if qi = qi1, then σi(q) = σi(q1). Equivalently, the
strategy can be defined as σi : Li → Ai such that σi(l) ∈ Pi(l). We
denote the set of such strategies by Σir.

Thus, an Ir strategy can assign different actions of agent i to any two global
states, while in an ir strategy the agent’s choices can only depend on the local
state (i.e., the location) of the agent.

A joint strategy σA for a coalition A ⊆ A is a tuple of strategies, one per
agent i ∈ A. Let A = {1, . . . , k} for some k ∈ N and σA = (σ1, . . . , σk)
be a joint strategy for A. For each i ∈ N and q ∈ St we denote σA(q) =
(σ1(q), . . . , σk(q)). By Act(σA) we denote the set of actions assigned to the
states by the strategies of σA. We will consider two types of joint strategies:
Ir-joint strategies consisting of memoryless perfect information strategies and
ir-joint strategies consisting of memoryless imperfect information strategies.

Definition 7 (Outcome). The outcome of a joint strategy σA in a state q ∈ St
is the set outM (q, σA) ⊆ Stω such that π ∈ outM (q, σA) iff π[0] = q and for
each i ∈ N :

• π[i]
ai−→ π[i+ 1] for some ai ∈ Act,

• for each j ∈ A if j ∈ Agent(ai), then ai ∈ σj(π[i]),
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Intuitively, the outcome of a joint strategy σA in a state q is the set of all
the possible paths that can occur when the agents of coalition A execute the
strategy σA and each other agent, in A, follows its own protocol.

3.3 Asynchronous Semantics of ATL and ATL∗

The semantics of ATL∗, parameterised with the strategy type Y , is defined
below.

Definition 8 (Semantics of ATL∗). Let M = (St, ι, T, V ) be an IIS, q ∈ St,
A ⊆ A, and Y ∈ {Ir, ir}. The Y -semantics of ATL∗ and ATL is given by
the following clauses:

M, q |=Y p iff p ∈ V (q);

M, q |=Y ¬ϕ iffM, q 6|=Y ϕ;

M, q |=Y ϕ1 ∧ ϕ2 iffM, q |=Y ϕ1 andM, q |=Y ϕ2;

M, q |=Y 〈〈A〉〉γ iff there is a joint Y -strategy σA for agents A such that,
for each path π ∈ outM(q, σA), we haveM, π |=Y γ;

M, π |=Y ϕ iffM, π[0] |=Y ϕ;

M, π |=Y ¬γ iffM, π 6|=Y γ;

M, π |=Y γ1 ∧ γ2 iffM, π |=Y γ1 andM, π |=Y γ2;

M, π |=Y Xγ iffM, π[1,∞] |=Y γ;

M, π |=Y γ1 U γ2 iff there is i ≥ 0 such that M, π[i,∞] |=Y γ2 and
M, π[j,∞] |=Y γ1 for all 0 ≤ j < i.

The semantics of “vanilla ATL” can be given entirely with respect to
states.

Definition 9 (State-based semantics of ATL). The Y -semantics of ATL can
be equivalently defined by the following clauses:

M, q |=Y p iff p ∈ V (q);

M, q |=Y ¬ϕ iffM, q 6|=Y ϕ;

M, q |=Y ϕ1 ∧ ϕ2 iffM, q |=Y ϕ1 andM, q |=Y ϕ2;
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4 Model Checking sATL and sATL∗ for Asynchronous MAS

M, q |=Y 〈〈A〉〉Xϕ iff there is a Y -strategy σA such that,
for each π ∈ outM(q, σA), we haveM, π[1] |=Y ϕ;

M, q |=Y 〈〈A〉〉ϕ1 Uϕ2 iff there is a Y -strategy σA such that,
for each π ∈ outM(q, σA), there exists i ≥ 0 withM, π[i] |=Y ϕ2 and
M, π[j] |=Y ϕ1 for all 0 ≤ j < i;

M, q |=Y 〈〈A〉〉ϕ1 Rϕ2 iff there is a Y -strategy σA such that,
for all π ∈ outM(q, σA) and i ≥ 0, eitherM, π[i] |=Y ϕ2 or
M, π[j] |=Y ϕ1 for some 0 ≤ j < i.

For a syntax L and the semantic relation |=Y , we will denote the logical
system (L, |=Y ) by LY . Thus, ATLIr is the “vanilla ATL” with memoryless
perfect information semantics, sATL∗ir is the “simple ATL∗” with memory-
less imperfect information strategies, and so on.

Remark 1. We observe that the relation |=ir captures the “objective” notion
of ability under imperfect information [32, 9]. That is, 〈〈A〉〉γ holds iff agents
in A have a collective strategy to enforce γ from the current global state of the
system. We expect to obtain analogous results for the semantic variant based
on “subjective” ability [62, 34, 9], but a detailed study of the latter case is
outside the scope of this report.

4 Model Checking sATL and sATL∗ for Asynchronous
MAS

In this work, we focus on simple specifications of strategic ability, i.e., ones
that can be written formally without nesting strategic modalities. We believe
that an overwhelming majority of properties, relevant in actual application do-
mains, follow that pattern. We usually want to require (or ask if) a given player
has a strategy to eventually win the game, two trains can persistently avoid the
crash, Alice and Bob can exchange a secret without Cathy learning it on the
way, etc. The three example properties can be tentatively specified by the fol-
lowing formulae:

1. 〈〈i〉〉Fwini,

2. 〈〈t1, t2〉〉G¬crash,
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3. 〈〈a, b〉〉
(
F(knowsSecra ∧ knowsSecrb) ∧G¬knowsSecrc).

Note that (1) and (2) are formulae of sATL (in fact, 1ATL), while (3) is
a formula of sATL∗. Also, specification (3) suggests that many interesting
properties can be more conveniently specified with a combination of strategic
and epistemic modalities, which seems an interesting path for future work.

Note also that, in all realistic scenarios, players have only partial knowl-
edge of the current global state of the world during the interaction. Thus, a
semantics with imperfect information strategies must be used. Since verifica-
tion of ATL with imperfect information and perfect recall is undecidable [18],
we focus on the memoryless imperfect information semantics |=ir .

In this section, we establish the complexity of model checking for some
relevant fragments of sATL∗ir. We observe that the complexity can be given
with respect to the logical model of the system (i.e., an interleaved interpreted
system, cf. Section 2.2), or the usual representation of the system (in our case,
an asynchronous automata network, cf. Section 2.1). We give both kinds of
results here. We also briefy look at the program complexity of model checking,
i.e., the complexity of the problem when the input formulae are of fixed or
bounded length.

4.1 Model checking 1ATLir

We begin by looking at the verification complexity for simplest specifications,
consisting of a single strategic modality 〈〈A〉〉 immediately followed by a single
temporal modality.

Proposition 2. Model checking 1ATLir is NP-complete in the size of the
model and the length of the formula. It remains NP-complete even for formu-
lae of bounded length.

Proof. (sketch) Analogous to the result in [62] for 〈〈Γ〉〉-ATLir.
For the upper bound, observe that model checking of 〈〈A〉〉γ in M, q can

be done by (1) guessing a uniform strategy sA, (2) pruning M according to
sA, and (3) model checking the CTL formula Aγ (“for all paths, γ”) in state
q of the resulting model. Since sA is of at most linear size with respect to |M |,
and model checking of Aγ can be done in deterministic polynomial time w.r.t.
|M |, we obtain the bound.

14 Prace IPI PAN • ICS PAS Reports



4 Model Checking sATL and sATL∗ for Asynchronous MAS

For the lower bound, we use the reduction from [62] of the Boolean satis-
fiability problem (SAT) to model checking formula 〈〈1〉〉Fyes in a single-agent
model (note that single-agent systems can be seen as special cases of both syn-
chronous and asynchronous systems). Note that the lower bound does not rely
on the length of the formula, as formulae of length 3 are sufficient to construct
the reduction.

Proposition 3. Model checking 1ATLir is PSPACE-complete in the size of
the representation (even for formulae of bounded length).

Proof. (sketch) For the upper bound, observe that model checking of formula
〈〈A〉〉γ in representation (automata network) R can be done by: (1) guessing a
uniform sA as a deterministic restriction of the protocols Pi, i ∈ A, (2) pruning
M , and (3) model checking the LTL formula γ in the resulting representation
R′. Since the size of sA is linear with respect to |R|, and model checking LTL
is in PSPACE with respect to |R| (cf. [61]), we obtain the bound.

To prove the lower bound, we adapt the construction from [41, Theo-
rem 6.1]. Given a Turing machine T with space complexity s(n), we con-
struct the concurrent program P (T ) as in [41, Theorem 6.1]. To obtain an
asynchronous MAS P ′ with a similar behavior, we sequentialize the concur-
rent actions of modules in P (T ) by adding an extra “synchronizer” module
which enforces that each agent i ∈ {1, . . . , n} takes the ith step in each “ex-
ecution cycle.” That is, every concurrent transition in P (T ) is decomposed
into a sequence of n asynchronous transitions in P ′. Now, there exists a com-
putation of T on the empty tape which eventually reaches an accepting state
iff P (T ) |=CTL EFaccept iff P ′ 6|=ir 〈〈∅〉〉G¬accept. This way we obtain the
co-PSPACE-hardness for 1ATLir. Since co-PSPACE = PSPACE, the
lower bound follows.

Again, we note that the reduction does not rely on the length of the formula.

4.2 Model checking sATLir

The verification complexity for Boolean combinations of formulae from 1ATL
is almost the same.
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Proposition 4. Model checking sATLir is NP-hard and in ΘP
2 in the size of

the model and the length of the formula (even for formulae of bounded length).2

Proof. (sketch) The lower bound follows from Proposition 2.
The following algorithm for checking ϕ in M, q demonstrates the upper

bound. First, the nondeterministic algorithm in Proposition 2 is used as an
oracle that determines the truth value for each subformula 〈〈A〉〉γ of ϕ. It is
easy to see that the oracle is called at most |ϕ| times, and the input in the next
call does not depend on the output of the preceding calls. Finally, based on the
output of the calls, the value of ϕ is calculated according to the truth tables of
Boolean operators.

Proposition 5. Model checking sATLir is PSPACE-complete in the size of
the representation and the length of the formula (even for formulae of bounded
length).

Proof. (sketch) The lower bound follows from Proposition 3. For the upper
bound, we use the algorithm from Proposition 4, but with the algorithm from
Proposition 3 as the oracle. Since PPSPACE = PSPACE, we obtain the
result.

4.3 Model checking sATL∗ir and 1ATL∗ir

Finally, we examine the complexity of verification for specifications with ar-
bitrary LTL subformulae.

Proposition 6.

1. Model checking sATL∗ir and 1ATL∗ir is PSPACE-complete in the size
of the model and the length of the formula.

2. For formulae of bounded length, the problem is NP-complete for 1ATL∗ir
and between NP and ΘP

2 -complete for sATL∗ir.
2Where ΘP

2 = P||NP is the class of problems solvable by a deterministic polynomial-time
Turing machine that can make polynomially many nonadaptive calls to an NP oracle.
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4 Model Checking sATL and sATL∗ for Asynchronous MAS

Proof. (sketch) For (1), the lower bound follows from the PSPACE-com-
pleteness of LTL model checking [61]. The upper bound can be obtained by
polynomially many calls to an LTL model checking algorithm, one per strate-
gic subformula in ϕ (recall that PPSPACE = PSPACE), and computing the
Boolean combination.

For (2), the lower bound follows from Proposition 2. The inclusion in NP
for 1ATL∗ir can be obtained by an algorithm similar to that in Proposition 2,
only an LTL rather than CTL model checker is called. Since LTL model
checking is NLOGSPACE-complete for formulae of bounded size [61], and
NLOGSPACE ⊆ P, the upper bound follows.

The upper bound for sATL∗ir is obtained by an algorithm similar to that in
Proposition 4, only an LTL rather than CTL model checker is called inside
the oracle.

Proposition 7. Model checking sATL∗ir and 1ATL∗ir is PSPACE-complete
in the size of the representation and the length of the formula (even for formu-
lae of bounded length).

Proof. (sketch) The lower bounds follow from Proposition 3. The upper bounds
can be obtained by the same algorithm as for Proposition 5.

4.4 Discussion

Models (interleaved interpreted systems) are usually exponentially lager than
the automata network representations from which they arise. Thus, for practi-
cal verification it is essential to provide the input to the model checker using
the latter rather than the former. Unfortunately, the above complexity results
strongly suggest that model checking fragments of sATL∗ir on automata net-
works is hard, and the size of the representation is the main factor for this
hardness. Thus, it is essential to use as small a representation as possible. If
the input is given beforehand (e.g., prepared by the user), then any reduction
of the representation increases the likelihood that the verification task becomes
feasible.

In the next sections, we recall the idea of partial order reduction, very
important for verification of asynchronous systems, and show how it can be
used to model-check sATL∗ir and its fragments.
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5 Equivalences for LTL−X

Partial order reductions have been defined for temporal logics without the next
step operator X since it is known how to generate reduced models preserv-
ing either stuttering trace equivalence (for LTL−X) or stuttering bisimulation
(for CTL∗−X). Since stuttering trace equivalence is less discriminative than
stuttering bisimulation, partial order reductions preserving LTL−X are more
efficient than these for CTL∗−X. Since ATL∗−X has a more distinguishing
power than CTL∗−X, one can expect that the equivalence preserving ATL∗−X
would be very discriminative, which would likely result in inefficient reduc-
tions. Therefore, aware of the above and motivated by practical applications,
in this paper we take another route. We are investigating subsets of ATL∗−X
for which known partial order reduction methods apply [54, 58, 22, 48, 49].

5.1 Stuttering (trace) equivalence

So, we start with definitions of stuttering equivalence and stuttering trace equiv-
alence.

Definition 10 (Stuttering Equivalence). A path π in M and a path π′ in M ′

are called stuttering equivalent, denoted π ≡s π′, if there exists a partition
B1, B2 . . . of the states of π, and a partitionB′1, B

′
2 . . . of the states of π′ such

that for each j ≥ 0 we have that Bj and B′j are nonempty and finite, and for
every state q in Bj and every state q′ in B′j we have V (q) = V ′(q′).

Notice that in the above definition in each block B all the states share the
same valuation.

Definition 11 (Stuttering Trace Equivalence). Two states q in M and q′ in M ′

are said to be stuttering trace equivalent, denoted q ≡s q′, if

1. for each path π in M starting at q, there is a path π′ in M ′ starting at q′

such that π ≡s π′;

2. for each path π′ in M ′ starting at q′, there is a path π in M starting at
q such that π′ ≡s π.

Two models M and M ′ are stuttering trace equivalent, denoted M ≡s M ′, if
ι ≡s ι′.
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6 Partial Order Reductions for sATL∗ir

5.2 Preserving LTL−X

The following theorem connects LTL−X with stuttering trace equivalence:

Theorem 8. Let M and M ′ be two stuttering trace equivalent models, where
M ′ ⊆ M . Then, M, ι |= ϕ iff M ′, ι′ |= ϕ, for any LTL−X formula ϕ over
PV .

Proof. See [25].

6 Partial Order Reductions for sATL∗ir

In what follows we propose how to obtain partial order reduction for sATL∗ir
and its fragments, with very promising results. Interestingly, it turns out that
our approach does not apply to sATL∗Ir; we show it the end of this section.
This suggests that ATL with imperfect information, besides conceptual ad-
vantage, can also offer some technical advantage over ATL with perfect in-
formation.

6.1 Traces

Partial order reductions are based on Mazurkiewicz traces as introduced in
[51] and used in e.g. [52, 53]. Consider two words w,w′ ∈ Act∗. We say that
w ∼I w′ iff w = w1abw2 and w′ = w1baw2, for some w1, w2 ∈ Act∗ and
(a, b) ∈ I . Let ≡I be the reflexive and transitive closure of ∼I . By (finite)
traces we mean equivalence classes of≡I , denoted by [w]≡I . Formally, a trace
[w]≡I = {w′ ∈ Act∗ | w′ ≡I w}.

To define infnite traces we need more definitions. For v, v′ ∈ Actω the
relation ≤I is defined as follows: v ≤I v′ iff ∀u ∈ Pref(v) ∃w ∈ Pref(v′)
∃z ∈ Act∗ (w ≡I z ∧ u ∈ Pref(z)). That means, each finite prefix of v is
a prefix of a permutation (under commuting adjacent independent actions) of
some prefix of v′.

Infinite traces are defined as equivalence classes of the following relation
≡ωI , where v ≡ωI v′ iff v ≤I v′ and v′ ≤I v, denoted by [v]≡ω

I
, where v ∈

Actω.
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Lemma 9. Let M be an IIS and PV ′ ⊆ PV . Consider two paths π, π′ ∈ Stω
starting at the same state such that Act(π) = w and Act(π′) = w′, and
w ≡ωI w′. Assume that: **) for any two actions a, b occurring in w or w′ if
(a, b) ∈ I , then either a ∈ InvisPV ′ or b ∈ InvisPV ′ . Then, π and π′ are
stuttering equivalent wrt. PV ′.

Proof. See [54].

We can always make I to satisfy **) by restricting it to I \ (V isPV ′ ×
V isPV ′).

Since stuttering equivalence preserves LTL−X, the above lemma implies
that the paths over representatives of the same infinite trace cannot be distin-
guished by any LTL−X formula using propositions of PV ′. This fact is used
for defining partial order reductions for LTL−X. Rather than generating the
IIS (model) M for a MAS, one can generate a reduced model M ′ satisfying
the following property:
(*) for each π ∈ Π(ι), there is π′ ∈ Π′(ι) such that Act(π) ≡ωI Act(π′).
The reduced model M ′ preserves the LTL−X formulas over PV ′.

Our aim is to show that M ′ preserves also the sATL∗ir formulas over PV ′.
To this aim we show that each set outM (q, σA) is trace complete in the sense
that with each path π s.t. Act(π) = w, it contains a path over any w′ ∈ [w]≡ω

I
.

Lemma 10. Let π ∈ outM (ι, σA) and Act(π) = w. Then, for each w′ ∈
[w]≡ω

I
there is π′ ∈ outM (ι, σA) such that Act(π′) = w′.

Proof. Consider a MAS in which the protocol of each agent i ∈ A is equal to
σi. Then, the set of paths Π(ι) of IIS for MAS is trace complete. But, this set
of paths is equal to outM (ι, σA), which ends the proof.

The above lemma suggests a method of partial order reduction for the for-
mulas of sATL∗ir.

Lemma 11. Let M be a model, PV ′ ⊆ PV , and M ′ be a reduced model sat-
isfying the property *). Then, for each strategy σA, for each π ∈ outM (ι, σA)
there is π′ ∈ outM ′(ι, σA) such that Act(π) ≡ωI Act(π′).

Proof. Follows easily from the property *) of M and Lemma 10.
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6 Partial Order Reductions for sATL∗ir

Theorem 12. Let M be a model, PV ′ ⊆ PV , and M ′ be a reduced model
satisfying the property *). For each sATL∗ir formula ϕ over PV ′ we have:

M, ι |= ϕ⇔M ′, ι′ |= ϕ

Proof. The proof is by induction on the complexity of a formula. Consider
ϕ = 〈〈A〉〉γ.

M, ι |= 〈〈A〉〉γ iff

there is a joint strategy σA such that for each π ∈ outM (ι, σA) we have
M,π |= γ iff (by Lemmas 11 and 9)

there is a joint strategy σA such that for each π ∈ outM ′(ι, σA) we have
M ′, π |= γ iff

M ′, ι |= 〈〈A〉〉γ.

The cases of negation and conjunction are straightforward.

The next example shows that Lemma 10 does not hold for memoryless
perfect information strategies.

Example 1. Consider the MAS composed of two agents {1, 2} such that

• L1 = {l11, l21}, L2 = {l12, l22},

• Act1 = {ε, a}, Act2 = {ε, b},

• P1(l
1
1) = {a, ε}, P1(l

2
1) = {ε},

• P2(l
1
2) = {b}, P2(l

2
2) = {ε},

• t1(l11, a) = l21, t2(l12, b) = l22.

Define an Ir-strategy for each agent:

1: σ1(l11, l
1
2) = a, σ1(l11, l

2
2) = σ1(l

2
1, l

2
2) = ε,

2: σ2(l11, l
1
2) = σ2(l

2
1, l

1
2) = b, σ2(l21, l

2
2) = ε.

It is easy to see that out((l11, l
1
2), σ{1,2}) is not trace complete. Notice that

(a, b) ∈ I , but while out((l11, l
1
2), σ{1,2}) contains the path over ab(ε)ω, it does

not contain any path over ba(ε)ω.
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6.2 Algorithms for Partial Order Reduction

As mentioned above, the idea of verification by model checking with partial
order reductions is to define an algorithm reducing the size of models while
preserving satisfaction for a class of formulas. This requires a notion of equiv-
alence between models. For the case of sATL∗ir we know that the notion of
stuttering trace equivalence presented above suffices. Traditionally, in partial
order reduction the exploration is carried out either by depth-first-search (DFS)
(see [22]), or double-depth-first-search (DDFS) [16].

In this context DFS is used to search states and transitions that will make up
the reduced model by exploring systematically the possible computation tree
and selecting only some of the posssible states and transitions generated. In
the following, a stack represents the path π = g0a0g1a1 · · · gn currently being
visited. For the top element of the stack gn the following three operations are
computed in a loop:

1. The set en(gn) ⊆ Act of enabled actions (not including the ε action) is
identified and a subset E(gn) ⊆ en(gn) of possible actions is heuristi-
cally selected (see below).

2. For any action a ∈ E(gn) compute the successor state g′ such that
gn

a→ g′, and add g′ to the stack thereby generating the path π′ =
g0a0g1a1 · · · gnag′. Recursively proceed to explore the submodel origi-
nating at g′ in the same way by means of the present algorithm beginning
at step 1.

3. Remove gn from the stack.

The algorithm begins with a stack comprising of the initial state and terminates
when the stack is empty. The model generated by the algorithm is a submodel
of the full one. Its size crucially depends on the ratio E(g)/en(g). The choice
of E(q) is constrained to preserve the stuttering trace equivalence between the
original and a submodel generated.

6.3 Preserving sATL∗ir

In the sequel, let φ be an sATL∗ir formula to be checked over the model M
and let M ′ be a submodel of M , generated by the algorithm. The states and
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6 Partial Order Reductions for sATL∗ir

the actions connecting states in M ′ define a directed state graph. We give
conditions defining a heuristics for the selection of E(g) (such that E(g) 6=
en(g)) while visiting state g in the algorithm below.

C1 No action a ∈ Act \ E(g) that is dependent (see Subsection 2.2) on an
action in E(g) can be executed before an action in E(g) is executed.

C2 For every cycle in the constructed state graph there is at least one node g
in the cycle for which E(g) = en(g), i.e., for which all the successors
of g are expanded.

C3 All actions in E(g) are invisible (see Subsection 2.2).

The conditions C1−C3 are inspired from [54].

Theorem 13. LetM be a model andM ′ ⊆M be the reduced model generated
by the DFS algorithm described above in which the choice ofE(g′) for g′ ∈ G′
is given by C1, C2, C3 above. Then,M andM ′ are stuttering trace equivalent.

Proof. Although the setting is slightly different it can be shown similarly to
Theorem 3.11 in [55] that the conditions C1, C2, C3 guarantee that the models
M and M ′ are stuttering trace equivalent. More precisely, for each path π =
g0a0g1a1 · · · with g0 = ι in M there is a stuttering equivalent path π′ =
g′0a
′
0g
′
1a
′
1 · · · with g′0 = ι in M ′ and a partition B1, . . . , Bj , .. of the states of

π and a partition B′1, . . . , B
′
j , .. of the states of π′ satisfying for each i, j ≥ 0

the following two conditions:

I. if gi
a−→ gi+1 is a transition such that gi, gi+1 ∈ Bj , then a ∈ Invis,

and if g′i
a′−→ g′i+1 is a transition such that g′i, g

′
i+1 ∈ B′j , then a′ ∈

Invis,

II. if gi
a−→ gi+1 is a transition such that gi ∈ Bj and gi+1 ∈ Bj+1, and

g′i′
a′−→ g′i′+1 is a transition such that g′i′ ∈ B′j and g′i′+1 ∈ B′j+1, then

a = a′.

Algorithms generating reduced models in which the choice of E(g′) for
g′ ∈ G′ is given by C1, C2, C3 can be found in many papers [55, 54, 58, 22,
48, 49].
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7 Conclusions and Future Work

Many important properties of multi-agent systems are underpinned by the abil-
ity of some agents (or groups of agents) to achieve a given goal. Requirements
of this kind can be conveniently specified using logics of strategic ability, such
as ATL and ATL∗. However, their semantics typically use concurrent syn-
chronous models, whereas, for many systems, asynchronous modeling would
be more appropriate. In this paper, we propose a general semantics of ATL
and ATL∗ for asynchronous MAS, and consider the model checking problem
for a relevant subset of ATL∗ formulae.

Model checking of strategic abilities under imperfect information is a no-
toriously hard problem, for which attempts at practical algorithms and tools
started emerging only recently. We establish the theoretical complexity of the
problem, and, more importantly, propose a partial order reduction scheme that
can substantially decrease the practical complexity of verification. Interest-
ingly, it turns out that the scheme does not work for perfect information strate-
gies. Until now, virtually all the results have suggested that verification of
strategic abilities is significantly easier for agents with perfect information.
Thus, we identify an aspect of verification that might be in favor of imperfect
information strategies in some contexts.

Considering potential practical applications, we can verify correctness of
authentication protocols as specified and discussed in [31] as well as of timed
authentication protocols [29, 30, 42] after extending our results to Timed ATL
[43]. For example we can check the sATL property expressing that an intruder
does not have a strategy to possess an ’insecure’ information.

In the future, we plan also to extend our method to a larger subset of ATL∗

specifications. Adapting the POR scheme to combinations of strategic and
epistemic modalities is another interesting path for future work. Finally, we
would like to investigate whether our partial order reduction scheme can be
combined with the bisimulation-based reduction for ATLir, proposed very
recently in [7].
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