Bounded Model Checking for Parametric Timed
Automata*

Michat Knapik! and Wojciech Penczek!+?

! Institute of Computer Science, PAS, J.K. Ordona 21, 01-237 Warszawa, Poland
{Michal.Knapik}@ipipan.waw.pl
2 Institute of Informatics, Podlasie Academy, Sienkiewicza 51, 08-110 Siedlce, Poland
penczek@ipipan.waw.pl

Abstract. The paper shows how bounded model checking can be ap-
plied to parameter synthesis for parametric timed automata with con-
tinuous time. While it is known that the general problem is undecidable
even for reachability, we show how to synthesize a part of the set of
all the parameter valuations under which the given property holds in a
model. The results form a complete theory which can be easily applied
to parametric verification of a wide range of temporal formulae — we
present such an implementation for the existential part of CTL_x.

1 Introduction and related work

The growing abundance of complex systems in real world, and their presence in
critical areas fuels the research in formal specification and analysis. One of the
established methods in systems verification is model checking, where the system
is abstracted into the algebraic model (e.g. various versions of Kripke structure,
Petri nets, timed automata), and then processed with respect to the given prop-
erty (usually a formula of modal or temporal logic). Classical methods have their
limits however — the model is supposed to be a complete abstraction of system
behaviour, with all the timing constraints explicitely specified. This situation
has several drawbacks, e.g. the need to perform a batch of tests to confirm the
proper system design (or find errors) is often impossible to fullfill due to the
high complexity of the problem. Introducing parameters into models changes
the task of property verification to task of parameter synthesis, meaning that
parametric model checking tool produces the set of parameter valuations under
which the given property holds instead of simple holds/does not hold answer.
Unfortunately, the problem of parameter synthesis is shown to be undecidable
for some of widely used parametric models, e.g. parametric timed automata
[AHV93,Doy07] and bounded parametric time Petri nets [TLROS].

Many of model checking tools acquired new capabilities of parametric verifi-
cation, e.g. UPPAAL-PMC [HRSVO02] — the parametric extension of UPPAAL,
LPMC [LHJ00] — extending PMC. Some of the tools were built from scratch

* Partly supported by the Polish Ministry of Science and Higher Education under the
grant No. N N206 258035.

with parametric model checking in mind, e.g. TREX [AAMO1] and MOBY/DC
[DT03]. Parametric analysis is also possible with HyTech [HHWT97] by means of
hybrid automata. However, due to undecidability issues, algorithms implemented
in these tools need not to stop and are very time and resource consuming. An-
other, very interesting approach is given in a recently developed IMITATOR tool
[ACEF09] — having both the parametric timed automaton and the initial param-
eter valuation, IMITATOR synthesizes a set of parameter constraints. Substitut-
ing the parameters with a valuation satisfying these constraints is guaranteed
to produce the timed automaton which is time-abstract equivalent to the one
obtained from substituting the parameters with the initial valuation.

In this paper we present a new approach to parametric model checking,
based on the observation that while we are not able to synthesize the full set
of parameter constraints in general, there is no fundamental rule which forbids
us from obtaining a part of this set. In Section 2 we introduce the parametric
region graph — an extension of region graph used in theory of timed automata
[AD94] and show (in Section 3) how the computation tree of a model can be
unwinded up to some finite depth in order to apply bounded model checking
(BMC) techniques [BCCT03]. To the best knowledge of the authors, this is the
first application of BMC to parametric timed automata and seems to be a quite
promising direction of research — firstly due to the unique BMC advantage which
allows for verification of properties in limited part of the model, secondly due to
the fact that it is quite easy to present BMC-based model checking algorithms
for existential parts of many modal and temporal logics. In fact we describe
how Parametric BMC can be implemented for the existential subset of CTL_x
logic in Section 3, including the analysis of a simplified parametric model of the
4-phase handshake protocol.

2 Theory of Parametric Timed Automata

In this paper we use two kinds of variables, namely parameters P = {p1,...,pm}
and clocks X = {xo,...,z,}. An expression of the form > ", ¢; - p; + to, where
t; € Z is called a linear expression. A simple guard is an expression of the form
x; —x; < e, where i # j, <€ {<, <} and e is a linear expression. A conjunction
of simple guards is called a guard and the set of all guards is denoted by G. We
valuate the clocks in nonnegative reals, and parameters in naturals (including
0) that is v : P — N is a parameter valuation and w : X — RZ% is a clock
valuation (both v and w can be thought of as points in, respectively, N™ and
R=%"). Additionally, following [HRSV02] we assume that w(zo) = 0 — the " false
clock” zg is fixed on 0 for convenience only, for uniform presentation of guards.
By e[v] we denote the value obtained by substituting the parameters in a linear
expression e according to parameter valuation v. We denote w =, z; —z; < e
iff w(z;) — w(z;) < e[v] holds, and naturally extend this notion to guards. We
also need a notion of reset that is a set of expressions of the form z; := b; where
b; € N, and 0 < ¢ < n. The set of all resets is denoted by R, and the action
of resetting a clock valuation w by reset r € R is defined as following: w[r| is

a clock valuation such that w(r|(z;) = b; if x; := b; € r, and w[r|(z;) = w(z;)
otherwise. If § € R and w is a clock valuation, then w + § is a clock valuation
such that (w + §)(z;) = w(a;) + 6 for all 0 < i < n, and w(zg) = 0. An initial
clock valuation wy is the valuation satisfying w(x;) = 0 for all z; € X.

We also adopt a convenient notation from [HRSV02], where the < symbol is
treated as true and the < symbol is treated as false. The propositional formulae
built from symbols < and < are evaluated in a standard way. As to give an
example, <=< evaluates to <, <=< evaluates to <, and =(< V <) evaluates
to <.

2.1 Parametric Timed Automata

Let us recall some notions from the theory of parametric timed automata. Non-
parametric timed automata [AD94] are state-transition graphs augmented with
a finite number of clocks, and clock constraints guarding the transitions between
states. Their parametric version [AHV93] allows for using parameters (other than
clocks) in guard expressions — which may be perceived as creating the general
template for system behaviour under more abstract timed constraints.

Definition 1. A tuple A= (Q,qo, A, X, P,—,I) where:

— @ is a set of locations,

— qo € Q is the initial location,

— A is a set of actions,

— X and P are, respectively, sets of clocks and parameters,
— I:Q — G is an invariant function,

— =2C QR xAXGxXxRXQ is a transition relation.

is called a parametric timed automaton (PTA). All the above sets are finite. We
ag,r

abbreviate (q,a,9,7,¢") as ¢ = ¢'.
The semantics of PTA is presented below, in form of a labeled transition system.
Definition 2 (Concrete semantics). Let A = (Q, qo, A, X, P,—, I) be a para-

metric timed automaton and v be a parameter valuation. The labeled transition
system of A under v is defined as a tuple [A], = (S, so, i>> where:

- S={(q,w) | ¢€Q, and w is a clock valuation such that w =, I(q)},
— $p = (qo,wo) (we assume that wy =y I(qo)),
— let (q,w), (¢’,w") € S. The transition relation 2 s defined as follows:
o ifd € RZO, then (q,w) S (¢,) iffg=¢ and W' = w +d,
o ifd € A, then (q,w) LN (¢,) iff ¢ “5" ¢, and w =, g, and W' = w[r].

The elements of S are called the concrete states of A, .

The automaton obtained by substituting parameters in the guards and the in-
variants of A by appropriate values of the parameter valuation v is denoted by
A,. The concrete semantics of A, is defined as [A,] = [A],. Notice that A, is

a timed automaton and [A,] — its concrete semantics [AD94].

Our definition of parametric timed automata slightly differs from the one pre-
sented in [HRSV02], namely, we do not allow nonnegative reals as parameter val-
ues. As it was shown in [AHV93], the choice of the parameter valuation codomain
does not change the fact that the emptiness problem is undecidable. We explain
the origin of this restriction in the following subsection.

2.2 Parametric Region Graph

In non-parametric timed automata theory, the region graph [AD94] is used as a
part of a convenient method of presenting the concrete state space in a uniform,
finite way. The finiteness of the resulting structure is a result of presence of both
the bounded and unbounded regions. Intuitively, the bounded regions are convex
bounded sets in the space of clock valuations, while the unbounded regions are
convex and unbounded. The latter ones are defined using the maximal values of
clock constraints — this is not possible in the general case of parametric timed
automata (see however the optimization techniques in [HRSV02]), therefore in
this paper we consider only the bounded regions. We divide the space of all the
clock valuations into the set of regions using the following equivalence relation.

Definition 3. Let w,w’ be valuations of clocks X = {xg,...,zn}. Then, w ~ w’
iff the following conditions hold:

— |w(z)] = |w'(zi)] for all z; € X,

— and frac(w(z;)) < frac(w(z;)) <= frac(w'(z;)) < fracw'(z;)) for all
Z#],lgz,jgn,

— and frac(w(z;)) =0 < frac(w'(z;)) =0 for all z; € X,

where frac(w(z;)) denotes the fractional part of w(x;). The equivalence classes
of = are called (detailed) regions.

To our aims it is convenient to describe regions as sets of valuations satisfying
certain guard expressions.

Lemma 1. Let X = {xg,...,x,} be a set of clocks, and Z — a region of val-
uations. There exists a guard gz = N\ n}izts Ti = Tj =ij bij, such that
<i;€{<, <} and bj € Z satisfying:

4,7€{0,...,

Z={wlwkgz}

Proof. We need to specify the values of b;; together with the accompanying
relation <;; . Let Z = [w]~ (the following considerations are valid for any choice
of w from 7).

— If frac(w(z;)) =0, frac(w(z;)) =0, let <;;=<and b;; = |w(z;)|— |w(z;)],
— if frac(w(z;)) # 0, frac(w(z;)) =0, let <;;=< and b;; = [w(z;)] — [w(z;)],
— if frac(w(z;)) =0, frac(w(z;)) # 0, let <;;=< and b;; = |w(z;)| — |w(z;)],

for frac(w(az;)) # 0, frac(w(z;)) #0:

o if frac(w(z;)) = frac(w(zy)), let <i;=<, by; = |w(z;)]| — [w(z;)],
o if frac(w(z;)) < frac(w(z;)), put <;;=<, b;; = |w(z;)| — |w(zx;)],
o if frac(w(z;)) > frac(w(z;)), let <4=<, by; = [w(z;)] — |w(z)J

It is easy to see that if w &~ w’, then for any guard g we have w | ¢ iff W' [g.
Therefore, as gz was constructed in such a way that w = gz, we have also
w' | gz for all W' € Z. On the other hand, if W’ | gz, then satisfaction of
the guards of form x; — g <0 bio and zp — x; <o; bo; (recall that xg is fixed)
guarantees that |w'(z;)| = |w(x;)] for all z; € X. Similarly, w’(x;) has nonzero
fractional value iff frac(w(z;)) # 0, as w'(z;) € (|w(x;)], [w(z;)]), provided
that frac(w(z;)) # 0. Let us assume that 0 < frac(w(z;)), and frac(w(z;)) <
frac(w(z;)), then from w(z;) —w(z;) < |w(z;)| — |w(z;)| we have w'(z;) —
W (5) < [(25)) — | (25)]. Therefore ! (z;) — o/ (1)) < ' (z5) — ['(z;)],
thus frac(w(z;)) < frac(w(z;)).

The guard constructed in the proof of the above lemma is called the characteristic
guard of Z. In the above proof we used the fact that if one representative of an
equivalence class satisfies a guard g, then so do all the remaining members. This
is not true if we allow nonnegative reals as parameter values — for example it is
easy to see that only some of representatives of class [(0,0.3)] satisfy 1 —zo < p
under parameter valuation v such that v(p) = 0.5.

Definition 4. Let A= (Q, qo, A, X, P,—,I) be a parametric timed automaton,
X ={zo,...,xn} and P = {p1,...,pm}. We introduce a relation in the set of
all the pairs (Z,C) where Z is a region, and C C N is a subset of the set of
all the valuations of parameters (treated as natural vectors). Let s = x; —xj < e
be a simple guard, and gz = \; jcqo. ny.izj i — Tj <ij bij the characteristic
guard of region Z. Then we define:

(2,0) % (Z',C") iff Z = 7" and C" = C N {v | bj(=ij==)elv]}.
Let g be a guard and s a simple guard, then:
(2,0) %5 (Z',C") iff for some (Z",C") we have (Z,C) % (Z",C")
and (Z",C") 2 (Z',C").

There is a natural intuition behind the above definition — if (Z,C) & (2, ")
then (Z’,C") contains all the pairs (w,v) € Z x C such that w |=, g. Such an
operation is a counterpart for guard addition from [HRSV02], notice however
that we do not need a burden of costly canonicalization. Below we state some
basic properties of ~ relation.

Lemma 2. Let (Z,C) A (Z',C"), where g is a guard. Then, the following con-
ditions hold:

1. if (w,v) € (Z,C) and w =, g, then (w,v) € (Z',C"),
2. if (w,v) € (Z',C"), then w =y g.

Proof. Let us start with the first part of the lemma. Let us assume that w =, g.
By the induction on the complexity of g we will prove that v € C".

The base case is when g = z; —z; < e (g is a simple guard). Let us assume that
gz contains a simple guard of the form z; — x; < b;; where b;; € Z. Notice that
in this case the characteristic guard contains also a simple guard of the form
xj —x; < —b;j, therefore b;; = w'(z;) — w'(z;) for each ' € Z. As w =, g,
then b;; = w'(x;) — w'(z;) < e[v]. Therefore b;; < e[v], which in this case means
that b;;(<;;=><)e[v]. Now let us assume that gz contains a simple guard of the
form x; — x; < b;;. In this case, for each w’ € Z there exists § € (0,1) such
that w'(z;) —w'(x;) = (bj; — 1) + J. Let us notice that e[v] € Z, therefore from
(bij —1)+0 =w'(x;) —w'(x;) < e[v] we obtain b;; < e[v]. The latter inequality
means that in this case b;;(<;;=<)e[v] holds.

For the induction step, notice that if (Z,C) 95 (Z',C") (¢’ is a guard, and s

a simple guard), then there exists (Z,C") such that (Z,C) 4 (2”,0") and
(Z",C") < (Z',C"). From the inductive assumption we obtain that as

w Ey ¢ A s implies w =, ¢, then v € C”. Similarly, as (w,v) € (Z”,C") and
w =y 8, we have v € C.

The proof of the second part of the lemma is also by the induction on the
structure of g. Assume that g = x; — x; < e and gz contains a simple guard of
form x;—x; < bij. If (Z,C) <L (Z',0"), then C' = CN{w | bij(<i==<)e[v]}. As
w(x;)—w(x;) <ij bij and bj(<;==<)e[v] then w(z;)—w(x;)(<i; A(<i;==))e[v].
Therefore we have w(z;) —w(z;) < e[v], thus w =, g.

For the induction step, let us notice that if (Z, C) 95° (Z',C"), then there exists
(2",C") such that (Z,C) 4 (Z2",C") and (2",C") S (Z2',C"). If (w,v) €
(Z',C") then by the inductive assumption w =, s holds. As ¢/ C C” C (|, then
v e C" and (w,v) € (Z”,C"). Therefore, from the inductive assumption we
obtain w =, ¢’ and, finally, w =, ¢’ A s.

From the above lemma we immediately obtain the following corollary.

Corollary 1. Let Z be a region, and C a subset of set of all the parameter
valuations. Then, the following conditions hold:

1. if (2,0) % (2,0, then Z' x C' = Z x C N {(w,v) | w Ey g},
2. ifweZ vel, andw =, g, then (Z,C) % (Z',C") for some Z',C" such
that (w,v) € Z' x C'.

In order to develop our theory further, we need to define two additional opera-
tions on regions.

Definition 5. Let Z = [w]~ be a region and r € R be a reset. Then, resetting
of Z by r is defined as: Z[r] = [w[r]]~.

Clearly, resetting of a region does not depend on the choice of a representative.
Definition 6. Let Z and Z' be two different regions. Region Z' is called a time

successor of Z (denoted by T(Z)) iff for all w € Z there exists § € R such that
w+deZ andw+ 08 € ZUZ' for all §' <6.

Now, we are in the position to present the notion of a parametric region
graph, being an extension of region graph used in theory of timed automata
[AD94]. The main idea is to augment regions with sets of parameter valuations
under which the given concrete state (its equivalence class) is reachable from the
initial state, and to mimick the transitions in the concrete semantics by their
counterparts in parametric region graph.

Definition 7. Let A= (Q,qo, A, X, P,—,I) be a parametric timed automaton.

Define the parametric region graph of A as the tuple PREG(A) = (S, so,i>>
where:

- 8={(¢,2,C) | q€Q,Z is a region,C CN™ and VyecIwez w Fuv 1(q)},
= 80 = (g0, Zo, Co) where Zo = [wo]~ and Co = {v | wo =v I(q0)},
- (¢,2,0) A (¢',Z',C") is defined as follows:
e if d =1 (time transition), then ¢ = ¢', Z' = 7(Z), and C" is such that
(7,0) " (7.,
e if d € A (action transition), then there exists a transition q Y q in A
and C" such that (Z,C) <% (Z,C") and (Z[r],C") @) (z'C".

Additionally, we call nodes of type (q,Z,0) dead, and assume that they have no
outgoing transitions.

Notice that in the above definition we could replace 3 with V, due to the fact
that for any guard g, fixed parameter valuation v, and clock valuations w,w’
such that w ~ w’ we have w |5, g iff W' =, ¢.

Both the concrete semantics of (parametric) timed automaton, and (parametric)
region graph are labelled transition systems. We define finite and infinite runs in
a labelled transition system in a usual way.

Lemma 3. Let A be a parametric timed automaton, and p, = Sg,S1,---Sn G
finite run in PREG(A), where s; = (q;, Z;,C;), and C,, # (. For any (w,v) €
Zn X Cy, there exists a finite run p, = to,t1,...t, in Ay, such that t; = (¢;,w;),
w; € Z; fori€{0,...,n}, and w, = w.

Proof. The base case of n = 0 is straightforward — as from the definition of
PREG(A) we have w |=,, I(qo) for any (w,v) € Zy x Cp.

Recall that C,, C C,,_1. If 5,1 4 $p 18 a time transition (with d = 7), then
T(Zp-1) = Zy,. Therefore for each w,, € Z, there exist w,_1 € Z,_1, and | € R,
such that w, = w,—1 + . We conclude the case by noticing that (w,_1,v) €
Zn-1 X Cp_1, wn Ev I(gn), and using the inductive assumption.

Now, if s,,_1 LA sy, is an action transition (d € A), then there exists a transition

Gn-1 g qn in A, and a subset C” of N such that (Z,,_1,Cp_1) A (Zp-1,C"),

and (Z,—1[r],C") Tap) (Zp-1]r], Cy). Therefore for each w,, € Z,, we have w,, =,

1(gn), and there exists w,,_1 € Z,_1 such that w, = w,_1[r], wn—1 Eov I(gn-1),
and w,_1 =, g (notice that v € C,, N C' N Cp,_1). We conclude the case by
assuming t,—1 = (¢n-1,wWn—1), tn = (qn,wn) and using the inductive assumption.

Notice that the definition of the transition relation in PREG(A) implies that in
pn we have C; 11 C C; for all 0 <14 < n. In particular C;, C C; for all 0 < i < n.

The above lemma does not extend to infinite runs, as shown in the following
example.

FEzxzample 1. Consider the simple parametric timed automaton:

1 —ZTop <P

The following infinite run in PREG(A) does not have a counterpart in .4, due
to the fact that p is unbounded.

(@ [(0,0], {p | » > 0}) = (4, [(0,0.1)],{p| p > 1}) =

(@ [0, D] {p lp>1}) 5 (¢, (0,11 {p|p=2}) > ...

Consider a transition (¢, Z, C) S (¢, Z',C")in PREG(A). Notice that if w € Z,

v e CNC, then (¢q,w) d, (¢',w') in [A,], where d’ = d if d is an action, and d’
is some real number if d = 7. From this observation and Lemma 3 we obtain the
following corollary.

Corollary 2. Let p = sg,81,... be an infinite run in PREG(A), such that
si = (i, Z;,C;) for some Z;,C;, and let v € C; for all i© > 0. Then, there
exists an infinite run p = to,ty,... in the concrete semantics of A,, such that
ti = (qi,wi), and w; € Z;.

The counterpart of Lemma 3 holds without the restriction on finiteness of runs.

Lemma 4. Let A be a parametric timed automaton, and = to,t1,...t, ... an
infinite (finite) run in A,, where t; = (¢;,w;), and such that if t; S tir1 1
a time transition, then [w;y1] = 7(Jwi]). Then, there exists an infinite (finite,
resp.) run p = $0,81,..-8p ... in PREG(A) such that s; = (¢;,Z;,C;), and
(wi,v) € Z; x C; for each i >0 (0 <i<n, resp.).

Proof. Let us start with the finite run case, and let Z; = [w;]. The base case is
straightforward — just assume Cy = {u | wo =4 I(go)} and notice that v € Cy.
Assume that we have already constructed a finite run p,, = sg, S1,...Sn_1-

If t,_1 LS t, is a time transition, then 7(Z,_1) = Z,, wn, € Zn, v € Cp_1,
and wy, =y I(gn). Therefore, from Corollary 1 we obtain that there exists C’

such that (Z,,,Cp_1) e (Z,,C"), v € C', and conclude the case by placing

C,, = C’, and the inductive assumption.

Ift, 1 i) t,, is an action transition, then there exists a transition in A such that

d .
for some guard g and reset r we have ¢,_1 29T ¢n- Notice that as (w,—1,v) €

Zn1 X Cp_1, Wn—1 Fu g, wn-1[r] = wn, and wy, =, 1(¢n), from Corollary 1 we
have that there exist sets C’, C" satisfying (Zn_1,Cn_1) & (Zn_1,C"), v € C,

and (Z,-1,C") Tgp) (Zn,C"). We conclude the case by assuming C,, = C".

Let u = tg,t1,... be an infinite run in A,,. We have already shown that for each
finite prefix p,, = to,t1, .. .t, we can construct its counterpart p,, = sg, s7,...s;
in PREG(A), where s, = (q;, Z;,C?). Notice that CI" = C"*!, so the infinite
sequence p = s, 81, - . ., where s; = (¢;, Z;, C?) is a valid infinite run in PREG(A)
satisfying (w;,v) € Z; x C} for all i > 0.

The following definition formalizes the connection between parametric region
graph, and region graphs. In what follows, by a subgraph of PREG(A) =

d d
(S, 50,i> we mean a tuple (S, sg,), where S’ is a subset of S, and < is

the restriction of <% to §'.

Definition 8. Let A be a parametric timed automaton, v — a parameter valua-
tion, and F — a subgraph of PREG(A). By proj(F,v) we define a subgraph of
F whose states are tuples (q, Z,C) such that v € C.

Observe that proj(PREG(A),v) is in fact isomorphic with the region graph of
A, — by a forgetful functor stripping C' from tuple (¢, Z, C).

3 Bounded Model Checking for ECTL_x

The central idea of bounded model checking is to unfold the computation tree
of a considered model up to some depth, and then perform the analysis of such
a finite structure [BCC*03]. Such an approach limits us to verification (and in
our case — parameter synthesis) of existential properties only, it should be noted
however that implicit model checking methods often fail in case of large and
complex systems. Bounded model checking seems to be especially effective in
searching for counterexamples, i.e. in proving that some undesirable property
holds in a model. This allows for detection of serious design flaws of concurrent
and reactive systems.

The non-parametric model checking tool verifies a model (system specifica-
tion) against a given property (usually in form of a temporal logic formula),
producing the answer of simple holds/does not hold type. Its parametric coun-
terpart is supposed to work slightly differently — having a parametric model we
expect the answer in form of a set of parameter values under which a given prop-
erty is satisfied. The automated synthesis of a complete set of desired parameter
valuations is not possible in case of timed automata due to general undecid-
ability of the problem, however obtaining a part of this set still seems to be a
worthy goal. Our approach allows for incremental synthesis of parameters, i.e. if

the valuations obtained by analysis of a part of a computation tree are not suf-
ficient, then the tree can be unfolded up to a greater depth for further analysis.
Combined with an expert supervision, the synthesized parameter valuations can
give rise to hypotheses specifying the whole space of desired parameters.

We propose the following general flow of property verification/parameter syn-
thesis.

(Property specification (ECTL) J (System specification (PTA))

k:=0

Y

Unfold parametric region]‘ increment k r Remove the synthesized
graph up to depth k J‘ L i from the initial state

Y

Synthesize and remember is the set of all the parameter
parameter valuations valuations sufficient?

Return the set of all the
synthesized valuations

Fig. 1. Parametric Bounded Model Checking schema

The above diagram is very general. One of the approaches in the current applica-
tions of bounded model checking to verification of system properties is to encode
the limited part of the computation tree together with a property in question as
a propositional formula [CBRZ01,PWZ02]. The result can be checked using an
efficient SAT-solver.

3.1 From Parametric Region Graph to concrete semantics

The PREG(A) structure is infinite. In order to represent the infinite runs in a
finite substructure we need a notion of loop.

Definition 9. Let p, = sg, 81, - - - Sn, be a finite run in PREG(A), and s; a4 Sit1
for all 0 < i < n. If s, = (Gn, Zn,Cy) and there exists s; = (q;, Z;, C;), where
0 <17 <n such that s, i> si and qn = @i, Ln = Z;, then p, is called a loop.

Let p, = s0,81,...8, be a loop in PREG(A), such that s; = (¢;, Z;, C;), and
(gn, Zyn) = (g5, Z;) for some j < n. We can create an infinite run p = o, s1,. ..
by unwinding the p,, loop as follows:

g = {(Qi,Zi,Cn) for i <n
’ (@j+(m—iymod(n—j)s Zj+(n—iymod(n—j)> Cn) for i >n.

10

The validity of such a construction is based on the observation that C,, C C; for
all 0 <4 < n and the fact that transitions in PREG(A) are defined in terms of
gz and guards only. Applying Corollary 2 to such an unwinding we obtain the
following corollary.

Corollary 3. Letp = sg,581,...,S, be aloopin PREG(A), where s; = (q;, Z;, C;),
and v € C,, — a parameter valuation. There exists an infinite run uy = to,ty, ...

in the concrete semantics of A,, where t; = (§;,w;), wi € Z; for i < n,
Wi € Zj4(n—iymod(n—j) for i >mn, and:
g = {qi fori<n
’ 4j+(n—i)ymod(n—j) fO?”i > n.

3.2 Parametric Bounded Model Checking for ECTL_x

The presented method can be applied to the verification of a variety of proper-
ties. As the example, in this subsection we present the application of introduced
theory to verification of properties specified in the existential part of Computa-
tion Tree Logic (CTL_x) without the nexzt operator [EC82] — namely ECTL_x.
Intuitively, CTL_x uses a branching time model, where many possible paths
in the future exist. The whole CTL_x contains both the universal ("for all the
possible paths”) and existential modalities (”there exists a path in the future”)
while ECTL_x contains only the latter ones — see [PWZ02] for more thorough
treatment.

Definition 10 (CTL_x and ECTL_x syntax). Let PV be a set of propositions
containing the true symbol, and p € PV. The set of well-formed CTL_x formulae
is given by the following grammar:

Gu=p|~D|OVD|DND| EGP | ESUD.

The existential subset of CTL_x, i.e. ECTL_x is defined as a restriction of
CTL_x such that the negation can be applied to the propositions only.

Additionally we use the derived modalities: FFa = E(trueUa), AF« =

-EG-a, AGa) EF-a. Each modality of CTL_x has an intuitive mean-

ing. The path quantifier A stands for "on every path” and E means ”there
exists a path”. G stands for ”in all the states”, F' means ”in some state”, and U
has a meaning of "until”.

We augment the given parametric timed automaton A = (Q, qo, A, X, P,—,T)
with a labelling function £ : @ — 2PY. Let us present an intepretation of
ECTL_x formulae for a parametric region graph.

Definition 11 (ECTL_x semantics for parametric region graph). Let
A={(Q,q0, A, X, P,—,I) be a parametric timed automaton, and F — a subgraph
of its parametric region graph, such that (qo, Zo, Cy)), where C C Cy, is a state
of F. Let s be a state of F', p € PV, and o, 8 be ECTL_x formulae. We treat
F as a model for ECTL_x formulae, defining the = relation as follows.

11

F.(q,2,C) Epiffp € L(q),

F,s = -p iff Fs % p,

FsEaVpiff F,s=aorF,s k= p,

F,s E EaUp iff there exists a run p, = Sg,$1,..., where so = s, s; are
states of F' for i >0, F,sj =3 for some j >0, and F,s; = [for all i < j,
F,s = EGa iff there exists a run p, = So, $1,. - ., such that F,s; = « for all
> 0.

We abbreviate F, (qo, Zo,Co) E a as F = «.

T oo~

&

The counterpart of the above definition for the timed automaton A, = (S, so, i>
obtained from the parametric timed automaton .4 under the parameter valuation
v is similar — except for that it is defined over the concrete semantics (s € 5).
Therefore the only difference is in the first clause which takes the following form:

1. Ay, (¢,w) = p iff p € L(q)
As previously, we abbreviate A, (qo,wo) = « as A, E a.

In order to apply bounded model checking to verification of temporal proper-
ties in PREG(A) we need to specify the version of the above semantics for finite
subgraphs of PREG(A). The only difference concerns clauses 4 and 5 which
take the following form:

4. F,s |= EQUB iff there exists a finite run p, = So, 81, - . - Sp, where sg = 8, §;
are states of F' for 0 <i <n, F,s; =3 for some 0 < j <mn, and F,s; =
for alli < 7,

5. F,s = EGa iff there exists a loop pn, = 80,81, --,8n, such that F,s; E «
for all0 <i<n.

Recall that timed automaton A, is strongly non-zeno (see [TYO01]) iff for each
sequence of states qi,...,q, such that ¢ “2Z3" Gi+1 for all 0 < i < n, and
An 9n,Tn

Gn 5" g1 (we call such a sequence a structural loop) there exists a clock x
satisfying the following conditions:

— for some 1 <7 < n the x clock is reset in step i (i.e. :=0 € r;),
— there exists 1 < j < n such that for any clock valuation w if w =, g;, then
w(z) > 1.

Intuitively, if an automaton is strongly non-zeno, then in each its loop at least one
unit of time elapses ([T'Y01]). Notice that checking if the automaton is strongly
non-zeno does not require any representation of the state space.

Theorem 1. Let A be a parametric timed automaton, F' — a finite subgraph of
PREG(A) containing state (qo, Zo, C)), where C{, C Cy, and P = ({C | (¢, Z,C)
is a state of F'}. If P is nonempty, and A, is strongly non-zeno for each v € P,
then for each formula o € ECTL_x if F = «, then A, E « for allv € P.

Proof. Let v € P be a parameter valuation. Denote by Fa (possibly infinite)
subgraph of PREG(A) created in two steps:

12

— firstly, by adding to F' the new states created by unwinding of each loop
along the lines presented above — obtaining F”,

— secondly, by replacing all the states (¢, Z,C) in I by (g, Z, P) — obtaining
F.

It is easy to see that F = o iff F' = o. Recall that proj(F,v) is isomorphic to
some subgraph of the region graph of A,. As satisfiability of ECTL_x formulae
in a subgraph of the region graph implies satisfiability in the region graph, and
satisfiability in region graph is equivalent to satisfiability in the concrete model
(see [TYO01]) we obtain the thesis of the theorem.

3.3 Example — four phase handshake protocol

In this section we will perform a first step in parametric analysis of a simplified
version of four phase handshake protocol. The protocol is extensively used in
practice and widely studied, having both the software and hardware implemen-
tations [IJAT04,FD96]. The considered system consists of two communicating
entities — the Producer and the Consumer. The Producer creates data packages
and sends them to the Consumer. Both the components communicate using two
shared boolean variables, that is: req (request) governed by the Producer and
used to signal the Consumer that the data is prepared and ready to be read, and
ack (acknowledge) governed by the Consumer and used to signal the Producer
that the data has been read successfully and the Consumer is ready. The initial
value of both the variables is false.

Producer Consumer

wait for
receive

wait for
send

req == true

wait for
Req

get Data

req = true

Fig. 2. 4-—phase handshake protocol

The running system goes through the following sequence of signals (req, ack):

(false, false) — (true, false) — (true,true) — (false,true) — (false, false).

13

As we have no tool for automated analysis at our disposal yet, we will analyze
the simplified version of the system behaviour. We introduce two parameters,
omitting the signal propagation time, namely: minlO, and maxIO being, re-
spectively, the lower and the upper bound on read/write time.

putData

minlO < xy

S0 S1

Producer Idle
Consumer Ready

Producer Ready
Consumer Ready

1 < maxlO

29 < mazIO

readData
minlO < x4

return
1 — xy < IdleSender()
x =0

S2

Producer Idle
Consumer Idle

Fig. 3. 4-phase handshake protocol, behaviour diagram

The IdleSender function guards the time that the Producer is allowed to be idle
after putting data into some shared transmission vehicle (e.g. a bus). Let us put
IdleSender() := maxIO —minIO and unwind the Parametric Region Graph of
Figure 3 (we omit the dummy clock x) up to depth 5, as shown in Figure 4.
Notice that the graph in Figure 4 contains a loop, introduced by the sequence
of actions: 7,7, putData,readData, return. This loop can be unwinded as pre-
sented in Subsection 4.1 into an infinite path in the Parametric Region Graph,
and into loops in concrete semantics of non-parametric timed automata with
minlO = 0, and maxIO instantiated by any value greater that 1.

The graph of Figure 4, treated as a subgraph of the Parametric Region Graph
of parametric timed automaton from Figure 3 allows us to observe that in the
considered system the property EGEF(ProducerIdle AConsumer Ready) holds
for minIO = 0, and maxlO > 1, with the previously mentioned loop as a wit-
ness. The intuition behind the considered formula is that the Producer will put
data into the transmission infinitely often in the running system.

Of course, this is only the first, hand-made, step of synthesis of the param-
eter valuations under which the considered property is satisfied. The complete
analysis of non-simplified versions with more parameters and components has to
wait until we develop the planned tool.

14

[(0.1,0.1)]
marlO > 1

So

(1, 1))

mazlO > 1

[(0.1,0)
mazlO > 1

[(1,0)]

maxrIO > 1

[(1.1,1.1)]
maxlO > 2

IS utData readData
T
S0 s1 51 S2
[2.2)] [(1.1,0)] [(1.1,0.1)] 1(1,0)]
maxlO > 2 maxlO > 2 maxlO > 1 maxlO > 1
minlO <1 minlO =0 minlO =0

T readData teadData
putData T T T

mazl0 > 1
minlO = 0

dead

52
[(1,0.1)]
marlO >1
minlO =0

maxlO > 1
minlO =0

return

S0 51 51 s2 51 s2 S0 E
L) [2.0] (2.01)] (Lo @ (1,00 [0.0)] [@.11)] [1) [0.0.0)]
mazlO >3 maxlO > 2 maxlO > 2 maxlO > 2 mazlO > 1 maxlO > 1 mazlO > 1 maxlO > 2 maxlO > 1 mazlO > 1

minlO < 2 minlO <1 minlO =0 minlO =0 minlO =0 minlO = 0 minlO = 0 minlO = 0 minlO =0

Fig. 4. The 4—phase handshake protocol, Parametric Region Graph of depth 5

4 Future work

The theory presented in this paper is to be implemented in Verics model checker
[KNNT09]. There is a growing evidence [LHJ00,M.03] of success of model check-
ing in verification of safety critical industrial applications, and the idea of pa-
rameter synthesis for a complex model or protocol seems to be promising in
analysis and design of real-world systems. Also, as the method is quite general,
we expect that it may be applied to many known temporal, modal and epistemic
logics.

References

[AAMO1] Annichini A., Bouajjani A., and Sighireanu M., Trez: A tool for reachability
analysis of complex systems, CAV, 2001, pp. 368-372.

[ACEF09] Etienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fri-
bourg, An inverse method for parametric timed automata, International
Journal of Foundations of Computer Science 20 (2009), no. 5, 819-836.

[AD94] R. Alur and D. Dill, A theory of timed automata, Theoretical Computer
Science 126(2) (1994), 183-235.

[AHV93] R. Alur, T. Henzinger, and M. Vardi, Parametric real-time reasoning, Proc.
of the 25th Ann. Symp. on Theory of Computing (STOC’93), ACM, 1993,
pp. 592-601.

[BCCT03] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu, Bounded model
checking, Highly Dependable Software, Advances in Computers, vol. 58,
Academic Press, 2003, pp. 118—-149.

15

[CBRZ01]

[Doy07]

[DT03]

[EC82]

[FD96)]

E. Clarke, A. Biere, R. Raimi, and Y. Zhu, Bounded model checking using
satisfiability solving, Formal Methods in System Design 19(1) (2001), 7-34.
L. Doyen, Robust parametric reachability for timed automata, Information
Processing Letters 102 (2007), no. 5, 208—-213.

H. Dierks and J. Tapken, MoOBY/DC - a tool for model-checking parametric
real-time specifications, Proc. of the 9th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’03), LNCS, vol.
2619, Springer-Verlag, 2003, pp. 271-277.

E. A. Emerson and E. Clarke, Using branching-time temporal logic to syn-
thesize synchronization skeletons, Science of Computer Programming 2(3)
(1982), 241-266.

Stephen B. Furber and Paul Day, Four-phase micropipeline latch control
circuits, IEEE Transactions on VLSI Systems 4 (1996), 247-253.

[HHWT97] T. Henzinger, P. Ho, and H. Wong-Toi, HyTech: A model checker for hy-

[HRSV02]

[IJA+04]

[KNN*09)

[LHJ00]

[M.03]

[PWZ02]

[TLROS)

[TYO01]

brid systems, Proc. of the 9th Int. Conf. on Computer Aided Verification
(CAV’97), LNCS, vol. 1254, Springer-Verlag, 1997, pp. 460—463.

T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager, Linear parametric
model checking of timed automata, J. Log. Algebr. Program. 52-53 (2002),
183-220.

Blunno I., Cortadella J., Kondratyev A., Lavagno L., Lwin K., and Sotiriou
C., Handshake protocols for de-synchronization, International Symposium
on Advanced Research in Asynchronous Circuits and Systems, IEEE Com-
puter Society Press, 2004, pp. 149-158.

M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pétrola,
M. Szreter, B. Wozna, and A. Zbrzezny, Verics 2008 - a model checker
for time Petri nets and high-level languages, Proc. of Int. Workshop on
Petri Nets and Software Engineering (PNSE’09), University of Hamburg,
2009, pp. 119-132.

Spelberg R. L., De Rooij R. C. H., and Toetenel W. J., Application of
parametric model checking — the root contention protocol using lpmc, In
Proceedings of the 7th ASCI Conference, Beekbergen, The Netherlands,
Febuary 2000, 2000, pp. 73-85.

Stoelinga M., Fun with firewire: A comparative study of formal verifica-
tion methods applied to the iece 139 root contention protocol, Formal Asp.
Comput. 14 (2003), no. 3, 328-337.

W. Penczek, B. WoZna, and A. Zbrzezny, Bounded model checking for the
universal fragment of CTL, Fundamenta Informaticae 51(1-2) (2002), 135—
156.

L-M. Tranouez, D. Lime, and O. H. Roux, Parametric model checking of
time Petri nets with stopwatches using the state-class graph, Proc. of the
6th Int. Workshop on Formal Analysis and Modeling of Timed Systems
(FORMATS’08), LNCS, vol. 5215, Springer-Verlag, 2008, pp. 280-294.

S. Tripakis and S. Yovine, Analysis of timed systems using time-abstracting
bisimulations, Formal Methods in System Design 18(1) (2001), 25-68.

16

