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ABSTRACT
We investigate partial order reduction for model checking multi-
agent systems by focusing on interleaved interpreted systems. These
are a particular class of interpreted systems, a mainstream MAS
formalism, in which only one action at the time is performed. We
present a notion of stuttering-equivalence, and prove the semanti-
cal equivalence of stuttering-equivalent traces with respect to linear
and branching time temporal logics for knowledge without the next
operator. We give algorithms to reduce the size of the models be-
fore the model checking step and show preservation properties. We
evaluate the technique by discussing the experimental results ob-
tained against well-known examples in the MAS literature.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software/Program Verification

General Terms
Verification
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1. INTRODUCTION
Several approaches have been put forward for the verification of

MAS by means of model checking [3]. Some approaches are based
on reducing the verification problem to the one of plain temporal
logic and use existing tools for that task [1]. Others treat typical
MAS modalities such as knowledge, correctness, cooperation, as
first-class citizens and introduce novel algorithms for them, e.g.,
[31]. In an attempt to limit the state-space explosion problem (i.e.,
the difficulty that the state space of the system grows exponentially
with the number of variables in the agents) two main symbolic ap-
proaches have been proposed: ordered binary decision diagrams
[31, 27], and bounded model checking via propositional satisfiabil-
ity [24]. Both have produced positive results showing the ability to
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tackle state spaces of 1030 and above. However, in the standard lit-
erature of model checking reactive systems other, sometimes more
efficient, approaches exists.

In particular, partial order reduction [23] is one of the most
widely known techniques in verification of reactive systems. Still,
the only approach to partial order reduction in a MAS context [17]
presents theoretical results only, with no algorithm nor an imple-
mentation being discussed; as such it is difficult to assess how ef-
fective it is in concrete cases. Given their autonomous nature, MAS
differ from standard reactive systems by displaying more “loosely
coupled” behaviours. This makes the state-explosion problem even
more challenging for MAS than it is already for reactive systems.
It seems therefore of importance to conduct a systematic and com-
parative study of all possible techniques available to determine the
most appropriate treatment to the verification problem.

In this paper we aim to make concrete progress in this area by
introducing partial order reduction on a particular class of inter-
preted systems that we call interleaved interpreted systems (IIS).
IIS are a special class of interpreted systems [5] in which only one
action at a time is performed in a global transition. Several agents
may be participating in the global action but, if so, they perform
the same action, thereby synchronising at that particular time step.
Many asynchronous reactive systems have been studied on similar
semantics (see, e.g., [20, 7]). Several settings in MAS, where the
moves are carried out following turns (e.g., games), or where joint
actions are not considered (e.g., non-interacting robots), can also
be easily modelled in this way.

In a nutshell, given a model MS (representing a system S) and a
formula �P (representing a specification property P to be checked)
in the temporal logic LTL−X (the linear temporal logic LTL with-
out the neXt operator X), model checking via partial order re-
duction suggests to compute MS ∣= �P by replacing MS with
a smaller model M ′S built on traces that are semantically equiva-
lent (with respect to �P ) to the ones of MS . Of key importance in
this line of work is not only to determine a notion of equivalence
but also to present algorithms that can transform (in polynomial
time) MS into a suitable M ′S . Ideally the generation is conducted
on the fly and MS is actually never built explicitly. The literature
of reactive systems has shown that in several scenarios this reduc-
tion can be very effective and brings results comparable or superior
to the ones of other techniques including ordered-binary decision
diagrams.

In this paper we draw inspiration from the above to conduct a
similar exercise in the context of MAS logics. We begin in Sec-
tion 2 by presenting IIS and the logic CTL*K−X , and, in particu-
lar, LTLK−Xand CTLK−X . These temporal epistemic logics with
knowledge are very commonly used in a MAS settings but appear
here without the “next” operator because of standard inherent lim-



itations in the technique we present. In Section 3 we proceed to
present a notion of stuttering-equivalence with respect to IIS. We
move on to describe novel partial order algorithms that preserve
LTLK−X and CTL*K−X properties in Section 4. In Section 5 we
present an implementation of the technique and report key experi-
mental results. We conclude the paper in Section 6.

2. PRELIMINARIES
We introduce here the basic technical background to the present

paper. In particular we introduce the semantics of interpreted sys-
tems, properly augmented with suitable concepts for our needs, and
the basic syntax we shall be using in the rest of the paper.

2.1 Interleaved Interpreted Systems
The semantics of interpreted systems provides a setting to reason

about MAS by means of specifications based on knowledge and lin-
ear time. We report here the basic setting as popularised in [5]. Ac-
tions in interpreted systems are typically considered to be executed
at the same round by all participants: this permits the modelling of
synchronous systems in a natural way. While interpreted systems
are typically considered in their synchronous variant here we look
at the asynchronous case by assuming that only one local action
may be performed at a given time in a global state. Further, we
assume that if more than one agent is active at a given round, all
active agents perform the same (shared) action in the round. Dif-
ferently from standard interpreted systems where, in principle, the
agents’ resulting local states depend on the actions performed by
all the agents in the system, here we assume the local states are
only influenced by the same agent’s action at the previous round.
Note that it is still possible for agents to communicate by means of
shared action.

We begin by assuming a MAS to be composed of n agents A =
{1, . . . , n}1. We associate a set of possible local states Li =

{l1i , l2i , . . . , lnlii } and actions Acti = {�i, a1i , a2i , . . . , anaii } to
each agent i ∈ A. We call the special action �i the “null”, or
“silent” action of agent i; as it will be clear below the local state
of agent i remains the same if the null action is performed. Also
note we do not assume that the sets of actions of agents to be dis-
joint. We call Act =

∪
i∈AActi the union of all the sets Acti. For

each action a byAgent(a) ⊆ A we mean all the agents i such that
a ∈ Acti, i.e., the set of agents potentially able to perform a.

Following closely the interpreted system model, we consider a
local protocol modelling the program the agent is executing. For-
mally, for any agent i, the actions of the agents are selected ac-
cording to a local protocol Pi : Li → 2Acti ; we assume that
� ∈ Pi(l

m
i ), for any lmi ; in other words we insist on the null ac-

tion to be enabled at every local state. For each agent i, we de-
fine an evolution (partial) function ti : Li × Acti → Li, where
ti(li, �i) = li for each li ∈ Li. Note the local transition function
considered here differs from the standard treatment in interpreted
systems by depending only on the local action in question.

A global state g = (l1, . . . , ln) is a tuple of local states for all the
agents in the MAS corresponding to an instantaneous snapshot of
the system at a given time. Given a global state g = (l1, . . . , ln),
we denote by gi = li the local component of agent i ∈ A in g.
Given the notions above we can now define formally the global
transitions we consider in this paper.

DEFINITION 2.1 (INTERLEAVED SEMANTICS). LetG be a set
of global states. The global interleaved evolution function t : G×
1Note in the present study we do not consider the environment
component. This may be added with no technical difficulty at the
price of heavier notation.

Act1×⋅ ⋅ ⋅×Actn → G is defined as follows: t(g, act1, . . . , actn) =
g′ iff there exists an action a ∈ Act such that for all i ∈ Agent(a),
acti = a and ti(gi, a) = g′i, and for all i ∈ A ∖ Agent(a),
acti = �i and ti(gi, acti) = g′i. We denote the above as g a−→ g′.

Similar to blocking synchronisation in automata, the above insists
on all agents performing the same action in a global transition; ad-
ditionally note that if an agent has the action being performed in
its repertoire it must be performed for the global transition to be
allowed. This assumes local protocols are defined in such a way to
permit this; if a local protocol does not allow this, the local action
cannot be performed and therefore the global transition does not
comply with the definition of interleaving above. As we formally
clarify below we only consider interleaved transitions here.

We assume that the global transition relation is total, i.e., that
for any g ∈ G there exists an a ∈ Act such that g a−→ g′,
for some g′ ∈ G. A sequence of global states and actions � =
g0a0g1a1g2 . . . is called an interleaved path, or an interleaved run
(or more simply a path or a run) originating at g0 if there is a se-
quence of interleaved transitions from g0 onwards, i.e., if gi

ai−→
gi+1 for every i ≥ 0. The set of interleaved paths originating from
g is denoted as Π(g). A state g is said to be reachable from g0 if
there is an interleaved path � = g0a0g1a1g2 . . . such that g = gi
for some i ≥ 0.

DEFINITION 2.2 (INTERLEAVED INTERPRETED SYSTEMS).
Given a set of propositions PV , an interleaved interpreted system
(IIS), also referred to as a model, is a 4-tuple M = (G, �,Π, V ),
where G is a set of global states, � ∈ G is an initial (global) state
such that each state in G is reachable from �, Π =

∪
g∈G

Π(g) is the

set of all the interleaved paths originating from all states in G, and
V : G→ 2PV is a valuation function.

Figure 1 presents an interleaved interpreted system (the untimed
version of the original Train-Gate-Controller (TGC) [26]) com-
posed of three agents: a controller and two trains. Each train runs
on a circular track and both tracks pass through a narrow tunnel
(state ’T’), allowing one train only to go through it to state Away
(’A’) at any time. The controller operates the signal (Green (’G’)
and Red (’R’)) to let trains enter and leave the tunnel. In the fig-
ure, the initial states of the controller and the train are ’G’ and ’W’
(Waiting) respectively, and the transitions with the same label are
synchronised. Silent � actions are omitted in the figure.
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Figure 1: An IIS of TGC composed of two trains
In order to define partial order reductions we need the following

relations.

DEFINITION 2.3. Let i ∈ A, g, g′ ∈ G, and J ⊆ A.

∙ ∼i= {(g, g′) ∈ G×G ∣ gi = g′i}, ∼J=
∩
j∈J ∼j .

∙ I = {(a, b) ∈ Act×Act ∣ Agent(a) ∩Agent(b) = ∅}.

The first relation (∼i) is the indistinguishably relation for the epis-
temic modality (see below), the second (∼J ) corresponds to the



indistinguishably relation for the epistemic modality of distributed
knowledge in group J , whereas the third (I) is referred to as the in-
dependency relation in partial order approaches. Notice that ∼∅=
G × G while ∼A= idG. We say that two actions a, a′ are depen-
dent if (a, a′) ∕∈ I . For each of the relations R given in Def. 2.3 by
x R y we mean that (x, y) ∈ R.

DEFINITION 2.4 (REDUCED MODEL). Consider two models
M = (G, �,Π, V ),M ′ = (G′, �′,Π′, V ′). If G′ ⊆ G, �′ = �
and V ′ = V ∣G′, then we write M ′ ⊆ M and say that M ′ is a
submodel of M , or that M ′ is a reduced model of M .

We now define the syntax and semantics of our language.

2.2 Syntax of CTL*K−X
Combinations of linear/branching time and knowledge have long

been used in the analysis of temporal epistemic properties of sys-
tems [5, 9]. We recall the basic definitions here and adapt them to
our purposes when needed. Let PV be a finite set of propositions.
For generality, we first give a syntax of CTL*K−X and then restrict
it to LTLK−X and other sublanguages. The state and path formulas
of CTL*K−X are defined inductively as follows:

S1. every member of PV is a state formula,

S2. if ' and  are state formulas, then so are ¬', ' ∧  , and
Ki' (i ∈ A),

S3. if ' is a path formula, then A' and E' are state formulas,

P1. any state formula ' is also a path formula,

P2. if ',  are path formulas, then so are ' ∧  and ¬',

P3. if ',  are path formulas, then so is U(', ).

The path quantifier A has the intuitive meaning “for all paths”
whereas E stands for “there is a path”. The operator U denotes
the standard “until” modality. Ki denotes knowledge of agent i:
Ki� is read as “agent i knows that �”. CTL*K−X consists of the
set of all state formulae. The following abbreviations will be used:

true
def
= ¬(p ∧ ¬p), for some p ∈ PV , F'

def
= U(true, '),

G'
def
= ¬F¬'. As standard, F represents the temporal operator

of “eventually” (in the future) and G corresponds to “forever” (in
the future). Given their intuitive interpretation, sometimes we call
A,E state modalities, and Ki, U,G, F path modalities. We now
define a variety of logics included in CTL*K−X .

DEFINITION 2.5.

∙ LTLK−X⊂CTL*K−X is the fragment of CTL*K−X in which
all modal formulas are of the form A', where ' does not
contain the state modalities Aand E. We write ' instead of
A' if confusion is unlikely.

∙ ACTL*K−X⊂ CTL*K−X is the fragment of CTL*K−X in
which the state modality E does not appear in any formula
and the negation only appears in subformulas not containing
any state or path modalities.

∙ CTLK−X⊂CTL*K−X is the fragment of CTL*K−X in which
the state modalities A, E, and the path modalities U, F and G
may only appear paired in the combinations AU , EU , AF ,
EF , AG, and EG.

∙ For any logic L and J ⊆ A, we write LJ for the restriction
of the logic L such that for each subformula Ki' we have
i ∈ J .

Observe the logics CTLK and LTLK without next operators are
subsets of the logics above.

2.3 Semantics of CTL*K−X
Let M = (G, �,Π, V ) be a model and let � = g0a0g1 ⋅ ⋅ ⋅ be an

infinite path of G. Let �i denote the suffix giaigi+1 ⋅ ⋅ ⋅ of � and
�(i) denote the state gi. Satisfaction of a formula ' in a state g of
M , written (M, g) ∣= ', or just g ∣= ', is defined inductively as
follows:

S1. g ∣= q iff q ∈ V (g), for q ∈ PV ,

S2. g ∣= ¬' iff not g ∣= ',

g ∣= ' ∧  iff g ∣= ' and g ∣=  ,

g ∣= Ki' iff g′ ∣= ' for every g′ ∈ G such that g ∼i g′,

S3. g ∣= A' iff � ∣= ' for every path � starting at g,

g ∣= E' iff � ∣= ' for some path � starting at g,

P1. � ∣= ' iff g0 ∣= ' for any state formula ',

P2. � ∣= ¬' iff not � ∣= '; � ∣= ' ∧  iff � ∣= ' and � ∣=  ,

P3. � ∣= U(', ) iff there is an i ≥ 0 such that �i ∣=  and
�j ∣= ' for all 0 ≤ j < i.

3. EQUIVALENCES
We now proceed to give a notion of behavioural equivalence and

to show this is preserved under the particular algorithm we intro-
duce in the next section. To begin with we define a notion of action
invisibility.

DEFINITION 3.1. An action a ∈ Act is invisible in a model
(G, �,Π, V ) if whenever g a−→ g′ for any two states g, g′ ∈ G we
have that V (g) = V (g′).

An action a ∈ Act is J-invisible in a model (G, �,Π, V ) if
whenever g a−→ g′ for any two states g, g′ ∈ G we have that
V (g) = V (g′) and g ∼J g′.

In other words, an action is invisible if its execution does not change
the global valuation. An action is J-invisible if it is invisible and all
local states in J are not changed by its execution (recall that all lo-
cal states inA∖Agent(a) are not changed in the transition labelled
with a either).

We denote the set of invisible (respectively, J-invisible) actions
by Invis (InvisJ , respectively), and we write V is = Act∖Invis
(respectively, V isJ = Act ∖ InvisJ ) for the set of visible actions
((J-)visible actions, respectively).

DEFINITION 3.2. Let � = g0a0g1a1 ⋅ ⋅ ⋅ be a (finite or infinite)
path in a model M and J ⊆ A. We define the J-stuttering-free
projection PrJ(�) of a path � inductively as follows:

∙ PrJ(g0) = g0;

∙ PrJ(g0 ⋅ ⋅ ⋅ gi) = PrJ(g1 ⋅ ⋅ ⋅ gi) if V (g0) = V (g1) and
g0 ∼J g1; PrJ(g0 . . . gi) = g0PrJ(g1 . . . gi) otherwise.

3.1 Equivalence preserving LTLKJ
−X

LetM = (G, �,Π, V ) andM ′ = (G′, �′,Π′, V ′) be two models
such that M ′ ⊆ M . In the following, we begin with the definition
of J-stuttering among states. Then, we define stuttering equiva-
lence of two paths �, �′ ∈ Π and extend it to J-stuttering equiva-
lence. Finally, we present the notion of J-stuttering trace equiva-
lence over states.

DEFINITION 3.3 (J-STUTTERING OF STATES). Two states
g ∈ G and g′ ∈ G′ are J-stuttering, denoted with JKS(g, g′), if
V (g) = V ′(g′) and g ∼J g′.



DEFINITION 3.4 (STUTTERING EQUIVALENCE). A path � in
M and a path �′ in M ′ are called stuttering equivalent, denoted
� ≡s �′, if there exists a partition B1, B2 . . . of the states of �,
and a partition B′1, B′2 . . . of the states of �′ such that for each
j ≥ 0 we have thatBj andB′j are nonempty and finite, and for ev-
ery state g inBj and every state g′ inB′j we have V (g) = V ′(g′).

DEFINITION 3.5 (J-STUTTERING EQUIVALENCE). Two paths
� in M and �′ in M ′ are called J-stuttering equivalent, denoted
� ≡Jks �′, if � ≡s �′ and for each j ≥ 0 and for every state g in
Bj and every state g′ in B′j we have g ∼J g′,

DEFINITION 3.6 (J-STUTTERING TRACE EQUIVALENCE).
Two states g in M and g′ in M ′ are said to be J-stuttering trace
equivalent, denoted g ≡Jks g′, if

1. for each infinite path � inM starting at g, there is an infinite
path �′ in M ′ starting at g′ such that � ≡Jks �′;

2. for each infinite path �′ in M ′ starting at g′, there is an
infinite path � in M starting at g such that �′ ≡Jks �.

Two models M and M ′ are J-stuttering trace equivalent denoted
M ≡Jks M ′, if � ≡Jks �′.

The following theorem connects LTLKJ−X with J-stuttering trace
equivalence:

THEOREM 3.7. Let M and M ′ be two J-stuttering trace equiv-
alent models, where M ′ ⊆ M . Then, M, � ∣= ' iff M ′, �′ ∣= ',
for any LTLKJ−X formula ' over PV .

PROOF. Part 1: First we prove that for each path � = g0a0g1a1 . . .
ofM if ai is J-invisible, thenM,�i ∣= ' iffM,�i+1 ∣= ' for each
LTLKJ−X formula '.

By induction on the structure of '. For ' ∈ PV the thesis fol-
lows directly from the definition of J-invisibility. The case of ∧ and
¬ is straightforward. For ' = U(�,  ) the thesis follows directly
from the semantics of U and the inductive assumption. Consider
' = Ki . If M,�i ∣= ', then it follows from �(i) ∼J �(i + 1)
that M,�i+1 ∣=  and since ∼i is an equivalence relation we have
M,�i+1 ∣= Ki . A similar proof holds for M,�i+1 ∣= ' implies
M,�i ∣= '.
Part 2: Now, we prove the theorem itself, also by induction on the
complexity of '. In fact, we prove a stronger result, i.e., that from
g ≡Jks g′, it follows that M, g ∣= ' iff M ′, g′ ∣= ', for any
LTLKJ−X formula ' over PV .

(⇒): For ' ∈ PV the thesis follows directly from the defini-
tion of ∼Jks. The cases of ∧ and ¬ are straightforward. Consider
' = U(�,  ) and a path � starting at g. We have � ∣= U(�,  ).
Then, there is a path �′ starting at g′ such that � ≡Jks �′. By the
inductive assumption we have that � ∣= � iff �′ ∣= � and � ∣=  
iff �′ ∣=  . Since � ≡Jks �′ we have that PrJ(�)i ∣= � iff
PrJ(�′)i ∣= � and PrJ(�)i ∣=  iff PrJ(�′)i ∣=  for all i ≥ 0.
Thus, it follows from Part 1) that �′ ∣= '. So, clearly we have that
if M, g ∣= U(�,  ), then M, g′ ∣= U(�,  ).

Consider ' = Ki and let M, g ∣= '. Let G = {g1 ∈ G ∣
g ∼i g1}. Consider g′1 s.t. g′ ∼i g′1. We have to show that
M ′, g′1 ∣=  . Since g ≡Jks g′, by transitivity of ∼i we have that
g′1 ∈ G . So, clearly M, g′1 ∣=  . As g′1 ≡Jks g′1, it follows from
the inductive assumption thatM ′, g′1 ∣=  . So, we getM ′, g′ ∣= '.

(⇐) We consider only the case of ' = Ki . The proof for other
cases is similar to (⇒).

Let ' = Ki and let M ′, g′ ∣= '. Let G′ = {g′1 ∈ G′ ∣
g′ ∼i g′1}. Consider g1 s.t. g ∼i g1. We have to show that
M, g1 ∣=  . Consider a path in M starting at � which contains

g1. Since M ≡Jks M ′, there is a path in M ′ starting at �′, which
contains a state g′2 ∈ G′ such that g1 ≡Jks g′2. So, g′2 ∈ G′ by
transitivity of ∼i. Thus, clearly M ′, g′2 ∣=  . As g1 ≡Jks g′2,
it follows from the inductive assumption that M, g1 ∣=  . So,
M, g ∣= '.

3.2 Equivalences preserving ACTL*KJ
−X and

CTL*KJ
−X

As before let M = (G, �,Π, V ) and M ′ = (G′, �′,Π′, V ′) be
two models such that M ′ ⊆ M . In the following, we begin with
the definition of J-stuttering (bi)-simulation between M and M ′.
Then, we define visible J-(bi)-simulation between two models.

DEFINITION 3.8 (J-STUTTERING SIMULATION). A relation
∼jss ⊆ G′×G is a J-stuttering simulation between two modelsM
and M ′ if the following conditions hold:

1. �′ ∼jss �,

2. if g′ ∼jss g, then JKS(g, g′) and for every path � of M ,
there is a path �′ in M ′, a partition B1, B2 . . . of �, and a
partitionB′1, B′2 . . . of �′ such that for each j ≥ 0,Bj and
B′j are nonempty and finite, and every state in B′j is related
by ∼jss to every state in Bj .

A relation∼jss is a J-stuttering bisimulation if both∼jss and∼Tjss
(T denotes transposition) are J-stuttering simulations.

ModelM ′ J-stuttering simulates modelM (M ≤jss M ′) if there
is a J-knowledge stuttering simulation between M and M ′. Two
models M and M ′ are called J-stuttering simulation equivalent if
M ≤jss M ′ and M ′ ≤jss M . Two models M and M ′ are called
J-visible bisimulation equivalent if there is a J-visible bisimulation
between M and M ′.

The following theorem connects ACTL*KJ−X with J-stuttering sim-
ulation equivalence:

THEOREM 3.9. Let M and M ′ be two J-stuttering simulation
equivalent models. Then, M, � ∣= ' iff M ′, �′ ∣= ', for any
ACTL*KJ−X formula ' over PV .

PROOF. J-stuttering simulation equivalence is clearly stronger
than stuttering simulation equivalence, which preserves ACTL∗−X
[25]. Similarly to the proof of Theorem 3.7 one can show that
ACTL*KJ−X is preserved by J-stuttering simulation equivalence.

THEOREM 3.10. Let M and M ′ be two J-stuttering bisimilar
models. Then, M, � ∣= ' iff M ′, �′ ∣= ', for any CTL*KJ−X for-
mula ' over PV .

PROOF. J-stuttering bisimulation is clearly stronger than stut-
tering bisimulation, which preserves CTL∗−X [7]. Similarly to the
proof of Theorem 3.7 one can show that CTL*KJ−X is preserved
by J-stuttering bisimulation.

Next, we define two relations such that one is stronger than J-
stuttering simulation, while the other one is stronger than J-stuttering
bi-simulation. Both of them will be used for our partial order re-
ductions.

DEFINITION 3.11 (J-VISIBLE SIMULATION). A relation
∼jkvs ⊆ G′×G is a J-visible simulation between the states of two
models M and M ′ if

∙ �′ ∼jkvs �, and



∙ if g′ ∼jkvs g, then the following conditions hold:

1. JKS(g, g′).

2. If g b−→ t, then either b is J-invisible and g′ ∼jkvs t,
or there exists a path g′ = g0

a0−→ g1
a1−→ ⋅ ⋅ ⋅

an−1−→
gn

b−→ t′ in M ′ such that gi ∼jkvs g for i ≤ n, ai is
J-invisible for i < n and t′ ∼jkvs t.

3. If there is an infinite path g = t0
b0−→ t1

b1−→ ⋅ ⋅ ⋅ ,
where bi is J-invisible and g′ ∼jkvs ti for i ≥ 0, then
there exists an edge g′ c−→ g′′ such that c is J-invisible
and g′′ ∼jkvs tj for some j > 0.

A relation∼jkvs is a J-visible bisimulation if both∼jkvs and∼Tjkvs
are J-visible simulations.

ModelM ′ J-visible simulates modelM (denotedM ≤jkvs M ′)
if there is a J-visible simulation between the states of M and M ′.
Two models M and M ′ are called J-visible simulation equivalent
if M ≤jkvs M ′ and M ′ ≤jkvs M . Two models M and M ′

are called J-visible bisimulation equivalent if there is a J-visible
bisimulation between the states of the two models.

It is quite straightforward to show that J-visible bisimulation (simu-
lation) is stronger that J-stuttering bisimulation (simulation, resp.).

This concludes our analysis of equivalences preserving LTLK−X ,
ACTL*K−X , and CTLK−X . For each of the above mentioned log-
ics, we now give an algorithm that for a given MAS and a formula
returns a reduced model. By means of the theorems we show that
the reduced model is equivalent to the full one.

4. PARTIAL ORDER REDUCTIONS
As mentioned above, the idea of verification by model checking

with partial order reduction is to define an algorithm that given a
model can produce a smaller model provably validating the same
formulae of interest. This requires a notion of equivalence between
models. For the case of LTLKJ−X we show below that the notion
of J-stuttering trace equivalence presented above suffices. With
respect to branching time, for CTL*K−X (ACTL*K−X , respec-
tively) we show we can use J-visible bisimulation (J-visible simu-
lation equivalence, respectively). The algorithm presented explores
the given model and returns a reduced one. Traditionally, in partial
order reduction the exploration is carried out either by depth-first-
search (DFS) (see [7]), or double-depth-first-search (DDFS) [4].

In this context DFS is used to compute paths that will make up
the reduced model by exploring systematically the possible compu-
tation tree and selecting only some of the possible paths generated.
In the following, a stack represents the path � = g0a0g1a1 ⋅ ⋅ ⋅ gn
currently being visited. For the top element of the stack gn the
following three operations are computed in a loop:

1. The set en(gn) ⊆ Act of enabled actions (not including the
� action) is identified and a subset E(gn) ⊆ en(gn) of pos-
sible actions is heuristically selected (see below).

2. For any action a ∈ E(gn) compute the successor state g′

such that gn
a→ g′, and add g′ to the stack thereby generating

the path �′ = g0a0g1a1 ⋅ ⋅ ⋅ gnag′. Recursively proceed to
explore the submodel originating at g′ in the same way by
means of the present algorithm beginning at step 1.

3. Remove gn from the stack.

The algorithm begins with a stack comprising of the initial state
and terminates when the stack is empty. The model generated by

the algorithm is a submodel of the original. Its size crucially de-
pends on the ratio E(g)/en(g). Clearly, if E(g) = en(g) for all g
explored there is no reduction, and the algorithm returns the whole
model. The choice ofE(q) is constrained by the class of properties
that must be preserved. In the rest of this section, we present the
criteria based on the J-stuttering trace equivalence for the choice of
E(q) and give details of the DFS algorithm implementing them.

4.1 Preserving LTLKJ
−X

In the sequel, let � be a LTLKJ−X formula to be checked over
the model M with J ⊆ A such that for each subformula Ki'
contained in �, i ∈ J , and let M ′ be a submodel of M , generated
by the algorithm. The states and the actions connecting states in
M ′ define a directed state graph. We give conditions defining a
heuristics for the selection ofE(g) (such thatE(g) ∕= en(g)) while
visiting state g in the algorithm below.

C1 No action a ∈ Act∖E(g) that is dependent (see Definition 2.3)
on an action in E(g) can be executed before an action in
E(g) is executed.

C2 For every cycle in the constructed state graph there is at least
one node g in the cycle for which E(g) = en(g), i.e., for
which all the successors of g are expanded.

C3 All actions in E(g) are invisible (see Definition 3.1).

CJ For each action a ∈ E(g), Agent(a) ∩ J = ∅, i.e., no action
in E(g) changes local states of the agents in J .

The conditions C1−C3 are inspired from [22], whereas as we note
below CJ is aimed at preserving the truth value of subformulae of
the form Ki' for i ∈ J .

THEOREM 4.1. Let M be a model and M ′ ⊆ M be the re-
duced model generated by the DFS algorithm described above in
which the choice of E(g′) for g′ ∈ G′ is given by C1, C2, C3, CJ
above. The following conditions hold:

∙ M and M ′ are J-stuttering trace equivalent;

∙ M ∣= � iff M ′ ∣= �, for any � ∈ LTLKJ−X .

PROOF. Although the setting is different it can be shown simi-
larly to Theorem 3.11 in [23] that the conditions C1, C2, C3 guar-
antee that the models M and M ′ are stuttering equivalent. More
precisely, for each path � = g0a0g1a1 ⋅ ⋅ ⋅ with g0 = � in M there
is a stuttering equivalent path �′ = g′0a

′
0g
′
1a
′
1 ⋅ ⋅ ⋅ with g′0 = � in

M ′ and a partition B1, . . . , Bj , .. of the states of � and a partition
B′1, . . . , B

′
j , .. of the states of �′ satisfying for each i, j ≥ 0 the

following two conditions:

I. if gi
a−→ gi+1 is a transition such that gi, gi+1 ∈ Bj , then

a ∈ Invis, and if g′i
a′−→ g′i+1 is a transition such that

g′i, g
′
i+1 ∈ B′j , then a′ ∈ Invis,

II. if gi
a−→ gi+1 is a transition such that gi ∈ Bj and gi+1 ∈

Bj+1, and g′i′
a′−→ g′i′+1 is a transition such that g′i′ ∈ B′j

and g′i′+1 ∈ B′j+1, then a = a′.

Given condition CJ, for any two states g, g′ in Bj or in B′j we
have that JKS(g, g′). Moreover, from the above and condition II
one can show by induction that for each state g ∈ Bj and g′ ∈ B′j
we have JKS(g, g′). Since, M ′ ⊆ M , we get that the models
M and M ′ are J-stuttering trace equivalent. The second part of the
theorem follows from this and Theorem 3.7.



4.2 Preserving ACTL*K−X and CTL*K−X
Next, let � be a ACTL*K−X or a CTL*K−X formula to be

checked over the model M with J ⊆ A such that for each sub-
formula Ki' contained in �, i ∈ J , and let M ′ be a submodel
of M , generated by the algorithm above. We now give additional
conditions, which together with C1 - C3, CJ, define a heuristics
for the selection of E(g) (such that E(g) ∕= en(g)) while visiting
state g

C3’ E(g) contains all the J-visible actions of en(g); en(g)∩V isJ ∕=
∅, i.e., there is at least one J-visible action in en(g).

C4 E(g) is a singleton set.

C5 E(g) contains all the actions starting an infinite J-invisible path
from g in M .

The above conditions are inspired from [25].

THEOREM 4.2. Let M be a model and M ′ ⊆ M be the re-
duced model generated by a DFS algorithm described above.

a) If the choice of E(g′) for g′ ∈ G′ is given by the conditions
C1, C2, C3’, and C5, then

– M and M ′ are J-visible simulation equivalent,

– M ∣= � iff M ′ ∣= �, for any � ∈ ACTL*KJ−X .

b) If the choice of E(g′) for g′ ∈ G′ is given by the conditions
C1, C2, C3, C4, and CJ, then

– M and M ′ are J-visible bisimilar,

– M ∣= � iff M ′ ∣= �, for any � ∈ CTL*KJ−X .

PROOF. (sketch) Part a): Since M ′ is a sub-model of M , it is
obvious that M J-visible simulates M ′. In order to show the op-
posite, define the following relation: ∼ ⊆ G′ × G by g′ ∼ g iff
there exists a path g′ = g0

a0−→ g1
a1−→ ⋅ ⋅ ⋅

an−1−→ gn = g such
that ai is J-invisible for all i < n. Let ≈ = ∼ ∩ (G′ × G). In
[25] it is shown that if the reduction algorithm uses the conditions
C1, C2, and the conditions weaker than C3’, C5 (visibility is used
instead of J-visibility), then the relation weaker than ≈ is a visible
simulation. Notice that with the change of visibility to J-visibility
in the conditions, ≈ can be proved to be a J-visible simulation.
Part b:) Define ∼ ⊆ G × G by g ∼ g′ iff there exists a path
g0

a0−→ g1
a1−→ . . .

an−1−→ gn = g′, with g0 = g such that ai
is J-invisible and {ai} satisfies the condition C1 from state gi for
0 ≤ i < n. Consider ≈ = ∼ (G × G′). It is shown in [7] that
the relation weaker than ≈ is a visible bisimulation. By slightly
modifying the original proof, one can show that ≈ is a J-visible
bisimulation.

4.3 The DFS-POR algorithm
We now give details of the DFS algorithm implementing con-

ditions C1, C2, C3, and CJ for the choice of E(g). We use two
stacks: Stack1 represents the stack described above containing the
global states to be expanded, whereas Stack2 represents additional
information required to ensure condition C2 is satisfied, i.e., each
element in Stack2 is the depth of Stack1 when its top element is
fully explored. Initially, Stack1 contains the initial state, whereas
Stack2 is empty. G is the set of the visited states. The algorithm
DFS-POR does not generate the minimal J-stuttering equivalent
model; however its computation overheads are negligible and, as
we show in the section below, it is J-stuttering equivalent and pro-
duces attractive results in several cases.

Algorithm 1 DFS-POR ()
1: g ⇐ Top(Stack1); reexplore ⇐ false;
2: if g = Element(Stack1, i) then
3: deptℎ ⇐ Top(Stack2);
4: if i > deptℎ then
5: reexplore ⇐ true;
6: else
7: Pop(Stack1); return;
8: end if
9: end if

10: if reexplore = false and g ∈ G then
11: Pop(Stack1); return;
12: end if
13: G ⇐ G ∪ {g}; E(g) ⇐ ∅;
14: if en(g) ∕= ∅ then
15: if reexplore = false then
16: for all a ∈ en(g) do
17: if a ∕∈ V is and a ∕∈ V isJ and ∀b ∈ en(g)∖{a} : (a, b) ∈ I

then
18: E(g) ⇐ {a}; break;
19: end if
20: end for
21: end if
22: if E(g) = ∅ then E(g) ⇐ en(g); end if
23: if E(g) = en(g) then
24: Pusℎ(Stack2, Deptℎ(Stack1));
25: end if
26: for all a ∈ E(g) do
27: g′ ⇐ Successor(g, a); Pusℎ(Stack1, g′); DFS-POR();
28: end for
29: end if
30: deptℎ ⇐ Top(Stack2);
31: if deptℎ = Deptℎ(Stack1) then Pop(Stack2); end if
32: Pop(Stack1);

In the algorithm, the function Top(s) returns the top element of the
stack s; Pusℎ(s, e) pushes the element e onto the top of the stack
s; Pop(s) removes the top element of the stack s; Element(s, i)
returns the i-th element of the stack s; Deptℎ(s) returns the depth
(size) of the stack s; Successor(g, a) returns the successor g′ such
that g a→ g′.

Line 2 is used to detect a cycle. This can be implemented in the
time complexity O(1) by using a hash table to index the state in
Stack1. If a cycle is found, we check whether at least one state is
expanded fully in the cycle. This check is done in line 4 by compar-
ing the top element of Stack2 and the index i of the repeated state
in Stack1. If the check fails, we set reexplore to true in order to
fully expand the top state g in Stack1 to satisfy condition C2.

The lines 15-21 look for an action that is neither visible nor J-
visible, and is independent of any other actions in en(g). A set
composed of such an action satisfies the conditions C1, C3 and CJ.
If no such action exists, we simply explore all enabled actions. This
could be improved by searching for an appropriate subset of en(g)
to expand (e.g., [22] could be a starting point). In case E(g) =
en(g), we push the current depth of Stack1 onto the top of Stack2
for checking C2. When all actions in E(g) are visited, we remove
the top element of Stack1 and Stack2 properly.

We stress that DFS-POR is of linear complexity in the size of an
IIS and the reduced model constructed.

To add C4 to the algorithm (to preserve CTL*KJ−X ), we simply
change line 18 to beE(g)⇐ E(g)∪{a}, and change the condition
in line 22 to ∣E(g)∣ ∕= 1, where ∣E(g)∣ is the cardinality of E(g).

In order to adapt the algorithm for preserving ACTL*KJ−X , we
need to replace the for statement starting at line 16 with the follow-
ing code.
DependentOf(X1, X2) recursively computes the set X ′ ⊆



Algorithm 2 Checking C3’ and C5
1: E(g) ⇐ (en(g) ∩ V isJ );
2: E(g) ⇐ E(g) ∪ {a ∈ en(g) ∖ E(g) ∣

action a starts a loop composed of J-invisible actions};
3: E(g) ⇐ DependentOf(E(g), en(g) ∖ E(g));

X1 ∪ X2 such that for all a ∈ X ′, either a ∈ X1 or there ex-
ists a set of actions {a1, . . . , am} ⊆ X ′ with (ai, ai+1) ∕∈ I
(1 ≤ i < m) and a = a1, am ∈ X1. As proposed in [25], an
action starts an infinite J-invisible path if it starts a local infinite
invisible path in the local state space of each agent of J . Here a
local infinite invisible path consists of only invisible actions from
the agent, ignoring synchronisations with other agents.

5. EXPERIMENTAL RESULTS
In order to evaluate the results above, we have implemented the

DFS-POR algorithms to verify specification properties in LTLKJ−X ,
ACTL*K−X , and CTL*KJ−X . In doing so we are encouraged by
the observation of the preceding section that the algorithm’s com-
plexity is linear both in the length of the formula and the size of a
model. We have conducted experiments for three systems: the TGC
of Section 2.1, the Dining Cryptographers (DC) [2], and the Write-
Once cache coherence protocol (WO) [32, 33], discussed below.
Starting with TGC, we tested the property expressing that whenever
the train 1 is in the tunnel, it knows that no other train is in the tun-
nel at the same time: AG(in_tunnel1 → Ktrain1

⋀n
i=2 ¬in_tunneli),

under the assumption that where n is the number of trains in the
system, and the atomic proposition in_tunneli holds in the states
where the train i is in the tunnel2. In the case of the LTLKJ−X al-
gorithm, we found that the size of the reduced state space R(n)
given by the algorithm is a function of the number of trains n, for
1 ≤ n ≤ 10. This is compared to the size of the full state space
F (n) below:

∙ F (n) = cn × 2n+1, for some cn > 1,

∙ R(n) = 3 + 4(n− 1).

Note that the reduced state space is exponentially smaller than the
original one. We also found that the algorithm for CTL*KJ−Xgives
the same reduction as the one for LTLKJ−X . However, we found
that the ACTL*KJ−Xvariant does not produce any reduction. The
reason is that there is an invisible loop in the controller and the
trains.

As regards the DC scenario, we analysed a version with an arbi-
trary number of cryptographers. As in the original scenario [2] af-
ter all coins have been flipped each cryptographer observes whether
the coins he can see fell on the same side or not. If he did not pay
for dinner he states what he sees; if he did he states the opposite.
Since our model is interleaved we assume the announcements are
made in sequence; this does not affect the scenario. We used the
algorithms to reduce the models preserving the specification [15]:

AG((odd ∧ ¬pay1)→((Kcrypt1

n⋁
i=2

payi) ∧ (

n⋀
i=2

¬Kcrypt1payi))),

number of announcements for different sides of the coins were
paid, and the atomic proposition payi holds when cryptographer i
is the payer. Table 1 displays the sizes of the full and reduced state
spaces and the execution times (in seconds) on an AMD Opteron
clocked at 2.2GHz with 8GB memory running a vanilla Linux ker-
nel 2.6.30. Notice that we get a substantial, certainly, more than
2In the case of LTLKJ−X tests substitute AG with G in the formulas.

linear, reduction in the number of states. In this case, we found the
algorithm for CTL*KJ−X brought negligible benefits of less than
1%.

N Full space LTLKJ−X ACTL*KJ−X
size time size time size time

3 864 0.41 448 0.12 320 0.27
4 6480 0.49 2160 0.18 1760 0.30
5 46656 4.6 9984 1.8 9600 1.5
6 326592 44 45248 6.8 51072 7.7
7 2239488 465 202752 39 264192 57
8 15116544 4723 900864 228 1331712 380

Table 1: Verification results for DC.

The choice of the Write-One cache coherence protocol was in-
spired by [32], which analysed several cache coherence protocols
in a knowledge setting. We followed some of the criteria pre-
sented in [32] while modelling WO: each cache contains a single
bit, whose value can be either 0 or 1, the owner of the bit is either
the main memory or a cache. The details of the protocol can be
found in [33]. For the three algorithms, we tested the formula

AG((Dirty1 ∨ Reserved1)→ (Kcache1

n⋀
i=2

Invalidi)),

where Dirtyi, Reservedi and Invalidi represent that cache i is in
the state dirty, reserved, or invalid. Our implementation results in a
substantial reduction only for the LTLKJ−Xcase, see Table 2.

N Full space LTLKJ−X
size time size time

2 322 0.27 82 0.13
3 3668 0.59 1066 0.29
4 40110 14.8 12402 5.6
5 426984 264 131402 77
6 4451778 3042 1311698 529
7 12585834 8870

Table 2: Verification results for WO.

6. CONCLUSIONS AND FURTHER WORK
As we argued in the introduction model checking multi-agent

systems is now a rapidly maturing area of research with techniques
and tools being rapidly applied to the validation of concrete MAS.
While some techniques - notably ordered binary decision diagrams
and bounded model checking have been redefined in a MAS set-
ting - others, including abstraction and partial order reduction, are
still largely unexplored. In particular, partial order reduction is one
of the more traditional approaches, and it is therefore surprising
that its study has not been systematically carried out yet in a MAS
setting.

In this paper we tried to continue the preliminary analysis sug-
gested in [17]. While only a notion of trace-equivalence is ex-
plored there, here we focused on interleaved interpreted systems,
for which we were able to give stuttering equivalence preservation
results, a linear algorithm preserving the validity on the models,
as well as an implementation thereby evaluating the performance
on two standard MAS scenarios. The results we found were very
positive in the linear time case, less so for the branching time case.
There are two reasons for that. Firstly, the equivalences induced
by the branching time logics are much stronger than the equiva-
lence induced by LTLKJ−X . Secondly, for scenarios containing



loops composed of J-invisible actions, the reductions preserving
ACTL*KJ−X are quite limited.

Much remains to be done in this line. For instance, the partial
order reduction technique presented here may be combined with
ordered binary decision diagrams (for example within the MCMAS
toolkit [18]), or combined with bounded model checking (for ex-
ample within the VerICS toolkit [14]), so that models are reduced
first and then symbolically encoded. It should also be noted that
the analysis presented here only applies to interleaved multi-agent
systems. The case of fully synchronous systems still remains to be
tackled.
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