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ABSTRACT
Some multi-agent scenarios call for the possibility of evaluating
specifications in a richer domain of truth values. Examples include
runtime monitoring of a temporal property over a growing prefix
of an infinite path, inconsistency analysis in distributed databases,
and verification methods that use incomplete anytime algorithms,
such as bounded model checking. In this paper, we present multi-
valued ATL∗ (mv-ATL∗4), an expressive logic to specify strategic
abilities in multi-agent systems. We show that our general method
for model-independent translation from multi-valued to two-valued
model checking cannot be directly extended to mv-ATL∗4. We
also propose two ways of overcoming the problem. Firstly, we
identify constraints on mv-ATL∗4 formulas for which the model-
independent translation can be suitably adapted. Secondly, we pre-
sent a model-dependent reduction that can be applied to all formu-
las of mv-ATL∗4. We show that, in all cases, the complexity of
verification increases only polynomially when new truth values are
added to the evaluation domain. We also consider several examples
that show possible applications of mv-ATL∗4 and motivate its use
for model checking MAS.
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1. INTRODUCTION
The alternating-time temporal logic ATL∗ and its less expressive

variant ATL [3] are probably the most popular logics that allow
for reasoning about agents’ abilities in strategic encounters. ATL
combines features of temporal logic and basic game theory, encap-
sulated in the main language construct of the logic, 〈〈A〉〉γ, which
can be read as “the group of agents A has a strategy to enforce
γ”. Property γ can include operators X (“next”), G (“always”),
F (“eventually”) and/or U (“until”). Much research on ATL∗ has
focused on the way it can be used for verification of multi-agent
systems, including theoretical studies on the complexity of model
checking, as well as practical verification algorithms.

Typically, model checking is a yes/no problem. However, it is
sometimes convenient to consider the output of verification in a
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richer domain of values. This can be due to two reasons. First, our
model of the system can be only partially conclusive with respect
to properties of the system. A good example is runtime monitor-
ing of temporal properties, where a temporal formula (interpreted
with an infinite time horizon in mind) is checked on a finite but
constantly growing sequence of events, observed so far. Consider
for instance specification Fp. If p has already occurred then the
formula is clearly true whatever happens next. What if it has not
occurred? Then, the formula may still turn out true (because p may
occur in subsequent steps), but it can also turn out false; effectively,
the truth value is unknown in our current model. Likewise, formula
Gp can be only proved false in the course of monitoring, or the
model is inconclusive regarding its value. Indeed, well known ap-
proaches to runtime monitoring use multi-valued interpretation of
temporal formulas in finite runs [7, 8].

Secondly, even if the model is complete and faithful, the verifi-
cation procedure can be only partially conclusive. For instance, in
bounded model checking [10, 47], a full transition system is given
but the formula is checked on runs of length at most n. Now, again,
Fp is clearly true if we find p to occur on every path in up to n
steps. Otherwise, the output is inconclusive (because p might or
might not occur in subsequent steps). The case of Gp is analogous.
A more sophisticated motivating example is presented below.

EXAMPLE 1 (ANYTIME STATE ABSTRACTION). Let M be a
transition system that models the behavior of k agents operating in
a common environment (e.g., autonomous vehicles at a busy inter-
section). The following ATL formula specifies a sensible require-
ment on the system: 〈〈a〉〉Gsafea. Suppose further that the state of
each agent is determined by m binary variables. It is easy to see
that the system has O(2k·m) global states, which makes straight-
forward model checking, and even explicit generation of the whole
model problematic for large values of k.

State abstraction is a technique that consists in “clustering” glo-
bal states into abstract states according to an equivalence relation
R. For example, qRq′ iff q, q′ coincide on the variables of agent a.
Such states will end up in the same abstract state [q]R. However,
it can happen that the value of a proposition (e.g., safea) varies
across [q]R. Then, the most reasonable value for safea in the ab-
stract state is “conflicting” or “inconsistent”. Moreover, if we use
an anytime algorithm, it may be stopped before it computes the
truth of safea in some of the new states. Then, the value of the
proposition can be set to “uncomputed” or “undecided”. Conse-
quently, we will have to manipulate at least four truth values when
model checking the formula 〈〈a〉〉Gsafea in the abstract model.

In this paper, we study model checking for a multi-valued variant
of ATL∗ over arbitrary lattices of logical values. We call the new
logic mv-ATL∗4. Our approach extends previous work on temporal
model checking: similarly to [38, 39], we do not propose dedicated



algorithms for mv-ATL∗4. Instead, we look for general efficient
translations from the multi-valued case to the 2-valued case. We (i)
prove that no model-independent translation exists for the whole
language of mv-ATL∗4, (ii) identify a broad subclass of formulas
for which such a translation can be obtained, and (iii) propose a
recursive model-dependent translation that works for all instances
of the problem. We also show that all the results easily extend to
verification of strategies under imperfect information.
Related work. Multi-valued interpretation of modal formulas has
been used in multiple approaches to verification. The main idea
was proposed by Fitting [22, 23] already 25 years ago. In the
2000s, a number of works adapted it to verification of distributed
and multi-agent systems. A variant of CTL∗ for models over finite
quasi-boolean lattices was proposed in [38], together with a gen-
eral translation scheme that reduced multi-valued model checking
of CTL∗ specifications to the standard 2-valued case. This was later
extended to multi-valued modal µ-calculus [26, 12, 51, 46], and to
multi-valued modal µ-calculus with knowledge [39]. Our paper
follows this line of work, and extends the techniques to strategic
operators of ATL∗.1 We also enrich the language with the “compar-
ison” operators 4 and∼=, which provide: (i) the notions of material
implication and biconditional, useful in specifying general proper-
ties of multi-valued models; (ii) a way of model checking “thresh-
old properties” analogous to probabilistic temporal logics behind
PRISM [40]. As it turns out, the new operators require non-trivial
treatment, significantly different from [38, 26, 12, 51, 39].

Model checking methods for the special case of 3-valued tem-
poral logics were discussed in [25, 28, 30]. Related approaches
include runtime verification, which often uses 3-valued [7] or 4-
valued interpretation [8, 26] of temporal formulas. Moreover, 4-
valued semantics has been used to evaluate database queries [44,
45]. 3-valued semantics of strategic abilities was considered in [6]
for alternating µ-calculus and, recently, in [43] for ATL. In both
cases the main aim was to verify abstractions of multi-agent sys-
tems. Note that, while the agenda of our paper comes close to that
of [43], our semantics differs from [43] even in the 3-valued case.

A quite different but related strand of research concerns real-
valued logics over probabilistic models for temporal [20, 41, 32]
and strategic specifications [33]. We also mention the research on
probabilistic model checking of temporal and strategic logics [29,
5, 40, 14, 18] that evaluates specifications in the 2-valued domain
but recognizes different degrees of success and the need to aggre-
gate them over available strategies and possible paths.

2. PRELIMINARIES
We begin by presenting the basics of alternating-time temporal

logic and quasi-boolean domains of truth values.

2.1 What Agents Can Achieve
Alternating-time temporal logic [3] generalizes branching-time

temporal logic CTL∗ by replacing path quantifiers E,A with strate-
gic modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ says that a group of agents
A has a collective strategy to enforce temporal property γ. Simi-
larly to CTL∗ and CTL, we consider two syntactic variants of the
alternating-time logic, namely ATL∗ and ATL.

Let A be a finite set of agents, and Prop a countable set of
atomic propositions. The language of ATL∗ is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
1Note that, despite having “games” in the title, [51] was not con-
cerned with strategic specifications. “Games” were used there only
in the technical sense, to define the semantics of µ-calculus. How-
ever, [4] deals with game applications of [51].
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Figure 1: Autonomous vehicles at the intersection: model M1

γ ::= ϕ | ¬γ | γ ∧ γ | X γ | γ U γ.

where A ⊆ A and p ∈ Prop. Derived boolean connectives
and constants (∨,>,⊥) are defined as usual. “Sometime”, “weak
until”, and “always from now on” are defined as Fγ ≡ >U γ,
γ1 W γ2 ≡ ¬((¬γ2)U (¬γ1 ∧¬γ2)), and Gγ ≡ γW⊥. Also, we
can use 〈〈A〉〉γ ≡ ¬〈〈A〉〉γ to express that, for each strategy of A,
property γ fails on some paths.2

ATL (without “star”) is the syntactic variant in which strategic
and temporal operators are combined into compound modalities:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉X ϕ | 〈〈A〉〉ϕU ϕ | 〈〈A〉〉ϕW ϕ.

Semantics. The semantics of ATL∗ is defined over a variant of
synchronous multi-agent transition systems.

DEFINITION 1 (CGS). A concurrent game structure (CGS) is
a tupleM = 〈A, St, Act, d, t, Prop, V 〉 which includes nonempty
finite sets of: agents A = {1, . . . , k}, states St, actions Act,
atomic propositionsProp, and a propositional valuation V : St→
2Prop. The function d : A× St→ 2Act defines availability of ac-
tions. The (deterministic) transition function t assigns a successor
state q′ = t(q, α1, . . . , αk) to each state q ∈ St and any tuple of
actions αi ∈ d(i, q) that can be executed by A in q.

A pointed CGS is a pair (M, q0) consisting of a concurrent game
structure M and an initial state q0 in M .

EXAMPLE 2 (DRIVING AGENTS). Consider an intersection
with k autonomous vehicles around it. Each vehicle is modeled
as a separate agent, whose local state is characterized by either
the proposition outi (when the vehicle is outside the intersection)
or ini (when the vehicle is inside it). The available actions are: in
(“drive in” or “stay in”, depending on the current state) and out
(“drive out” or “stay out”). When both agents are in and decide to
leave at the same time, a collision occurs (collision), and the guilty
party – or parties – have to pay a penalty (penaltyi).

Figure 1 presents a pointed CGS modeling the scenario for k =
2. The combinations of actions that are not displayed in the graph
do not change the state of the system.
2In some papers, [[A]]γ ≡ ¬〈〈A〉〉¬γ is used as the dual strategic
operator. We use 〈〈A〉〉γ instead for technical convenience, to avoid
negations of path subformulae when transforming to NNF.



A path λ = q0q1q2 . . . in a CGS is an infinite sequence of states
such that there is a transition between each qi, qi+1. λ[i] denotes
the ith position on λ and λ[i,∞] the suffix of λ starting with i.

A perfect recall strategy (or IR-strategy) for agent a is a function
sa : St+ → Act such that sa(q0q1 . . . qn) ∈ d(a, qn). A collec-
tive strategy for agents A = {a1, . . . , ar} is a tuple of individual
strategies sA = 〈sa1 , . . . , sar 〉. The set of such strategies is de-
noted by ΣIR

A. The “outcome” function out(q, sA) returns the set
of all paths that can occur when agents A execute strategy sA from
state q onward. The semantics of ATL∗ is defined as follows:

M, q |= p iff q ∈ V (p), for p ∈ Prop;
M, q |= ¬ϕ iff M, q 6|= ϕ;
M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= 〈〈A〉〉γ iff there is a strategy sA ∈ ΣIR
A such that, for

each path λ ∈ out(q, sA), we have M,λ |= γ.

M,λ |= ϕ iff M,λ[0] |= ϕ;
M,λ |= ¬γ iff M,λ 6|= γ;
M,λ |= γ1 ∧ γ2 iff M,λ |= γ1 and M,λ |= γ2;
M,λ |= X γ iff M,λ[1,∞] |= γ; and
M,λ |= γ1 U γ2 iff there is an i ∈ N0 such that M,λ[i,∞] |= γ2

and M,λ[j,∞] |= γ1 for all 0 ≤ j < i.

EXAMPLE 3 (DRIVING AGENTS, CTD.). For model M1, we
have M1, qoo |= 〈〈1〉〉G¬penalty1: agent 1 can avoid the penalty
forever (the obvious strategy is to never enter the crossroads). On
the other hand, the agent cannot make sure it will get the penalty
even if it wants to: M1, qoo 6|= 〈〈1〉〉Fpenalty1. This can only be en-
sured if the agents cooperate: M1, qoo |= 〈〈1, 2〉〉Fpenalty1. More-
over, M1, qoo |= 〈〈1〉〉Fin1 ∧ 〈〈2〉〉Fin2: each agent is able to en-
ter the intersection. Still, it cannot successfully drive through the
crossroads on its own (e.g., M1, qoo 6|= 〈〈1〉〉F(in1 ∧ Fout1)).

Negation Normal Form. Formulas of ATL∗ can be equivalently
transformed so that negation is only applied to atomic propositions.
For this, the set of primitive operators must be extended as follows:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈A〉〉γ | 〈〈A〉〉γ,
γ ::= ϕ | γ ∧ γ | γ ∨ γ | X γ | γ U γ | γW γ.

The Negation Normal Form for ATL is constructed analogously.

2.2 Quasi-Boolean Lattices
We will use quasi-boolean and De Morgan algebras [11] to in-

terpret formulas of our multi-valued logics.

DEFINITION 2. A lattice is a partial order L = (L,≤), where
every pair of elements x, y ∈ L has the greatest lower bound
(called meet and denoted by x ∩ y) and the least upper bound
(called join and denoted by x ∪ y).3

In what follows, we only consider finite lattices. We denote the
least and the greatest elements of L by ⊥,>, respectively. Also,
we write (i) x1 < x2 iff x1 ≤ x2 and x1 6= x2, and (ii) x1 ./
x2 iff neither x1 ≤ x2 nor x2 ≤ x1. Moreover, let:

• ↑ x = {y ∈ L | x ≤ y} denote the upward closure of x, and

• ↓ x = {y ∈ L | y ≤ x} denote the downward closure of x.

3It follows from antisymmetry of ≤ that both the greatest lower
bound and the least upper bound of x, y are uniquely determined.

Figure 2: De Morgan algebras and join-irreducible elements

l1 l2 l3

Figure 3: Non-distributive lattices M5 and N5

DEFINITION 3. L = (L,≤,∼ ) is a quasi-boolean (QB) alge-
bra if (L,≤) is a lattice and∼ is a unary operator (called comple-
ment) such that, for any x, y ∈ L: (i) ∼(x∩ y) = ∼x ∪ ∼y, (ii)
∼(x∪y) =∼x ∩ ∼y, (iii) x ≤ y iff∼y ≤ ∼x, (iv)∼ ∼x = x.

DEFINITION 4. A lattice L = (L,≤) is distributive if, for any
x, y, z ∈ L, the following two conditions hold: (i) z ∪ (x ∩ y) =
(z∪x)∩(z∪y), (ii) z∩(x∪y) = (z∩x)∪(z∩y). A distributive
QB algebra is called a De Morgan algebra, shortly: DM algebra.

EXAMPLE 4. Figure 2 presents three DM algebras with appli-
cability motivated by clear practical intuitions: the total order 4 for
representing uncertainty, lattice 2× 2 for representing disagree-
ment, and lattice 2 + 4 for representing both uncertainty and dis-
agreement. In our view, lattice 2 + 4 seems especially useful, as
it provides truth values for both inconsistent and inconclusive evi-
dence. The usual interpretation of its logical elements is: ⊥ - must
not (absolute falsity), N - should not, DC - do not care, DK - do
not know, S - should, > - must (absolute truth). In this paper, we
will use a somewhat different notation, writing i (“inconsistent”)
instead of DC and u (“undecided”) instead of DK.
Example non-distributive QB lattices are shown in Figure 3. Note
that a lattice is distributive iff it contains neither M5 nor N5 [11].

DEFINITION 5. Let L = (L,≤) be a lattice. An element l ∈ L
is called join-irreducible iff l 6= ⊥ and, for any x, y ∈ L, if l =
x ∪ y, then either l = x or l = y.
The set of all join-irreducible elements of L is denoted by JI(L).

It is well known [19] that every element of a finite distributive lat-
tice can be uniquely decomposed into the join of all join-irreducible
elements in its downward closure, i.e.

x =
⋃

(JI(L) ∩ ↓ x) (1)

EXAMPLE 5. The join-irreducible elements of the DM algebras
in Figure 2 are marked with black dots. In the lattice 2 + 4, the
element S, which is not join-irreducible, can be decomposed into
the join of the join-irreducible elements DK and DC.

The characterization (1) is used to define translations from multi-
valued to standard model checking using the following theorem.



THEOREM 1 ([39]). Let L be a finite DM algebra, and let
l ∈ JI(L). Then the function fl : L −→ {⊥,>} defined by
fl(↑ l) = >, fl(L \ ↑ l) = ⊥ preserves arbitrary bounds.

REMARK 1. The above does not hold for lattices which are not
distributive. To see this, consider the element l1 of M5, which is
join-irreducible. However, fl1 does not preserve join, as fl1(l2 ∪
l3) = fl1(>) = > whereas fl1(l2) ∪ fl1(l3) = ⊥ ∪⊥ = ⊥.

3. MULTI-VALUED STRATEGIC LOGIC
In this section we extend the syntax and semantics of ATL∗ to

allow for multi-valued reasoning.

3.1 Multi-Valued ATL*
Domain of interpretation. We propose a variant of ATL∗ where
formulas are interpreted in a quasi-boolean algebraL = (L,≤,∼),
see Section 2.2 for details.

DEFINITION 6 (INTERPRETED QB ALGEBRAS). Let C be a
countable set of symbols. An interpreted QB algebra over C (IQB
algebra, for short) is a pair L+ = (L, σ), where L = (L,≤,∼ ) is
a QB algebra and σ : C → L is an interpretation of the symbols in
C as truth values in L.

Syntax. Logical operators can often be naturally interpreted as ei-
ther maximizers or minimizers of the truth values. For example,
disjunction (ϕ ∨ ψ) can be understood as a maximizer (“the most
that we can make of either ϕ or ψ), and conjunction as a minimizer.
This extends to existential quantification (maximizing) and univer-
sal quantification (minimizing) over paths, strategies, moments in
time, etc. Since multi-valued negation is problematic, we will use
the syntactic variant of ATL∗ in negation normal form. Moreover,
valuation will be given explicitly for all literals and not only atoms.
To increase the expressive power of the language, we allow for the
use of symbols in C. Finally, we add the operator 4 representing
the lattice order, useful for comparing truth values of formulas. The
resulting logic is called mv-ATL∗4 and has the following syntax:

ϕ ::= c | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈A〉〉γ | 〈〈A〉〉γ | ϕ 4 ϕ,
γ ::= ϕ | γ ∧ γ | γ ∨ γ | X γ | γ U γ | γW γ.

where p ∈ Prop, A ⊆ A, and c ∈ C. In what follows, by an
order formula we shall mean any formula of the form ϕ1 4 ϕ2.
Additionally, we define ϕ1

∼= ϕ2 ≡ (ϕ1 4 ϕ2) ∧ (ϕ2 4 ϕ1).
Semantics. The semantics is provided over concurrent game struc-
tures with multi-valued interpretation of literals.

DEFINITION 7 (MULTI-VALUED CGS). Let Lit = {p,¬p |
p ∈ Prop}, and let L+ = (L, σ) be an IQB algebra with L =
(L,≤,∼ ). A multi-valued concurrent game structure (mv-CGS)
over L is a tuple M = 〈A, St, Act, d, t, Prop,V ,L+〉, where A,
St, Act, d, t, Prop are as before, and V : Lit × St → L assigns
all literals with truth values of the logical domain L. Note that, for
greater generality, we do not require that V (¬p, q) = ∼V (p, q).

Let M = 〈A, St, Act, d, t, Prop,V ,L+〉 be an mv-CGS, with
L+ = (L, σ).The valuation function [·] is defined as below. We
sometimes use

⋂
X{Y } as a shorthand for

⋂
{Y | X}, and simi-

larly for the supremum. For any q ∈ St and any path λ in M :

[c]M,q = σ(c) for c ∈ C;
[p]M,q = V (p, q) and [¬p]M,q = V (¬p, q) for p ∈ Prop;
[ϕ1 ∧ ϕ2]M,q = [ϕ1]M,q ∩ [ϕ2]M,q;
[ϕ1 ∨ ϕ2]M,q = [ϕ1]M,q ∪ [ϕ2]M,q;

q′o

[out1] = i
[out2] = i
[in1] = i
[in2] = i
[collision] = ⊥
[penalty1] = ⊥
[penalty2] = ⊥
[¬penalty1] = >

q′i

[out1] = ⊥
[out2] = ⊥
[in1] = >
[in2] = >
[collision] = ⊥
[penalty1] = ⊥
[penalty2] = ⊥
[¬penalty1] = >

q′c

[out1] = ⊥
[out2] = ⊥
[in1] = >
[in2] = >
[collision] = >
[penalty1] = u
[penalty2] = u
[¬penalty1] = u

(in,in)

(in,out)
(out,in)

(out,out)

Figure 4: Abstract model of the driving agents: M2

[γ1 ∧ γ2]M,λ, [γ1 ∨ γ2]M,λ: analogously;
[ϕ]M,λ = [ϕ]M,λ[0]; [X γ]M,λ = [γ]M,λ[1..∞];
[γ1 U γ2]M,λ =⋃

i=0,1,...

{⋂
{[γ2]M,λ[i..∞], [γ1]M,λ[j..∞] | 0 ≤ j < i}

}
;

[γ1 W γ2]M,λ =
⋂
i=0,1,...{[γ1]M,λ[i..∞]} ∪⋃

i=0,1,...

{⋂
{[γ2]M,λ[i..∞], [γ1]M,λ[j..∞] | 0 ≤ j < i}

}
;

[〈〈A〉〉γ]M,q =
⋃
sA∈ΣA

⋂
λ∈out(q,sA){[γ]M,λ};

[〈〈A〉〉γ]M,q =
⋂
sA∈ΣA

⋃
λ∈out(q,sA){[γ]M,λ};

[ϕ1 4 ϕ2]M,q = > if [ϕ1]M,q ≤ [ϕ2]M,q and ⊥ otherwise.

EXAMPLE 6 (STATE ABSTRACTION FOR DRIVING AGENTS).
We take the CGS of Figure 1 and apply the metod of state abstrac-
tion from [42] with the following mapping: σ(qoo) = σ(qoi) =
σ(qio) = q′o, σ(qii) = q′i, and σ(qc) = q′c. That is, situa-
tions where at least one agent is outside and no collision has hap-
pened are represented by the abstract state q′o, those where both
agents are inside are mapped to q′i etc. The resulting multi-valued
CGS over lattice 2 + 4 is presented in Figure 4. Note that, e.g.,
[out1]M2,q′o = i (“inconsistent”), as the truth values of out1 in the
original states qoo, qoi, qio are in conflict. Moreover, let us assume
that the responsibility for the accident is determined by a complex
constraint satisfaction problem, involving variables like the trajec-
tory and speed of the vehicles, their technical condition etc., and
that the model generating procedure had insufficient time to com-
pute the values of penalty1 and penalty2 in state qc (and hence also
q′c). Thus, [penalty1]M2,q′c = [penalty2]M2,q′c = u (“undecided”).

The valuations of those negated atoms that will appear in further
examples are also given.

To explicitly show the connection between the truth values and
their names in C, for any IQB algebra L+ = ((L,≤,∼ ), σ) and
any truth value x ∈ σ(C), we will use the notation x to denote
any symbol c ∈ C such that σ(c) = x. In other words, we will
always have σ( x ) = x for all x ∈ σ(C).

EXAMPLE 7 (STATE ABSTRACTION, CTD.). We evaluate the
formulas from Example 3 in our multi-valued model M2 of Fig-
ure 4. For some of them the truth values remain the same, e.g.,
[〈〈1〉〉G¬penalty1]M2,q′o = >, and [〈〈1〉〉Fpenalty1]M2,q′o = ⊥.
We also get [〈〈1, 2〉〉Fpenalty1]M2,q′o = u, which suggests that the
abstraction is too fine-grained with respect to penalty1 to verify
〈〈1, 2〉〉Fpenalty1 efficiently. Finally, we get [〈〈1〉〉Fin1]M2,q′o = i,
which suggests that the abstraction is too coarse with respect to
in1, i.e., it loses some information necessary to compute the value
of 〈〈1〉〉Fin1. The same applies to 〈〈2〉〉Fin2.



We note that most approaches to multi-valued model checking of
temporal specifications [38, 26, 39, 51] allow also for multi-valued
transitions in the models, analogous to probabilistic transitions in
Markov chains and Markov Decision Processes. That is, transitions
can be assigned with “weights” drawn from the same algebra L.
Similarly, most 3-valued approaches to temporal abstraction and
model checking implicitly assume 3-valued transitions by distin-
guishing between may and must transitions [24, 25, 28, 30]. How-
ever, the two approaches differ in how such transitions affect the
semantics of formulas with universal quantification (such as “for
all paths γ”). In the general multi-valued approach, the “weaker”
the path is, the more it decreases the value of the formula. In the 3-
valued approach, “weaker” paths have less influence on the overall
value. We do not want to engage in this discussion here, and leave
a proper treatment of multi-valued transitions for future work.

EXAMPLE 8 (COMPARING TRUTH VALUES). The “compar-
ison” operators provide several interesting specification patterns.
For instance, they allow for specifications that are accepted when
the “strength” of a property reaches a given threshold, similarly
to the probabilistic approaches of [40, 18]. For example, the for-
mula u 4 〈〈1〉〉G¬collision can be used to specify that the truth
value of 〈〈1〉〉G¬collision is at least u (intuitively: there is no ev-
idence that the formula is false). Moreover, 〈〈2〉〉G¬penalty2 4
〈〈1〉〉G¬penalty1 says that assuming the ability of agent 1 to avoid
penalty is more reasonable than in the case of agent 2. Finally,
〈〈∅〉〉G(ϕ ∼= > ) expresses that formula ϕ holds in all reachable
states of the model.

Levels of truth. We assume that > is the single designated value,
standing for full logical truth. In consequence, the truth and validity
of formulas can be defined in a straightforward way as follows:

DEFINITION 8 (LEVELS OF VALIDITY). Let M be mv-CGS,
q - a state in M , and ϕ - a state formula of mv-ATL∗4. Then:

• ϕ is true in M, q (written M, q |= ϕ) iff [ϕ]M,q = >.

• ϕ is valid in M (M |= ϕ) iff ϕ is true in every state of M .

• ϕ is valid (|= ϕ) iff ϕ is valid in every mv-CGS M .

• Additionally, for a path formula γ, we can say that γ holds on
run λ in a mv-CGS M (written M,λ |= γ) iff [γ]M,λ = >.

3.2 Properties of mv-ATL*
We now show that mv-ATL∗4 agrees with standard ATL∗ on 2-

valued models, unlike the 3-valued version of ATL∗ from [43].

THEOREM 2. The logic mv-ATL∗4 is a conservative extension
of ATL*, i.e. every CGS M for ATL* can be identified with an mv-
CGS M ′ for mv-ATL∗4 over a two-valued lattice, where, for any
ATL* formula ϕ and any state (path) ι: M ′, ι |= ϕ iff M, ι |= ϕ.

Proof. For any CGSM = 〈A, St, Act, d, t, AP,V 〉 for ATL*, de-
fine mv-CGS M ′ = 〈A, St, Act, d, t, AP,V ′,L2〉, where L2 =
({⊥,>},≤,∼ , σ) with ∼⊥ = >,∼> = ⊥, and V ′(p, q) = >
if q ∈ V (p),⊥ otherwise. Then M ′ is an mv-CGS for mv-ATL∗4,
and, obviously, for any ATL* formula ϕ,M ′, ι |= ϕ iffM, ι |= ϕ.

The following is an immediate consequence:

COROLLARY 1. Each valid formula of mv-ATL∗4 which does
not contain the operator � is a valid formula of ATL∗.

Note that the converse does not hold, i.e., a valid formula of
ATL∗ need not be valid in mv-ATL∗4. An example of such a for-
mula is p∨¬p, which is valid in ATL∗ but not in mv-ATL∗4. Some

important validities that do carry over from classical ATL are the
fixpoint equivalences (which in case of multi-valued models can be
seen as analogues of Bellman equations for MDPs [9]):

THEOREM 3 (BELLMAN EQUATIONS FOR MV-ATL4). The
following formulas of mv-ATL4 are valid:

• 〈〈A〉〉ϕ1 U ϕ2
∼= ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉X 〈〈A〉〉ϕ1 U ϕ2;

• 〈〈A〉〉ϕ1 W ϕ2
∼= ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉X 〈〈A〉〉ϕ1 W ϕ2.

Proof. The proof is analogous to [33, Proposition 3], and we omit
it due to lack of space.

4. MODEL CHECKING mv-ATL∗4
Given a mv-CGS M , a state q, and a mv-ATL∗4 formula ϕ, the

model checking problem consists in computing the value of [ϕ]M,q .
This can be done in two ways: either by a dedicated algorithm
(based e.g. on the fixpoint equations of Prop. 3), or by an efficient
reduction to the 2-valued model checking. The latter option has
many advantages. First and foremost, it allows us to benefit from
the ongoing developments in 2-valued model checking, including
symbolic model checking techniques, heuristics, model reduction
techniques, etc. In this section, we show how model checking of
mv-ATL∗4 can be reduced to the 2-valued variant of this problem.

4.1 Adapting Translations to mv-ATL∗4
A key result obtained in [38] was Theorem 1, providing a method

for reducing a model for mv-CTL∗ based on a lattice L of logical
values to a model based on a sublattice L′ of L. This ultimately
allowed us to reduce model-checking mv-CTL∗ to model checking
of (two-valued) CTL∗. An analogue of that theorem can be shown
to hold for mv-ATL∗, i.e., the sublanguage of mv-ATL∗4 consisting
of formulas without the 4 operator. That is, we have the following:

THEOREM 4. Let L = (L,≤,∼ ) be an arbitrary finite QB
algebra, L′ = (L′,≤′,∼ ′) a subalgebra of L, and f : L → L′ a
mapping which preserves arbitrary bounds in L, i.e.,

f(
⋂
i∈I

xi) =
⋂
i∈I

f(xi), f(
⋃
i∈I

xi) =
⋃
i∈I

f(xi) (2)

where I is an arbitrary set of indices. Further, let L+ = (L, σ)
be an IQB algebra, M = 〈A, St, Act, d, t, Prop,V,L+〉 an mv-
CGS, and M ′ = 〈A, St, Act, d, t, Prop,V,L′+〉 an mv-CGS ob-
tained out of M by replacing each value x ∈ L returned by σ or V
inM with f(x), i.e., σ′(c) = f(σ(c)) and V ′(p, q) = f(V (p, q)),
for c ∈ C, q ∈ St, and p ∈ Prop ∪ Prop.

Then, for any state (path) formula ϕ of mv-ATL∗ over L and any
state (resp. path) ι, we have

[ϕ]M′,ι = x iff [ϕ]M,ι ∈ f−1(x) (3)

The proof follows easily from the key result given below:

LEMMA 1. Let a state or path formula ϕ be such that

[ϕ]M,ι =
⋃
i∈I

⋂
ji∈Ji

[ϕji ]M,ιji or [ϕ]M,ι =
⋂
i∈I

⋃
ji∈Ji

[ϕji ]M,ιji

for any mv-CGSM , any states and/or paths ι, ιji ofM , any count-
able sets I, Ji, and state (resp. path) formulas of mv-ATL∗ ϕji for
ji ∈ Ji, i ∈ I , such that ϕji satisfy (3). Then ϕ satisfies (3) too.

Proof. We consider the case [ϕ]M,ι =
⋃
i∈I
⋂
ji∈Ji [ϕji ]M,ιji ; the

other case follows by symmetry. As f preserves the bounds, by the
assumption on ϕ we have f([ϕ]M,ι)=

⋃
i∈I
⋂
ji∈Ji f([ϕji ]M,ιji).



Each ϕji satisfies (3), so f([ϕ]M,ι) =
⋃
i∈I
⋂
ji∈Ji [ϕji ]M′,ιji

=

[ϕ]M′,ι, whence [ϕ]M′,ι = x iff [ϕ]M,ι ∈ f−1(x), and (3) holds
for ϕ. To prove Theorem 4, it suffices to check that the semantics
of each formula of mv-ATL∗ can be given like in Lemma 1.

4.2 Translating Order Formulas
Unfortunately, Theorem 4 cannot be extended to mv-ATL∗4, i.e.

to the language of mv-ATL∗ extended with order formulas of the
form ϕ1 � ϕ2, where � represents the algebra order — because
Equation (3) does not hold for such formulas.

To show a counterexample, we consider the QB algebra Lo =
(Lo,≤,∼ ), where Lo = {0, ..., k − 1, k, ..., 2k − 1}, ≤ is the
usual total order on Lo, and ∼ x = (2k − 1) − x. Of course, in
Lo we have 0 = ⊥, 2k − 1 = > according to our lattice notation.
Then the translation f : Lo → {0, 2k−1} given by f(x) = 2k−1
if x ≥ k, and f(x) = 0 if x < k preserves the bounds in Lo.

Now take arbitrary k1, k2 such that 0 < k1 < k2 < k, and
an mv-CGS M over L+

o = (Lo, σ) for an arbitrary σ : C → Lo
such that, for some state q ∈ St of M and atomic propositions
p1, p2 ∈ PV , we have V (pi, q) = ki for i = 1, 2.

Next, let ϕ = p2 � p1. Since [pi]M,q = ki for i = 1, 2 and
k2 > k1, we have ¬([p2]M,q ≤ [p1]M,q), whence [ϕ]M,q = 0.

However, for the model M1 obtained from M with the transla-
tion f we get [pi]M1,q = 0 for i = 1, 2 (as ki < k, f(ki) = 0 for
i = 1, 2), where [p2]M1,q ≤ [p1]M1,q , which implies [ϕ]M1,q =
2k − 1. Yet, as f−1(2k − 1) = {k, k + 1, ..., 2k − 1} we have
[ϕ]M,q = 0 6∈ f−1(2k − 1), which contradicts Equation (3).

The above result can be generalized as follows:

LEMMA 2. If L = (L,≤,∼) of Theorem 4 contains a chain or
anti-chain of cardinality n, and L′ = (L′,≤′,∼ ′) is a subalgebra
ofL of cardinality n′ < n, then there is no function f : L→ L′ sat-
isfying condition (3) if the language under consideration contains
order formulas.

Now we give a necessary and sufficient condition for f : L → L′

as in Theorem 4, preserving bounds in L, to satisfy the translation
condition (3) from Theorem 4 also for order formulas.

LEMMA 3. Let the QB algebra L = (L,≤,∼ ), its subalgebra
L′ = (L′,≤′,∼ ′), a mapping f : L → L′, and mv-CGSs M,M ′

satisfy the assumptions of Theorem 4. Then, (3) of that Theorem is
satisfied for all order formulas iff the following conditions hold:

C1 (∀x1, x2 ∈ L) [x1 < x2 ⇒ f(x1) < f(x2)]

C2 (∀x1, x2 ∈ L) [x1 ./ x2 ⇒ f(x1) ./ f(x2)]

Proof. Note that an order formula is a state formula, and that for
any such formula ψ we have [ψ]M,q ∈ {⊥,>} for any mv-CGS
M and any q ∈ St. Thus in order to prove (3) for such formulas, it
suffices to show that, for any order formula ϕ and any state q:

[ϕ]M′,q = > iff [ϕ]M,q ∈ f−1(>) (4)

“⇒⇒⇒”: We start by proving the necessity of conditions C1,C2. As-
sume first f satisfies (4) for order formulas. We should prove that f
satisfies Conditions C1, C2 for all such formulas. For what follows,
denote ξ = p1 � p2, ψ = p2 � p1, where p1, p2 ∈ PV , p1 6= p2.

C1: We argue by contradiction. Suppose x1, x2 ∈ L, x1 < x2 and
f(x1) ≥ f(x2). Then, as x1 < x2 implies x1 ≤ x2 and
f preserves bounds, we also have f(x1) ≤ f(x2), which
yields f(x1) = f(x2).

Now let M be an mv-CGS over L such that, for some state
q ∈ St, we have V (pi, q) = xi for i = 1, 2, and let M ′

be the image of M under f . Since ψ = p2 � p1 and
[p2]M,q = x2 > x1 = [p1]M,q , we have [ψ]M,q = ⊥. How-
ever, [ψ]M′,q = >, because [p2]M′,q = f(x2) = f(x1) =
[p1]M′,q . As ⊥ 6∈ f−1(>), this contradicts (4).

C2: We again argue by contradiction. Suppose x1, x2 ∈ L, x1 ./
x2 and ¬(f(x1) ./ f(x2)). Without any loss of gener-
ality, we can assume that f(x1) ≤ f(x2). Let mv-CGSs
M,M ′ and state q of M be like in the preceding item. Then,
as [p1]M,q = x1 ./ x2 = [p2]M,q , we have in particu-
lar [p1]M,q 6≤ [p2]M,q . Since ξ = p1 � p2, this implies
[ξ]M,q = ⊥. In turn, [ξ]M′,q = >, because [p1]M′,q =
f(x1) ≤ f(x2) = [p2]M′,q , which again contradicts (4).

“⇐⇐⇐”: It remains to prove the sufficiency of conditions C1,C2.
We assume that C1, C2 hold, and prove that (4) holds for formulas
of the form ϕ = ϕ1 � ϕ2. We start by proving this result for non-
nested order formulas, i.e., we assume that ϕ1, ϕ2 do not contain
�. Then, by Theorem 4, (4) holds for ϕ1, ϕ2, which implies that

[ϕi]M′,q = f([ϕi]M,q), i = 1, 2. (5)

“⇒⇒⇒”: We begin with the forward implication in (4). Assume that
[ϕ]M′,q = >. Then [ϕ1]M′,q ≤ [ϕ2]M′,q . By (5), this implies
f([ϕ1]M,q) ≤ f([ϕ2]M,q . We show by contradiction that it implies

[ϕ1]M,q ≤ [ϕ2]M,q. (6)

Suppose that (6) does not hold, then we have two possible cases:

Case 1: [ϕ1]M,q > [ϕ2]M,q . Then by C1 we have f([ϕ1]M,q) >
f([ϕ2]M,q), whence from (5) we get [ϕ1]M′,q > [ϕ2]M1,q

and [ϕ]M′,q = ⊥— which is a contradiction.

Case 2: [ϕ1]M,q ./ [ϕ2]M,q . Then f([ϕ1]M,q) ./ f([ϕ2]M,q) by
C2, whence from (5) we get ¬([ϕ1]M′,q ≤ [ϕ2]M′,q). Con-
sequently, [ϕ]M′,q = ⊥— which is again a contradiction.

Thus (6) above holds, whence [ϕ]M,q = > ∈ f1(>), and the
forward implication in (4) holds.

“⇐⇐⇐”: The final step is proving the backward implication in (4).
Assume that [ϕ]M,q = f−1(>). As [ϕ]M,q ∈ {⊥,>} and f(⊥) 6=
> by the preservation of bounds by f and the non-triviality of
L,L′, we obtain [ϕ]M,q = >, whence [ϕ1]M,q ≤ [ϕ2]M,q . Since f
preserves bounds, this implies f([ϕ1]M,q) ≥ f([ϕ2]M,q), whence
from (5) we obtain [ϕ1]M1,q ≤ [ϕ2]M′,q . This yields [ϕ]M′,q =
>, whence the backward implication in (4) holds, too.

Now assume (4) holds for order formulas with � nested at most
k times, and assume ϕ is an order formula with � nested k + 1
times. Then ϕ = ϕ1 � ϕ2, where � is nested at most k times
in ϕ1, ϕ2. Consequently, by the inductive assumption (6) holds
for ϕ1, ϕ2, and repeating the proof given above for order formulas
without nesting of � we can show that (4) holds for ϕ too.

This completes the proof of the sufficiency of C1, C2 for all order
formulas, and the proof of Lemma 3. From Lemma 3 we can easily
derive by induction the following general result:

THEOREM 5. Let the QB algebra L = (L,≤,∼ ), its subalge-
braL′ = (L′,≤′,∼ ′), f : L→ L′, and mv-CGSM,M ′ satisfy the
assumptions of Theorem 4. Then the condition (3) of that Theorem:

[ϕ]M′,ι = x iff [ϕ]M,ι ∈ f−1(x) (7)

is satisfied for all formulas of mv-ATL∗4 over L iff conditions C1,
C2 of Lemma 3 hold.



It can be seen that conditions C1, C2 imply that any translation f
meeting them must preserve the exact structure of the QB algebra
L. An important consequence of that fact is:

COROLLARY 2. Given a QB algebra L = (L,≤,∼ ) and its
subalgebra L′ = (L′,≤′,∼ ′), any function f : L→ L′ preserving
the algebra bounds and satisfying the translation condition (3) for
all order formulas must be one-to-one.

Proof. Suppose f satisfies the above assumption, x1, x2 ∈ L and
x1 6= x2. Then we have one of the following cases:

1. x1 < x2 or x2 < x1. Then f(x1) 6= f(x2) by C1 of
Theorem 5.

2. x1 ./ x2. Then f(x1) ./ f(x2) by C2 of Theorem 5, which
again implies f(x1) 6= f(x2).

The meaning of Corollary 2 is that there is no way of reducing n-
valued model checking to k-valued model checking for k < n, if
we want to handle all order formulas. In particular:

COROLLARY 3. No reduction of mv-ATL∗4 model checking to
2-valued model checking is possible.

4.3 Recursive Model Checking of mv-ATL∗4
The impossibility result in Corollary 3 is due to the fact that order

formulas can be used to encode the semantics in the language –
including in particular its n-valued character. However, one usually
wants to model-check one formula at a time. Then, Theorem 5 can
be in many cases modified to provide the desired reduction:

THEOREM 6. LetL, its subalgebraL′, f : L→ L′, andM,M ′

be as in Theorem 4. Further, let ϕ be a formula of mv-ATL∗4 and
Sub(ϕ) be the set of all its subformulas. Then ϕ satisfies the trans-
lation condition 7 of Theorem 5 whenever for any order formula
φ ∈ Sub(ϕ) such that φ = ϕ1 � ϕ2 and for xi = [ϕi]M,ι, i =
1, 2, the following conditions hold:

C1’ x1 < x2 ⇒ f(x1) < f(x2)

C2’ x1 ./ x2 ⇒ f(x1) > f(x2)

Proof. To prove the thesis, we assume that C1’, C2’ are satis-
fied, and show by structural induction that the translation condition
holds for any ψ ∈ Sub(ϕ), i.e.,

[ψ]M′,ι = x iff [ψ]M,ι ∈ f−1(x) (8)

For atomic or constant ψ, the thesis follows from Theorem 4. Sup-
pose now (8) holds for all subformulas of ϕ having rank k, and
assume ψ is of rank k + 1. If ψ is obtained from subformulas of
rank at most k using any operator Op other than�, the satisfaction
of (8) follows from the fundamental Lemma 3.

Thus it remains to consider the case of �. Assume ψ = ψ1 �
ψ2, where (8) holds for ψ1, ψ2. Since ψ is an order formula, ac-
cording to what we have already noted in the proof of Lemma 2,
proving (8) for ψ reduces to showing

[ψ]M′,q = > iff [ψ]M,q ∈ f−1(>) (9)

Note that since ψ1, ψ2 are in Sub(ϕ), then C1’, C2’ hold for xi =
[ϕi]M,q, i = 1, 2. By the inductive assumption, we also have

[ψi]M′,q = f([ψi]M,q), i = 1, 2 (10)

“⇒⇒⇒”: We begin with the forward implication in (9). Assume that
[ψ]M′,q = >. Then [ψ1]M′,q ≤ [ψ2]M′,q . By (10), this implies
f([ψ1]M,q) ≤ f([ψ2]M,q . We show by contradiction that it implies

[ψ1]M,q ≤ [ψ2]M,q (11)

Suppose that (11) does not hold, then we have two possible cases:
Case 1: [ψ1]M,q > [ψ2]M,q . Then by condition C1’ we have

f([ψ1]M,q) > f([ψ2]M,q), whence from (10) we get [ψ1]M′,q >
[ψ2]M′,q and [ψ]M′,q = ⊥, which is a contradiction.

Case 2: [ψ1]M,q ./ [ψ2]M,q . Then f([ψ1]M,q) > f([ψ2]M,q)
by condition C2’, which again leads to a contradiction by what we
have already proved for Case 1.

Thus (11) above holds, whence [ψ]M,q = > ∈ f−1(>), and the
forward implication in (9) holds.

“⇐⇐⇐”: The final step consists in proving the backward implication
in (9). Assume that [ψ]M,q = f−1(>). As [ψ]M,q ∈ {⊥,>} and
f(⊥) 6= > by the preservation of bounds by f and the non-triviality
ofL,L′, we get [ψ]M,q=>, and consequently [ψ1]M,q ≤ [ψ2]M,q .
Since f preserves bounds, this implies f([ψ1]M,q) ≤ f([ψ2]M,q),
whence from (10) we obtain [ψ1]M′,q ≤ [ψ2]M′,q . This yields
[ψ]M′,q = >, whence the backward implication in (9) holds, too.

REMARK 2. Notice that Condition C2’ is necessary, but C1’ is
not. Moreover, both are necessary iff ϕ is symmetric w.r.t. to �,
i.e., (ϕ2 � ϕ1) ∈ Sub(ϕ) whenever (ϕ1 � ϕ2) ∈ Sub(ϕ).

Assume that our mv-CGSs are defined over DM algebras, i.e.,
distributive QB algebras. We can show that the translation method
based on join irreducible elements (JI(L)) [26, 12, 38, 37] can be
applied to a formula ϕ of mv-ATL∗4 and an mv-CGS M , provided
the assumptions of Theorem 6 are satisfied.

By (1), for each x ∈ L we have x =
⋃

(JI(L) ∩ ↓ x). Let
M l be the model obtained using the translation fl. Therefore, ac-
cording to Theorem 6: [ϕ]M1,ι = x iff [ϕ]M,ι ∈ f−1

l (x) whence
[ϕ]M1,ι = > iff [ϕ]M,ι ∈ ↑ l. Thus,

[ϕ]M,ι =
⋃
{l ∈ JI(L) | [ϕ]M1,ι = >}. (12)

In case the assumptions of Theorem 6 are not satisfied for M
and ϕ, we cannot translate model checking of mv-ATL∗4 to model
checking of ATL∗. Then, the simplest solution is to replace all
the subformulas of ϕ which are order formulas by fresh atomic
propositions, and then apply our translation method to the resulting
formula ϕ′ of mv-ATL∗ and the new model M ′ which extends M
by the valuation of the new atomic propositions.

The algorithm is recursive. For each order subformula ψ =
ψ1 ≤ ψ2 of ϕ such that ψ1, ψ2 ∈ mv-ATL∗, we define a fresh
propositional variable pψ . Then, for each state q of model M ′ we
have V ′(pψ, q) = > iff [ψ1]M,q ≤ [ψ2]M,q , and V ′(¬pψ, q) = ⊥
iff ¬([ψ1]M,q ≤ [ψ2]M,q), where [ψi]M,q for i ∈ {1, 2} is com-
puted using our translation method. Next, when all order subformu-
las have been replaced with fresh propositions, we compute [ϕ′]M,q
using the translation method defined.

The main disadvantage of the above method compared to the di-
rect translation method is that it requires computing the values of
the new atomic propositions for all states of the model M . The
method can be improved if we assume that a specific symbolic
model checking method for two valued mv-ATL∗4 is used. We
leave a study of this subject for future work. Nevertheless, the al-
gorithm has two important consequences. First, it provides a gen-
eral polynomial-time reduction from model checking mv-ATL∗4
(resp. mv-ATL4) to model checking standard 2-valued ATL∗

(resp. ATL). We state it formally as follows.

THEOREM 7. Multi-valued verification of ATL∗ incurs only po-
lynomial increase in the complexity compared to the 2-valued case.
Specifically, model checking mv-ATL4 is P-complete, and model
checking mv-ATL∗4 is 2EXPTIME-complete in model size, for-
mula length, and number of logical values.



Secondly, we note that correctness of the translation does not
depend on the type of strategies being used in the semantics of mv-
ATL∗4. As it is, the translation provides a model checking reduction
to the IR variant of ATL∗ (perfect information + perfect recall). If
we used memoryless strategies of type sa : St → Act instead of
perfect recall, the translation would yield reduction to the Ir variant
of ATL∗ (perfect information + imperfect recall [50]). Since the IR
and Ir semantics coincide in 2-valued ATL, we get the following.

THEOREM 8. For mv-ATL4, memory is irrelevant, i.e., its se-
mantics can be equivalently given by memoryless strategies.

5. IMPERFECT INFORMATION
It can be argued that realistic multi-agent systems always in-

clude some degree of limited observability [50, 31, 1, 36, 2, 34,
49]. However, model checking of ATL with imperfect informa-
tion is hard – more precisely, ∆P

2 - to PSPACE-complete for
agents playing memoryless strategies [50, 35, 13] and undecid-
able for agents with perfect recall [21]. Furthermore, the imper-
fect information semantics of ATL does not admit fixpoint equiva-
lences [15], which makes incremental synthesis of strategies cum-
bersome if not impossible. Practical attempts at the problem have
emerged only recently [48, 16, 27, 17], and do not go far beyond
checking each of the exponentially many strategies. The experi-
mental results show that this is feasible only for very small models.

To such hard problems, state abstraction can be successfully ap-
plied, but it must be very coarse (clustering many concrete states
together into a single abstract state) in order to reduce the model
sufficiently. This can lead to a substantial reduction in the com-
plexity, though possibly at the expense of introducing inconsistent
or inconclusive labeling of propositions at some abstract states. In
consequence, multivalued model checking can be extremely useful
when reasoning about strategies under uncertainty. We formalize
this by the following extension of mv-ATL∗4.
Multivalued ATL∗ with imperfect information. Let us extend
mv-CGS with indistinguishability relations ∼1, . . . ,∼k, one per
agent in A. Memoryless strategies with imperfect information (ir
strategies, for short) are functions sa : St→ Act such that q ∼a q′
implies sa(q) = sa(q′). Perfect recall strategies with imperfect
information (shortly: iR strategies) are functions sa : St+ → Act
st. q0 ∼a q′0, . . . , qn ∼a q′n implies sa(q0 . . . qn) = sa(q′0 . . . q

′
n).

Again, collective strategies for A ⊆ A are tuples of individual
strategies for a ∈ A. We denote them by Σir

A and ΣiR
A, respectively.

The semantics of mv-ATL∗S4, parameterized by the type of stra-
tegies S = IR, Ir, ir, iR, can be defined by replacing the clause for
〈〈A〉〉γ from Section 3.1 as follows:

[〈〈A〉〉γ]M,q =
⋃
sA∈ΣS

A

⋂
λ∈out(q,sA){[γ]M,λ}.4

EXAMPLE 9 (ABSTRACTION FOR IMPERFECT INFO). Take
model M1 from Example 2, and assume that agent 2 does not
see the location of vehicle 1. This can be modeled by the fol-
lowing indistinguishability relation: qoo ∼2 qio and qoi ∼2 qii.
If we further apply the state abstraction σ of Example 6, we ob-
tain model M3 that adds q′o ∼2 q

′
i to the mv-CGS M2. Now, e.g.,

[〈〈1, 2〉〉F(penalty1)]M3,q′o = ⊥, as the only winning strategy for
coalition {1, 2} (play (in,in) at state q′o and (out,out) at q′i) is not
executable for agent 2 under imperfect information. On the other
hand, we still have that [〈〈2〉〉Fin2]M3,q′o = i.
4This corresponds to the notion of objective ability, cf. the seman-
tic definitions of the logics ATL∗ior and ATL∗ioR in [15]. Subjec-
tive ability requires additional quantification over indistinguishable
states; we omit the formal treatment for lack of space.

THEOREM 9. mv-ATL∗ir4 is a conservative extension of ATL∗ior ,
i.e. every imperfect information CGS M can be identified with
an imperfect information mv-CGS M ′ over a two-valued lattice,
where, for any ATL* formula ϕ and any state or path ι, we have
that M ′, ι |= ϕ iff M, ι |= ϕ.

Similarly, mv-ATL∗iR4 is a conservative extension of ATL∗ioR.

Translations of model checking and the complexity of multi-
valued verification. We emphasize again that the techniques pro-
posed in Section 4 do not depend on the actual definition of strategy
sets ΣA. In consequence, they carry over to the imperfect informa-
tion case, and can be applied in exactly the same way to obtain
model checking reductions from mv-ATL∗S4 to the correspond-
ing 2-valued cases. Specifically, Theorems 4, 5, and 6, as well
as Corollaries 2 and 3, hold for translations from model checking
of mv-ATL∗ir4 (resp. mv-ATL∗iR4) to classical model checking of
ATL∗ior (resp. ATL∗ioR). This demonstrates the power of the trans-
lation method that can be directly applied to a vast array of possible
semantics for ATL. Combining the observation with the existing
complexity results [13], we get the following as immediate conse-
quences:

THEOREM 10. Model checking mv-ATLir4 is P-complete, and
model checking mv-ATL∗ir4 is PSPACE-complete in the size of
the model and the formula, and the number of logical values.

THEOREM 11. Model checking mv-ATL∗iR4 and mv-ATLiR4 is
undecidable in general. For the fragment of mv-ATLiR4 with sin-
gleton coalitions only, model checking is EXPTIME-complete
in the model size, formula length, and number of logical values.

6. CONCLUSIONS
In this paper, we study a variant of alternating-time temporal

logic, called mv-ATL∗4, where the truth values are drawn from an
arbitrary De Morgan algebra. We also argue that multivalued model
checking of mv-ATL∗4 specifications can be useful, especially for
systems whose models cannot be fully analyzed due to their com-
plexity and/or inaccessibility of the relevant information. Exam-
ples include verification of distributed databases and abstraction-
based model checking of massive multi-agent systems, especially
for specifications of strategies under imperfect information.

We prove that our multivalued semantics of ATL∗ provides a
conservative extension of the classical 2-valued variant. Even more
importantly, we propose efficient (i.e., polynomial-time) transla-
tions from multivalued model checking to the 2-valued case. The
proposed techniques are elegant enough so that they can be directly
applied to other semantic variants of strategic ability, for example
ones that refer to imperfect information scenarios. Other results
comprise analogues of Bellman equations and positionality of win-
ning strategies for mv-ATL4 in perfect information scenarios.

Our translation method for mv-ATL∗4 formulas allows us to ben-
efit from the efficient 2-valued model checking algorithms. If a
translation for a formula ϕ cannot be defined, our model checking
method becomes less efficient, as it requires replacing all the order
subformulas of ϕ with propositions and computing their values in
a given mv-CGS.

In the future, we plan to have a closer look at state and action
abstractions of complex models, including an appropriate semantic
interpretation of multi-valued transitions.
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