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The article introduces a parametric extension of Action-Restricted Computation Tree Logic called pmARCTL.
A symbolic fixed-point algorithm providing a solution to the exhaustive parameter synthesis problem is
proposed. The parametric approach allows for an in-depth system analysis and synthesis of the correct pa-
rameter values. The time complexity of the problem and the algorithm is provided. An existential fragment
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and unique base. A method for computing this base using symbolic methods is provided. The prototype
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1. INTRODUCTION

Parameter synthesis is a generalization of the model checking problem, where a for-
mula [Alur et al. 2001; Bruyére et al. 2008; Giampaolo et al. 2010] and/or a model
[Alur et al. 1993; Hune et al. 2002] are augmented with parameters, and aims at
computing the values of the parameters that make the formula hold in the model. The
parametric approach may be useful at the design phase to support decisions in software
and hardware production, as it may provide the exact values for tunable parameters
or sets of rules that govern the system execution, often saving time spent on tedious
experiments with the possible parameter valuations.

In this work, we focus on the action synthesis problem for the parameters introduced
to the formulas of a branching-time temporal logic. We build upon Action-Restricted
Computation Tree Logic (ARCTL) [Pecheur and Raimondi 2006], which we augment
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with parameters corresponding to the sets of actions, by defining the logic paramet-
ric ARCTL (pmARCTL). To solve the synthesis problem for pmARCTL, we propose a
fixed-point based algorithm, inspired by Jones et al. [2012], that processes the verified
formula recursively and labels each state of the model with the valuations of the param-
eters under which the formula holds in this state. A novel framework for the param-
eter synthesis for pmARCTL, consisting of a theory, an implementation, and the tool
SPATULA, is the main contribution of our article. We are also the first to demonstrate
how to efficiently apply the exhaustive parameter synthesis in systems design and
analysis by showing the potential of the method in identifying possible attack scenar-
ios. We demonstrate this on Peterson’s mutual exclusion algorithm by presenting what
instructions need to be injected into the memory monitor to expose a subtle weakness.
We also prove that the emptiness problem for pmARCTL is NP-complete and provide
the complexity results for the proposed algorithms. Even though the problem is of a pro-
hibitive theoretical complexity, our implementation significantly outperforms the naive
approach and makes the method quite practical as we demonstrate on two scalable ex-
amples: a faulty Train-Gate-Controller and a generic pipeline processing network.

The problem of synthesis of the valuations under which a given modal property
holds was first investigated in Alur et al. [2001] in the context of a parametric version
of LTL. In Bruyére et al. [2008] and Giampaolo et al. [2010], the authors analyze
parametric extensions of MITL and TCTL, respectively. In Jones et al. [2012], the
problem of synthesis for agent groups of the CTLK properties in a multiagent setting
was considered. In Classen et al. [2011], the authors focus on a verification of feature
CTL (fCTL) properties for software product lines with the extended validity check
providing constraints on when a given property does not hold. Despite the fact that the
authors do not consider parameterized logics, their work shares the same difficulties as
the problems we deal with in this article: both the state space and the set of solutions
are susceptible to exponential blowup. The experimental results of Classen et al. [2011]
show that the symbolic verification of fCTL can be up to more than 700 times faster than
a brute-force approach. We extend these results to pmARCTL parameter synthesis,
where the relative speedup can exceed 8,000. The work presented here is also related
to parametric model checking with parameters in models [Alur et al. 1993; André et al.
2012; Hune et al. 2002] and model synthesis from a specification [Clarke and Emerson
1981; Katz and Peled 2010].

The rest of the article is organized as follows. In Section 2, we introduce the syn-
tax and the semantics of pmARCTL. The algorithms for the parameter synthesis are
given in Section 3. An experimental evaluation is provided in Section 4, followed by a
summary and concluding remarks.

2. MIXED TRANSISTION SYSTEMS AND pmARCTL

In this section, we recall some basic definitions and present the syntax and semantics
of the logic pmARCTL used in the article. Mixed transition systems (MTSs) [Pecheur
and Raimondi 2006] essentially are Kripke structures with the transitions labeled with
actions. The labels serve us to express branching-time properties with the selected set
of actions allowed along a given run.

Definition 2.1 (MTS). Let PV be a set of propositional variables. A mixed transition
system is a 5-tuple M = (S, s0,A, T ,Vs), where

—S is a nonempty finite set of states,
—s0 ∈ S is the initial state,
—A is a nonempty finite set of actions,
—T ⊆ S × A × S is a transition relation, and
—Vs : S → 2PV is a (state) valuation function.
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Fig. 1. A simple MTS used in Examples 2.2. through 3.3.

As usual, we write s
a→ s′ if (s, a, s′) ∈ T . Let χ ⊆ A be a nonempty set of actions. Let

π = (s0, a0, s1, a1, . . .) be a finite or infinite sequence of interleaved states and actions;
by |π | we denote the number of the states of π if π is finite, and by ω if π is infinite.
A sequence π is a path over χ if (1) si

ai→ si+1 and ai ∈ χ for each i < |π | and (2) π is
maximal with respect to condition (1). Note that if a path π is finite, then its final state
does not have a χ -successor state in S—that is, if π = (s0, a0, s1, a1, . . . , sm), then there
is no s′ ∈ S and a ∈ χ such that sm

a→ s′.
The set of all paths over χ ⊆ A in a model M is denoted by �(M, χ ), whereas the set

of all paths π ∈ �(M, χ ) starting from a given state s ∈ S is denoted by �(M, χ, s). We
omit the model symbol if it is clear from the context, simply writing �(χ ) and �(χ, s).
By �ω(χ ) and �ω(χ, s), we mean the corresponding sets restricted to the infinite paths
only.

Example 2.2. Figure 1 presents a simple MTS with PV = {p, safe}, actions
A = {left, right, forward, back}, and the initial state s0. The path (s0, left, s1, right, s4)
belongs to �({left, right}), but it does not belong to �({left, right, back}), because al-
though (s0, left, s1, right, s4) is a maximal path over {left, right}, it is not maximal
over {left, right, back}, as it can be extended, for example, into an infinite path
(s0, left, s1, right, s4, back, s0, . . .) ∈ �({left, right, back}).

The MTSs defined in this article slightly differ from those introduced in Pecheur and
Raimondi [2006], where the actions that label the transitions are treated as proposi-
tions. The difference is not essential, however, as in Pecheur and Raimondi [2006], the
propositional formulas over actions serve only to select sets of actions allowed along
considered runs. Here we describe the actions allowed explicitly.

2.1. Parametric ARCTL

The presented logic is a parametric extension of ARCTL [Pecheur and Raimondi
2006]. The language of ARCTL consists of the CTL-like branching-time formulas.
The main difference between ARCTL and CTL is that each path quantifier is sub-
scripted with a set of actions. The subscripts are used in path selection—for example,
E{left, right}G(E{forward}F safe) may be read as “there exists a path over left and right,
on which it holds globally that a state satisfying safe is reachable along some path
over forward.” pmARCTL extends ARCTL by allowing free variables in place of sets of
actions, such as EY G(EZFsafe).

Definition 2.3 (pmARCTL syntax). Let A be a finite set of actions, ActSets = 2A \ {∅},
ActVars be a finite set of variables, and PV be a set of propositional variables. The set
of formulas of parametric Action-Restricted Computation Tree Logic is defined by the
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following grammar:

φ ::= p | ¬φ | φ ∨ φ | Eα Xφ | EαGφ | Eω
α Gφ | Eα(φ Uφ),

where p ∈ PV, α ∈ ActSets ∪ ActVars.

The E path quantifier is read as “there exists a path.” The superscript ω restricts the
quantification to the infinite paths, whereas the subscript α restricts the quantification
to the paths over α. The X modality stands for “in the next state.” The state modality
G is the “globally” modality. The modality U stands for “until.”

Since the formulas considered contain free variables, their validity needs to be de-
fined with respect to the provided valuations of ActVars. A function υ : ActVars →
ActSets is called an action valuation, and the set of all action valuations is denoted by
ActVals. By M, s |=υ φ, we denote that the formula φ holds in the state s of the model
M under the valuation υ, as formalized in Definition 2.4 (we omit the model symbol
when it is clear from the context). In what follows, by πi we denote the i-th state of π .
For conciseness, if υ is an action valuation, then let

υ(α)
def=

{
χ if α = χ ⊆ A,
υ(Y ) if α = Y ∈ ActVars.

Moreover, in the following notations, for O ∈ {E, A,�} we assume that Oε = O.

Definition 2.4 (pmARCTL semantics). Let M = (S, s0,A, T ,Vs) be an MTS and
υ ∈ ActVals be an action valuation. The relation |=υ is defined as follows:

—s |=υ p if and only if p ∈ Vs(s),
—s |=υ ¬φ if and only if s 	|=υ φ,
—s |=υ φ ∨ ψ if and only if s |=υ φ or s |=υ ψ ,
—s |=υ Eα Xφ if and only if there exists π ∈ �(υ(α), s) such that |π | > 1 and π1 |=υ φ,
—s |=υ Er

αGφ if and only if there exists π ∈ �r(υ(α), s) such that πi |=υ φ for all i < |π |,
—s |=υ Eα(φ Uψ) if and only if there exists π ∈ �(υ(α), s) such that πi |=υ ψ for some

i < |π | and π j |=υ φ for all 0 ≤ j < i,

where p ∈ PV, φ,ψ ∈ pmARCTL, r ∈ {ω, ε}, and α ∈ ActSets ∪ ActVars.

Next we define several derived modalities. Let φ,ψ ∈ pmARCTL and denote the
following:

(1) Eω
α Xφ

def= Eα X(φ ∧ Eω
α G true),

(2) Eω
α (φ Uψ)

def= Eα(φ U (ψ ∧ Eω
α true)),

(3) Er
α Fφ

def= Er
α(true Uφ),

(4) Ar
α Xφ

def= ¬Er
α X¬φ,

(5) Ar
αGφ

def= ¬Er
α F¬φ,

(6) Ar
α(φ Uψ)

def= ¬(Er
α(¬ψU¬(φ ∨ ψ)) ∨ Er

αG¬ψ),

(7) Ar
α Fφ

def= ¬Er
αG¬φ,

where α ∈ ActSets ∪ ActVars and r ∈ {ω, ε}. The modality F stands for “in some future
state,” Aα stands for “for each path over α,” and Aω

α stands for “for each infinite path
over α.” The semantics of the derived modalities is consistent with the intuition.

Example 2.5. Consider the MTS from Figure 1 and the formulas φ1 = AY Gp and
φ2 = Aω

Y Gp. It is easy to check that for υ ∈ ActVals such that υ(Y ) = {left, right, back},
the set �(υ(Y ), s0) consists of infinite paths only, and we have s0 |=υ φ1 and s0 |=υ φ2. On

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 64, Publication date: September 2015.



Action Synthesis for Branching Time Logic: Theory and Applications 64:5

the other hand, for υ ′ ∈ ActVals satisfying υ ′(Y ) = {left, right, back, forward}, the set
�(υ(Y ), s0) contains finite paths along which p does not hold globally (e.g., (s0, s1, s3, s5)),
therefore s0 	|=υ ′ φ1 while s0 |=υ ′ φ2.

3. ACTION SYNTHESIS FOR pmARCTL

Consider a formula φddk = AY G(EY X true). This property expresses lack of deadlock—
that is, s |=υ φddk if and only if each state reachable from s via transitions labeled with
actions from υ(Y ) has a υ(Y )-successor. The complete description of the set of valuations
under which φddk holds in the initial state of M can provide crucial information about
the safety of the modeled system. If the model is overspecified, then these valuations
can be used for its pruning, such as removing unnecessary actions while preserving
the no-deadlock attribute. The space of synthesized valuations can be explored with
many goals in mind, such as a minimal model selection, a correct model synthesis from
a general skeleton, and failure resistance.

The main focus of this article is therefore on the automatic and efficient synthesis of
the subset of the action valuations under which a given formula holds. More formally, for
a given model M and a formula φ of pmARCTL, we define the function fφ : S → 2ActVals

satisfying for all s ∈ S the condition

υ ∈ fφ(s) if and only if s |=υ φ — (�)

that is, fφ(s) returns all valuations under which φ holds in s.

Example 3.1. Consider the model in Figure 1 and the formula φ1 = EY (pU (p∧safe)).
By hand calculations, one can check that s0 |=υ φ1 if and only if {forward, left, right}
⊆ υ(Y ).

In what follows, given a model, by writing the function fφ for φ of pmARCTL, we
assume that fφ satisfies the condition (�).

3.1. Algorithms for Computing f φ

Next we show how to compute the function fφ by means of the recursive compositions,
preimage, and fixpoints. Throughout this section, let M be a fixed MTS and Y ∈
ActVars.

3.1.1. Propositional Variables and Boolean Operations. Let p ∈ PV be a propositional vari-
able and s ∈ S be a state. Notice that the set fp(s) consists of either all action valuations
if s is labeled with p or is empty otherwise, and thus

fp(s) =
{

ActVals if p ∈ Vs(s),
∅ if p 	∈ Vs(s).

Now let φ ∈ pmARCTL and fφ be given. Then the set f¬φ(s) consists of all action
valuations υ such that s 	|=υ φ. From the inductive assumption, this is equivalent
to υ 	∈ fφ(s), from which follows f¬φ(s) = ActVals \ fφ(s). To deal with the Boolean
connectives, assume that φ,ψ ∈ pmARCTL and fφ and fψ are given. Recall that from
definition s |=υ φ∨ψ if and only if s |=υ φ or s |=υ ψ . By the inductive assumption, s |=υ φ
or s |=υ ψ is equivalent to υ ∈ fφ(s) or υ ∈ fψ (s), and therefore fφ∨ψ (s) = fφ(s) ∪ fψ (s).

3.1.2. Parametric Preimage and neXt. Let f : S → 2ActVals be a function. The existen-
tial parametric preimage of f with respect to Y ∈ ActVars is defined as the function
parPre∃

Y ( f ) : S → 2ActVals such that for each s ∈ S,

parPre∃
Y ( f )(s) = {

υ | ∃s′∈S ∃a∈υ(Y ) s
a→ s′ ∧ υ ∈ f (s′)

}
.
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It follows immediately from the (�) condition that for each φ ∈ pmARCTL, the set
parPre∃

Y ( fφ)(s) consists of all such action valuations υ that some state s′ such that
s′ |=υ φ can be reached by firing an action from υ(Y ).

LEMMA 3.2. For each s ∈ S, φ ∈ pmARCTL, Y ∈ ActVars, and υ ∈ ActVals, the
following condition holds: s |=υ EY Xφ if and only if υ ∈ parPre∃

Y ( fφ)(s).

PROOF. From the definition s |=υ EY Xφ if and only if there exists a path π ∈ �(υ(Y ), s)
such that |π | > 1 and π1 |=υ φ, which is equivalent to ∃s′∈S∃a∈υ(Y )(s

a→ s′ ∧ s′ |=υ φ) as
(s, a, s′) can be extended to a path. This, in turn, is equivalent to ∃s′∈S∃a∈υ(Y )(s

a→ s′ ∧υ ∈
fφ(s′))—that is, υ ∈ parPre∃

Y ( fφ)(s).

The meaning of the preceding lemma can be expressed as fEY Xφ =
parPre∃

Y ( fφ) for each φ ∈ pmARCTL.

Example 3.3. Consider the MTS from Figure 1. By case-by-case analysis, one can
see that s1 |=υ EY Fsafe if and only if forward ∈ υ(Y ) and s2 |=υ EY Fsafe for all
υ ∈ ActVals, and thus fEY Fsafe(s1) = {υ | forward ∈ υ(Y )} and fEY Fsafe(s2) = ActVals. To
compute parPre∃

Y ( fEY X(EY Fsafe))(s0), notice that to reach s1 or s2 from s0, the actions left
or forward should be fired, respectively. Therefore,

parPre∃
Y

(
fEY X(EY Fsafe)

)
(s0) =

⋃
i∈{1,2}

({υ | ∃a∈υ(Y ) s0
a→ si} ∩ fEY Fsafe(si)

)

= {υ | forward ∈ υ(Y )}.
3.1.3. Two Versions of the Globally Modality. We employ the equivalence Eω

Y Gφ ≡ φ ∧
EY XEω

Y Gφ to obtain Algorithm 1. Note the similarity to its nonparametric counterpart.
The case of EY G is more interesting, as a potential lack of the totality of the transition
relation needs to be taken into account. To this end, Algorithm 2 consecutively keeps
adding action valuations under which the given states satisfy the considered formula,
but are deadlocked (i.e., have no successors). This corresponds to the addition of the sink
state, used to deal with the nontotality of the transition relation in the classical theory.

ALGORITHM 1: SynthEωG

(
fφ, Y

)
Input: fφ ∈ (

2ActVals
)S

Output: fEω
Y Gφ ∈ (

2ActVals
)S

1: f := fφ ; h := ∅
2: while f 	= h do
3: h := f
4: f := fφ ∩ parPre∃

Y (h)
5: end while
6: return f

LEMMA 3.4. Let φ be a pmARCTL formula, r ∈ {ω, ε}, and Y ∈ ActVars. For all s ∈ S
and υ ∈ ActVals, we have s |=υ Er

Y Gφ if and only if υ ∈ SynthEr G( fφ, Y )(s).

PROOF. Let us first prove that s |=υ Eω
Y Gφ if and only if υ ∈ SynthEωG( fφ, Y )(s). For

a while, replace the condition in line 2 of Algorithm 1 with true. In this way, the while
loop 2–5 becomes infinite, and we can define fi for each i ∈ N as the value of the f
variable after the i-th run and f0 = fφ . First, we prove that

fi(s) = {υ | ∃π∈�(υ(Y ),s)(|π | ≥ i ∧ ∀0≤ j≤i π j |=υ φ)}
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ALGORITHM 2: SynthEG

(
fφ, Y

)
Input: fφ ∈ (

2ActVals
)S

Output: fEY Gφ ∈ (
2ActVals

)S
1: f := fφ ; h := ∅
2: D := fφ∧¬EY Xtrue
3: while f 	= h do
4: h := f
5: f := ( fφ ∩ parPre∃

Y (h)) ∪ D
6: end while
7: return f

for each s ∈ S and i ∈ N. The base case for i = 0 follows immediately from
the definition. For the inductive step, notice that fi+1 = fφ ∩ parPre∃

Y ( fi) and
parPre∃

Y ( fi)(s) = {υ | ∃π∈�(υ(Y ),s)(|π | ≥ i + 1 ∧ ∀0< j≤i+1 π j |=υ φ)}, from which it fol-
lows that fφ(s) ∩ parPre∃

Y ( fi)(s) = {υ | ∃π∈�(υ(Y ),s)(|π | ≥ i + 1 ∧ ∀0≤ j≤i π j |=υ φ)}. Now
observe that s |=υ Eω

Y Gφ if and only if υ ∈ ⋂
i∈N

fi(s). Notice that fi+1(s) ⊆ fi(s) for all
i ∈ N, s ∈ S, and the (common) codomain of fi is finite. This means that the monotonic
sequence ( fi(s))i∈N stabilizes—in other words, there exists k ∈ N such that fi = fk for
all i ≥ k. Obviously, fk(s) = ⋂

i∈N
fi(s) and fk is the fixpoint of the loop and the value

returned by Algorithm 1. This concludes the proof of the first case.
Let us move to the second case—that is, prove that s |=υ EY Gφ if and only if υ ∈

SynthEG( fφ, Y )(s). Let φ ∈ pmARCTL and notice that D = fφ∧¬EY Xtrue is a constant,
and D(s) = {υ | (s |=υ φ)∧¬∃s′∈S∃a∈υ(Y ) s

a→ s′} for each s ∈ S. The set D(s) consists of all
action valuations under which φ holds in s and s has no successor. By fi, we denote the
value of the f variable after the i-th run of the 3–6 loop of Algorithm 2. Additionally,
let f0 = fφ , as given in line 1. We prove that fi(s) = Ai

F(s) ∪ Ai
∞(s) for each i ∈ N, s ∈ S,

where

Ai
F(s) = {υ | ∃π∈�(υ(Y ),s)(|π | ≤ i ∧ ∀0≤ j≤|π | π j |=υ φ)},

Ai
∞(s) = {υ | ∃π∈�(υ(Y ),s)(|π | > i ∧ ∀0≤ j≤i π j |=υ φ)}

that is, Ai
F(s) consists of action valuations under which there exists a finite path of

length smaller than or equal to i along which φ holds, whereas Ai
∞(s) contains all such

valuations that along some path of length greater than i the φ formula holds up to its
i-th state. The base case of f0(s) follows immediately from the definition of fφ (note that
D(s) ⊆ fφ(s) for all s ∈ S). For the inductive step, first notice that (line 5) fi+1 = ( fφ ∩
parPre∃

Y ( fi)) ∪ D, and that for each s ∈ S we have parPre∃
Y ( fi)(s) = {υ | ∃π∈�(υ(Y ),s)(1 ≤

|π | ≤ i + 1 ∧ ∀0< j≤|π |π j |=υ φ)} ∪ {υ | ∃π∈�(υ(Y ),s)(|π | > i + 1 ∧ ∀0< j≤i+1π j |=υ φ)}. We can
now easily derive that ( fφ(s) ∩ parPre∃

Y ( fi)(s)) ∪ D(s) = Ai+1
F (s) ∪ Ai+1

∞ (s). The sequence
(Ai

F(s))i∈N
is increasing, and therefore it eventually stabilizes at the fixpoint AF(s),

consisting of all action valuations under which φ holds along some finite path starting
from s. The sequence (Ai

∞(s))i∈N
decreases until it reaches a fixpoint A∞(s), consisting

of all action valuations under which φ holds along an infinite path beginning at s. As
SynthEG( fφ, Y )(s) = AF(s) ∪ A∞(s), this concludes the proof.

From Lemma 3.4, fEω
Y Gφ = SynthEωG( fφ, Y ), fEY Gφ = SynthEG( fφ, Y ).

3.1.4. Until Modality. Similarly as in the case of CTL, the equivalence EY (φUψ) ≡
ψ ∨ (φ ∧ EY XEY (φUψ)) motivates the following fixpoint algorithm.
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ALGORITHM 3: SynthEU

(
fφ, fψ, Y

)
Input: fφ, fψ ∈ (

2ActVals
)S

Output: fEY (φUψ) ∈ (
2ActVals

)S
1: f := fψ ; h := ∅
2: while f 	= h do
3: h := f ; f := fψ ∪ ( fφ ∩ parPre∃

Y (h))
4: end while
5: return f

LEMMA 3.5. For each s ∈ S, φ,ψ ∈ pmARCTL, Y ∈ ActVars, and υ ∈ ActVals, the
following condition holds: s |=υ EY (φUψ) if and only if υ ∈ SynthEU ( fφ, fψ, Y )(s).

PROOF. For now, assume that the while loop 2–4 of Algorithm 3 is infinite (i.e.,
put true in place of the f 	= h condition). Let fi denote the value of the variable f
after the i-th run of the loop, and let f0 = fψ (as given in line 1). First, let us prove
that fi(s) = {υ | ∃π∈�(υ(Y ),s)∃ j≤i(|π | ≥ i ∧ π j |=υ ψ ∧ ∀0≤k< jπk |=υ φ)} for each s ∈ S.
In the case of f0, the preceding equality follows immediately from the definition of
fψ . For the inductive step, notice that due to the substitution in line 3, we have that
fi+1 = fψ ∪ ( fφ ∩ parPre∃

Y ( fi)). Now observe that parPre∃
Y ( fi)(s) = {υ | ∃s′∈S∃a∈υ(Y )(s

a→
s′ ∧ υ ∈ fi(s′))} = {υ | ∃s′∈S∃a∈υ(Y )(s

a→ s′ ∧ ∃π∈�(υ(Y ),s′)∃ j≤i(π j |=υ ψ ∧ ∀0≤k< jπk |=υ φ))} =
{υ | ∃π∈�(υ(Y ),s)∃0< j≤i+1(π j |=υ ψ∧∀0<k< jπk |=υ φ)}, and therefore fφ(s) ∩ parPre∃

Y ( fi)(s) =
{υ | ∃π∈�(υ(Y ),s)∃0< j≤i+1(π j |=υ ψ ∧ ∀0≤k< jπk |=υ φ)}. From the preceding, we finally have
the following:

fψ (s) ∪ ( fφ(s) ∩ parPre∃
Y ( fi)(s)) = {υ | ∃π∈�(υ(Y ),s)∃0≤ j≤i+1(π j |=υ ψ ∧ ∀0≤k< jπk |=υ φ)}.

Now observe that s |=υ EY φUψ if and only if υ ∈ ⋃∞
i=0 fi(s). As fi(s) ⊆ fi+1(s) for all

i ∈ N, we have that if the fixpoint in line 2 is reached for some k-th run of the loop,
then fk(s) = ⋃∞

i=0 fi(s). The fixpoint, however, is always reached and the algorithm
stops, because there is only a finite number of functions in (2ActVals)S and ( fi(s))i∈N is a
monotonic sequence of sets.

Following the chosen convention, we have fEY (φUψ) = SynthEU ( fφ, fψ, Y ).

3.1.5. Overall Algorithm. Algorithm 4 provides the entry point for the computation of
the fφ function, given a formula φ ∈ pmARCTL.

ALGORITHM 4: Synthfull(φ)

Input: φ ∈ pmARCTL
Output: fφ ∈ (

2ActVals
)S

1: if φ = EY Xψ then
2: return˜parPre∃

Y (Synthfull(ψ))
3: else if φ = Er

Y Gψ where r ∈ {ω, ε} then
4: return˜SynthEr G

(
Synthfull(ψ), Y

)
5: else if φ = EY (ξUψ) then
6: return˜SynthEU

(
Synthfull(ξ ), Synthfull(ψ), Y

)
7: else {propositional and nonparametric modalities omitted for simplicity}
8: return fφ
9: end if
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Fig. 2. A counterexample for the action monotonicity.

The validity of the results obtained with Algorithm 4 is summarized by the following
theorem.

THEOREM 3.6. For each model M, formula φ ∈ pmARCTL, state s ∈ S, and action
valuation υ ∈ ActVals, we have M, s |=υ φif and only if υ ∈ Synthfull(φ)(s).

PROOF. Follows immediately from Lemmas 3.2 through 3.5.

3.2. Synthesis of Minimal Sets of Constraints

Section 3.1 shows how to synthesize the complete set of action valuations under which
a given formula holds. As we present in what follows, in some special cases the sought
valuations can be represented as all supersets of a certain family of sets. This requires
restricting the language of pmARCTL such that the operator EαG is disallowed, as it
is not distributive over unions and intersections of α’s (see the following example).

Example 3.7. Consider the MTS from Figure 2, where Vs(s3) = {p}, Vs(si) = ∅ for all
i 	= 3, and A = {a,b,c}. It is not difficult to see that s0 |= A{a,c}Fp and s0 |= A{b,c}Fp.
On the other hand, s0 	|= A{a,c}∪{b,c}Fp (due to the existence of the loop between s1 and
s2) and s0 	|= A{a,c}∩{b,c}Fp (as p 	∈ Vs(s0)). Similarly, we have both s0 |= E{a}G¬p and
s0 |= E{c}G¬p, but s0 	|= E{a,c}G¬p.

Let υ, υ ′ ∈ ActVals. We write υ ≺ υ ′ if υ(Y ) ⊆ υ ′(Y ) for all Y ∈ ActVars. For a given
property φ, if (M, s0 |=υ φ and υ ≺ υ ′) implies M, s0 |=υ ′ φ for all υ, υ ′ ∈ ActVals and
all models M, then φ is called action monotone. The language is action monotone if all
of its formulas are as well.

Definition 3.8 (pmEARCTL syntax). The language of parametric existential Action-
Restricted Computation Tree Logic is defined by the following grammar:

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | Eα Xφ | Eω
α Gφ | Eα(φ Uφ),

where p ∈ PV, α ∈ ActSets ∪ ActVars.

Observe that if φ,ψ ∈ pmEARCTL and r ∈ {ω, ε}, then the derived modalities Eω
α Xφ,

Eω
α (φ Uψ), and Er

α Fφ also belong to pmEARCTL.

LEMMA 3.9. The language of pmEARCTL is action monotone.

PROOF. The proof proceeds by the induction on the structure of φ ∈ pmEARCTL.
Let us assume that s |=υ φ and υ ≺ υ ′. The base case of φ = p ∈ PV and the cases
of the conjunction, disjunction, and the negation of a proposition are straightforward.
If φ ∈ {Eα Xφ, Eα(φUφ)}, then it suffices to observe that each path π ∈ �(υ(α), s) is
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a prefix of some path in �(υ ′(α), s) and apply the inductive assumption. Similarly, if
φ = Eω

α Gφ, notice that �ω(υ(α), s) ⊆ �ω(υ ′(α), s) and apply the inductive assumption.

Let ϒ ⊆ ActVals, and let minVals(ϒ) denote the set of the valuations in ϒ minimal
with respect to ≺. Formally,

minVals(ϒ) = {υ ∈ ϒ | ∀υ ′∈ϒ (υ ′ ≺ υ ⇒ υ ′ = υ)}.
By Lemma 3.9, for φ ∈ pmEARCTL the set fφ(s0) can be generated by (typically much
smaller) minVals( fφ(s0)).

In our approach, parameter synthesis is performed by means of manipulations of
Boolean formulas. The process of building such formulas does not differ much from the
nonparametric case [Baier and Katoen 2008], with the main difference consisting of
the encoding of action valuations. With some notational abuse, let us treat the set of the
actions A as propositional variables. Propositional formulas over A can be perceived as
indicator functions for the subsets of ActSets—that is, let α be a propositional formula
over A and

[α] = {{a1, . . . , am} ⊆ A | |= α[a1/true, . . . , am/true]}.
The formula α encodes the set of all subsets of A that make α hold when all of their
elements are set to true. It is easy to show that for each A ⊆ ActSets, there exists a
formula α such that [α] = A. To encode the subsets of ActVals, we introduce a set of
fresh propositional variablesAActVars = ⋃

Y∈ActVars{aY | a ∈ A}—that is, for each variable
Y, we introduce a copy of each element of A subscripted by Y . We use propositional
formulas over AActVars to represent sets of action valuations as follows. Let β be a
propositional formula over AActVars, then

[β]ActVars = { f ∈ ActVals | ∃υ∈[β]∀Y∈ActVars(a ∈ f (Y ) ⇐⇒ aY ∈ υ)}.
It is straightforward to prove that for each set of functions F ⊆ ActVals, there exists a
propositional formula over AActVars, denoted by enc(F), such that [enc(F)]ActVars = F.

Example 3.10. Let A = {a, b, c} and ActVars = {Y, Z}, and let β = (aY ∧ bY ∧ aZ ∧
bZ ∧ cZ) ∨ (¬aZ ∧ ¬bZ ∧ cZ). As we have [β] = {{aY , bY , aZ, bZ, cZ}, {aY , bY , cY , aZ, bZ, cZ}}
∪{A ∪ {cZ} | A ⊆ {aY , bY , cY }}, then f ∈ [β]ActVars if and only if (1) {a, b} ⊆ f (Y ) and
f (Z) = {a, b, c}, or (2) f (Z) = {c} and f (Y ) is any subset of A. There are 2+23 functions
in [β]ActVars.

Let κ be a conjunction of literals (i.e., propositions or their negations) from A. We
assume that the empty conjunction of literals is equivalent to false. If |= κ ⇒ β, then κ
is called an implicant of β. Notice that the empty conjunction is an implicant of each
formula. An implicant κ is called prime if it does not subsume a shorter implicant of
β [Quine 1952]. A set Cov of prime implicants of β is called its prime covering if and
only if (

∨
κ∈Cov κ) ≡ β. Let val(κ) denote such action valuation that val(κ)(Y ) = {a ∈

A | aY ∈ κ} for each Y ∈ ActVars.

LEMMA 3.11. Let φ ∈ pmEARCTL and Cov be a prime covering of enc( fφ(s0)). Then,
Cov is unique, and minVals( fφ(s0)) = ⋃

κ∈Cov{val(κ)}.
PROOF. Notice that from the definition of prime covering, we have

⋃
κ∈Cov[κ]ActVars =

fφ(s0). In addition, observe that if κ ∈ Cov contains a negative literal aY , then none of
the valuations of [κ]ActVars would assign a set of actions containing a to the variable Y .
On the other hand, we know from Lemma 3.9 that pmEARCTL is action monotone, and
thus if κ ′ denotes κ, where the literal is removed, then [κ]ActVars ⊆ [κ ′]ActVars ⊆ fφ(s0).
As |= κ ′ ⇒ enc( fφ(s0)) and κ subsumes κ ′, we get a contradiction with the assumption
that κ is a prime implicant, and therefore κ can only contain positive literals. This
means that enc( fφ(s0)) is monotone (i.e., contains only positive literals), and hence Cov
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Fig. 3. A model for 3SAT formula μ = (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ d ∨ ¬e). The dashed arcs are labeled with jmp.

is unique [Goldsmith et al. 2008]. As val(κ) is the smallest element of [κ]ActVars with
respect to ≺, the proof is complete.

From Lemma 3.11, it follows that to build a set of minimal valuations for any formula
of pmEARCTL, it suffices to collect prime implicants of its encoding. There are many
known methods for obtaining the set of prime implicants of a Boolean function [Coudert
et al. 1993]. In our work, we employ the facilities built in the CUDD BDD package to
iterate over all prime implicants. The method can be in practice generalized as follows:
if enc( fφ(s0)) for φ ∈ pmARCTL does not contain negations, then φ is action monotone
and minVals( fφ(s0)) = ⋃

κ∈Cov{val(κ)}, where Cov is the prime covering of enc( fφ(s0)).

3.3. Complexity

Let us consider the question of whether for a given model M with the initial state s0

and a formula φ ∈ pmARCTL, there exists an action valuation υ such that M, s0 |=υ φ.
It is a well-defined decision problem, called the emptiness problem for pmARCTL.

THEOREM 3.12. The emptiness problem for pmARCTL is NP-complete.

PROOF. The proof follows via reduction from 3SAT (Figure 3). Let PV be a set of
propositional variables, and let PL = PV ∪ {¬p | p ∈ PV} be the set of literals over PV.
Let n ∈ N, and let μ = (a1

1 ∨ a1
2 ∨ a1

3) ∧ · · · ∧ (an
1 ∨ an

2 ∨ an
3) be a propositional formula in

3CNF, where ai
j ∈ PL for all 1 ≤ i ≤ n, 1 ≤ j ≤ 3.

We build a model M and a formula φμ ∈ pmARCTL such that there is a correspon-
dence between the valuations satisfying μ and action valuations satisfying φμ in M. In
what follows, we fix a proposition p ∈ PV. Let Ci = ai

1 ∨ ai
2 ∨ ai

3 denote the i-th clause
of μ for each 1 ≤ i ≤ n. With a slight notational abuse (i.e., the literals from PL are
treated as actions, and double negations are reduced whenever possible) let

—Si = {sti, sti+1, sinki, msti
1, msti

2, msti
3},

—Ai = {ai
1, ai

2, ai
3,¬ai

1,¬ai
2,¬ai

3},
—Ti = ⋃3

j=1{(sti+1, ai
j, msti

j), (msti
j,¬ai

j, sinki), (msti
j, jmp, sti)}.
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Now let M = (S, s0,A, T ,Vs), where S = ⋃n
i=1 Si, s0 = stn+1, A = PL ∪ { jmp},

T = ⋃n
i=1 Ti, and Vs(s) = {p} for all s 	∈ ⋃n

i=1{sinki} ∪ {stn+1} and Vs(st1) = {p, tail}.
Consider the formula φμ = AY Gp ∧ EY Ftail, and notice that stn+1 |=υ φμ if and only

if (1) υ(Y ) contains the action jmp, (2) for each 1 ≤ i ≤ n the set υ(Y ) contains at least
one action ai

j such that (sti+1, ai
j, msti

j) ∈ T for some 1 ≤ j ≤ 3, and (3) the set υ(Y ) does
not contain a transition labeled with literal and transition labeled with its negation
(this would create a path leading to sinki, for some 1 < i ≤ n, which is not labeled by
p). For an action valuation υ satisfying conditions 1 through 3, let ωυ be a valuation
(of propositionals) such that ωυ(a) = true if and only if a ∈ υ(Y ) for each a ∈ A, and
observe that ωυ |= μ. Conversely, let ω be such that ω |= μ, define the action valuation
υω such that jmp ∈ υω(Y ) and a ∈ υω(Y ) if and only if ω(a) = true for each a ∈ A, and
observe that υω |= φμ.

Note that the presented reduction is polynomial. On the other hand, the ARCTL
verification can be attained in polynomial time, and there is a finite number of possible
valuations; therefore, the emptiness problem can be solved in polynomial time by a
nondeterministic Turing machine.

In view of the preceding information, it is not surprising that the time complex-
ity of the presented algorithms is high. Recall that M = (S, s0,A, T ,Vs), and let
φ ∈ pmARCTL contain k free variables. To estimate the time complexity of parPre∃

Y ( fφ),
let us fix s, s′ ∈ S and let fφ(s′) = {υ1, . . . , υk}. Let (s, a, s′) ∈ T , and notice that
parPre∃

Y ( fφ)(s) gathers such valuations from fφ(s′) that a ∈ υi(Y ). As | fφ(s′)| can be
at most of 2|A|k size, the worst-case complexity of parPre∃

Y ( fφ) is in O(|S| + |T | · 2|A|k).
The proposed algorithms are based on fixed-point computations in the space consist-
ing of pairs composed of a state and a set of action valuations. For a fixed state, its
associated set of action valuations is altered by exclusively adding or removing new
elements. As there can be at most 2|A|k such changes for a given state and the preimage
computation is the main operation in the body of each loop, the total complexity of the
parameter synthesis is in O(|S|2 · 2|A|k + |S||T | · 2|A|2k). (Note that k corresponds to the
number of the parametric modalities in φ).

In general, the problem of computing the full set of minimal action valuations is diffi-
cult as well. The time complexity of selection of minimal elements of a partially ordered
set is polynomial with respect to the size of the set [Daskalakis et al. 2011]; in our case,
however, the size of the set (i.e., ActVals) is exponential with respect to the number
of actions. Concerning the proposed prime implicant-based technique, it is known that
there is no output-polynomial time algorithm for finding all prime implicants of a given
monotone function unless P = NP [Goldsmith et al. 2008]. Despite these obstacles, the
minimization algorithm performs very well, as shown in the experimental part of this
work.

The complexity of ARCTL model checking is equal to that of CTL verification, and
therefore the complexity of the naive approach, based on enumerative checking of all
possible action valuations, is in O((|S|+|T |)k·2|A|k). Note that in the naive approach, the
worst-case complexity is equal to the expected one. The symbolic verification of (non-
parametric) ARCTL is in PSPACE, similarly as in the case of CTL [Schnoebelen 2002];
in this case, however, the practical complexity is well documented to be lower, and
symbolic model checkers typically outperform nonsymbolic verification tools. However,
even if efficient symbolic verification methods are used for the verification of instanti-
ations of ARCTL formulas in the naive approach, still 2|A|k cases need to be separately
analyzed. As we show in the next section, our symbolic algorithm for pmARCTL sub-
stantially outperforms the naive approach.
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4. IMPLEMENTATION AND EVALUATION

In this section, we present an evaluation of our implementation of the theory presented
in this article. We use parallel compositions of MTSs as models, with disjunctive location
labeling—that is, a given vector of locations is labeled with a proposition p if any of its
components is labeled with p.

Definition 4.1. Let I = {1, . . . , k} for some k ∈ N be a finite set of indices, and for
each i ∈ I, let Mi = (Si, s0

i,Ai, Ti,Vsi) be an MTS. We define the product with the
disjunctive location labeling of a network {Mi}i∈I as an MTS M = (S, s0,A, T ,Vs) such
that S = ∏

i∈I Si, and s0 = (s0
1, . . . , s0

k), and A = ⋃
i∈I Ai, and the transition relation T

satisfies

—(l1, . . . , lk)
a→ (l′1, . . . , l′k) if and only if for each i ∈ I, we have li

a→ l′i if a ∈ Ai and li = l′i
otherwise,

and the labeling Vs such that for each proposition p ∈ PV: p ∈ Vs((l1, . . . , lk)) if and only
if p ∈ Vsi(li) for some i ∈ I.

We present a preliminary evaluation of feasibility of the parameter synthesis of
action valuations performed on two scalable examples followed by an analysis of
Peterson’s algorithm for mutual exclusion. As a companion to this work, we release
a freely available open-source program SPATULA [Knapik 2014], which implements
the parameter synthesis methods. The tool uses CUDD [Somenzi 2012] package pro-
viding operations on reduced ordered binary decision diagrams (BDDs) to represent
the state space and action valuations. SPATULA allows for modeling the input sys-
tems in a simple description language. To the best knowledge of the authors, there is
no other tool allowing the parameter synthesis for pmARCTL, and therefore for the
sake of comparison, we implemented a naive engine, which enumerates all possible
action valuations and performs nonparametric verification of resulting substitutions.
We also record the speedup times of symbolic parametric synthesis versus brute-force
parametric verification, following in this way the methodology presented in Classen
et al. [2011]. SPATULA allows division of the actions into two disjoint sets—fixed and
switchable—and to synthesize only those valuations that contain all fixed actions.

The memory usage results for the naive cases are omitted from the figures, as they are
very similar to the results for the parametric ones up to the defined timeout, which was
set to 15 minutes. The experiments have been performed on an Intel P6200 dual-core
2.13GHz machine with 3.5GB RAM, running on a Linux operating system. It should
be noted that the alpha version of SPATULA, presented in Knapik et al. [2014], did not
implement the dynamic reordering of the BDD variables. In the current version, the
dynamic reordering is enabled in CUDD, which makes the speedup of the parametric
approach even more noticeable.

4.1. Scalability on Faulty Train-Gate-Controller

The system presented in Figure 4 is a version of the classical model from Alur et al.
[1993] with the modifications inspired by Belardinelli et al. [2011]. It consists of k
trains and the controller monitoring the access to the tunnel.

It is required that there is at most one train at a time in the tunnel. For 1 ≤ i ≤ k,
the i-th train can be either outside the tunnel (outi), approaching the tunnel, or
inside the tunnel (ini). If the controller is in the red state, then no train is allowed to
enter the tunnel; otherwise, if the controller is in the green state, then the trains are
allowed to enter the tunnel. The j-th train is assumed to be faulty and its commu-
nication with the controller is malfunctioning—that is, it can perform a faulty action
that does not change the controller state when entering the tunnel (inF

j ) or leaving the
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Fig. 4. Faulty Train-Gate-Controller.

tunnel (outF
j ). The network is described using the SPATULA’s modeling language as

shown in Figure 5. The language essentially is a graph network description language
with a set of convenient, C-inspired flow control constructs.

We have tested the following properties:

(1) ψ1 = AY G(¬∨
1≤i<l≤k(ini ∧ inl)) ∧ ∧

1≤i≤k EY Fini, expressing that it is not possible
for any pair of trains to be in the tunnel at the same time, and each train will
eventually be in the tunnel;

(2) ψ2 = EY FAZG((
∧

1≤i≤k ¬ini)∧green), expressing that it is possible for the system to
execute actions from Y in such a way that at some state, in all possible executions
of the system that use only the actions from Z, all trains remain outside the tunnel
while the controller remains in the green state;

(3) ψ3 = Eω
Y GEFY (in1 ∧ inj), expressing the existence of an execution such that the

first and the faulty train are infinitely often simultaneously present in the tunnel;
and

(4) ψ4 = Eω
Y GEFZ(in1 ∧ inj), expressing that there exists an execution of the system

labeled by actions from Y such that the state with the first and the faulty train
present in the tunnel is infinitely often reachable via actions from Z. Note that this
is a version of ψ3 with allowed two parameters.

The formulas ψ3 and ψ4 belong to pmEARCTL. The minimization of the constraints
obtained in these cases was performed similarly as in Section 3.2. In both cases, we
assume that the first train is not faulty. The parametric approach typically outperforms
the naive one (Figure 6); this is especially noticeable when comparing the speedup of
the method in Table I.

The observed state space explosion combined with the exponential blowup of the
space of the solutions makes the iterative approach infeasible for the considered prop-
erties, as it is able to compute the results for the systems only with up to five trains.
The parametric approach is clearly superior, as the results for the system consisting of
five trains are obtained in less than 10 seconds, and within the specified time bound,
the tool managed to obtain the results for the systems with up to 28 trains, with the
state space of size ≈4.6 · 1013 and the space of possible solutions of size ≈2172 (for the
properties with two free variables). Notice that the space of solutions (correct (SAT)
action valuations in Figure 6) grows at an exponential rate with respect to the number
of nodes. The minimization of the constraints took less than 1 second in both cases,
and therefore it is omitted from Figure 6.
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Fig. 5. SPATULA template for Controller and Traini .
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Fig. 6. Faulty Train-Gate-Controller results.
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Table I. Speedup for Faulty Train-Gate-Controller

Speedup (Naive/Parametric Time)
Property 2 trains 3 trains 4 trains 5 trains 6 trains
ψ1 1, 250.0 263.93 94.19011 >5,483.020† >2,711.61†

ψ2 3, 251.31 >7,999.64† >1,358.39† >1,379.55† >992.42†

ψ3 0.7 17.90 97.07 722.35 >740.13†

ψ4 10.06 20.07 211.84 >96.64† >14.04†

†, naive approach exceeds set timeout of 15 minutes.

Fig. 7. Generic pipeline paradigm network.

Table II. Speedup for the Generic Pipeline Paradigm

Speedup (Naive/Parametric Time)
Property 4 proc. 5 proc. 6 proc. 7 proc. 8 proc. 9 proc. 10 proc.
φ1 5.46 20.04 49.73 76.18 380.68 1306.71 >3687.69†

φ2 12.2 29.56 149 204.15 977.92 2213 >5424.1†

φ3 6.52 11.6 22.53 169.41 880.06 1468.03 >1640.05†

φ4 345.89 >429† >83.72† >7.6† >1.24†

†, the naive approach exceeded set timeout of 15 minutes.

4.2. Scalability on the Generic Pipeline Paradigm

The network in Figure 7, inspired by the generic pipeline paradigm [Peled 1993], con-
sists of k > 3 processing nodes (Table II). A node can synchronize via shared actions with
up to four other surrounding ones, depending on its position in the pipeline (if 1 ≤ i ≤ k,
then the i-th node admits all actions from the set {reti, acti, actmin(i+1,k), actmin(i+2,k)}).

We have tested the following properties:

(1) φ1 = AY F(
∧

1≤i≤� k
2 � outi ∧ ∧

� k
2 �< j≤k inj), describing the unavoidability of the con-

figuration in which the first half of the nodes is in out and the other half is in in
states;

(2) φ2 = EY FAY G(
∧

1≤i≤� k
2 � in2i−1 ∧ ∧

1≤i≤� k
2 � out2i), describing the configuration such

that the odd nodes are in their in and the even are in their out states becomes
persistent starting from some state in the future;

(3) φ3 = Eω
Y GEY F(

∧
1≤i≤k ini), expressing that the configuration with all nodes simul-

taneously in their in states is Y-reachable infinitely often; and
(4) φ4 = Eω

Y GEZF(
∧

1≤i≤k ini), a version of φ3 with two parameters.
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The parametric synthesis for φ1, φ2, and φ3 was interrupted after reaching the set
time limit, and the synthesis for φ4 has been stopped due to exceeding 3.5GB of memory
usage (Figure 8). The naive synthesis has been stopped due to timeout in all cases.

In the case of φ1, φ2, and φ3, the naive approach becomes infeasible for more than 9
nodes, whereas the parametric approach managed to compute the results for φ1, φ2 up
to 48 nodes. For the formula φ4, the timeout of the naive approach is almost immediate
(i.e., reached at five processes), whereas the parametric approach allows computation
of solutions up to eight processes. The model with k nodes consists of 2k states and
there are 2k separate actions, which gives ≈22k possible action valuations for the
single-parameter formulas and ≈24k for two-parameter properties. The huge size of
the space of the valuations explains why the enumerative approach quickly becomes
infeasible. On the other hand, the symbolic fixed-point verification scales reasonably
well.

4.3. Peterson’s Algorithm Analysis

In this section, we analyze a solution to the mutual exclusion problem for two processes,
which are proposed in Peterson [1981]. For reference, we include a pseudocode for
Peterson’s solution to the mutual exclusion problem for two processes (Figure 9). Both
processes from Figure 9 are placed in infinite loops, omitted from the figure for clarity.

The algorithm employs three binary variables: B0, B1, B2, where B0, B1 are used as
red/green lights allowing a process 0, 1 (respectively) to enter the critical section; the
entry of the i-th process can also be granted by setting the B2 variable to i. The process
0 can read the state of B1 and write on B0, the process 1 can read the state of B0 and
write on B1, and both processes can read and write the variable B2. All operations on
the variables are atomic.

We model Peterson’s algorithm as a network of MTSs (Figure 10). The process com-
ponents do not share any actions (apart from the interrupt calls) and synchronize
solely via the shared variables B0, B1, B2 modeled as two-state MTSs (s0 and s1 cor-
respond to True and False, respectively). To analyze more in-depth properties of the
algorithm, each state sj of each process is joined by the interrupt request irq (tran-
sitions with dashed arcs) with its static counterpart isj that preserves the labeling;
the returning transition is labeled with irqret and marked with a dotted arc. The
dm (dummy) nodes are unreachable and used for the variable access consistency. The
monitor is a component that activates with the irq request. After this, there exists
a determined, unique three transitions long sequence that ends in an internal state
marked with the current values of B0, B1, B2. The wavy lines in Figure 10 marked
with HI are used to cover parts of monitor omitted due to its size: a wavy line be-
tween awk and di0i1i2 means that the latter is reached from the former via a se-
quence of actions B0hdnisi0 , B1hdnisi1 , B2hdnisi2 . After establishing the current state
of variables, the monitor sets new values of B0, B1, B2; this is done in a manner
similar to the earlier state detection. A wavy line marked with HS and joining atk
and ei0i1i2 means that to reach the latter from the former, the sequence of actions
B0hdnseti0 , B1hdnseti1 , B2hdnseti2 should be fired. After this, the monitor terminates by
firing the irqret transition. The labels on remaining unmarked arcs are not relevant
to the example. Using the nonparametric component of the tool, we have verified that
the model with the interrupts turned off satisfies the basic properties of mutual exclu-
sion, the lack of deadlocks, liveness, nonblocking, and no strict sequencing [Baier and
Katoen 2008]. The synthesis has taken only 0.07 seconds and 5.02MB of BDD memory
(as reported by CUDD).

Now we move to the parameter synthesis for Peterson’s algorithm. Denote Ahdnis =
{Bihdnisj | i, j ∈ {0, 1}} and Ahdnset = {Bihdnsetj | i, j ∈ {0, 1}}. Let us also denote
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Fig. 8. Generic pipeline paradigm synthesis results.
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Fig. 9. Peterson’s algorithm.

Anorm = ⋃
i, j∈{0,1}{Bisetj, Biis0} ∪ {B2is1}. We first analyze the property:

φdtct = EAnorm FAY G(dtct ⇒ (trying0 ∨ trying1 ∨ critical0 ∨ critical1)) ∧ EY Fdtct

with the switchable actions set Ahdnis. The meaning of φdtct is whether the monitor can
infer only by looking at the values of B0, B1, B2 if any of the two processes is attempting
to enter or have already entered the critical section. The synthesis took 0.04 seconds
and 5.40MB of BDD memory, and the naive approach took 1.06 seconds and 5.56MB
of BDD memory. The resulting set is empty. In practice, this means that Peterson’s
protocol is not susceptible to eavesdropping—that is, a third party cannot tell just by
looking at the values of the shared variables what the current state of the involved
processes is.

In what follows, we assume the set Ahdnis ∪ Ahdnset of switchable actions. We move
to the active monitor mode, where the monitor during the interrupt first detects the
current state of the variables and then sets them to arbitrary values. The next property
that we analyze is

φnfrcAX = EAnorm FAY G(nfrc ⇒ A{irqret} XAAnorm X
(trying0 ∨ trying1 ∨ critical0 ∨ critical1)) ∧ EY Fdone.

In this way, we pose the question whether the monitor can test and set B0, B1, B2 in
such a way that after the return from the interrupt and a single step of the algorithm
at least one of the processes attempts to enter or have already entered the critical
section. The synthesis took 0.07 seconds and 5.56MB of BDD memory, and the naive
approach took 87.41 seconds and 5.72MB of BDD memory. Again, the set of resulting
valuations is empty. This means that despite the full control over the shared variables,
a third party is not able to ensure in any circumstances that any of the processes is in
a labeled location in an immediate successor to the current state of the system.

We alter the previous property by allowing an arbitrary number of steps after the
return from the interrupt. After trying out all possible configurations of joins of propo-
sitions from

⋃
i∈{0,1}{tryingi, criticali}, we found a single one that yields a nonempty set

of valuations:

φnfrcAF = EAnorm FAY G(nfrc ⇒ A{irqret} XAAnorm F(trying0 ∧ trying1)) ∧ EY Fdone.

The φnfrcAF poses a question whether the monitor can test and set the shared variables
in such a way that, in the case of a positive test, after the return from the interrupt it will
be unavoidable that both processes simultaneously attempt to enter the critical section.
The synthesis took 0.08 seconds and 5.52MB of BDD memory, and the naive approach
took 79.36 seconds and 6.04MB of BDD memory. There are 21 possible substitutions
for Y (of 4, 095) under that φnfrcAF holds. Some of these substitutions are redundant
from the practical point of view—for example, in the set of solutions, there is an action
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Fig. 10. Peterson’s algorithm with monitor network.
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Fig. 11. Malicious active monitor.

valuation υ that contains both B2hdnset0 and B2hdnset1 actions, and there are action
valuations υ ′ and υ ′′ that differ from υ only in that they contain B2hdnseti for a single
i ∈ {0, 1}. The υ action is therefore not needed, as it expresses a nondeterministic choice
where the deterministic one is possible. After the removal of unnecessary actions, we
obtain 8 deterministic substitutions for Y , the analysis of which enables a concise
recipe for malicious monitor behavior shown in Figure 11.

The preceding program guarantees that in 50% of the cases (i.e., possible configu-
rations) after interrupt, the situation in which both the processes are simultaneously
trying to enter the critical section is unavoidable. Note that among all possible internal
states of Peterson’s protocol, this one is arguably the most volatile and prone to attacks.

5. CONCLUSIONS

In this article, we proposed a new symbolic approach to the parameter synthesis for
pmARCTL. The action valuations under which a given property holds are typically
selected from a huge set, which makes the exhaustive enumeration intractable. We
showed that despite this, the BDD-based implementation of fixed-point algorithms
presented in this work can deal with small- to medium-sized models reasonably fast.
This observation is in line with the results presented in Classen et al. [2011] in the
context of model checking of software product lines. Our experimental results also
demonstrate that our approach is promising for industrial system designers.
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