
Chapter 8

Model Checking
Temporal Epistemic Logic

Alessio Lomuscio and Wojciech Penczek

Contents
8.1 Introduction . 398

8.2 Syntax and Semantics 400

8.3 OBDD-based Symbolic Model Checking 405

8.4 SAT-based Symbolic Model Checking 411

8.5 Extensions to Real-Time Epistemic Logic 418

8.6 Partial Order Reductions 421

8.7 Notes . 424

References . 433

Abstract We survey some of our work on model checking
systems against temporal-epistemic specifications, i.e., systems
specified in Temporal Epistemic Logic (TEL). We discuss both
OBDD-based and SAT-based approaches for verifying systems
against TEL specifications. The presentation is grounded on
various notions of interpreted systems, including one for mod-
elling real-time systems. We also present a partial-order reduc-
tion approach to reduce the models and discuss several alterna-
tive and advanced techniques.

Chapter 8 of the Handbook of Epistemic Logic, H. van Ditmarsch, J.Y. Halpern, W. van
der Hoek and B. Kooi (eds), College Publications, 2015, pp. 397–441.

398 CHAPTER 8. MODEL CHECKING TEL

8.1 Introduction

The study of epistemic logics, or logics for the representation of knowledge,
has a long and successful tradition in Logic, Computer Science, Economics,
and Philosophy. Its main motivational thrust is the observation that the
knowledge of the actors (or agents) in a system is fundamental not only to
the study of the information they have at their disposal, but also to the
analysis of their rational actions and, consequently, the overall behaviour of
the system. It is often remarked that the first systematic attempts to de-
velop modal formalisms for knowledge date back to the sixties and seventies
and in particular to the works of Hintikka.

At the time considerable attention was given to the adequacy of specific
principles, expressed as axioms of modal logic, representing certain prop-
erties of knowledge in a rational setting. The standard framework that
emerged consisted of the propositional normal modal logic S5n (see Chap-
ter 1) built on top of the propositional calculus by considering the axioms
K : Ki(p! q)! Kip! Kiq, T : Kip! p, 4 : Kip! KiKip, 5 : ¬Kip!
Ki¬Kip, together with the rules of necessitation Nec : From ' infer Ki',
where Ki denotes the operator for knowledge of agent i, and Modus Po-
nens. Since then several other formalisms have been introduced accounting
for weaker notions of knowledge as well as subtly different informational
attitudes such as belief, explicit knowledge, and others.

While in the sixties soundness and completeness of these formalisms
were shown, the standard semantics considered was that of plain Kripke
models. These are models of the form M = (W, {Ri}i2A, V), where W is a
set of “possible worlds”, Ri ✓W⇥W is a binary relation between worlds ex-
pressing epistemic indistinguishability between them, A is the set of agents,
and V : W ! 2PV is an interpretation function for a set of propositional
variables PV . Much of the theory of modal logic was developed in this
setting up to relatively recent times. However, in the eighties and nineties
attention was given to finer grained semantics that explicitly referred to
particular states of computation in a system. In terms of epistemic logic,
the challenge was to develop a semantics that accounted both for the low-
level models of (a-)synchronous actions and protocols, and that at the same
time was amenable to simple yet intuitive notions of knowledge. The key
formalism put forward at the time satisfying these considerations was the
one which became popular with the name of “interpreted system”. Origi-
nally developed independently by, among others, Parikh and Ramanujam,
Halpern and Moses, and Rosenschein, and later popularised in the seminal
book "Reasoning about Knowledge" by Fagin, Halpern, Moses, and Vardi,
interpreted systems offer a natural yet powerful formalism to represent the
temporal evolution of a system as well as the evolution of knowledge of the

8.1. INTRODUCTION 399

agents in a run. The development of this model, succinctly described in
the next section, triggered an acceleration in the study of logics for know-
ledge in the context of Computer Science leading to several results includ-
ing axiomatisations with respect to several different classes of models of
agents (synchronous, asynchronous, perfect recall, no learning, etc.) as well
as applications of these to standard problems such as coordinated attack,
communication, security, and others.

In this setting logic was most often seen as a formal reasoning tool.
Attention was given to the exploration of metaproperties of the various
formalisms including their completeness, decidability, and computational
complexity. Attempts were made to verify systems automatically by ex-
ploring the relation � `L ', where ' is a specification for the system, L is
a logic suitably axiomatised representing the system under analysis, and �
is a set of formulae expressing the initial conditions. However, partly due
to the inherent complexity of some of the epistemic formalisms, verification
of concrete systems via theorem proving for epistemic logics did not attract
significant attention.

At the same time (the early nineties) the area of verification by model
checking began acquiring considerable importance with a stream of results
being produced for a variety of temporal logics. It was prominently sug-
gested by Halpern and Vardi that model checking, not theorem proving, may
provide the suitable verification technique for epistemic concepts. However,
it was not before the very end of the nineties that model checking tech-
niques were applied to the verification of multi-agent systems via temporal-
epistemic formalisms. To our knowledge the first contribution in the area
dates back to 1999 when van der Meyden and Shilov explored the com-
plexity of model checking perfect recall semantics against epistemic speci-
fications. Attention then switched to the use of ad-hoc local propositions
for translating the verification of temporal-epistemic into plain temporal lo-
gic. Developments of bounded model checking algorithms and BDD-based
labelling procedures followed.

The aim of this chapter is to summarise some of the results obtained
by the authors in this area. The emphasis is mostly placed on BDD and
SAT-based techniques as they constitute the underlying building blocks of
many further refinements that followed. The area has grown considerably
in recent years and this chapter cannot provide a complete survey of the
area. Some additional approaches are discussed in Section 8.7, but others,
inevitably, are omitted. In particular, here we only consider approaches
where knowledge is treated as a modality interpreted on sets of global states
in possible executions and not as a simple predicate as in other approaches.

The rest of the chapter is organised as follows. In Section 8.2 we present
syntax and semantics of CTLK, the branching-time combination between

400 CHAPTER 8. MODEL CHECKING TEL

knowledge and time we use throughout the paper, as well as the special
class of the interleaved interpreted systems and two known scenarios from
the literature. In Section 8.3 we introduce and discuss an OBDD-based
approach to the verification of temporal-epistemic logic. In Section 8.4 an
alternative yet complementary approach based on bounded and unbounded
model checking is discussed. In Section 8.5 extensions to real-time are
summarised briefly. In Section 8.6 we present an abstraction technique
based on partial orders that is shown to be correct against CTLK. We
discuss several alternative and related approaches in Section 8.7.

8.2 Syntax and Semantics

Model checking approaches differ, among other characteristics, by the spec-
ification languages they support. In the following we introduce a branching-
time version of temporal-epistemic logic.

8.2.1 Syntax

Given a set of agents A = {1, . . . , n} and a set of propositional variables
PV , we define the language L of CTLK as the fusion between the branching
time logic CTL and the epistemic logic S5n for n modalities of knowledge
Ki, i 2 A and group epistemic modalities E�, D�, and C� (� ✓ A):

' ::= p | ¬' | ' ^ ' | Ki' | E�' | D�' | C�' | AX' | AG' | A('U')

where p 2 PV .
In addition to the standard Boolean connectives the syntax above de-

fines two fragments: an epistemic and a temporal one. The epistemic part
includes formulas of the form Ki' representing “agent i knows that '”, E�'
standing for “everyone in group � knows that '”, D�' representing “it is dis-
tributed knowledge in group � that ' is true00, C� formalising “it is common
knowledge in group � that '”. The temporal fragment defines formulas of
the form AX' meaning “in all possible paths, ' holds at next step”; AG'
standing for “in all possible paths ' is always true”; and A('U) represent-
ing “in all possible paths at some point holds true and before then ' is
true along the path”.

Whenever � = A we omit the subscript from the group modalities E,
D, and C. As customary we also use “diamond modalities”, i.e., modalities
dual to the ones defined. In particular, for the temporal part we use EF' =
¬AG¬', EX' = ¬AX¬', representing “there exists a path where at some
point ' is true” and “there exists a path in which at the next step ' is
true” respectively. We will also use the E('U) with obvious meaning.

8.2. SYNTAX AND SEMANTICS 401

For the epistemic fragment we use overlines to indicate the dual epistemic
operators; in particular we use Ki' as a shortcut for ¬Ki¬', meaning “agent
i considers it possible that '” and similarly for EK�, CB�, and C�.

Formulas including both temporal and epistemic modalities can repre-
sent expressive specifications including the evolution of private and group
knowledge over time, knowledge about a changing environment as well as
knowledge about other agents’ knowledge.

8.2.2 Interpreted systems semantics

In what follows the syntax of the specification language above is interpreted
on the multi-agent semantics of interpreted systems. Interpreted systems
are a fine-grained semantics often employed to represent the temporal evo-
lution and knowledge in multi-agent systems. Although initially developed
for linear time, given the applications of this paper we here present it in its
branching time version.

Assume a set of possible local states Li for each agent i in a set A =
{1, . . . , n} and a set Le of possible local states for the environment e. The
set of possible global states G ✓ L1 ⇥ · · ·⇥Ln ⇥Le is the set of all possible
tuples g = (l1, . . . , ln, le) representing instantaneous snapshots of the system
as a whole. The formalism stipulates that each agent i performs one of the
enabled actions in a given state according to a protocol function Pi : Li !
2Acti . Pi maps local states to sets of possible local actions for agent i
within its repertoire of local actions Acti, which includes a special action
✏ known as the null-action. Similarly, the environment e is assumed to
perform actions following its protocol Pe : Le ! 2Acte . A joint action
a = (act1, . . . , actn, acte) is a tuple of actions performed jointly by all agents
and the environment in accordance with their respective protocols. The
joint actions form part of the domain of the transition function T : G ⇥
Act1⇥ · · ·⇥Actn⇥Acte ! G which gives the evolution of a system from an
initial global state g0 2 G. A path ⇡ = (g0, g1, . . .) is a maximal sequence of
global states such that (gk, gk+1) 2 T for each k � 0 (if ⇡ is finite then the
range of k is restricted accordingly). For a path ⇡ = (g0, g1, . . .), we take
⇡(k) = gk. By ⇧(g) we denote the set of all the paths starting at g 2 G.

The model above can be enriched in several ways by expressing explicitly
observation functions for the agents in the system or by taking more concrete
definitions for the sets of local states thereby modelling specific classes of
systems (perfect recall, no learning, etc.). We do not discuss these options
here.

To interpret the formulas of the language L for convenience we define
models simply as tuples M = (G, g0, T,⇠1, . . . ,⇠n, V), where G is the set of
the global states reachable from the initial global state g0 via T; ⇠i ✓ G⇥G

402 CHAPTER 8. MODEL CHECKING TEL

is an epistemic relation for agent i defined by g ⇠i g0 iff li(g) = li(g0), where
li : G ! Li returns the local state of agent i given a global state; and
V : G ⇥ PV ! {true, false} is an interpretation for the propositional
variables PV in the language.

The intuition behind the definition of the relations ⇠i above is that
the global states whose local components are the same for agent i are not
distinguishable for the agent in question. This definition is standard in
epistemic logic.

Let M be a model, g = (l1, . . . , ln) a global state, and ', formulas in
L, the satisfaction relation |= is inductively defined as follows:

• (M, g) |= p iff V (g, p) = true,

• (M, g) |= Ki' iff for all g0 2 G if g ⇠i g0, then (M, g0) |= ',

• (M, g) |= D�' iff for all i 2 � and g0 2 G if g ⇠i g0, then (M, g0) |= ',

• (M, g) |= E�' iff (M, g) |= V

i2� Ki',

• (M, g) |= C�' iff for all k � 0 we have (M, g) |= Ek
�',

• (M, g) |= AX' iff for all ⇡ 2 ⇧(g) we have (M,⇡(1)) |= ',

• (M, g) |= AG' iff for all ⇡ 2 ⇧(g) and for all k � 0 we have
(M,⇡(k)) |= ',

• (M, g) |= A('U) iff for all ⇡ 2 ⇧(g) there exists a k � 0 such that
(M,⇡(k)) |= and for all 0 j < k we have (M,⇡(j)) |= '.

The definitions for the Boolean connectives and the other inherited modali-
ties are given as usual and are not repeated here. Ek' is to be understood as
a shortcut for k occurrences of the E modality followed by ', i.e., E0' = ';
E1' = E'; Ek+1' = EEk'.

8.2.3 Interleaved interpreted systems

Interleaved interpreted systems are a restriction of interpreted systems,
where all the joint actions are of a special form. More precisely, we as-
sume that if more than one agent is active at a given global state, i.e.,
executes a non null-action, then all the active agents perform the same
(shared) action in that round. Formally, let Act =

Sn
i=1 Acti [Acte and for

each action a 2 Act by Agent(a) we mean the set {j 2 A[{e} | a 2 Actj},
i.e., the set of all agents and environment having a in their repertoires.
A tuple (a1, . . . , an, ae) is a joint action iff there exists a non-null action
a 2 Act \ {✏1, . . . , ✏n, ✏e} such that aj = a for all j 2 Agent(a), and aj = ✏j

8.2. SYNTAX AND SEMANTICS 403

for all j 2 {1, .., n, e} \ Agent(a). By g
a�! g0 we denote that there is a

transition from g to g0 by means of the joint action a.
Similarly to blocking synchronisation in automata, the condition above

insists on all agents performing the same non-null action in a global transi-
tion; additionally, note that if an agent has the action being performed in
its repertoire, it must be performed, for the global transition to be allowed.

8.2.4 Temporal-epistemic specifications

The formalism of interpreted systems has been used successfully to model a
variety of scenarios including communication protocols (e.g., the bit trans-
mission problem, message passing systems), coordination protocols (e.g.,
the attacking generals setting), and cache coherence protocols. We briefly
present only two scenarios here and refer the reader to the specialised litera-
ture for more details. Our key consideration here is that temporal-epistemic
languages seem particularly attractive to express natural and precise spec-
ifications involving the information states of the agents in the system.

The dining cryptographers protocol (DCP) for anonymous broad-
cast is a well-known anonymity protocol in the security literature. We report
it in its original wording given by Chaum.

Three cryptographers are sitting down to dinner at their fa-
vorite three-star restaurant. Their waiter informs them that ar-
rangements have been made with the maitre d’hotel for the bill
to be paid anonymously. One of the cryptographers might be
paying for dinner, or it might have been NSA (U.S. National Se-
curity Agency). The three cryptographers respect each other’s
right to make an anonymous payment, but they wonder if NSA
is paying. They resolve their uncertainty fairly by carrying out
the following protocol:

Each cryptographer flips an unbiased coin behind his menu,
between him and the cryptographer on his right, so that only
the two of them can see the outcome. Each cryptographer then
states aloud whether the two coins he can see – the one he flipped
and the one his left-hand neighbor flipped – fell on the same side
or on different sides. If one of the cryptographers is the payer,
he states the opposite of what he sees. An odd number of dif-
ferences uttered at the table indicates that a cryptographer is
paying; an even number indicates that NSA is paying (assuming
that dinner was paid for only once). Yet if a cryptographer is
paying, neither of the other two learns anything from the utter-
ances about which cryptographer it is ((Chaum, 1988, p. 65)).

404 CHAPTER 8. MODEL CHECKING TEL

Temporal-epistemic logic can be used to express the specification of the
protocol, which, in turn, can be modelled as an interpreted system. For
each agent i in the set of cryptographers A we can consider a local state
consisting of the triple (l1i , l

2
i , l

3
i), representing, respectively, whether or not

the coins observed are the same, whether agent i paid for the bill, and
whether the announcements have an even or odd parity. A local state for
the environment can be taken as a tuple (l1e , l

2
e , l

3
e , l

4
e) where l1e , l

2
e , l

3
e represent

the coin tosses for each agent and l4e represents whether or not the agent
in question paid for the bill. Actions and protocols for the agents and the
environment can easily be given following Chaum’s narrative above and so
can the transition function.

The following specifications can be considered for the protocol.

AG(
^

i2A
(odd ^ ¬paidi)! AX(Ki(

_

j 6=i

paidj)
^

k 6=i

¬Kipaidk)) (8.1)

AG(
^

i2A
(even! AX(CA(

^

j2A
¬paidj) (8.2)

Specification 8.1 states that when an agent i 2 A observes an odd parity
in a situation when he did not cover the bill, then in all next states (i.e.,
when the announcements have been made) he will know that one of the
others paid for dinner but without knowing who it was. Specification 8.2
states that when an even parity has been observed, then the cryptographers
acquire common knowledge of the fact that none of them paid the bill.
Both specifications represent the precise and intuitive requirements of the
protocol in question; both formulas can be shown to hold on the protocol.

The DCP is amenable to be scaled to represent any number of cryp-
tographers. The corresponding number of states grows exponentially in the
number of cryptographers considered and therefore may only be verified by
automated techniques, such as model checking.

The train-gate-controller problem (TGC) is a deadlock protocol
in which a number of trains share a tunnel regulated by a traffic signal.
While each train runs on its own track, the tunnel can only accommodate
one train. A single controller operates a system of traffic lights at both ends
of the tunnel, thereby regulating access to the tunnel.

The scenario can be modelled as interpreted system by associating the
possible local states away from the tunnel, wait, and train-in-tunnel to each
train and the possible local states green and red to the controller. The lo-
cal actions for the train consist of enter the tunnel, leave the tunnel, and
wait with the obvious effects implemented by the transition function. As-
suming the trains work correctly, a train may attempt to enter the tunnel

8.3. OBDD-BASED SYMBOLIC MODEL CHECKING 405

when it is in the wait state and the controller signals the tunnel is free of
trains. Protocols can be given for the agents to perform actions following
the description above and the transition function can similarly be defined
accordingly.

Specifications that can be checked on the TGC include the following.

AG(train1_in_tunnel! K1¬train2_in_tunnel) (8.3)

AG(¬train1_in_tunnel! (8.4)
(¬K1(train2_in_tunnel) ^ ¬K1¬train2_in_tunnel))

Property 8.3 states that when train 1 is in the tunnel, it knows that train
2 is not in the tunnel. Property 8.4 states that when train 1 is in the tunnel,
it does not know whether or not train 2 is in the tunnel. Both specifications
can be shown to hold on the TGC model. Variants of the scenario where
trains may develop faults have been studied and other specifications have
been analysed.

Like DCP the TGC is scalable to any number of trains and may be
verified by means of the techniques discussed below.

8.3 OBDD-based Symbolic Model Checking

Given a system S and a specification P to be checked, the model checking
approach involves representing S as a logical model MS , the specification
P as a logic formula 'P , and investigating whether MS |= 'P . In the
traditional approach the model MS is finite and represents all the possible
evolutions of the system S; the specification 'P is a temporal logic formula
expressing some property to be checked on the system, e.g., liveness, safety,
etc. When the formula 'P is given in LTL or CTL, checking 'P on an
explicitly given MS is a tractable problem. It is, however, impractical to
present MS explicitly; instead, MS is normally given implicitly by means of
a program in a dedicated modelling language. This is convenient for the en-
gineer, but the number of states in the resulting model grows exponentially
with the number of variables used in the program describing MS , causing
what is commonly referred to as the state explosion problem.

Since state-spaces of real systems can be too large to be checked, much of
the model checking literature deals with methodologies to limit the impact
of the state explosion problem. The most prominent techniques include par-
tial order reduction, symmetry reduction, ordered-binary decision diagrams
(OBDDs), bounded and unbounded model checking, and various forms of
abstraction. By using partial-order reduction techniques the model MS

406 CHAPTER 8. MODEL CHECKING TEL

is pruned and provably redundant states are eliminated or collapsed with
others depending on the formula to be checked, thereby reducing the size
of the state space to be considered. Symmetry reduction techniques are
used to reduce the state space of distributed systems composed of many
similar processes which can be suitably abstracted. OBDDs are a com-
pact and canonical representation for Boolean formulas, and traditionally
offer the underpinnings for the mainstream symbolic approaches to model
checking. Bounded and unbounded model checking exploit recent advances
in the efficiency of checking satisfiability for appropriate Boolean formu-
las representing the model and the specification. Abstraction techniques
are used to generate smaller models, typically simulations or bisimulations,
that can alternatively be checked against the same specification. Predicate
abstraction is based on the identification of key predicates, often generated
automatically via calls to SMT checkers, which can be used to construct
a smaller model for the verification of the formula in question; crucially it
is used in verification of infinite-state systems. Several tools have been de-
veloped for model checking systems against temporal specifications. These
include SPIN, which provides an on-the-fly automata-based approach com-
bined with partial-order reduction for LTL, SMV and NuSMV supporting
OBDD-based model checking and bounded model checking for LTL and
CTL, POEM supporting partial-order semantic reduction. Several other
tools exist for other varieties of temporal logic, e.g., real-time logics and
probabilistic temporal logic.

The tools mentioned above are nowadays very sophisticated and support
expressive input languages; however they are limited to temporal logics
only. In the rest of the chapter we summarise work by the authors towards
techniques and tools supporting specifications given in temporal-epistemic
logic.

8.3.1 State space representation and labelling

At the heart of the OBDDs approach is the symbolic representation of sets
and functions paired with the observation that to assess whether (M, g) |= '
it is sufficient to evaluate whether g 2 SAT (') where SAT (') is the set
of states in the model M satisfying '. To introduce the main ideas of the
approach we proceed in three stages: first, we observe we can encode sets
as Boolean formulas; second, we show how OBDDs offer a compact repre-
sentation to Boolean functions; third we give algorithms for the calculation
of SAT (').

To begin, observe that given a set G of size |G| it is straightforward
to associate uniquely a vector of Boolean variables (w1, . . . , wm) to any
element g 2 G where m = dlog2|G|e (a tuple of m places can represent

8.3. OBDD-BASED SYMBOLIC MODEL CHECKING 407

2m different elements). Any subset S ✓ G can be represented by using a
characteristic function fS : (g1, . . . , gm)! {0, 1}, expressing whether or not
the element as encoded is in S. Note that functions and relations can also
be encoded as Boolean functions; for instance to encode that two states
are related by some relation we can consider a vector of Boolean functions
comprising of two copies of the representation of the state to which we add
a further Boolean variable expressing whether or not the states are related.
Vectors designed in this way represent conjunctions of Boolean atoms or
their negation and, as such, denote a Boolean formula.

Given this, Boolean formulas can be used to represent a given interpreted
system as follows.

• Sets of local states, global states, actions, and initial global states can
be encoded as Boolean formulas for the respective sets.

• Protocols for each agent, the local evolution function for each agent,
and the valuation for the atoms can be expressed as Boolean formulas
for the respective functions.

• Following this, the global temporal relation and the n epistemic re-
lations for the agents can also be suitably represented as Boolean
formulas for the respective relations. The Boolean formula encoding
the temporal relation needs to reflect the fact that joint actions are
composed of enabled local actions: fT (g, g0) =

W

a2JointAct(g, a, g0) 2
T

V

i2A ai 2 Pi(li(g)), where a = (a1, . . . , an) is a joint action for the
system and all individual action components ai are enabled by the
local protocols at the corresponding local state li(g) in g. The epis-
temic relations for the agents can be represented simply by imposing
equality on the corresponding local state component.

• The set of reachable global states can be represented by a Boolean
formula by calculating the fix-point of the operator ⌧(Q) = (I(g) _
9g0(T (g, a, g0) ^Q(g0)).

Boolean functions are a convenient representation to perform certain logical
operations on them (e.g., ^,_); however, calculating their satisfiability and
validity can be expensive. Truth tables themselves do not offer any advan-
tage in this respect: for instance checking satisfiability on them may involve
checking 2n rows of the table where n is the number of atoms present. OB-
DDs constitute a symbolic representation for Boolean functions. Observe
that every Boolean function we can be associated to a binary decision tree
(BDT), in which each level represents a different atom appearing in the
Boolean function. Taking a different path along the tree corresponds to

408 CHAPTER 8. MODEL CHECKING TEL

a

b

c

0 0

c

0 1

b

c

1 1

c

1 1

a

b

c

0 1

Figure 8.1: A BDT for the Boolean function a_ (b^ c) (left) and its corre-
sponding BDD (right). The dotted lines correspond to assigning the value
false to the atom whose name the edge leaves from. Conversely the solid
lines represent assignments to true.

selecting a particular combination of values for the atoms (see Figure 8.1),
thereby determining the truth value of the formula.

BDTs are not efficient representations of their corresponding Boolean
function. However, a series of operations can be performed on them to
reduce them to binary decision diagrams (BDDs). A BDD is a directed
acyclic graph with an initial node, and in which each node (representing a
Boolean atom) has two edges (corresponding to decision points “true” and
“false”) originating from it and with the final leaves labelled either as “true”
(marked with 1) or “false” (marked with 0) (see Figure 8.1). The order
in which operations are applied on the initial BDT affects the resulting
BDD and comparing BDDs is also an expensive operation. However, if the
ordering of the variables in the BDT is fixed, the resulting reduced BDD is
unique (or canonical). This leads to an alternative technique to comparing
Boolean functions: compute their canonical BDDs; if they are the same
they represent the same Boolean function; if not they represent different
functions. The canonical BDDs in which the variables are ordered obtained
as above are normally referred to as reduced OBDDs and constitute one of
the leading data structures in symbolic model checking.

The reason for this is that operations on Boolean functions and specific
set operations such as existential pre-images can be efficiently executed
directly on the corresponding OBDDs.

We now present the algorithms for the calculation of the set of states
SAT (') satisfying a formula ' in L. In the OBDD approach all sets of
states below are computed symbolically on the corresponding OBDDs.

8.3. OBDD-BASED SYMBOLIC MODEL CHECKING 409

SAT (') {
' is an atomic formula: return {g | V (g,') = true};
' is ¬'1: return S \ SAT ('1);
' is '1 ^ '2: return SAT ('1) \ SAT ('2);
' is EX'1: return SATEX('1);
' is E('1U'2): return SATEU ('1,'2);
' is EF'1: return SATAF ('1);
' is Ki'1: return SATK('1, i);
' is E': return SATE(');
' is C': return SATC(');

}

In the algorithm above, the auxiliary procedures SATEX , SATEU , and
SATAF follow the standard algorithms used in temporal logic1. For instance
the set of global states satisfying EX' is computed as follows (in what
follows G is the set of reachable states).

SATEX(') {
X = SAT (');
Y = {g 2 G | 9g0 2 X and T (g, a, g0)}
return Y;

}

Note that the calculation of EX involves computing the pre-image of T .
The set of states satisfying the epistemic modalities are defined as follow
(note that below we use ⇠E

�=
S

i2� ⇠i and ⇠D
� =

T

i2� ⇠i).

SATK(', i) {
X = SAT (¬');
Y = {g 2 S | 9g0 2 X and ⇠i (g, g0)}
return ¬Y \G;

}

SATE(', �) {
X = SAT (¬');
Y = {g 2 G |⇠E

� (g, g0) and g0 2 X}
return ¬Y \G;

}

SATD(', �) {
X = SAT (¬');
Y = {g 2 G |⇠D

� (g, g0) and g0 2 X}
return ¬Y \G;

}

1For efficiency reasons the CTL modalities implemented are typically EX, EU , and
AF .

410 CHAPTER 8. MODEL CHECKING TEL

SATC(', �) {
Y = SAT (¬');
X = G;
while (X 6= Y) {

X = Y ;
Y = {g 2 G |⇠E

� (g, g0) and g0 2 X}
return ¬Y \G;

}

The algorithm for Ki' is similar in spirit to the CTL algorithm for
computing AX': essentially we compute the pre-image under the epis-
temic relation of the set of formulas not satisfying ' and negate the result.
E�' (respectively D�' is computed similarly but on ⇠�

E (⇠�
D, respectively).

For C we use a fix-point construction; note that fix-point constructions al-
ready appear in the algorithm to compute the satisfiability of the CTL until
operator. All sets operations above are implemented on the corresponding
OBDDs thereby producing the OBDD for SAT ('). We can now recast the
model checking query (M, g0) |= ' into g0 2 SAT (') where g0 and SAT (')
are suitably encoded as OBDDs.

8.3.2 MCMAS

MCMAS is an open-source toolkit that implements the OBDD-based pro-
cedures described above. The model checker takes as input a program de-
scribing the evolutions of a multi-agent system and a set of specifications to
be checked and returns as output whether or not the specifications are sat-
isfied and witnesses or counterexamples for them. The program is given in
ISPL (Interpreted Systems Programming Language), a modelling language
suited to represent interpreted systems. An ISPL program consists of a
sequence of declarations for the agents in the system, an evaluation for the
atomic propositions, and a set of specifications in CTLK (other specification
languages including ATL are also supported) to be checked.

In line with interpreted systems an agent is modelled by describing the
variables that define it (bounded integers, Boolean, and enumeration types),
the set of local actions, protocols, and the local evolution function. This
is given in terms of a set of rules governing the value of the target local
states when global actions are performed in given sets of local states. A
very simple ISPL agent is described in Figure 8.2.

Upon invocation the tool parses the input, builds the OBDD for tran-
sition relation and the OBDD for the set of reachable states. This is then
used in the calculation of the OBDD for the sets of states satisfying the
formula to be verified. By comparing whether the initial state belongs to
this set the output is displayed. MCMAS can be used within Eclipse where

8.4. SAT-BASED SYMBOLIC MODEL CHECKING 411

1 Agent Sender

2 Vars:

3 bit : {b0, b1};

4 ack : boolean;

5 end Vars

6 Actions = {sb0, sb1, null};

7 Protocol:

8 bit=b0 and ack=false : {sb0};

9 bit=b1 and ack=false : {sb1};

10 ack=true : {null};

11 end Protocol

12 Evolution:

13 (ack=true) if (ack=false) and

14 (((Receiver.Action=sendack) and

15 (Environment.Action=sendSR))

16 or

17 ((Receiver.Action=sendack) and

18 (Environment.Action=sendR))

19);

20 end Evolution

21 end Agent

Figure 8.2: A simple ISPL Agent representing the sender agent in the bit
transmission problem.

various functionalities, including counterexample and witness generation,
are supported.

Through MCMAS several scenarios from areas like web-services, cache-
coherence protocols, diagnosis, and security protocols, have been verified.
In line with other BDD-based checkers, the size of the model that can be
usefully verified depends on the specific example but is normally around
1012 reachable global states. The corresponding number of possible global
states can be greater than 1030.

8.4 SAT-based Symbolic Model Checking

SAT-based model checking is the most recent symbolic approach for modal
logic. It has been motivated by a dramatic increase in efficiency of SAT-
solvers, i.e., algorithms solving the satisfiability problem for propositional
formulas. The main idea of SAT-based methods consists in translating the
model checking problem for a temporal-epistemic logic to the problem of
satisfiability of a formula in propositional logic. This formula is typically ob-
tained by combining an encoding of the model and of the temporal-epistemic
property. In principle, the approaches to SAT-based symbolic verification
can be viewed as bounded (BMC) or unbounded (UMC). BMC applies to
an existential fragment of a logic (here ECTLK) on a part of the model,
whereas UMC is for an unrestricted logic (here CTLpK) on the whole model.

412 CHAPTER 8. MODEL CHECKING TEL

8.4.1 Bounded Model Checking

BMC is based on the observation that some properties of a system can be
checked over a part of its model only. In the simplest case of reachability
analysis, this approach consists in an iterative encoding of a finite symbolic
path as a propositional formula. The satisfiability of the resulting propo-
sitional formula is then checked using an external SAT-solver. We present
here the main definitions of BMC for ECTLK and later discuss extensions
to more expressive logics. We refer the reader to the literature cited at the
end of this chapter.

To explain how the model checking problem for an ECTLK formula
is encoded as a propositional formula, we first define k-models, bounded
semantics over k-models, and then propositional encodings of k-paths in
the k-model and propositional encodings of the formulas. In order to define
a bounded semantics for ECTLK we start with defining k-models. Let
M = (G, g0, T,⇠1, . . . ,⇠n, V) be a model and k 2 IN+. The k�model for
M is defined as a structure Mk = (G, g0, Pk,⇠1, . . . ,⇠n, V), where Pk is the
set of all the k-paths of M over G, where a k-path is the prefix of length k
of a path.

We need to identify k-paths that represent infinite paths so that satis-
faction of EG formulas in the bounded semantics implies their satisfaction
in the unbounded one. To this aim define the function loop : Pk ! 2IN as:
loop(⇡) = {l | 0 l k and (⇡(k), ⇡(l)) 2 T}, which returns the set of
indices l of ⇡ for which there is a transition from ⇡(k) to ⇡(l).

Let Mk be a k�model and ', be ECTLK formulas. (Mk, g) |= ↵
denotes that ' is true at the state g of Mk. The bounded semantics is
summarised as follows. (Mk, g) |= EX' has the same meaning as for un-
bounded models, for k > 0. (Mk, g) |= E('U) has the same meaning as for
unbounded models. (Mk, g) |= EG' states that there is a k-path ⇡, which
starts at g, all its states satisfy ' and ⇡ is a loop, which means that one of the
states of ⇡ is a T -successor of the last state of ⇡. loop(⇡) returns the indexes
of such states of ⇡. For the epistemic modalities (Ki', E�', D�', C�') the
bounded semantics is the same as unbounded, but insisting on reachability
of the state satisfying ' on a k-path starting in g0.

Model checking over models can be reduced to model checking over k-
models, called BMC. The main idea of BMC for ECTLK is that checking
' over Mk is replaced by checking the satisfiability of the propositional
formula [M,']k := [M',g0]k ^ [']Mk

. The formula [M',g0]k represents the
k-model under consideration, whereas [']Mk

- a number of constraints that
must be satisfied on Mk for ' to be satisfied. Checking satisfiability of an
ECTLK formula can be done by means of a SAT-solver. Typically, we start
with k := 1, test satisfiability for the translation, and increase k by one until

8.4. SAT-BASED SYMBOLIC MODEL CHECKING 413

either [M',g0]k ^ [']Mk
becomes satisfiable, or k reaches the maximal depth

of M , which is bounded by |G|. It can be shown that if [M',g0]k ^ [']Mk

is satisfiable for some k, then (M, g0) |= ', where M is the full model. If
[M',g0]k ^ [']Mk

is not satisfiable for some k, then we cannot infer that
(M, g0) 6|= ' unless k reaches the size of the model M .

Translation to SAT

We provide here some details of the translation. The states and the transi-
tions of the system under consideration are encoded similarly as for BDDs
in Section 8.3. Let w = (w[1], . . . , w[m]) be sequence of propositions (called
a global state variable) for encoding global states. A sequence w0,j , . . . , wk,j

of global state variables is called a symbolic k-path j. Since a model for a
branching time formula is a tree (a set of paths), we need to use a set of
symbolic k-paths to encode it. The number of them depends on the value of
k and the formula ', and it is computed using the function fk. This func-
tion determines the number of k-paths sufficient for checking an ECTLK
formula. Intuitively, each nesting of an epistemic or temporal formula in '
increases the value of fk(') by 1, whereas the subformulas EU, EG, and C�

add more k�paths.
The propositional formula [M',g0]k, representing the k-paths in the k-

model, is defined as follows:

[M',g0]k := Ig0(w0,0) ^
fk(')
^

j=1

k�1̂

i=0

T (wi,j , wi+1,j),

where w0,0 and wi,j for 0 i k and 1 j fk(') are global state
variables, and T (wi,j , wi+1,j) is a formula encoding the transition relation
T .

An intuition behind this encoding is as follows. The vector w0,0 encodes
the initial state g0 and for each symbolic k-path, numbered 1, . . . , fk('),
each pair of the consecutive vectors on this path encodes pairs of states
that are in the transition relation T . The formula T (w, v) is typically a
logical disjunction of the encodings of the transitions corresponding to all
the actions of the model M . This way, one symbolic k-path encodes all the
(concrete) k-paths.

The next step of the algorithm consists in translating an ECTLK for-
mula ' into a propositional formula. Let w, v be global state variables. We
make use of the following propositional formulas in the encoding:

• p(w) encodes a proposition p of ECTLK over w.

414 CHAPTER 8. MODEL CHECKING TEL

• H(w, v) represents the logical equivalence between the global state
encodings u and v (i.e., encodes that u and v represent the same
global states).

• HKi(w, v) represents the logical equivalence between the i-local state
encodings u and v (i.e., encodes that u and v share the i-local states).

• Lk,j(l) encodes a backward loop connecting the k-th state to the l-th
state in the symbolic k�path j, for 0 l k.

The translation of each ECTLK formula is directly based on its bounded
semantics. The translation of ' at the state wm,n into the propositional
formula ['][m,n]

k is as follows, where we give the translation of some selected
formulas only. Let w be wm,n and let v denote w0,i.

[EX↵][m,n]
k :=

Wfk(')
i=1

⇣

H(w, v) ^ [↵][1,i]k

⌘

[EG↵][m,n]
k :=

Wfk(')
i=1

⇣

H(w, v) ^ (
Wk

l=0 Lk,i(l)) ^
Vk

j=0[↵][j,i]k

⌘

[E(↵U�)][m,n]
k :=

Wfk(')
i=1

⇣

H(w, v) ^ Wk
j=0

�

[�][j,i]k ^ Vj�1
t=0 [↵][t,i]k

�

⌘

[Kl↵]
[m,n]
k :=

Wfk(')
i=1

⇣

Ig0(v) ^
Wk

j=0

�

[↵][j,i]k ^ HKl(w, wj,i)
�

⌘

Intuitively, [EG↵][m,n]k is translated to all the fk(')-symbolic k-paths
(EG↵ is considered as a subformula of ') that start at the states encoded
by w, satisfy ↵, and are loops. [Kl↵][m,n]

k is translated to all the fk(')-
symbolic k-paths such that each symbolic k-path starts at the initial state
g0, one of its states satisfies ↵ and shares the l-th state with these encoded
by w. Given the translations above, verification of ' over Mk reduces to
checking the satisfiability of the propositional formula [M',g0]k ^ [']Mk

,
where [']Mk

= ['][0,0]k .

Example 8.1
Below we show a part of the model encoding of the TGC protocol for two
trains and the controller. Each train can be in 3 different local states, so
we need 2 bits for representing its local states: awayi by (0, 0), waiti by
(0, 1), and traini_in_tunnel by (1, 0), where i 2 {1, 2}. The controller
can be in 2 local states, so the binary representation of these states requires
only one bit as follows: green by (0) and red by (1). Thus, a global state,
which is composed of a local state for train 1, a local state for the con-
troller, and a local state for train 2, requires 5 bits to be represented, e.g.,
the initial state g0 = (away1, green, away2) is represented by (0, 0, 0, 0, 0).
In order to encode global states in the propositional logic we use global
state variables being vectors composed of 5 propositional variables. Let

8.4. SAT-BASED SYMBOLIC MODEL CHECKING 415

w = (w[1], ..., w[5]), v = (v[1], ..., v[5]) be two global state variables, and
A = {1, 2, 3}, D1 = {1, 2}, D2 = {3}, and D3 = {4, 5}. The initial state
encoding over w is as follows: Ig0(w) :=

V

i2D1[D2[D3
¬w[i].

In order to encode the global transition relation T in propositional logic
we need first to encode sets of the global states sharing one local state. To
this aim we number all the local states according to their position from 1 to 8
in the sequence (away1, wait1, train1_in_tunnel, green, red, away2, wait2,
train2_in_tunnel).

The formula pi(w) for i 2 {1, . . . , 8} encodes all the global states,
containing the local state numbered i, where: p1(w) := ¬w[1] ^ ¬w[2]
for away1, p2(w) := ¬w[1] ^ w[2] for wait1, p3(w) := w[1] ^ ¬w[2] for
train1_in_tunnel, p4(w) := w[3] for green, p5(w) := ¬w[3] for red,
p6(w) := ¬w[4]^¬w[5] for away2, p7(w) := ¬w[4]^w[5] for wait2, p8(w) :=
w[4] ^ ¬w[5] for train2_in_tunnel.

Let agent(t) be the set of the numbers of agents whose local states
are changed by executing the global transition t. For t 2 T let Bt :=
S

j2A\agent(t) Dj , be the set of the numbers of the bits of a global state that
are not changed by t, pre(t) be the set of the numbers of local states from
which t has to be executed and post(t) be the set of the numbers of local
states reached after executing t.

It is easy to check that for the transition t = enter1_in_tunnel, we have
pre(t) = {2, 4} and post(t) = {3, 5}, for the transition t = leave1_in_tun-
nel, pre(t) = {3, 5} and post(t) = {1, 4}, and for the transition t = wait1,
pre(t) = {1} and post(t) = {2}.

The encoding T (w, v) of the global transition relation T of TGC is as
follows:

T (w, v) :=
_

t2T

�

^

i2pre(t)

pi(w) ^
^

i2post(t)

pi(v) ^
^

i2Bt

(w[i], v[i])
�

.

Several improvements have been suggested to the above encoding of
ECTLK such that the length of the formula [']Mk

is reduced. They are
listed in the final section. These approaches show an improved performance
over the original encoding for some subclasses of ECTLK composed mainly
of long and deeply nested formulas.

8.4.2 Unbounded Model Checking

UMC was originally introduced by McMillan for verification of CTL as
an alternative to BMC and approaches based on BDDs. Then, UMC was
extended to CTLpK as well as to other more expressive logics.

We begin by extending the syntax and semantics of CTLK to CTLpK
by adding the past operators AY and AH. The operators including Since

416 CHAPTER 8. MODEL CHECKING TEL

are omitted. A backward path ⇡ = (g0, g1, . . .) is a maximal sequence of
global states such that (gk+1, gk) 2 T for each k � 0 (if ⇡ is finite, then
k needs to be restricted accordingly). Let ⇧(g) denote the set of all the
backward paths starting at g 2 G.

• (M, g) |= AY' iff for all ⇡ 2 ⇧(g) we have (M,⇡(1)) |= ',

• (M, g) |= AH' iff for all ⇡ 2 ⇧(g) and for all k � 0 we have
(M,⇡(k)) |= '.

Intuitively, AY' specifies that for all the predecessor states ' holds, whereas
AH' expresses that for all the states in the past ' holds.

Unlike BMC, UMC is capable of handling the whole language of the
logic. Our aim is to translate CTLpK formulas into propositional formulas
in the conjunctive normal form, accepted as an input by SAT-solvers.

Specifically, for a given CTLpK formula ', a corresponding proposi-
tional formula ['](w) is computed, where w is a global state variable (i.e.,
a vector of propositional variables for representing global states) encoding
these states of the model where ' holds. The translation is not operating
directly on temporal-epistemic formulas. Instead, to calculate propositional
formulas either the Quantified Boolean Formula (QBF) or the fix-point char-
acterisation of CTLpK formulas (see Section 8.3) is used. More specifically,
three basic algorithms are exploited. The first one, implemented by the
procedure forall, defined by McMillan, is used for translating the formulas
Z↵ such that Z 2 {AX, AY, Ki, D�, E�}. This procedure eliminates the
universal quantifiers from a QBF formula characterising a CTLpK formula,
and returns the result in the conjunctive normal form. The second algo-
rithm, implemented by the procedure gfpO is applied to formulas Z↵ such
that Z 2 {AG, AH, C�}. This procedure computes the greatest fix-point,
in the standard way, using Boolean representations of sets rather than sets
themselves. For formulas of the form A('U) the third procedure, called
lfpAU , computing the least fix-point (in a similar way), is used. In so do-
ing, given a formula ', a propositional formula ['](w) is obtained such that
' is valid in the model M iff the propositional formula ['](w) ^ Ig0(w) is
satisfiable.

In the following section we show how to represent the CTLpK formulas
in QBF and then translate them to propositional formulas in CNF.

From a fragment of QBF to CNF

The Quantified Boolean Formulas (QBF) are an extension of propositional
logic by means of quantifiers ranging over propositions. The BNF syntax
of a QBF formula is given by:

8.4. SAT-BASED SYMBOLIC MODEL CHECKING 417

↵ ::= p | ¬↵ | ↵ ^ ↵ | 9p.↵ | 8p.↵.

The semantics of the quantifiers is defined as follows:

• 9p.↵ iff ↵(p true) _ ↵(p false),

• 8p.↵ iff ↵(p true) ^ ↵(p false),

where ↵ 2 QBF, p 2 PV and ↵(p q) denotes substitution with the
variable q of every occurrence of the variable p in the formula ↵.

For example, the formula [AX↵](w) is equivalent to 8v.(T (w, v))
[↵](v)) in QBF. Similar equivalences are obtained for the formulas AY↵,
Ki↵, D�↵, and E�↵ by replacing T (w, v) with suitable encodings of the
relations T�1, ⇠i, ⇠D

� , and ⇠E
� .

For defining a translation from a fragment of QBF (resulting from the
translation of CTLpK) to propositional logic, one needs to know how to
compute a CNF formula which is equivalent to a given propositional formula
'. While the standard algorithm toCNF, which transforms a propositional
formula to one in CNF, preserving satisfiability only, is of linear complexity,
a translation to an equivalent propositional formula in CNF is NP-complete.
For such a translation, one can use the algorithm equCNF - a version of the
algorithm toCNF, known as a cube reduction. The algorithm equCNF is a
slight modification of the DPLL algorithm checking satisfiability of a CNF
formula, but it can be presented in a general way, abstracting away from
its specific realisation.

Assume that ' is an input formula. Initially, the algorithm equCNF
builds a satisfying assignment for the formula toCNF(') ^ ¬l' (l' is a
literal used in toCNF(')), i.e., the assignment which falsifies '. If one is
found, instead of terminating, the algorithm constructs a new clause that
is in conflict with the current assignment (i.e., it rules out the satisfying
assignment). Each time a satisfying assignment is obtained, a blocking
clause is generated by the algorithm blocking_clause and added to the
working set of clauses. This clause rules out a set of cases where ' is false.
Thus, on termination, when there is no satisfying assignment for the current
set of clauses, the conjunction of the blocking clauses generated precisely
characterises '.

A blocking clause could in principle be generated using the conflict-based
learning procedure. If we require a blocking clause to contain only input
variables, i.e., literals used in ', then one could either use an (alternative)
implication graph of McMillan, in which all the roots are input literals or a
method introduced by Szreter, which consists in searching a directed acyclic
graph representing the formula.

418 CHAPTER 8. MODEL CHECKING TEL

Now, our aim is to compute a propositional formula equivalent to a given
QBF formula 8p1 . . . 8pn.'. The algorithm constructs a formula equiva-
lent to ' and eliminates from the quantified variables on-the-fly, which
is correct as is in CNF. The algorithm differs from equCNF in one step
only, where the procedure blocking_clause generates a blocking clause
and deprives it of the quantified propositional variables. On termination,
the resulting formula is a conjunction of the blocking clauses without the
quantified propositions and precisely characterises 8p1 . . . 8pn.'.

8.4.3 VerICS

VerICS is a verification tool, developed at ICS PAS, that implements the
SAT-based BMC and UMC procedures described above as well as in Section
8.5. It offers three complementary methods of model checking: SAT-based
BMC, SAT-based UMC, and an on-the-fly verification while constructing
abstract models of systems. A network of communicating (timed) automata
(together with a valuation function) is the basic VerICS’s formalism for mod-
elling a system to be verified. Timed automata are used to specify real time
systems, whereas timed or untimed automata are applied to model MAS.
VerICS translates a network of automata and a temporal-epistemic formula
into a propositional formula in CNF and invokes a SAT-solver in order to
check for its satisfiability. VerICS has been implemented in C++; its inter-
nal functionalities are available via a interface written in Java. In line with
other SAT-based model checkers, the size of the state space, which can be
efficiently verified depends on the specific example and ranges between 106

and 1050, which corresponds to encoding and checking k�models with k
ranging from 10 to 40 approximately.

8.5 Extensions to Real-Time Epistemic Logic

In this section we briefly discuss some extensions to real-time to the ECTLK
framework analysed so far. The timed temporal-epistemic logic TECTLK
was introduced to deal with situation where time is best assumed to be
dense and hence modelled by real numbers. The underlying semantics uses
networks of timed automata to specify the behaviour of the agents. These
automata extend standard finite state automata by a set of clocks X (to
measure the flow of time) and time constrains built over X that can be used
for defining guards on the transitions as well invariants on their locations.
When moving from a state to another, a timed automaton can either execute
action transitions constrained by guards and invariants, or time transitions
constrained by invariants only. Crucial for automated verification of timed
automata is the definition of an equivalence relation ⌘ ✓ IR|X | ⇥ IR|X | on

8.5. EXTENSIONS TO REAL-TIME EPISTEMIC LOGIC 419

clocks valuations, which identifies two valuations v and v0 in which either
all the clocks exceed some value cmax

2, or two clocks x and y with the same
integer part in v and v0 and either their fractional parts are equal to 0,
or are ordered in the same way, i.e., fractional(v(x)) fractional(v(y))
iff fractional(v0(x)) fractional(v0(y)). The equivalence classes of ⌘ are
called zones. Since ⌘ is of finite index, there is only finitely many zones for
each timed automaton.

In addition to the standard epistemic operators, the language of TEC-
TLK contains the temporal operators EG and EU combined with time in-
tervals I on reals in order to specify when precisely formulas are supposed
to hold. Note that TECTLK does not include the next step operator EX
as this operator is meaningless on dense time models. The formal syntax of
TECTLK in BNF is as follows:

' ::= p | ¬p | ' ^ ' | ' _ ' | Ki' | EK�' | CB�' | C�' | EGI' | E('UI')

with p 2 PV . A (real-time interpreted) model for TECTLK over a timed
automaton is defined as a tuple M = (Q, s0, T,⇠1, . . . ,⇠n, V), where Q
is the subset of G ⇥ IR|X | such that G is the set of locations of the timed
automaton, all the states in Q are reachable from s0 = (g0, v0) with g0

being the initial location of the timed automaton and v0 the valuation in
which all the clocks are equal to 0; T is defined by the action and timed
transitions of the timed automaton, ⇠i ✓ Q⇥Q is an epistemic relation for
agent i defined by (g, v) ⇠i (g0, v) iff g ⇠i g0 and v ⌘ v0; and V : Q⇥PV !
{true, false} is a valuation function for PV . Intuitively, in the above model
two states are in the epistemic relation for agent i if their locations are in
this relation according to the standard definition in Section 8.2 and their
clocks valuations belong to the same zone.

In what follows, we give the semantics of E('UI) and EGI' of TEC-
TLK and discuss how BMC is applied to this logic. Differently from the
paths of temporal-epistemic models, the paths in real-time models consist
of action transitions interleaved with timed transitions. The time distance
to a state s from the initial one at a given path can be computed by adding
the times of all the timed transitions that have occurred up to this state.
Following this intuition the semantics is formulated as follows:

• (M, s) |= E('UI) iff there is a path in M starting at s which contains
a state where holds, reached from s within the time distance of I,
and ' holds at all the earlier states,

• (M, s) |= EGI' iff there is a path in M starting at s such that ' holds
at all the states within the time distance of I.

2This constant is computed from a timed automaton and a formula to be verified.

420 CHAPTER 8. MODEL CHECKING TEL

The idea of BMC for (M, s0) |= ', where ' is TECTLK formula, is based
on two translations and on the application of BMC for ECTLK. An infi-
nite real-time model M is translated to a finite epistemic model Md and
each formula ' of TECTLK is translated to the formula cr(') of the lo-
gic ECTLKy, which is a slight modification of ECTLK. The above two
translations guarantee that (M, s0) |= ' iff (Md, s0) |= cr(').

Assume we are given a timed automaton A and a TECTLK formula '.
We begin by translating the real-time model M (for A) to Md. First, the
automaton A is extended with one special clock y, an action ay, and the set
of transitions Ey labelled with ay going from each location to itself and re-
setting the clock y. These transitions are used to start the paths over which
sub-formulas of ' are checked. Then, the finite model Md for the extended
timed automaton is built. The model Md = (Qd, q0, Td,⇠d

1, . . . ,⇠d
n, Vd),

where Qd is a suitably selected (via discretisation) finite subset of Q, the
relations Td,⇠d

i are suitably defined restrictions of the corresponding rela-
tions in M , and Vd = V|Qd.

The above translation cr of the temporal modalities is non-trivial only.
Applying cr to E(↵UI�) we get the formula EXyE(cr(↵)Ucr((�)^p)), where
the operator EXy is interpreted over the transitions corresponding to the
action ay, and p is a propositional formula characterising zones. A similar
translation applies to EGI↵.

After the above two translations have been defined, the model checking
of a TECTLK formula ' over M is reduced to model checking of cr(') over
Md, for which BMC can be used as presented in Section 8.4.1.

8.5.1 Example

To exemplify the expressive power of TECTLK we specify a correctness
property for an extension of the Railroad Crossing System (RCS), a well-
known example in the literature of real-time verification. Below, we give its
short description.

The system consists of three agents: Train, Gate, and Controller run-
ning in parallel and synchronising through the events: approach, exit, lower
and raise. When a train approaches the crossing, Train sends the signal
approach to Controller and enters the crossing between 300 and 500 mil-
liseconds (ms) from this event. When Train leaves the crossing, it sends the
signal exit to Controller. Controller sends the signal lower to Gate exactly
100ms after the signal approach is received, and sends the signal raise
signal within 100ms after exit. Gate performs the transition down within
100ms of receiving the request lower, and responds to raise by moving up
between 100ms and 200ms.

Consider the following correctness property: there exists a behaviour of

8.6. PARTIAL ORDER REDUCTIONS 421

RCS such that agent Train considers possible a situation in which it sends
the signal approach but agent Gate does not send the signal down within
50 ms. This property can be formalised by the following TECTLK formula:

' = EF[0,1]KTrain(approach ^ EF[0,50](¬down)).

By using BMC techniques we can verify the above property for RCS.

8.6 Partial Order Reductions

Several approaches are available to alleviate the difficulty of verifying large
state spaces. Partial order reductions have extensively been used in the ver-
ification of reactive systems specified against LTL�X and CTL�X formulas.
So far, the only approach which has been implemented and proved efficient
for MAS was defined over interleaved interpreted systems. We follow this
approach in our presentation.

The main idea behind the partial order reductions is the observation
that two paths that differ only in the ordering of independent actions will
satisfy the same temporal properties, provided the next step operator is not
used. Therefore, rather than dealing with the full model, one can generate a
reduced one, which does not contain all the interleavings of the independent
actions and still satisfies the same properties. In order to describe partial
order reductions used for generating reduced models, we need the following
relations and definitions.

Let i 2 A, g, g0 2 G, and J ✓ A. The relation⇠J=
T

j2J ⇠j corresponds
to the indistinguishably relation for the epistemic modality of distributed
knowledge in group J , whereas the relation I = {(a, b) 2 Act ⇥ Act |
Agent(a) \ Agent(b) = ;} is referred to as the independence relation in
partial order approaches. Notice that ⇠; = G ⇥ G while ⇠A= idG. Two
actions a, a0 2 Act are dependent if (a, a0) 62 I. An action a 2 Act is invisible
in a model M if whenever g

a�! g0 for any two states g, g0 2 G we have
that V (g) = V (g0). Given two models M = (G, g, T,⇠1, ..,⇠n, V) and
M = (G0, g0, T 0,⇠0

1, ..,⇠0
n, V 0). If G0 ✓ G, g0 = g and V 0 = V |G0, then we

write M 0 ✓M and say that M 0 is a submodel of M , or that M 0 is a reduced
model of M .

As mentioned above, the idea of verification by model checking with
partial order reductions is to define an algorithm which generates reduced
models which preserve the satisfaction of a class of formulae. In general, the
algorithm can be defined for several classes of formulae, which are subsets of
CTL*K. In what follows we present an algorithm for CTLK�X , i.e., CTLK
without the next step operator. Observe that the formula EX(executeda ^
EXexecutedb), where the proposition executedx denotes that action x 2

422 CHAPTER 8. MODEL CHECKING TEL

{a, b} is executed, can distinguish between two paths in which the ordering
of the actions a and b is different. This explains why the next step operator
is not used in this context.

For J ✓ A, we write CTLKJ
�X for the restriction of the logic CTLK�X

such that for each subformula Ki' we have i 2 J . One can define a notion of
equivalence on models, called J-stuttering bisimulation, which guarantees
the preservation of the formulas in CTLKJ

�X . The algorithm presented
explores the given model M and returns a reduced one, which is J-stuttering
bisimilar to M . Traditionally, in partial order reduction the exploration is
carried out by depth-first-search (DFS). In this context DFS is used to
compute successor states that will make up the reduced model by exploring
systematically the possible computation tree and selecting only some of
the possible paths generated. In the following a stack represents the path
⇡ = g0a0g1a1 · · · gn currently being visited. For the top element of the stack
gn the following three operations are computed in a loop:

1. The set en(gn) ✓ Act of enabled actions (not including the ✏ action)
is identified and a subset E(gn) ✓ en(gn) of possible actions is heuris-
tically selected (see below).

2. For any action a 2 E(gn) compute the successor state g0 such that
gn

a�! g0, and add g0 to the stack thereby generating the path ⇡0 =
g0a0g1a1 · · · gnag0. Recursively proceed to explore the submodel orig-
inating at g0 in the same way by means of the present algorithm
beginning at step 1.

3. Remove gn from the stack.

The algorithm begins with a stack comprising of the initial state and termi-
nates when the stack is empty. The model generated by the algorithm is a
submodel of the original one. The choice of E(q) is constrained by the class
of formulae of CTLKJ

�X that must be preserved. Below we give the condi-
tions defining a heuristics for the selection of E(g) (such that E(g) 6= en(g))
while visiting state g in the algorithm above.

C1 No action a 2 Act \ E(g) that is dependent on an action in E(g) can
be executed before an action in E(g) is executed.

C2 For every cycle in the constructed state graph there is at least one node
g in the cycle for which E(g) = en(g), i.e., for which all the successors
of g are expanded.

C3 All actions in E(g) are invisible.

8.6. PARTIAL ORDER REDUCTIONS 423

C4 E(g) is a singleton set.

CJ For each action a 2 E(g), Agent(a) \ J = ;, i.e., no action in E(g)
changes local states of the agents in J .

The conditions C1�C3 are used for preserving LTL�X, C4 for preserving
CTL�X, whereas CJ is aimed at preserving the truth value of subformulae
of the form Ki' for i 2 J .

8.6.1 Evaluation

In order to evaluate partial order reductions generated by the implementa-
tion of the above method, a prototype tool, based on MCMAS, was imple-
mented. Experimental results have been obtained for three well-knows sys-
tems in the literature on MAS: The Train, Gate, and Controller (TGC),the
Dining Cryptographers Protocol (DCP) introduced earlier, and the Write-
Once cache coherence protocol (WO).

Starting with TGC, the property checked expresses that whenever the
train 1 is in the tunnel, it knows that no other train is in the tunnel at the
same time:

AG(in_tunnel1 ! Ktrain1

n̂

i=2

¬in_tunneli), (8.5)

where n is the number of trains in the system, and the proposition in_tun-
neli holds in the states where the train i is in the tunnel. The results showed
that the size of the reduced state space R(n) generated by the algorithm is
a function of the number of trains n, for 1 n 10, which turns out to
be exponentially smaller when compared to the size of the full state space
F (n) below:

• F (n) = cn ⇥ 2n+1, for some cn > 1,

• R(n) = 3 + 4(n� 1).

Regarding the DCP scenario and the Write-Once cache coherence proto-
col, it was found that the algorithm for CTLKJ

�X brings negligible benefits
for the tested properties. However, in both the cases, substantial reduc-
tions are obtained if the properties are expressed in LTLKJ

�X . This can be
explained by the fact that in order to preserve LTLKJ

�X the set E(g) does
not need to satisfy the condition C4, thereby leading to smaller reduced
models

424 CHAPTER 8. MODEL CHECKING TEL

8.7 Notes

Background. Treatments of epistemic logic (see Chapter 1) in terms of the
modal system S5n are normally attributed to the work of Hintikka (1962).
In these approaches the semantics is given in terms of Kripke models as
introduced by Kripke (1959). The formalism of interpreted systems, intro-
duced in Section 8.2 as a semantics for epistemic logic was put forward in-
dependently by Parikh and Ramanujam (1985), Rosenschein (1985), and by
Halpern and Moses (1990), and later popularised by Fagin, Halpern, Moses,
and Vardi (1995). Interleaved interpreted systems were studied by Lomus-
cio, Penczek, and Qu (2010) in the context of partial order reductions. They
are inspired by standard synchronisation patterns used in network of au-
tomata. Other variants of interpreted systems have been discussed in the
literature: see the work of Jamroga and Ågotnes (2007), and of Kouvaros
and Lomuscio (2013).

Over the years, several scenarios have been modelled as interpreted
systems and specified by means of temporal-epistemic properties. Fagin,
Halpern, Moses, and Vardi (1995) present an in-depth analysis of a number
of scenarios, including communication protocols, against epistemic spec-
ifications. The dining cryptographers problem was originally introduced
by Chaum (1988) and first analysed in a temporal-epistemic setting by van
der Meyden and Su (2004). The formulation presented in Section 8.2 was
first discussed by Raimondi and Lomuscio (2007). A reformulation of the
protocol including non trustworthy cryptographers was done by Kacprzak,
Lomuscio, Niewiadomski, Penczek, Raimondi, and Szreter (2006). The orig-
inal wording reported in Section 8.2 was first cited by van der Meyden and
Su (2004). The train-gate-controller scenario was presented in the context
of alternating temporal logic by Alur, Henzinger, Mang, Qadeer, Rajamani,
and Tasiran (1998) and recast in terms of epistemic properties by van der
Hoek and Wooldridge (2002b). The description adopted here was encoded
as an interpreted system in a paper by Jones and Lomuscio (2010). The
Write-Once cache coherence protocol described by Baukus and van der Mey-
den (2004) and by Archibald and Baer (1986), used as a benchmark in
Section 8.6, was encoded as an interleaved interpreted system by Lomuscio
et al. (2010).

Research on verification of epistemic specifications by model checking
was spurred by Halpern and Vardi (1991). At the time theorem proving
was the leading verification technology and approaches to verifying epis-
temic specifications relied on various proof-theoretical techniques for the
epistemic logic S5n enriched by operators for group knowledge. A case in
point is the well-known BAN approach put forward by Burrows, Abadi,
and Needham (1990) whereby authentication properties could be shown, it

8.7. NOTES 425

was argued, through automatic proof procedures based on axiomatisations
inspired by epistemic logic. Halpern and Vardi (1991) presented the ratio-
nale for verifying systems against epistemic properties by model theoretic
approaches instead. While in the key example discussed in the paper (the
muddy children problem) the temporal evolution is captured through up-
dates of static epistemic models, various remarks on the possible theoretical
advantage of model checking procedures over theorem proving are given and
used to motivate research into model-theoretical approaches.

Halpern and Vardi (1991) initially spurred considerable research in the
area of updates for static epistemic models, like the work by Baltag, Moss,
and Solecki (1998), Lomuscio and Ryan (1999), and by Gerbrandy (1999).
As most of the updates first studied concerned announcements and informa-
tion sharing, this in turn lead to considerable research on logics for public
announcements, as first suggested by Plaza (1989). As far as we are aware,
it was not before the early 2000s that logics of knowledge and time were
used as specification languages on which model checking procedures could
be applied to. Ten years on from then, while Halpern and Vardi (1991)
only expressed the view that “In summary, we do not expect the model
checking approach to supplement the theorem proving approach.” (p. 19),
it appears that model checking (see the volume by Clarke, Grumberg, and
Peled (1999)) has now become the de-facto technique for the verification of
systems against temporal-epistemic specifications.

This development was profoundly influenced by at least two decades
of successful research in model checking for purely temporal specifications
where several techniques have been put forward with the aim of mitigating
the state-explosion problem. The most prominent methodologies include
partial order reductions as proposed by Valmari (1990), Godefroid (1991),
and by Peled (1993), symmetry reductions as studied by Clarke, Filkorn,
and Jha (1993), Emerson and Jutla (1993), and by Emerson and Sistla
(1995), ordered-binary decision diagrams as described by Burch, Clarke,
McMillan, Dill, and Hwang (1990) and by McMillan (1993), bounded and
unbounded model checking as suggested by Biere, Cimatti, Clarke, and
Zhu (1999) and by McMillan (2002), and various forms of abstraction as,
among others, discussed by Dams, Gerth, Dohmen, Herrmann, Kelb, and
Pargmann (1994) and by Ball, Podelski, and Rajamani (2001). A number
of tools have been released implementing these techniques; some of these
have reached a high level of maturity and are used in industrial settings.
These include SPIN, see the work of Holzmann (1997), which adopts an on-
the-fly automata-based approach combined with partial-order reductions
for LTL specifications and NuSMV, for which we refer to work by McMillan
(1993) and Cimatti, Clarke, Giunchiglia, and Roveri (1999), which used
OBDDs and bounded model checking for symbolic model checking against

426 CHAPTER 8. MODEL CHECKING TEL

LTL and CTL specifications. Other implementations are available for either
the same or different classes of temporal specifications including real-time
logics, probabilistic logic, etc. The work reported in this paper is influenced
by the successful methodologies employed against temporal specifications.

To our knowledge the first treatment of model checking against epis-
temic specifications, in the sense discussed in this chapter, was undertaken
by van der Meyden and Shilov (1999a) where the problem is formalised and
complexity results for perfect recall semantics are given. In what follows we
briefly summarise other notable approaches to the verification of systems
against temporal-epistemic specification and relate them to the material
presented earlier. Due to the recent growth in the area the discussion is
incomplete.

Reduction-based approaches. One of the first approaches to model
checking temporal-epistemic logic that we are aware of was put forward
by van der Hoek and Wooldridge (2002a, 2003), who proposed a reduction
from temporal-epistemic specifications to plain temporal specifications. The
approach uses local propositions to identify and fully characterise the local
states of the agents. A feature of this approach is that no automatic pro-
cedure for the automatic synthesis of local propositions from the model is
given. As stated by the authors, the approach is inspired by Engelhardt,
van der Meyden, and Moses (1998); in their paper a logic for local proposi-
tion is developed, and the basic principles through which epistemic formulas
can be rewritten via quantification of local propositions are put forward. It
should be noted that, differently from van der Hoek and Wooldridge (2002a),
the technique of Engelhardt et al. (1998) focuses on representational issues
in static epistemic logic. In this context it is shown that negative results such
as non-axiomatisability and undecidability follow in some settings because
of reductions to second-order logic even when assuming a weak semantics.

More recently, temporal-epistemic logic on discrete time was reduced
to a special case of action-restricted CTL (ARCTL for short) by Lomus-
cio, Pecheur, and Raimondi (2007b). ARCTL as proposed by Pecheur and
Raimondi (2007) is an extension of CTL whereby path quantifiers are la-
belled with actions. The work of Lomuscio, Pecheur, and Raimondi (2007a)
concerns a reduction of CTLK to ARCTL and a compiler into NuSMV im-
plementing the translation. In this work the relations corresponding to
the epistemic modalities are effectively recast as special actions in the cor-
responding action-based transition system and special labels are used for
the temporal relations. Experimental results on the dining cryptographers
showed that the approach was as efficient as the other toolkits available at
the time.

OBDD-based approaches. The MCMAS toolkit developed by Rai-
mondi and Lomuscio (2007), Lomuscio and Raimondi (2006b), and by Lo-

8.7. NOTES 427

muscio, Qu, and Raimondi (2009) described in Section 8.3 implements inter-
preted systems semantics and supports the verification of systems against
not only temporal-epistemic specifications but also properties based on de-
ontic concepts as done by Raimondi and Lomuscio (2004a) and by Woźna,
Lomuscio, and Penczek (2005a), explicit knowledge as discussed by Lomus-
cio, Raimondi, and Woźna (2007) and ATL cooperation primitives as put
forward by Lomuscio and Raimondi (2006c). It is implemented in C++ and
relies on the latest BDD package of Somenzi (2005). An in-depth descrip-
tion of the tool is given by Raimondi (2006). More details on OBDDs and
related techniques can be found in papers by Bryant (1986) and by Huth
and Ryan (2000).

Van der Meyden and colleagues were the first to propose and implement
the use of OBDD-based model checking in a temporal-epistemic setting, see
the paper by Gammie and van der Meyden (2004). These were preceded by
theoretical studies on the computational complexity of the model checking
problem by, e.g., van der Meyden and Shilov (1999b); further results on
this can be found in work by Lomuscio and Raimondi (2006a), by Engel-
hardt, Gammie, and van der Meyden (2007), and by Huang and van der
Meyden (2010). Like MCMAS, MCK has undergone several versions since
its original version. At the time of writing it supports CTL⇤K specifications
and a variant of probabilistic knowledge, i.e., epistemic modalities defined
on probabilistic systems as by Huang, Luo, and Meyden (2011). MCK
is released in binary form and is implemented in Haskell by using using
Long’s BDD library. A difference with respect to MCMAS and VerICS is
that MCK includes specialised implementations for different evolution se-
mantics including perfect recall and clock semantics. While these can also
be encoded on specific examples with MCMAS and VerICS it is possible
that specialised semantics can provide the user with efficiency gains; no
comparison has been made in this respect so far.

A further BDD-based checker, MCTK, has recently been released as de-
scribed by Luo (2009). MCTK follows the local propositions approach dis-
cussed above to reduce the verification of epistemic specifications to tempo-
ral formulas only. MCTK uses NuSMV as the underlying temporal checker.
Differently from the approach of van der Hoek and Wooldridge (2002a), a
technique for the automatic calculation of local propositions is here given
by Su (2004). Experimental results against other checkers are not available
at the time of writing.

SAT-based approaches. The SAT-based BMC approach presented in
Section 8.4.1 predates the OBDD-based approaches here described. While
techniques using OBDDs became prevalent in the ten years up to 2010,
there has recently been an increased activity on SAT-based methods. The
VerICS tool of Kacprzak, Nabialek, Niewiadomski, Penczek, Pólrola, Szreter,

428 CHAPTER 8. MODEL CHECKING TEL

Woźna, and Zbrzezny (2008) and by Penczek and Półrola (2006), described
in Section 8.4, implements timed automata in the sense of Alur and Dill
(1994) and interleaved interpreted systems semantics as proposed in Lo-
muscio, Penczek, and Qu (2010) to support the SAT-based verification of
systems against not only temporal-epistemic specifications but also prop-
erties based on deontic concepts, see the work of Woźna, Lomuscio, and
Penczek (2005a), and of Woźna, Lomuscio, and Penczek (2005b), and real
time systems as described by Lomuscio, Woźna, and Penczek (2007).

SAT-based BMC was originally introduced for the verification of LTL
specifications by Biere et al. (1999) and by Biere, Cimatti, Clarke, Strich-
man, and Zhu (2003) as an alternative to approaches based on OBDDs.
Then, BMC was defined for ECTL - the existential fragment of CTL, first by
Penczek, Woźna, and Zbrzezny (2002) and then refined by Zbrzezny (2008)
such that a specific symbolic k-path is allocated to each subformula of the
tested formula starting with a modality. Moreover, reduced Boolean circuits
as described by Abdulla, Bjesse, and Eén (2000) are used in the encoding of
Zbrzezny (2008). A reduced Boolean circuit represents subformulas of the
encoding by fresh propositions such that each two identical subformulas cor-
respond to the same proposition. BMC for ECTL was extended to ECTLK
by Penczek and Lomuscio (2003) and further to ECTLKD by Woźna, Lo-
muscio, and Penczek (2005a). The solution of Zbrzezny (2008) for ECTL
was extended by Huang, Luo, and van der Meyden (2010) to ECTLK, but
without using reduced Boolean circuits.

The approach based on UMC, discussed in Section 8.4.2, was originally
introduced by McMillan (2002) for the verification of CTL as an alternative
to BMC and the approaches based on BDDs. Then, UMC was extended to
CTLpK by Kacprzak, Lomuscio, and Penczek (2004). The reader is referred
to (Kacprzak, Lomuscio, and Penczek, 2003) for more details on UMC, es-
pecially on computing the fix-points over propositional representations of
sets. The standard algorithm toCNF transforming a propositional formula
to one in CNF, preserving satisfiability only, was presented by McMillan
(2002) and by Penczek and Półrola (2006). The translation equCNF to an
equivalent propositional formula in CNF was given by Penczek and Półrola
(2006). We refer the reader to work by Chauhan, Clarke, and Kroening
(2003) and by Ganai, Gupta, and Ashar (2004), where alternative solu-
tions can be found. Blocking clauses used in the algorithm equCNF can be
computed using the methods discussed by McMillan (2002) and by Szreter
(2006, 2005).

In addition to the BMC approaches for extensions of CTLK discussed in
this chapter, BMC approaches for LTLK (Meşki, Penczek, Szreter, Woźna-
Szcześniak, and Zbrzezny, 2014) have been put forward, like for instance
by Penczek, Woźna-Szcześniak, and Zbrzezny (2012), using a translation to

8.7. NOTES 429

SAT and also by Meşki, Penczek, and Szreter (2012), using operations on
BDDs. Moreover, the latest release of the MCK checker reported above,
now supports BMC through SAT. Experimental results tend to show that
OBDDs and SAT-based BMC methods are complementary to one another
with BMC working better for reachability and checking small epistemic
specifications on very large models, and OBDDs outperforming BMC with
complex specifications and models with reachable state spaces in the region
of 106 to 1010.

Abstraction. While OBDDs and SAT-based approaches can be very
effective for representing large state spaces, the state-space grows exponen-
tially with the number of variables in the system. To alleviate this difficulty
various forms of abstraction have been put forward to verify systems against
temporal-epistemic specifications. The first abstraction technique that we
are aware of in this context was developed by Enea and Dima (2007), where
a number of abstractions for Kripke models with epistemic relations are
defined. The methodology is defined for a specification language based on
branching-time temporal (both past and future) and epistemic modalities,
interpreted on a Kleene’s three valued semantics. This enables the au-
thors to give weak-preservation and error-preservation results for temporal-
epistemic specifications with respect to the three-valued semantics given.
Somewhat related to this is the approach by Dechesne, Orzan, and Wang
(2008) where a notion of refinement is developed in the context of public
announcement logic, thereby enabling the authors to give abstractions for
which a preservation theorem can be shown. In this case, however, two-
valued interpretations are used.

While Enea and Dima (2007) and Dechesne, Orzan, and Wang (2008)
developed their work for Kripke models, other techniques have adopted a
modular, agent-based view and used interpreted systems as the underlying
semantics for Kripke models. The first approach following this line appears
to be that of Cohen, Dam, Lomuscio, and Russo (2009),where an existential
abstraction technique is developed and a preservation theorem shown. The
approach involves taking a quotient of an interpreted system by defining
abstract local states, actions, protocols and the transition relation on the
abstract model. This enables the authors to show that if a specification in
the universal fragment of CTLK holds in the abstract model, it also holds in
the concrete one. The approach was later extended by Lomuscio, Qu, and
Russo (2010), where a data abstraction methodology for interpreted sys-
tems specified against CTLK formulas was put forward and implemented
in conjunction with MCMAS. More recently Al-Bataineh and van der Mey-
den (2011), presented abstraction results applicable to the verification of
the dining cryptographers scenario and applied them to knowledge-based
programs.

430 CHAPTER 8. MODEL CHECKING TEL

Symmetry reduction is a well-established form of abstraction whereby
symmetry considerations are exploited to produce abstract models preserv-
ing a given specification. Cohen, Dam, Lomuscio, and Qu (2009b) use a
counterpart semantics to interpret epistemic modalities on abstract mod-
els by means of symmetry considerations. Experimental results presented
by Cohen, Dam, Lomuscio, and Qu (2009b) show a linear reduction in
the memory requirements for BDD-based verification. While they relied
on manual identification of symmetries, Cohen, Dam, Lomuscio, and Qu
(2009a) presented an automatic technique for the reduction and applica-
tion to data symmetry as well. The technique was implemented on an
ad-hoc, extended version of ISPL system descriptions; the benchmarks re-
ported showed an exponential reduction in the time and memory footprint
in some scenarios amenable to symmetry reduction.

Partial order reductions have extensively been used for the verifica-
tion of reactive systems specified against LTL�X by e.g., Peled (1994) and
against CTL�X formulas by Gerth, Kuiper, Peled, and Penczek (1999) and
by Penczek, Szreter, Gerth, and Kuiper (2000). Lomuscio, Penczek, and
Qu (2009) present theoretical results in the context of interpreted systems
and temporal-epistemic logic. In Section 8.6 we summarised the work of Lo-
muscio, Penczek, and Qu (2010), as this is the only approach we are aware
of which has been implemented and shown to be efficient. Traditionally, in
partial order reductions the exploration is carried out by depth-first-search
(DFS), as done by e.g., Gerth, Kuiper, Peled, and Penczek (1999), or by
double-depth-first-search, as done by e.g., Courcoubetis, Vardi, Wolper,
and Yannakakis (1992). The conditions C1�C3, used in the algorithm, are
inspired by Peled (1993) and by Gerth, Kuiper, Peled, and Penczek (1999).

Optimised algorithms. Some results in the literature have focused
on novel, optimised algorithms for the verification of temporal-epistemic
specifications. Sometimes these algorithms are distributed or parallel. For
example, Kwiatkowska, Lomuscio, and Qu (2010) present parallel versions of
the labelling algorithms for the automatic verification of temporal-epistemic
properties. The results point to a significant speed-up in the labelling of
formulas although the performance is strongly dependent on the number of
cores available and the type of specification to be checked. The work by
Jones and Lomuscio (2010), discussed above in the context of the combina-
tion between BMC and OBDDs, also includes a distributed algorithm for
bounded satisfaction based on the notion of seed states for state-space par-
titioning. In a different context Cohen and Lomuscio (2010) put forward an
algorithm for the non-elementary speed-up of model checking synchronous
systems with perfect recall. An improved encoding for the BMC problem
via SAT, which was shown to generate a polynomially smaller number of
propositions in the encodings thereby allowing faster verification times, was

8.7. NOTES 431

presented by Huang, Luo, and Meyden (2010). An approach to synthesising
groups of agents satisfying an epistemic specification on a given system was
explored by Jones, Knapik, Lomuscio, and Penczek (2012).

Extensions to other agent-based specifications. Model checking
approaches have also been investigated for specifications richer than the
temporal-epistemic logics discussed here. Raimondi and Lomuscio (2004b)
presented an OBDD-based approach to the verification of deontic inter-
preted systems (Lomuscio and Sergot, 2003); the BMC case was analysed
by Woźna, Lomuscio, and Penczek (2005a). Deontic interpreted systems
are a formalism for the representation of correct functioning behaviour of
the agents in a system. Local states are partitioned into correct and in-
correct ones, and a further agent-index modality representing “at all the
correct states for agent i” is introduced. The modality is interpreted by
considering the global states in which the agent in question is operating
correctly. By means of this formalism, one can analyse scenarios where
some agents may display faulty behaviour. For example, the properties of
a variant of the dining cryptographers scenario where some cryptographers
are intruders saying the opposite of what they should was verified through
this formalism by Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi,
and Szreter (2006).

Extensions to epistemic logic to include explicit knowledge have also
been discussed and implemented, e.g., by Lomuscio and Woźna (2006) and
by Lomuscio, Raimondi, and Woźna (2007). Both VerICS and MCMAS
support these features.

Model checking of systems against alternating-temporal logic (ATL)
specifications has been pursued by Alur, Henzinger, and Kupferman (2002).
ATL extends CTL by adding strategies in the semantics and explicit con-
structs for representing what groups of agents can enforce. Its model check-
ing problem is considerably harder under partial observability. MOCHA,
see (Alur, de Alfaro, Henzinger, Krishnan, Mang, Qadeer, Rajamani, and
Tasiran, 2000) is an explicit state model checker supporting ATL modali-
ties. Even if strategies and knowledge can interact in subtle ways as argued
by Jamroga and van der Hoek (2004)3, progress has been made both in the
definition of combinations between ATL with knowledge and their verifica-
tion. Specifically, Lomuscio and Raimondi (2006c) put forward a symbolic,
OBDD-based model checking algorithm for the verification of ATLK speci-
fications and discussed experimental results. An alternative approach using
MOCHA is discussed by Wooldridge, Agotnes, Dunne, and van der Hoek
(2007) in combination with the local propositions construction referenced
above.

3For a detailed discussion on this interaction, see Chapter 11.

432 CHAPTER 8. MODEL CHECKING TEL

Epistemic concepts have been used in a broader context to reason about
multi-agent systems modelled by other attitudes (such as norms, beliefs,
desires, goals, or intentions). These properties are often treated simply
as propositions in a temporal language and not as first-citizens like the
modalities discussed above. Given this, they are technically very different
and not discussed here.

The conclusion we can draw from the results above is that temporal-
epistemic logic specifications can now be verified effectively with appropriate
symbolic model checking techniques.

Acknowledgements Much of the work described in this chapter is based
on joint research with Magdalena Kacprzak, Hongyang Qu, Franco Rai-
mondi, Maciej Szreter, Boèna Woźna Szcześniak, and Andrzej Zbrzezny.

We would like to thank Catalin Dima, Masoud Koleini and Ji Ruan for
valuable feedback on a preliminary version of this chapter.

