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Abstract. The paper presents a SAT-based approach to Bounded Model
Checking of systems specified in UML. Contrary to other UML verifica-
tion tools we do not exploit any of the existing model checkers as we do
not translate UML specifications into their input formalisms. Instead we
directly encode an unfolding of a UML system as a propositional formula.
Then, the conjunction of this formula and a propositional translation of
a property to be tested is checked for satisfiability using a SAT-solver.
This paper builds upon our previous work on model checking of UML
systems. The original contribution is twofold. The UML subset consid-
ered is extended with fork and join pseudostates along with a new type of
a trigger reacting to change events. The properties tested can be now ex-
pressed in PRTECTL (parametric extension of the existential fragment
of CTL). The method has been implemented as the tool BMC4UML and
several experimental results are presented.

1 Introduction

We present the results of our work aiming at development of a novel symbolic
verification method dedicated for systems specified in the Unified Modeling Lan-
guage (UML) [1]. UML is a graphical language widely used for specification and
documentation of various types of systems. In this paper we consider a subset
of UML in version 2.1. The proposed verification method is a variant of SAT-
based Bounded Model Checking [2] that avoids an intermediate translation and
operates directly on UML. All the possible executions of a system (unfolded to
a given depth) are encoded into a boolean propositional formula. Similarly, the
tested property, expressed as a (parametrized) temporal formula, is encoded.
Then, the conjunction of these two formulae is checked for satisfiability using a
SAT-solver.

The current paper is based upon the papers [3, 4], which introduce the UML
subset considered, its syntax, operational and symbolic semantics, and methods
of checking (parametric) reachability for UML systems. The main contribution
of this paper consists in an extension of the above to verification of properties
expressed as PRTECTL (parametric extension of the existential fragment of
? Partly supported by the Ministry of Education and Science under the grant
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CTL) [5] formulae. Moreover, we extend the UML subset considered with several
new elements: triggers specified by when keyword and reacting for change events,
fork and join pseudostates, and finally associations and links in class and object
diagrams used to specify object variables.

According to our best knowledge there are no other papers on parametric
verification of UML systems. However, contrary to our papers, most of the ap-
proaches make use of the existing model checkers, e.g., [6, 7] translate UML to
Promela and then make use of the model checker Spin. Others [8, 9] exploit
timed automata as an intermediate formalism and use UPPAAL for verification.
The another group of tools [10–12] apply the symbolic model checkers SMV or
NuSMV via translating UML to their input languages.

The rest of the paper is organised as follows. The next section recalls the
subset of UML under consideration and sketches its semantics. In Section 3 the
logic PRTECTL is introduced, while in Section 4 the details of our translation
to SAT are given. In the next sections, we present some experimental results,
followed by the conclusions.

2 Specification Language - a Subset of UML

In this section we present the subset of UML considered in the paper and ac-
cepted by our tool. Moreover, the semantics of this subset is discussed and ref-
erences to its more detailed description are given. We assume that the reader is
familiar with the basic UML state machine concepts.

Fig. 1. Class diagram (left) and object diagram (right) of the simple lift system

The syntax is illustrated with the diagrams of a simple lift system, which is
also used as a benchmark in Section 5. The systems considered are specified by
a single class diagram which defines k classes (e.g. see Fig. 1), a single object
diagram which defines n objects (e.g. in Fig. 1), and k state machine diagrams
(e.g. in Fig. 2, 3), each one assigned to a different class of the class diagram.
The class diagram defines a list of attributes (of integer and object types) and a
list of operations (possibly with parameters) for each class. The object diagram
specifies the instances of classes (objects) and (optionally) assigns the initial
values to variables (instances of attributes). The object attributes are specified by
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directed associations in the class diagram, while the links in the object diagram
are used for initialization of the instances.

Fig. 2. State machine of class Lift

Each object is assigned an instance of a state machine that determines the
behaviour of the object. A state machine diagram typically consists of states,
regions and transitions connecting source and target states. We consider several
types of states, namely: simple states (e.g. Stop in Fig. 2), composite states,
(e.g. Main in Fig. 2), final states, initial pseudo-states, (e.g. Initial in Fig. 2),
and fork/join pseudo-states (e.g. vertical bar in Fig. 2). The areas filling the
composite states are called regions. The regions contained in the same composite
state are orthogonal (e.g. DoorControl and EngineControl in Fig. 2). The regions
contain states and transitions, and thus introduce a hierarchy of state machines.
We assume that a definition of the hierarchy relation is given, and we implicitly
refer to this relation by using the terms ancestor and descendant.

The labels of transitions are expressions of the form trigger[guard]/action,
where each of these components can be empty. A transition can be fired if the
source state is active, the guard (a Boolean expression) is satisfied, and the
trigger matching event occurs. An event can be of the following four types: an
operation call, a completion event, a time event, or a change event. In general,
firing of a transition causes deactivation and activation of some states (depending
on the type of the transition and the hierarchy of given state machine). We say
that the state machine configuration changes then. More details can be found in
[3, 4].

A time event, defined by an expression of the form after(δ1, δ2), where
δ1, δ2 ∈ N and δ1 ≤ δ2, can occur not earlier than after passing of δ1 time
units and no later than before passing of δ2 time units. This is the extension of
the standard after(x) expression, which allows one to specify an interval of time
in which a transition is enabled. However, we follow the discrete-time semantics
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Fig. 3. State machine of class Button

where the clock valuations are natural numbers. The time flow is measured from
entering the time state, which is the source state of a transition with the trigger
of the form after(δ1, δ2).

The operation calls coming to the given object are put into the event queue
of the object, and then, one at a time, they are handled. The event from the
head of the queue possibly fires a transition, and is consumed. If it cannot fire
any transition and the matching trigger is deferred in the current state, then
the event is deferred, i.e., it will be consumed later. Otherwise, the event is
discarded.

The transitions with non-empty trigger are called triggered transitions. We re-
fer to the processing of a single non-completion event as the Run-To-Completion
(RTC) step. Next, a (non-completion) event can be handled only if the previ-
ous one has been fully processed, together with all the completion events which
eventually have occurred. A completion event (denoted by κ) occurs for a state
that has completed all of its internal activities. The completion events fire the
completion transitions, i.e., transitions without a trigger defined explicitly. The
completion transitions have priority over the triggered transitions.

The execution of the whole system follows the interleaving semantics, similar
to [9]. During a single step only one object performs its RTC step. If more
than one object can execute such a step, then an object is chosen in a non-
deterministic way. However, if none of the objects can perform an untimed action,
then the time flows. The time flow possibly causes occurrences of time events,
which are processed in the next RTC steps.

The semantics has been formalized in terms of labelled transition system [3,
4]. There are six types of transitions with the following priorities:
1. Consumption of the completion events. Removes all the completion
events that cannot fire a completion transition for the i-th object.
2. Execution of a completion transition. Handles one completion event
causing a firing of one completion transition, and changes the valuation according
to the sequence of actions: exit actions and deactivation of leaving states, the
transition action, the entry actions and activation of the entered states, and
producing completion events for some of the activated states. Moreover the clocks
of the entered timed states are reset.
3. Execution of triggered transitions. If a transition is triggered by an event
from the queue, then it is additionally consumed. The second possibility is the
firing of a timed transition triggered by a time event. In this case the enabling
condition depends rather on the clock valuation than the queue contents. In
the case of when-transitions triggered by change events, the enabling condition
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depends on variables valuation. We deal with changes of the valuation in a way
similar to the transitions of type 2.
4. Deferring an event. An event is deferred, i.e., it cannot be dispatched
while staying at the current state, but it will be considered again after leaving
this state.
5. Discarding of an event. Discards an event from the head of the i-th event
queue, when it does not enable any transition.
6. Time flow. If all the event queues are empty, all completion events have
been processed, and none of the when transition is enabled, then x time units
pass. Note that 0 < x ≤ Exp, where by Exp we denote the earliest expiration
time of the considered time events.

The extensions of UML subset. The main extensions of the UML subset
considered concern state machines. Now we are taking into account also the fork
and join pseudostates as well as the when triggers reacting to change events.

The transitions passing through the join or fork pseudostates are restricted
to completion transitions only and treated in a special way. They are combined
into one transition with a number of source (or target) states, in the case of join
(or fork, respectively) pseudostates. Due to the interleaving semantics and the
higher priority of completion events consumption, the join transitions are not
enabled by completion events, but they are enabled when all source states are
active.

The transitions with when triggers react to change events. A change event
occurs when the corresponding boolean expression is evaluated to true, e.g., for
the expression x > 0 the change event occurs when the variable x is assigned a
positive value. The syntax of a standard change event is as follows: when 〈boolean
expression〉. For technical reasons we have simplified it by moving the boolean
expression to the guard.

It is important to mention that the above extensions simplify modeling of
the verified systems, but at the price of a bit more complicated semantics. On
the other hand, the use of fork pseudostates reduces the number of steps needed
to activate all the state machines nested in the orthogonal regions, and the use
of the when triggers is often a convenient way for modeling reactions for changes
in the system as well as avoiding unnecessary operation calls.

3 Parametrized Temporal Logic PRTECTL

In this section we recall two extensions of Computation Tree Logic (CTL) [13],
introduced in [5], namely PRTCTL and vRTCTL. PRTCTL sentences are built
of expressions containing CTL-like modalities with additional parametric super-
scripts expressing the time length of paths. The universal and existential quanti-
fiers over forementioned parameters are also allowed in PRTCTL. The vRTCTL
logic can be perceived as an intermediate logic in building PRTCTL sentences.
The formulae of vRTCTL do not contain quantifiers and are evaluated under
the accompanied parameter valuations.
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3.1 Syntax

Let Θ1, . . . , Θn be variables, called here parameters. An expression of the form
η =

∑n
i=1 ci · Θi + c0, where c0, . . . , cn ∈ N, is called a linear expression. A

function υ : {Θ1, Θ2, . . . , Θn} −→ N is called a parameter valuation. Let Υ be
the set of all the parameter valuations.

Definition 1. Let PV be a set of propositional variables containing the symbol
true. Define inductively the formulae of vRTCTL :

1. every member of PV is a formula,
2. if α and β are formulae, then so are ¬α, α ∧ β and α ∨ β,
3. if α and β are formulae, then so are EXα, EGα, and EαUβ,
4. if η is a linear expression, α and β are formulae of vRTCTL, then so are

EG≤ηα and EαU≤ηβ.

The conditions 1, 2, and 3 alone define CTL. Notice that η is allowed to be
a constant. The logic defined by a modification of the above definition, where
η = a for a ∈ N, is called RTCTL in [5].

Definition 2. The formulae of PRTCTL are defined as follows:

1. if α ∈ vRTCTL, then α ∈ PRTCTL,
2. if α(Θ) ∈ PRTCTL, where Θ is a free parameter, then
∀Θα(Θ),∃Θα(Θ),∀Θ≤aα(Θ),∃Θ≤aα(Θ) ∈ PRTCTL, for a ∈ N.

The formulae of PRTCTL are built from formulae of vRTCTL by preceding them
with additional existential or universal quantifiers, which may be restricted or
unrestricted. As an example consider the vRTCTL formula α(x) = EF≤xp,
where p ∈ PV. Then, by preceding α(x) with the unrestricted quantifiers, we
get ∀xEF

≤xp and ∃xEF
≤xp - formulas of PRTCTL.

3.2 Bounded semantics

We interpret the formulae, following Emerson’s and Trefler’s approach [5] in
timed Kripke structures - i.e., standard Kripke structures having the transitions
labeled with natural numbers. The value of a label shows how much time it takes
to traverse the transition.

Definition 3. Let PV be a set of propositional variables containing the symbol
true. A timed Kripke structure (a model) is a tuple (S, s0,→,L), where S is a
finite set of states, s0 ∈ S is an initial state, → ⊆ S × N × S is a transition
relation such that for every s ∈ S there exists s′ ∈ S and n ∈ N with (s, n, s′) ∈ →
(i.e., the relation is total), and L : S −→ 2PV is a labelling function satisfying
true ∈ L(s) for each s ∈ S.

As we are interested in BMC methods, we consider the existential sub-
sets of the logics, where the negation can be applied to propositions only, i.e.,
PRTECTL and vRTECTL. To verify the properties expressed in the aforemen-
tioned logics we unfold the computation tree of a given model to a limited depth
and check the validity of the property in question along such a finite structure.
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Definition 4. Let M be a model, and k ∈ N. By Pathk let us denote the set of
all the sequences (s0, n0, s1, n1, . . . , sk), where si is a state and si

ni→ si+1 for all
0 ≤ i <k. The pair (Pathk,L) is called the k-model of M and denoted by Mk.
An element πk ∈ Pathk is called a k-path.

Let πk(i) denote the i-th state present on a k-path πk.

Definition 5. Let Mk be the k-model of M and πk ∈ Pathk. We define the
function loop : Pathk −→ 2N as loop(πk) = {l | l ≤ k ∧ ∃m∈N(πk(k) m→ πk(l))}.

A k-path πk is called a loop if loop(πk) 6= ∅. Observe that loops are essentially
a way of representing infinite paths in a finite way. We define the time distance
between positions πk(0) and πk(j) as δj

πk
:=

∑j−1
i=0 ni, assume that δ0πk

= 0. We
abbreviate δk

πk
as δπk

. For a k-path πk and c ∈ N we define ∆c
πk

= max{i | i ≤
k ∧ δi

πk
≤ c} - the maximal index i of πk s.t. δi

πk
≤ c. For a parameter valuation

υ and a linear expression η, by υ(η) we mean the evaluation of η under υ.
The number of the states of M is called the size of M and denoted by |M |.

Let σmax be the greatest time label of the transitions present in M . It follows
from Lemma 1 and Theorem 1 of [14], being respectively versions of Proposition
4 and Theorem 1 of [5] that each unbounded quantifier can be replaced, without
changing the validity of a formula in a fixed model M with a version bounded
with the σmax|M | value. Similarly we can argue that non-superscripted modal-
ities can be replaced by versions with ≤ σmax|M | superscript. Therefore, from
now on we omit the unbounded quantifiers and non-superscripted EU and EG
in our considerations.

Definition 6 (Bounded semantics for vRTECTL). Let Mk = (Pathk,L)
be the k-model of M, s – a state, p ∈ PV, α, β ∈ vRTECTL and υ – a parameter
valuation. By Mk, s |=υ α we denote that α holds in Mk under valuation υ. We
omit Mk where it is implicitly understood. We define the relation |=υ as follows:

1. s |=υ p iff p ∈ L(s),
2. s |=υ ¬p iff p 6∈ L(s),
3. s |=υ α ∨ β iff s |=υ α or s |=υ β,
4. s |=υ α ∧ β iff s |=υ α and s |=υ β,
5. s |=υ EXα iff ∃πk∈Pathk

(
πk(0) = s ∧ πk(1) |=υ α

)
,

6. s |=υEG
≤ηα iff ∃πk∈Pathk

[
πk(0)= s ∧

(
(δπk

>υ(η) ∧ ∀
i≤∆

υ(η)
πk

πk(i) |=υα)

∨(δπk
≤ υ(η) ∧ ∀i≤kπk(i) |=υα ∧ loop(πk) 6= ∅)

)]
,

7. s |=υEαU
≤ηβ iff ∃πk∈Pathk

(
πk(0)=s∧∃

i≤∆
υ(η)
πk

(πk(i) |=υ β∧∀j<iπk(j) |=υα)
)
.

Definition 7 (Bounded semantics for PRTECTL). Let Mk be the k-model
of M, σmax – the greatest time label of the transitions present in M, s – a state,
α – a sentence (a formula without free variables) of PRTECTL and a ∈ N. We
recursively define the relation |= as follows:

1. Mk, s |= ∀Θ≤aα(Θ) iff ∀0≤iΘ≤min{a,k·σmax}Mk, s |= α(Θ ← iΘ),
2. Mk, s |= ∃Θ≤aα(Θ) iff ∃0≤iΘ≤min{a,k·σmax}Mk, s |= α(Θ ← iΘ),

where iΘ is a fresh integer variable.
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4 Bounded Model Checking

Having already presented the bounded semantics, we aim at applying the bounded
model checking method to verification of the properties formulated in vRTECTL,
and PRTECTL. The BMC method is based on the idea of a translation of a part
of the model together with a property in question to a propositional formula.
Satisfiability of the result means that the translated formula holds in the model.

4.1 Submodels

In order to obtain an acceptable efficiency, the (parametric) temporal formula
should be checked over a number of symbolic paths, which as small as possible,
but sufficient to determine its validity. Hence the BMC algorithm works on
submodels of the k-model.

Definition 8. Let Mk = (Pathk,L) be the k-model. A substructure M ′
k =

(Path′k,L′), where Path′k ⊆ Pathk and L′ is the restriction of L to the states
present in the paths of Path′k, is called a submodel of Mk. The size of M ′

k is
equal to |Path′k|.
The bounded semantics of vRTECTL formulae and PRTECTL sentences over
submodels is defined as for k-models.

It was proven in [15] that in order to determine the truth of an ECTL formula
in Mk it is sufficient to consider only submodels of size restricted by the (special)
function fk on the checked formula. We recall the following definition from [14],
which extends these results to PRTECTL.

Definition 9. Let α, β ∈ PRTECTL, p be an atomic proposition, and η - a
linear expression. Define recursively the special function fk : PRTECTL −→ N
as follows:

1. fk(p) = fk(¬p) = 0,
2. fk(α ∨ β) = max(fk(α), fk(β)),
3. fk(α ∧ β) = fk(α) + fk(β),
4. fk(EXα) = fk(α) + 1,
5. fk(EG≤ηα) = (k + 1) · fk(α) + 1,
6. fk(EαU≤ηβ) = k · fk(α) + fk(β) + 1,
7. fk(∀Θ≤cβ(Θ)) = (c+ 1) · fk(β(Θ)),
8. fk(∃Θ≤cβ(Θ)) = fk(β(Θ)).

4.2 Translation to SAT

In order to translate the problem of validity of a sentence α ∈ PRTECTL in the
submodel M ′

k to the problem of satisfiability of a propositional formula
[
α
]
k

we
have to encode M ′

k and α, and then combine the results together. We present
an adapted version of the efficient translation introduced in [16].

Consider the model M. As the number of the states of M is finite, they can
be perceived as a bit vectors of the length3 r = dlog2|M |e. Therefore, we can
3 The r = dlog2|M |e value is given here only as an example. It can be different for

various systems representations.
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represent the states as the valuations of the vector w = (w1, . . . , wr). Due to the
fact that we need to count the time passed along a path, we augment the rep-
resentation of states with an additional bit vector d = (d1, . . . , dz) of the length
z = dlog2(k ·σmax +1)e where σmax denotes, as previously, the maximal value of
transition label present in M . The vector w = (w1, . . . , wr, d1, . . . , dz) is called a
global state variable, while each its member is called a state variable. Moreover, by
ww and dw we denote the subvectors w and d of the vector w. Denote by SV the
set of the state variables, and by V a valuation V : SV −→ {0, 1}. Additionally,
extend the valuation V to the vectors of the state variables: V : SVm −→ {0, 1}m
as V (w1, . . . , wm) =

(
V (w1), . . . , V (wm)

)
. This naturally extends to the va-

luations V̂ : SVr −→ {0, 1}r and D̂ : SVz −→ {0, 1}z in such a way that
V̂ (w1, . . . , wr) = (V (w1), . . . , V (wr)) and D̂(d1, . . . , dz) = (V (d1), . . . , V (dz)).
With a slight notational abuse, we denote by V̂ (w) the state encoded by ww,
and by D̂(w) - the value of time encoded by dw. The symbolic k-path is a vector
of global state variables. As we need a number of symbolic k-paths to represent
the k-paths in a translated submodel, by (w0,i,w1,i, . . . ,wk,i) we denote the i-th
symbolic k-path, where wj,i is a global state variable.

Let w,w′ be global state variables, s a state and p a proposition. In the rules
of the translation the following propositional formulae are used:

1. p(w) denotes a formula such that V |= p(w) iff p ∈ L(V̂ (w)),
2. T (w,w′) denotes a formula such that V |= T (w,w′) iff V̂ (w)→ V̂ (w′) (i.e.,

there exists a transition between V̂ (w) and V̂ (w′) in the model M , but the
values of D̂(w), D̂(w′) are not taken into account),

3. Td(w,w′) denotes a formula such that V |= Td(w,w′) iff V̂ (w) n→ V̂ (w′) for
some n ∈ N, and D̂(w′) = D̂(w) + n (i.e., there exists a transition between
V̂ (w) and V̂ (w′) in the model M , and the difference between D̂(w′) and
D̂(w) corresponds to the time passed while performing this transition),

4. H(w,w′) is a formula s.t. V |= H(w,w′) iff V̂ (w) = V̂ (w′) (encodes equality
of states),

5. Lk(j)=
∨k

i=0 T (wk,j ,wi,j) encodes a loop, i.e.,
V |= Lk(j) iff loop((V̂ (w0,j), .., V̂ (wk,j))) 6= ∅,

6. Is0(w) is a formula s.t. V |= Is0(w) iff V̂ (w) = s and D̂(w) = 0 (encodes
the initial state),

7. Z(w) is a formula s.t. V |= Z(w) iff D̂(w) = 0 (w encodes the first state of
a path),

8. Le(w, a), for a ∈ N, is a formula such that V |= Le(w, a) iff D̂(w) ≤ a.

Let M be a model and A be a finite subset of N. The unfolding of the transition
relation is defined as

[
M

]A

k
:=

∧
j∈A

k−1∧
i=0

Td(wi,j ,wi+1,j).

It is easy to see that V |=
[
M

]A

k
iff for each j ∈ A, (V̂ (w0,j), . . . , V̂ (wk,j)) is a

k-path in M . As the translation introduced in [16] was an essential improvement
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over the original one of [15], we follow Zbrzezny’s approach in our work. The
improvement primarily consists in translating every subformula ψ of the formula
α by using only fk(ψ) k-paths. We define the functions used to split the set of
k-paths of submodel M ′

k into parts sufficient to translate the subformulas of the
considered temporal formula.

Following [16], let A and B be finite subsets of N. By A ≺ B we denote that
x < y for all x ∈ A and y ∈ B. Let k,m, p ∈ N and m ≤ |A|, then:

1. ĝL(A,m) is the subset B of A such that |B| = m and B ≺ A\B,
2. ĝR(A,m) denotes the subset B of A such that |B| = m and A\B ≺ B,
3. hX(A) is the set A\{min(A)},
4. if k + 1 divides |A| − 1 then hG(A, k) is the sequence of sets (B0, . . . , Bk)

such that
∪k

i=0Bi = A\{min(A)}, |Bi| = |Bj | and Bi ≺ Bj for every
0 ≤ i < j ≤ k,

5. if k divides |A|−1−p, then hU (A, k, p) denotes the sequence of sets (B0, . . . , Bk)
such that

∪k
i=0Bi = A\{min(A)}, Bi ≺ Bj for every 0 ≤ i < j ≤ k,

|B0| = . . . = |Bk−1| and |Bk| = p.

We also need a sequence element selector that is if hG(A, k) = (B0, . . . , Bk) then
define hG(A, k)(i) = Bi for 0 ≤ i ≤ k and if hU (A, k, p) = (B0, . . . , Bk), define
hU (A, k, p)(i) = Bi for 0 ≤ i ≤ k. The functions ĝL and ĝR are used to divide
the set of path indices into the two parts of the sizes sufficient to perform the
independent translation of subformulas α and β of formula α ∧ β. Similarly, hG

and hU are used to divide the set of path indices into the sequences (hence the
use of the selector) of subsets which are of the sizes sufficient to perform the
translation of subformulas α and α together with β of, respectively, formulae
EG≤ηα and EαUηβ. A more in-depth description can be found in [16].

Definition 10 (Translation of vRTECTL). Let α, β ∈ vRTECTL, p – an
atomic proposition, υ – a parameter valuation, η – a linear expression, (m,n) ∈
N× N, and A ⊆ N.

–
[
p
][m,n,A,υ]

k
:= p(wm,n) and

[
¬p

][m,n,A,υ]

k
:= ¬p(wm,n),

–
[
α ∧ β

][m,n,A,υ]

k
:=

[
α
][m,n,ĝL(A,fk(α,υ)),υ]

k
∧

[
β
][m,n,ĝR(A,fk(β,υ)),υ]

k
,

–
[
α ∨ β

][m,n,A,υ]

k
:=

[
α
][m,n,ĝL(A,fk(α,υ)),υ]

k
∨

[
β
][m,n,ĝL(A,fk(β,υ)),υ]

k
,

–
[
EXα

][m,n,A,υ]

k
:= H(wm,n,w0,min(A)) ∧

[
α
][1,min(A),hX(A),υ]

k
,

–
[
EG≤ηα

][m,n,A,υ]

k
:= H(wm,n,w0,min(A)) ∧ Z(w0,min(A)) ∧(

( Le(wk,min(A), v(η)) ∧ (Lk(min(A)) ∧
∧k

j=0

[
α
][j,min(A),hG(A,k)(j),υ]

k
) )

∨ ( ¬Le(wk,min(A), υ(η)) ∧∧k
j=0(Le(wj,min(A), υ(η))⇒

[
α
][j,min(A),hG(A,k)(j),υ]

k
) )

)
,

–
[
EαU≤ηβ

][m,n,A,υ]

k
:= H(wm,n,w0,min(A)) ∧ Z(w0,min(A)) ∧∨k

i=0

(
Le(wi,min(A), υ(η)) ∧ (

[
β
][i,min(A),hU (A,k,fk(β,υ))(k),υ]

k
∧∧i−1

j=0

[
α
][j,min(A),hU (A,k,fk(β,υ))(j),υ]

k
)

)
.
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The above encoding is based on the bounded semantics for vRTECTL (see Def-
inition 6). Notice that in case of the encoding of EG≤ηα formula, we need
to consider two cases. The first case deals with the situation when α should
be checked along a k-path of length strictly greater than k, because the time
elapsed at this k-path is lower than η. Therefore, we have to check α along the
loop – hence we encode the loop condition using the propositional formula Lk.
In the second case, when the time elapsed at the k-path is greater or equal η,
α is checked along a path of length smaller or equal than the depth k of the
unfolding of the model. Each such a finite path is then a prefix of some k-path.
Both the cases are combined in the disjunction.

Definition 11 (Translation of PRTECTL). Let α ∈ PRTECTL, A ⊆ N,
(m,n) ∈ N×N, and c ∈ N. If α contains no quantifiers and no free parameters,
then:

ˆ

α
˜[m,n,A]

k
:=

ˆ

α
˜[m,n,A,υ]

k
, where υ is any parameter valuation.

As in the above case α ∈ vRTECTL and it contains no free parameters, the
choice of υ is irrelevant.

Let d = min{c, k · σmax}, then:
ˆ

∀Θ≤cα(Θ)
˜[m,n,A]

k
:=

ˆ

α(d)
˜[m,n,ĝL(A,fk(α(d)))]

k
∧

ˆ

∀Θ≤d−1α(Θ)
˜[m,n,ĝR(A,fk(∀Θ≤d−1α(Θ)))]

k
,

ˆ

∃Θ≤cα(Θ)
˜[m,n,A]

k
:=

ˆ

α(d)
˜[m,n,ĝL(A,fk(α(d)))]

k
∨

ˆ

∃Θ≤d−1α(Θ)
˜[m,n,ĝL(A,fk(∃Θ≤d−1α(Θ)))]

k
.

Let Mk be the k-model. If α ∈ PRTECTL, define Fk(α) := {i ∈ N | 1 ≤ i ≤
fk(α)}. The set Fk contains the indices of symbolic k-paths used to perform the
translation. The formula

[
M

]Fk(α)

k
encodes all the Mk submodels of the size not

greater than needed to validate the truth of formula α, as indicated in Lemmas
4, 5 from [14].

Now we are ready to complete the translation of the problem of validity in
vRTECTL and PRTECTL to the problem of satisfiability of propositional for-
mulae. Let Mk be the k-model, α ∈ vRTECTL and υ be a parameter valuation.
Denote [

M
]α,υ

k
:=

[
M

]Fk(α)

k
∧ Is0(w0,0) ∧

[
α
][0,0,Fk(α),υ]

k
.

Similarly, let β ∈ PRTECTL, then denote[
M

]β

k
:=

[
M

]Fk(β)

k
∧ Is0(w0,0) ∧

[
β
][0,0,Fk(β)]

k
.

Theorems 2 and 3 from [14] ensure completeness and correctness of the trans-
lation.

4.3 Implementation for UML

In this section we present some details of a propositional encoding of systems
specified in UML. In particular we show the symbolic encoding of the states
and the transition relation, as well as some of the functions needed to translate
PRTECTL formulae to SAT.
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Given a UML system, as described in Sect. 2. Let CL be the set of all classes
in the system, and let Obj(c) be the set of all instances of a given class c ∈ CL.
By n denote the number of all objects in the system, by Si – the set of all states
of the i-th object (all states from the state machine instance assigned to the
object), by CSi ⊆ Si – the set of completion sensitive states of the i-th object
(i.e., source states of completion transitions), by Γi ⊆ Si – the set of time states,
by Vi – the set of variables, and by qi the event queue of the i-th object, where
i ∈ {1, . . . , n}. Let σmax denotes the greatest upper bound of all time triggers
present in the system, and let Reg(Γi) denotes the set of state machine regions
which are the direct ancestors of the time states from Γi.

A global state of a given system is a tuple of states of the objects. A single
object state consists of a set of active states, a set of completed states (the states
for which completion events have recently occurred), a contents of the event
queue, a valuation of the variables, and a valuation of the clocks. A single variable
and a single clock can be represented respectively by intsize = dlog2(maxint +
1)e + 14 and clocksize = dlog2(σmax + 2)e state variables. An event queue is
represented by m-element cyclic buffer and three indices pointing respectively
to the event to be processed next, the first unoccupied position in the queue
(where it will be placed the next event coming), and the first deferred event.
Thus an event queue can be represented by size(qi) = m · b(i) + 3 · dlog2m+ 1e
state variables, where b(i) denotes the number of variables needed to encode a
single operation call. The global state of the system can be encoded by valuations
of a vector of state variables wg = (wg[1], . . . , wg[r]), where:

r =
n∑

i=1

(
|Si|+ |CSi|+ size(qi) + |Vi| · intsize + |Reg(Γi)| · clocksize

)
.

Due to the fact that we need to count the time passed along a path, we
augment the representation of states with an additional state variable vec-
tor wd = (wd[1], . . . , wd[z]) of the length z = dlog2(k · σmax + 1)e, called a
global clock. From now on the symbolic state w is a pair (wg, wd). The partic-
ular state variables are denoted by w[1], . . . ,w[r] (the global state part) and
w[r + 1], . . . ,w[r + z] (the global clock part).

Next, we give the encoding of the transition relation. We start with a set of
helper formulae that encode enabling conditions and execution of transitions of
types 1 - 6, described in Sect. 2. We define propositional formulae for transitions
of types 1 ≤ j ≤ 5 that encode their preconditions over the vector w for the
object o: EOj(o,w). We define also the propositional formulae encoding an exe-
cution of these transitions over the vectors w,w′ for the object o: XOj(o,w,w′)
for 1 ≤ j ≤ 5 and the formula encoding the time flow X6(w,w′).

The transitions of types 1-5 are called local as their execution does not depend
on which type of transition can be fired by other objects. The execution of local
transitions for object o over the vectors of state variables w and w′ is recursively

4 In order to keep the verification problem decidable the values of the variables are
bounded to 〈−(maxint + 1),maxint〉.
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encoded as (we set XO(o,w,w′) = f1(o,w,w′)):

f5(o,w,w′) = EO5(o,w) ∧XO5(o,w,w′)
fj(o,w,w′) = EOj(o,w) ∧XOj(o,w,w′)

∨¬EOj(o,w) ∧ fj+1(o,w,w′) for j ∈ [1, 4]

We ensure that a transition of each level becomes enabled only if the tran-
sitions of the preceding levels cannot be executed, by nesting the conditions for
the consecutive levels. Then, iterating over the objects of class c, we encode the
execution of local transitions for the class c:

XC(c,w,w′) =
∨

o∈Obj(c)

XO(o,w,w′)

Now we are ready to give the encoding of the transition relation:

T(w,w′) =
∨

c∈CL

XC(c,w,w′) ∨E6(w) ∧X6(w,w′)

where E6(w) encodes the enabling conditions of the time flow transition. Some
details of the above encoding were given in [3, 4] and are omitted here.

Now, we provide the explanation of the functions used to propositional trans-
lation of PRTECTL, given in Sect. 4.2:

1. p(w) - a propositional formula encoding the property p over the state vari-
ables from w,

2. T (w,w′) = T(w,w′),
3. Td(w,w′) =

(∧r+z
j=r+1 w[j] ⇐⇒ w′[j]

)
∧

(∨
c∈CLXC(c,w,w′)

)
∨

E6(w) ∧X6(w,w′) ∧ incGC(w,w′),
4. H(w,w′) =

∧r
j=1 w[j] ⇐⇒ w′[j],

5. Is0(w) =
∧n

i=1

(∧
s∈Initi

(
act(s) ∧ cpl(s)

) ∧
s∈(Si\Initi)

(
¬act(s) ∧ ¬cpl(s)

))
,

6. Z(w) =
∧r+z

j=r+1 ¬w[j],

where act(s) and cpl(s) are the state variables that evaluate to true when the
state s is respectively active and completed, and incGC(w,w′) is a propositional
formula encoding the increasing of the global clock by the same value as all other
clocks (that is encoded byX6(w,w′)). The encoding of the propositional formula
Le(w, a), as well as encoding of integers and arithmetic operators is described
in detail in [17].

Encoding of the extensions of the UML subset. In this paragraph we
discuss how the extensions of the considered UML subset affect the encoding of
the transition relation. To this aim we sketch the encoding of the transitions of
level 2 (firing the completion transitions, including the transitions crossing the
join pseudostates), and discuss the encoding of the transitions of level 3 (firing
the triggered transitions, including handling of the change events).
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The propositional formula ET2(t,w) encodes the enabling condition for a
completion transition t, while the formula EO2(i,w) encodes the enabling con-
dition for all the completion transitions of i-th object (i.e., the set Tκ

i ) in the
global state represented by w:

ET2(t,w)=
(
¬isJoin(t) ∧ cpl(s,w) ∧ grd(t,w)

)
∨

(
isJoin(t) ∧

∧
s∈src(t)

act(s,w))

EO2(i,w)=
∨

t∈T κ
i

ET2(t,w)

where: isJoin(t) is a boolean function returning true only if t is a transition
crossing the join state, src(t) is a set of source states of the transition t (it is
a singleton when ¬isJoin(t) holds), s ∈ src(t), and grd(t,w) is a propositional
formula encoding the guard of the transition t.

In order to handle the join of transitions we have to consider the two cases of
completion transitions. The first one is when we deal with single-source comple-
tion transitions, and the second is the case with the transitions crossing a join
pseudostate. Then both the cases are combined in the disjunction.

We handle the transitions triggered by change events in a similar way. We
distinguish three cases of transitions: (i) triggered by an event from a queue, (ii)
triggered by a time event, and (iii) triggered by a change event.

5 Preliminary Experimental Results

In order to estimate the efficiency of our approach we performed several exper-
iments using our prototype implementation – the tool BMC4UML. The tests
have been performed using a PC equipped with Intel Core 2 Duo (2.4 GHz) and
2.3 GB RAM running Linux OS. The SAT-solver PrecoSAT [18] has been used
for checking satisfiability of the propositional formulas.

k vars clauses BMC[s] BMC[MB] SAT[s] SAT[MB] Total[s]

1 78350 236288 1,63 14,93 0,2 29 1,83

2 162341 493491 3,48 26,02 2,8 71 6,28

3 261588 797112 5,84 39,17 5,7 91 11,54

4 388920 1188181 8,73 56,05 9 157 17,73

5 527149 1611897 12,27 74,23 12,4 259 24,67

6 683434 2091077 16,02 94,98 21,7 298 37,72

Total 47,97 51,8 99,77

Table 1. Experimental results for ¬ϕ2(5) - satisfiable at the depth 6.

Consider the simple lift system specified by the diagrams in Fig. 1, 2, and 3.
The system consists of four objects: lift – an instance of the class Lift, and three
instances of the class Button – b0, b1, and b2. The lift object contains three
public variables: cf – the current floor where there is an elevator, df – lift’s
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k vars clauses BMC[s] BMC[MB] SAT[s] SAT[MB] Total[s]

1 78350 236288 1,61 14,93 0,2 29 1,81

2 162341 493491 3,47 26,02 2,8 71 6,27

... ... ... ... ... ... ... ...

11 1787418 5484210 44,15 241,16 55,2 684 99,35

12 2060309 6322621 51,19 277,39 63,2 738 114,39

13 2420715 7438503 60,13 325,34 94,6 1135 154,73

Total 318,46 408,9 727,36

Table 2. Experimental results for ¬ϕ1(5) - satisfiable at the depth 13.

destination floor, and moving, where moving = 0 indicates that the elevator
stopped. Every button is assigned a different floor number.

In general the button objects can be “pressed” in a non-deterministic way.
This is modeled by timed transitions - a button does nothing (a self-loop), or
moves to the state On. When the button is in the On state, the system waits
for the moment when the lift stops at a destination floor different from the
button’s floor, and then the elevator call is accepted by assigning the lift.df the
appropriate value.

We tested the following property: Always when the i-th button has been
pressed, the elevator always arrives to the i-th floor no later than in m time
units. This property can be expressed as the following PRTCTL formula:

ϕi(m) = ∃x≤mAG(buttoni =⇒ AF≤xfloori),

where buttoni and floori are the propositional variables that are true respec-
tively when the object bi is in the On state and when the lift is at the i-th floor
(lift.cf = i), for i ∈ {0, 1, 2}. However, using BMC we can handle existential
properties only, so we proceed with the negation of the formula ϕi(m):

¬ϕi(m) = ∀x≤mEF (buttoni ∧ EG≤x¬floori)

We started our tests for the floor 2, and m = 5. The formula ¬ϕ2(5) holds at
the depth 6, which means that ϕ2(5) is not true in the model. The results of
the verification are presented in Table 1. Checking the formula ¬ϕ2(5) was quite
quick. According the lift specification it is obvious that the lift can reach the
second floor not earlier than after 6 time units.

k vars clauses BMC[s] BMC[MB] SAT[s] SAT[MB] Total[s]

1 78314 236180 1,63 14,93 0,2 29 1,83

2 162287 493329 3,48 26,02 2,8 71 6,28

... ... ... ... ... ... ... ...

9 1297424 3979000 31,84 176,32 33,3 584 65,14

10 1532985 4702589 38,96 207,52 39,9 633 78,86

11 1787202 5483562 43,93 241,16 56,3 684 100,23

Total 209,92 224,7 434,62

Table 3. Experimental results for ¬ϕ0(5) - satisfiable at the depth 11.

15



k vars clauses BMC[s] BMC[MB] SAT[s] SAT[MB] Total[s]

1 145242 440948 3,33 23,83 2,5 67 5,83

2 319007 974073 7,69 46,78 5,6 144 13,29

3 540300 1652064 13,31 76,04 12,2 261 25,51

4 839590 2572591 21,24 115,74 20,1 330 41,34

5 1176289 3605973 30,04 160,34 29,1 560 59,14

6 1567156 4805747 40,66 212,16 48,8 638 89,46

Total 116,27 118,3 234,57

Table 4. Experimental results for ¬ψ3(5) - satisfiable at the depth 6.

Next, we aimed at checking the properties ¬ϕ1(5) and ¬ϕ0(5). The experi-
mental results are given in Table 2 and 3.

In all the cases above the formula has been translated using submodels of size
12. According to the function fk we need 2 symbolic paths for the translation of
the vRTECTL subformula EF (buttoni ∧ EG≤x), and the resulting PRTECTL
formula ¬ϕ(i) is the conjunction of six such subformulas, each one assigning x
a different value from 0 to 5. It seems that the number of symbolic paths under
consideration is the main source of the computation complexity here.

This conclusion seems to be confirmed by the next experiment, where the
property involving all the floors and all the buttons has been checked: Whenever
the button is pressed the lift will always arrive at the appropriate floor in m time
units. This is expressed by the following formula:

ψn(m) = ∃x≤m

n−1∧
i=0

AG(buttoni =⇒ AF≤xfloori),

where n stands for the total number of floors in the system considered.
The results of verification of the formula ¬ψ3(5) are given in Table 4, while

the summary results of verification of the formula ¬ψn(5) for different values of
n are presented in Table 5. The translation required to use 12 symbolic paths.

n k vars clauses BMC[s] BMC[MB] SAT[s] SAT[MB] Total[s]

2 11 2853832 8730338 337,65 380,99 386,8 1223 724,45

3 6 1567156 4805747 116,27 212,16 118,3 638 234,57

4 7 2904428 8953986 306,87 391,38 257,7 1237 564,57

5 8 4805263 14864423 543,59 646,88 515,9 2263 1059,49

Table 5. The summary results for the formula ¬ψn(5), n – the total number of floors,
k – the depth of a counterexample found.

6 Final Remarks

In this paper we have presented preliminary results of our implementation of
parametric BMC for UML. It seems that the number of symbolic paths under
consideration is the main source of the computation complexity here. Whereas
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the number of paths returned by fk(α) is sufficient for checking α, it is not al-
ways necessary. Especially this is the case for formulas that can be equivalently
expressed as (parametric) linear-time temporal logic formulas. Therefore, our
plan is to bound the number of paths used for the translation, and to intro-
duce several optimizations that should significantly improve the efficiency of our
method.
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