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Abstract. Formal methods - among them the model checking techniques - play
an important role in the design and production of both systems and software. In
this paper we deal with an adaptation of the bounded model checking methods
for timed systems, developed for timed automata, to the caseof time Petri nets.
We focus on distributed time Petri nets and parametric reachability checking, but
the approach can be easily adapted to verification of other kinds of properties
for which the bounded model checking methods exist. A theoretical description
is supported by some experimental results, generated usingan extension of the
model checker VerICS.

1 Introduction

The process of design and production of both systems and software – among others,
the concurrent ones – involves testing whether the product conforms its specification.
To this aim, various kinds of formal methods can be applied. One of the possible ap-
proaches, widely used and intensively developed, aremodel checking techniques.

In order to perform a formal verification, the system to be tested is usually modelled
using a theoretical formalism, e.g., a version of automata,Petri nets, state diagrams
etc. Obviously, the kind of the formalism depends on the features of the system to be
described. One of the approaches, used to represent concurrent systems with timing
dependencies [10, 11, 20], aretime Petri nets(TPNs) by Merlin and Farber [21]. After
modelling the system in the above way, a suitable verification method is applied.

The main problem to cope with while verifying timed systems is the so-calledstate
explosion: in order to check whether the system satisfies a property we usually need to
search through its state space, which in most cases is very large due to infinity of the
dense time domain. Furthermore, in the case of concurrent systems the size of the state
space is used to grow exponentially when the number of the components increases. So,
searching for verification methods which are able to overcome the above problem is an
important subject of research.
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Bounded Model Checking (BMC) is an efficient verification technique whose main
idea consists in translating a model checking problem solvable on a fraction of a model
into a test of propositional satisfiability, which is then made using a SAT-checker. The
method has been successfully applied to verification of bothtimed and untimed sys-
tems [3, 4, 7, 12, 16, 27, 31, 35]. In this paper, we show how to adapt the BMC methods,
presented in [27, 34–36] and developed for timed automata, to the case of time Petri
nets. The adaptation exploits, in some sense, a method of translating a time Petri net
to a timed automaton, described in [28]. However, we performno structural translation
between these two formalisms, but use directly the transition relation defined by the
translation. In order to benefit from the concurrent structure of the system, we focus
on distributednets (i.e., sets of communicating processes), and exploit anon-standard
approach to their concrete semantics, which consist in associating a clock with each
of the processes [28]. In this work, we deal with testing whether the system (net) can
ever be in a state satisfying certain properties (i.e., withreachabilitychecking), but the
presented solutions can be also easily adapted to verification of other classes of prop-
erties for which BMC methods exist (see [23] for a survey). The algorithm has been
implemented as an extension of the model checker VerICS [13]. The next topic we dealt
with was searching for bounds on which the property tested can be reached (searching
for a value of the parameterc in formulasEF∼cp, corresponding to these considered in
[14]). In the final part of the paper we provide some preliminary experimental results.

To our knowledge, no BMC method for time Petri nets has been defined so far, al-
though some solutions for untimed Petri nets exist [16, 25].Therefore, the main contri-
bution of this work consists in showing how to apply and implement for TPNs the above
technique of verification (a general idea of the approach hasbeen already sketched in
[23], but no details are given there). As a result, we obtain an efficient method of check-
ing reachability, as well as searching for counterexamplesfor the properties expressible
by formulas of the logicsACTL∗ andTACTL. Although the adaptation of the BMC
methods is almost straightforward, the practical consequences seem to be quite useful.

The rest of the paper is organised as follows: in Sect. 3 we introduce time Petri nets,
and the abstraction of their state spaces, i.e., anextended detailed region graphs. In the
further part we sketch the idea of reachability checking using BMC (Sect. 4), and show
its implementation for time Petri nets (Sect. 5). Searchingfor bounds on time at which
a state satisfying a property can be reached (parametric reachability) is considered in
Sect. 6. Sections 7 and 8 contain experimental results and concluding remarks.

2 Related work

The methods of reachability checking for time Petri nets, mostly consisting in build-
ing anabstract modelof the system, are widely studied in the literature [6, 5, 8, 9, 15,
19]. Detailed region graphs for time Petri nets, based on their standard semantics (i.e.,
the one associating a clock with each transition of the net) were presented in [22, 33].
Some BMC methods for (untimed) Petri Nets were described in [16, 26]. Parametric
verification for time Petri nets was considered in [32].

The current work is a modification and extension of the paper [24] (published in
proceedings of a local workshop with the status of a technical report).
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3 Time Petri Nets

Let IR+ denote the set of non-negative reals,Q the set of rationals, andIN (IN+) - the
set of (positive) natural numbers. We start with a definitionof time Petri nets:

Definition 1. A time Petri net (TPN, for short) is a six-element tupleN = (P, T, F, m0,
Eft, Lft), whereP = {p1, . . . , pnP

} is a finite set ofplaces, T = {t1, . . . , tnT
} is a

finite set oftransitions, F ⊆ (P ×T )∪ (T ×P ) is theflow relation, m0 ⊆ P is theini-
tial markingof N , andEft : T → IN, Lft : T → IN ∪ {∞} are functions describing
theearliestand thelatest firing timeof the transition; where for eacht ∈ T we have
Eft(t) ≤ Lft(t).

For a transitiont ∈ T we define itspreset•t = {p ∈ P | (p, t) ∈ F} andpostset
t• = {p ∈ P | (t, p) ∈ F}, and consider only the nets such that for each transition
the preset and the postset are non-empty. We need also the following notations and
definitions:

– a markingof N is any subsetm ⊆ P ;
– a transitiont ∈ T is enabledatm (m[t〉 for short) if•t ⊆ m andt•∩(m\ •t) = ∅;

andleads fromm to m′, if it is enabled atm, andm′ = (m \ •t)∪ t•. The marking
m′ is denoted bym[t〉 as well, if this does not lead to misunderstanding;

– en(m) = {t ∈ T | m[t〉} is the set of all the transitions enabled at the markingm
of N ;

– a markingm ⊆ P is reachableif there exists a sequence of transitionst1, . . . , tl ∈
T and a sequence of markingsm0, . . . , ml such thatm0 = m0, ml = m, and for
eachi ∈ {1, . . . , l} ti ∈ en(mi−1) andmi = mi−1[ti〉;

– a markingm concurrently enablestwo transitionst, t′ ∈ T if t ∈ en(m) and
t′ ∈ en(m \ •t);

– a net issequentialif no reachable marking ofN concurrently enables two transi-
tions.

It should be mentioned that the time Petri nets defined as above are often called1-safe
in the literature.

Next, we introduce the notion of adistributed time Petri net. The definition is an
adaptation of the one from [17]:

Definition 2. Let I = {i1, . . . , in} be a finite ordered set of indices, and letN = {Ni |
i ∈ I}, whereNi = (Pi, Ti, Fi, m

0
i
, Efti, Lfti) be a family of 1-safe, sequential time

Petri nets (calledprocesses), indexed withI, with the pairwise disjoint setsPi of places,
and satisfying the condition(∀i1, i2 ∈ I)(∀t ∈ Ti1 ∩ Ti2) (Efti1(t) = Efti2(t) ∧
Lfti1(t) = Lfti2(t)). A distributed time Petri netN = (P, T, F, m0, Eft, Lft) is
the union of theprocessesNi, i.e.,P =

⋃
i∈I

Pi, T =
⋃

i∈I
Ti, F =

⋃
i∈I

Fi, m0 =⋃
i∈I

m0
i
, Eft =

⋃
i∈I

Efti, andLft =
⋃

i∈I
Lfti.

Notice that the functionEfti1 (Lfti1) coincides withEfti2 (Lfti2, resp.) for the joint
transitions of each two processesi1 and i2. The interpretation of such a system is a
collection of sequential, non-deterministic processes with communication capabilities
(via joint transitions).
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Fig. 1.A net for Fischer’s mutual exclusion protocol forn = 2

An example of a distributed TPN (Fischer’s mutual exclusionprotocol) is shown in
Fig. 1. The net consists of three communicating processes with the sets of placesPi =
{idlei, tryingi, enteri, criticali} for i = 1, 2, andP3 = {place0, place1, place2}.
All the transitions of the processN1 and all the transitions of the processN2 are joint
with the processN3.

In what follows, we consider distributed nets only, and assume that all their pro-
cesses arestate machines(i.e., for eachi ∈ I and eacht ∈ Ti, | • t| = |t • | = 1), which
implies that in any marking ofN , there is exactly one place of each process. It is im-
portant to mention that a large class of distributed nets canbe decomposed to satisfy the
above requirement [18]. Moreover, fort ∈ T we defineIV(t) = {i ∈ I | •t ∩ Pi 6= ∅},
and say that a processNi is involved in a transitiont iff i ∈ IV(t).

3.1 Concrete State Spaces and Models

The current state of the net is given by its marking and the time passed since each of the
enabled transitions became enabled (which influences the future behaviour of the net).
Thus, aconcrete stateσ of N can be defined as an ordered pair(m, clock), wherem
is a marking, andclock : I → IR+ is a function which for each indexi of a process of
N gives the time elapsed since the marked place of this processbecame marked most
recently [28]. The set of all the concrete states is denoted by Σ. The initial state ofN is
σ0 = (m0, clock0), wherem0 is the initial marking, andclock0(i) = 0 for eachi ∈ I.

Forδ ∈ IR+, letclock+δ denote the function given by(clock+δ)(i) = clock(i)+δ,
and let(m, clock)+δ denote(m, clock+δ). The states ofN can change when the time
passes or a transition fires. In consequence, we introduce a labelled timed consecution
relation→c⊆ Σ × (T ∪ IR+) × Σ given as follows:
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– In a stateσ = (m, clock) a timeδ ∈ IR+ can pass leading to a new stateσ′ =

(m, clock′ + δ) (denotedσ
δ
→c σ′) iff for each t ∈ en(m) there existsi ∈ IV(t)

such thatclock(i) + δ ≤ Lft(t) (time-successor relation);
– In a stateσ = (m, clock) a transitiont ∈ T can fire leading to a new state

σ′ = (m′, clock′) (denotedσ
t
→c σ′) if t ∈ en(m), for eachi ∈ IV(t) we

haveclock(i) ≥ Eft(t), and there isi ∈ IV(t) such thatclock(i) ≤ Lft(t).
Then,m′ = m[t〉, and for all i ∈ I we haveclock′(i) = 0 if i ∈ IV(t), and
clock′(i) = clock(i) otherwise (action-successor relation).

Intuitively, the time-successor relation does not change the marking of the net, but in-
creases the clocks of all the processes, provided that no enabled transition becomes
disabled by passage of time (i.e., for eacht ∈ en(m) the clock of at least one process
involved in the transition does not exceedLft(t)). Firing of a transitiont takes no time -
the action-successor relation does not increase the clocks, but only sets to zero the cloks
of the involved processes (note that each of these processescontains exactly one input
and one output place oft, as the processes are state machines); and is allowed provided
that t is enabled, the clocks of all the involved processes are greater thanEft(t), and
there is at least one such process whose clock does not exceedLft(t).

Then, we define atimed runof N starting at a stateσ0 ∈ Σ (σ0-run) as a maximal

sequence of concrete states, transitions and time passingsρ = σ0
δ0→c σ0 + δ0

t0→c

σ1
δ1→c σ1 + δ1

t1→c σ2
δ2→c . . ., whereσi ∈ Σ, ti ∈ T andδi ∈ IR+ for all i ∈ IN. A

stateσ∗ ∈ Σ is reachableif there exists aσ0-runρ andi ∈ IN such thatσ∗ = σi + δi,
whereσi + δi is an element ofρ. The set of all the reachable states ofN is denoted by
ReachN .

Given a set of propositional variablesPV , we introduce avaluation functionVc :
Σ → 2PV which assigns the same propositions to the states with the same markings.
We assume the setPV to be such that eachq ∈ PV corresponds to exactly one place
p ∈ P , and use the same names for the propositions and the places. The functionVc

is defined byp ∈ Vc(σ) ⇔ p ∈ m for eachσ = (m, ·). The structureMc(N ) =
((T ∪ IR+, Σ, σ0,→c), Vc) is called aconcrete(dense) model ofN . It is easy to see
that concrete models are usually infinite.

3.2 Extended Detailed Region Graph

In order to deal with countable structures instead of uncountable ones, we introduce
extended detailed region graphsfor distributed TPNs. They correspond to the well-
known graphs defined for timed automata in [1] and adapted fortime Petri nets [22,
33], but involve disjunctions of constraints, the reflexivetransitive closure of the time
successor of [1], and make no use of the maximal constant appearing in the invariants
and enabling conditions. To do this, we assign a clock to eachof the processes of a net.

Given a distributed time Petri netN whose processes are indexed with a set of
indicesI with |I| = n for somen ∈ IN+. Let X = {x1, . . . , xn} be a finite set of
real-valued variables, calledclocks. A clock valuationonX is an-tuplev ∈ IRn

+. The
value of a clockxi in v is denoted byv(xi). For a valuationv and a subset of clocks
X ⊆ X , by v[X := 0] we denote the valuationv′ such thatv′(x) = 0 for all x ∈ X ,
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andv′(x) = v(x) for all x ∈ X \ X . Moreover, for someδ ∈ IR+, by v + δ we
denote the valuationv′ such thatv′(x) = v(x) + δ for all x ∈ X . The setCX of clock
constraintsoverX is defined by the following grammar:

cc := true | xi ∼ c | cc ∧ cc | cc ∨ cc,

wherexi ∈ X , ∼∈ {≤, <, =, >,≥} andc ∈ IN. A valuationv satisfiesa constraint
cc ∈ CX (denotedv |= cc) iff

– cc is of the formtrue,
– v(xi) ∼ c, andcc is of the formxi ∼ c,
– v |= cc1 ∧ v |= cc2, andcc is of the formcc1 ∧ cc2,
– v |= cc1 ∨ v |= cc2, andcc is of the formcc1 ∨ cc2.

The set of clock valuations satisfying a given constraintcc is denoted by[[cc]] ([[cc]] ⊆
IRn

+).
We assume the clock valuations to be such that for any concrete stateσ = (m, clock),

for eachi ∈ I we havev(xi) = clock(i). Thus, the clock constraint expressing the con-
ditions under which the net can be in a markingm (the marking invariant) can be
written as

inv(m) =
∧

t∈en(m) s.t.Lft(t)<∞

∨

i∈IV(t)

xi ≤ Lft(t),

if {t ∈ T | t ∈ en(m) ∧ Lft(t) < ∞} 6= ∅, and asinv(m) = true otherwise, which
intuitively means that staying inm is allowed as long as for each enabled transition
t with finite latest firing time there is a processNi, involved in this transition, whose
clock is not greater thanLft(t) (and thereforet has not been disabled by passage of
time). Moreover, for a markingm and a transitiont ∈ en(m) we define the constraint

firet(m) =
∧

i∈IV(t)

xi ≥ Eft(t)

which expresses the condition under whicht can be fired atm (note that the marking
invariant, which obviously holds ifN is in the markingm, implies that at least one
process involved int has the value of its clock not greater thanLft(t)). Given a marking
m andt ∈ en(m), firing t atm results in assigning the value0 to the clocks belonging
to the set

reset(m, t) = {xi ∈ X | i ∈ IV(t)}.

Having all the above components, we can introduce the extended detailed region
graph forN . Let CN ⊆ CX be a non-empty set of constraints defined by

cc := xi ≥ Eft(t) | xi ≤ Lft(t′) | cc ∧ cc,

wherexi ∈ X , and, for a giveni ∈ I, t ∈ Ti andt′ ∈ Ti ∩ {t ∈ T | Lft(t) < ∞}.
Moreover, letfrac(a) denote the fractional part of a numbera ∈ IR+, andbac denote
its integral part. Then, we define equivalence classes of clock valuations [37]:

Definition 3. For two clock valuationsv, v′ ∈ IRn
+, v 'N v′ iff for all x, x′ ∈ X the

following conditions are met:
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1. bv(x)c = bv′(x)c,
2. frac(v(x)) = 0 iff frac(v′(x)) = 0,
3. frac(v(x)) < frac(v(x′)) iff frac(v′(x)) < frac(v′(x′)).

The last condition implies thatfrac(v(x)) = frac(v(x′)) iff frac(v′(x)) = frac(v′(x′)).
We call the equivalence classes of the relation'N (extended) detailed zonesfor X ,

and denote the set of all of them byDZ(n). It is easy to see from the definition of'N

that the number of extended detailed zones is countable, andthat for eachcc ∈ CN and
eachZ ∈ DZ(n) eitherv |= cc for all v ∈ Z, or v 6|= cc for all v ∈ Z. We say that
Z ∈ DZ(n) satisfies a clock constraintcc ∈ CX (denoted byZ |= cc) iff we have
v |= cc for eachv ∈ Z.

Given an extended detailed zoneZ ∈ DZ(n), we introduce the operationZ[X :=
0] = {v[X := 0] | v ∈ Z}. Moreover, letZ0 = {v ∈ IRn

+ | (∀x ∈ X ) v(x) = 0}.
Then, we define a successor relation on zones:

Definition 4 (Time successor).Let Z andZ ′ be two zones inDZ(n). The zoneZ ′ is
said to be thetime successorofZ, denotedτ(Z), iff for eachv ∈ Z there existsδ ∈ IR+

such thatv + δ ∈ Z ′.

Definition 5 (Action successor).Let Z, Z ′ ∈ DZ(n). The zoneZ ′ is said to be the
action successorofZ by a transitiont ∈ T , denotedt(Z), if there exists a markingm ⊆
P with t ∈ en(m) such thatZ |= firet(m) ∧ inv(m) andZ ′ = Z[reset(m, t) := 0].

An (extended detailed) region is a pair(m, Z), wherem ⊆ P andZ ∈ DZ(n).
Notice that the set of all the extended detailed regions is countable. Given a concrete
stateσ = (m′, clock′) we defineσ ∈ (m, Z) if m = m′ andv ∈ Z, wherev is the
clock valuation satisfyingv(xi) = clock′(i) for all i ∈ I. Next, we define a countable
abstraction of the concrete state space ofN - anextended detailed region graph.

Definition 6. Theextended detailed region graphfor a netN is a structureΓ (N ) =
(T ∪ {τ}, W, w0,→), whereW = 2P × DZ(n), w0 = (m0, Z0), and the successor
relation→⊆ W × (T ∪ {τ}) × W , whereτ 6∈ T , is defined in the following way:

– (m, Z)
τ
→ (m, Z ′) iff Z, Z ′ |= inv(m) andZ ′ = τ(Z);

– for t ∈ T , (m, Z)
t
→ (m′, Z) iff t ∈ en(m), m′ = m[t〉, Z ′ = t(Z), Z |= inv(m)

andZ ′ |= inv(m′).

By anabstract modelbased onΓ (N ) we mean a structureMΓ (N ) = (Γ (N ), V ),
where for eachw ∈ W and eachσ ∈ w we haveV (w) = Vc(σ).

Notice that the definition of
τ
→ is correct: in spite of a possibly non-convex form of

[[inv(m)]], its definition ensures that ifZ, Z ′ ∈ DZ(n), Z, Z ′ |= inv(m) and(m, Z)
τ
→

(m, Z ′), then for any otherZ ′′ ∈ DZ(n) s.t.Z ′′ = τ(Z) andZ ′ = τ(Z ′′) (i.e., for
a region(m, Z ′′) “traversed” when the time passes between(m, Z) and(m, Z ′)) the
conditionZ ′′ |= inv(m) is satisfied as well. This follows from the fact that if in the
zoneZ somexi ∈ X satisfies the conditionv(xi) > Lft(t), then the same holds also
for all the time successors ofZ, and, on the other hand, if it satisfiesv(xi) ≤ Lft(t)
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and this condition is violated for someZ ′′ = τ(Z), then there is noZ ′ = τ(Z ′′) for
which it holds again.

In order to show that the modelMΓ (N ) preserves the behaviours of the net, we
shall prove that it isbisimulation equivalentwith Mc(N ), where the bisimulation equiv-
alence is defined as follows:

Definition 7. Let M = ((L, S, s0,→), V ) and M ′ = ((L′, S′, s′0,→
′), V ′) be two

models of a time Petri netN . A relation;s⊆ S′ × S is a simulationfrom M ′ to M if
the following conditions hold:

• s′0 ;s s0,
• for eachs ∈ S ands′ ∈ S′, if s′ ;s s, thenV (s) = V ′(s′), and for everys1 ∈ S

such thats
l
→ s1 for somel ∈ L, there iss′1 ∈ S′ such thats′

l′

→
′

s′1 for some
l′ ∈ L′ ands′1 ;s s1.

The modelM ′ simulatesM (M ′
;s M ) if there is a simulation fromM ′ to M . Two

modelsM andM ′ are calledbisimulation equivalentif M ′
;s M andM(;s)

−1M ′,
where(;s)

−1 is the inverse of;s.

Then, we can prove the following lemma:

Lemma 1. For a given time Petri netN the modelsMc(N ) = ((T ∪ IR+, Σ, σ0,
→c), Vc) andMΓ (N ) = ((T ∪ {τ}, W, w0,→), V ) are bisimulation equivalent.

The proof can be found in the appendix.

4 Testing Reachability via BMC

The reachability problem for a systemS consists in checking, given a propertyp,
whetherS can ever be in a state wherep holds (which can be described by theCTL
formulaEFp - “there exists a path s.t. at that path the propertyp finally holds”). The
property is expressed in terms of propositional variables.In the case the systemS is
represented by a time Petri netN , the propositions correspond to the set of its places
P . Therefore, the reachability verification can be translated to testing whether the set
ReachN contains a state whose marking includes a given subset ofP . Checking this
can be performed by an explicit exploration of the concrete state space (model), but due
to its infinity such an approach is usually very inefficient.

If a reachable state satisfying the propertyp exists, this can be usually proven ex-
ploiting a part of the model only. This enables us to apply thebounded model checking
approach. The basic idea of testing reachability using BMC consists in searching for a
reachability witnessof a bounded lengthk (i.e., for a path of a lengthk ∈ IN+, called a
k-path, which leads from the initial state to a state satisfyingp). Searching for a reach-
ability witness is performed by generating a propositionalformula that is satisfiable iff
such a witness exists. Satisfiability of this formula is checked using a SAT-solver.

To apply the above procedure, we represent the states of a model M(N ) for a given
time Petri netN as vectors of boolean variables, and express the transitionrelation
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of the model in terms of propositional formulas. Then, weencodeall the k-paths of
M(N ) starting at its initial state as a propositional formulaαk, and check satisfiability
of a formulaγk which is the conjunction ofαk and a propositional formula expressing
that the propertyp holds at some state of ak-path. The above process is started from
k = 1, and repeated iteratively up tok = |M |. It, however, can be stopped, since if
for somek the formulaγk is satisfiable, then reachability of a state is proven, and no
further tests are necessary.

The above method can be inefficient if no state satisfyingp exists, since the length
of the k-path strongly influences the size of its propositional encoding. Therefore, in
order to prove unreachability of a state satisfyingp, another solution, shown in [36], is
applied. A sketch of the idea is as follows: using the BMC procedures, we search for a
longestk-path starting from an arbitrary state ofM (a free path) such thatp holds only
in the last state of this path. If such a pathπ is found, then this means that in order to
learn whether a state satisfyingp is reachable we need to explore the model only to the
depth equal to the length ofπ.

5 Implementation for Time Petri Nets

In order to apply the above approach to verification of a particular distributed time
Petri netN , we deal with a model obtained by adiscretisationof its extended detailed
region graph. The model is of an infinite but countable structure, which, however, is
sufficient for BMC (which deals with finite sequences of states only). Below, we show
this discretisation, and then encode the transition relation of the model.

5.1 Discretisation of Extended Detailed Region Graphs

Let Γ (N ) = (T ∪ {τ}, W, w0,→) be the extended detailed region graph for a dis-
tributed time Petri netN , andX be the set of clocks corresponding to its processes.
Instead of dealing with the whole extended detailed region graphΓ (N ), we discre-
tisethis structure, chosing for each region one or more appropriate representatives. The
discretisation scheme is based on the one for timed automata[37], and preserves the
qualitative behaviour of the underlying system.

Let n be the number of clocks, and letcmax(N ) be the largest constant appearing
in CN (i.e., the greatest finite value ofEft andLft). For eachm ∈ IN, we define

Dm = {d ∈ Q | (∃k ∈ IN) d · 2m = k},

and
Em = {e ∈ Q | (∃k ∈ IN) e · 2m = k ∧ e ≤ cmax(N ) + 1}.

Thediscretised clock spaceis defined asDn, whereD =
⋃∞

m=1 Dm. Similarly, the set
of possible values of time passings is defined asE =

⋃∞
m=1 Em. The above definitions

give us that the maximal values of time passings are restricted tocmax(N ) + 1, which
is sufficient to express the behaviour of the net. Moreover, such a clock space and the
set of lengths of timed steps ensure that for any representative of an extended detailed
region there is another representative of this region whichcan be reached by a time
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step of a lengthe ∈ E. It should be mentioned that such a solution (different thanin
[24]) allows us to compute precisely the time passed along ak-path (which was difficult
while using the so-called “adjust transitions” of [24]).

Now, we can introduce discretised region graphs and models:

Definition 8. The extended discretised region graphbased on the extended detailed
region graphΓ (N ), is a structureΓ̃ (N ) = (T ∪E, W̃ , w0,→d), whereW̃ = 2P ×D

n,
w0 = (m0, Z0), and the labelled transition relation→d⊆ W̃ × (T ∪E)×W̃ is defined
as

1. for t ∈ T , (m, v)
t
→d (m′, v′) iff t ∈ en(m), m′ = m[t〉, v |= firet(m)∧ inv(m),

v′ = v[reset(m, t) := 0], andv′ |= inv(m′) (action transition);

2. for δ ∈ E, (m, v)
δ
→d (m, v′) iff v′ = v + δ andv, v′ |= inv(m) (time transition).

Given an abstract modelMΓ (N ) = (Γ (N ), V ) based onΓ (N ) = (T∪{τ}, W, w0,

→) and the discretised model̃Γ (N ), we can define adiscretized modelbased on
Γ̃ (N ), which is a structurẽMΓ (N ) = (Γ̃ (N ), Ṽ ), whereṼ : W̃ → 2PV is a val-
uation function such that for each̃w ∈ W̃ being a representative ofw ∈ W we have
Ṽ (w̃) = V (w). This model will be exploited in BMC-based reachability checking.

5.2 Encoding of the Transition Relation of the Discretized Model

In order to apply SAT-based verification methods described in Sec. 4, we need to rep-
resent (encode) the discretized modelM̃Γ (N ) as a boolean formula. To do that, we
assume that each statew ∈ W̃ is given in a unique binary form, i.e.,̃w ∈ {0, 1}h(m),
whereh(m) is a function of the greatest exponent appearing in the denominators of
clock values inw̃ (see [37] for details). The digits in the binary form ofw are denoted
by w(1), . . . , w(h). Therefore, the elements of̃W can be “generically” represented by
a vectorw = (w[1], . . . , w[h(m)]) of propositional variables (called asymbolic state),
whose valuation (i.e., assignment of values to the variables) representsw iff for each
j ∈ {1, . . . , h(m)} we have w[j] = true iff w(j) = 1, and w[j] = false otherwise.
Moreover, eachk-path inΓ̃ (N ) can be represented by a finite sequencew0, . . . ,wk of
symbolic states, and again, such a representation is calledasymbolick-path.

In what follows, bystate variableswe mean propositional variables used to encode
the states of̃Γ (N ). The set of all the state variables, containing the symbolstrue and
false, will be denoted bySV , and the set of all the propositional formulas built over
SV - by SF . The elements ofSF are calledstate formulas.

In order to encode the transition relation of̃MΓ (N ), we introduce the following
functions and propositional formulas:

– lit : {0, 1} × SV → SF , which is defined bylit(0, p) = ¬p andlit(1, p) = p;
– Iw(w) :=

∧h

j=1 lit(w(j), w[j]) which is true iff the vectorw represents the state
w;

– T(w,w′) which is true iff for the statesw, w′ ∈ W̃ , represented by vectorsw and
w

′, respectively, it holdsw
e
→d w′ for somee ∈ T ∪ E.
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The formula which encodes all thek-paths inΓ̃ (N ) starting at the initial state is of the
form

αk := Iw0(w0) ∧
k−1∧

j=0

T(wj ,wj+1),

wherew0, . . . ,wk is a symbolick-path. In practice, we considerk-paths with some
restrictions on repetition of the action and time transitions, and on lengths of the time
steps (see [37] for details). Encoding the fact that a state satisfies a given property is
straightforward.

6 Parametric Reachability Checking

Besides testing whether a state satisfying a propertyp is reachable, one can be interested
in finding a minimal time in which a state satisfyingp can be reached, or finding a
minimal time after whichp does not hold. To this aim,parametric reachability checking
can be used.

In order to be able to perform the above verification, we introduce an additional
restriction on the nets under consideration, i.e., requirethey contain no cycleC of tran-
sitions such that for eacht ∈ C we haveEft(t) = 0 (which guarantees that the
time increases when the net progresses, and is a typical assumption when analysing
timed systems). Moreover, we introduce the notationsEF∼cp, with ∼∈ {≤, <, >,≥}
andc ∈ IN, which express that a state satisfyingp is reached in a time satisfying the
constraint in the superscript1. The problems intuitively presented at the beginning of
the section can be expressed respectively as finding a minimal c such thatEF<cp (or
EF≤cp) holds, and finding a maximalc such thatEF>cp (or EF≥cp) holds.

An algorithm for finding a minimalc such thatEF≤cp holds looks as follows:

1. Using the standard BMC approach, find a reachability witness of minimal length2;
2. read from the witness the time required to reachp (denotedx). Now, we know that

c ≤ dxe (whered·e is theceiling function);
3. extend the verified TPN with a new processN , which is composed of one transition

t s.t.Eft(t) = Lft(t) = n, and two placespin, pout with •t = {pin} andt• =
{pout} (see Fig. 2(a)),

4. setn to dxe − 1,
5. Run BMC to test reachability of a state satisfyingp ∧ pin in the extended TPN,
6. if such a state is reachable, setn := n − 1 and go to 5,
7. if such a state is unreachable, thenc := n + 1, STOP.

Some comments on the above algorithm are in place. First of all, it should be ex-
plained that the BMC method described in Sec. 4 founds a reachability witness of a
shortest length (i.e., involving the shortest possiblek-path). However, the shortest path
is not necessarily that of minimal time. An example can be seen in Fig. 3, where the

1 The full version of the logic, for a discrete semantics and with ∼ restricted to≤ only, can be
found in [14].

2 if we cannot find such a witness, then we try to prove unreachability of p.
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pin
t

[n, n]

pout pin pout

pmid t2t1

[n, n] [0, 0]

(a) (b)

Fig. 2. The processes added to the nets to test parametric reachability

t1

[10, 10]

pfin

t3

[1, 1]

t2 [1, 1] t3 [1, 1]

Fig. 3.An example net

shortest path leading to the place satisfying the propertypfin consists of one time step
and one action step (i.e., passing10 time units and then firingt1), whereas minimal time
of reaching such a state is3, which corresponds to firingt2, t3 andt4, each of them pre-
ceded by passing one unit of time. Due to this, after finding a reachability witness forp
in step 1 of the algorithm, we test whetherp can be reached in a shorter time. Extending
the net with a new process allows us to express the requirement that the time at which
p is reached is not greater thann (n ∈ IN), since at timen the transitiont has to fire,
which unmarks the placepin.

The second comment to the algorithm concerns the possible optimisations. Firstly,
the algorithm can be optimized by applying one of the well-known searching algorithms
instead of decreasingn by one in each step. Secondly, it is easy to see that if BMC finds
a reachability witness forp of lengthk, then a witness for reachingp in a smaller time
cannot be shorter thank (if such a witness existed, it would have been found previously).
Thus, in step 5 of the algorithm the BMC method can start withk equal to the length of
the witness found in the previous run, instead of withk = 1.

Finally, step 7 of the algorithm should be explained. In order to decide that no state
satisfyingp∧ pin is reachable, we should either prove unreachability of thatstate using
the method of [36], or to find an upper bound on the length of thek-paths such that
unreachability ofp ∧ pin on the paths up to this length allows us to decide that no
state of interest is reachable. We can do the latter in some cases only, i.e., when some
restrictions on the nets considered are assumed. This is specified by the following two
lemmas:

Lemma 2. If a netN contains no transitiont with Eft(t) = 0, then the length of a
reachability witness forEF≤cp, in which time- and action steps alternate, is bounded
by2 · c.

Proof. We make use of the result of [29], which states that each reachable marking
of a TPN can be reached on a path whose time steps are of integervalues only. Since
from the stucture of the net and from the structure of the pathwe have that zero-time
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steps are not allowed, the shortest time steps are of length one. The bound2c is then
straightforward.

Lemma 3. LetN be a distributed net consisting ofn processesNi = (Pi, Ti, Fi, m
0
i
,

Efti, Lfti) (i ∈ I = {1, . . . , n}), each of which contains no cycle besides (possibly)
being a cycle itself and satisfies the condition∀t1, t2 ∈ Ti (•t1 ∩ Pi = •t2 ∩ Pi ⇐⇒
t1 • ∩Pi = t2 • ∩Pi). The length of a reachability witness forEF≤cp, in which time-
and action steps alternate, is bounded byK = 2 · Σn

i=1zi, where eachzi, for i ∈ I, is
computed according to the following algorithm:

1. setg := 0, time := 0, andnextT rans to sucht ∈ Ti that•t = m0
i

andEft(t) =
min(Eft(t′) | t′ ∈ Ti ∧ •t′ = m0

i
),

2. do
∗ time := time + Eft(nextT rans);
∗ if time ≤ c then setg := g + 1 andsg := nextT rans;
∗ setnextT rans to sucht ∈ Ti that •t = sg−1• andEft(t) = min(Eft(t′) |

t′ ∈ Ti ∧ •t′ = sg−1•),
while time <= c andsg • ∩Pi 6= ∅,

3. whileEft(sg) = 0 and(•sg ∩ Pi) 6∈ Prop(p), whereProp(p) is the set of propo-
sitions occuring in the propertyp, dog := g − 1;

4. setzi := g.

Proof. From the structure of a process ofN , we have that the algorithm forzi computes
first the number of transitions which can be executed in timec provided thatNi proceeds
as fast as possible, and then optimises the value obtained byremoving a number of final
steps which influence neither the time nor reaching the property tested. The length of
the path in which time- and action steps alternate is therefore equal to2zi. Taking the
sum of these values for all the processes corresponds to considernig the worst case, in
which all the processes proceed independently, performingas many steps as possible.

An algorithm for finding a minimalc such thatEF<cp holds is similar to the previ-
ous one:

1. Using the standard BMC approach, find a reachability witness of minimal length3;
2. read from the witness the time required to reachp (denotedx). Now, we know that

c ≤ dxe;
3. extend the verified TPN with a new processN , which is composed of two transi-

tions t1, t2 s.t.Eft(t1) = Lft(t1) = n, Eft(t2) = Lft(t2) = 0, •t1 = {pin},
t1• = •t2 = {pmid} andt2• = {pout} (see Fig. 2(b)),

4. setn to dxe − 1,
5. run BMC to test reachability of a state satisfyingp ∧ pin in the extended TPN,
6. if such a state is reachable, setn := n − 1 and go to 5,
7. if such a state is unreachable, setn := n + 1 and run BMC to test reachability of a

state satisfyingp ∧ pmid in the extended TPN,
8. if such a state is reachable, thenc := n + 1, STOP,
9. if such a state is unreachable, thenc := n, STOP.

3 if we cannot find such a witness, then we try to prove unreachability of p.
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In this case, the additional process contains the place which can be marked only if the
time passed since the net started is equal ton. The algorithm proceeds in the following
way: the steps1 - 6 (analogous as in the previous algorithm) are aimed at findinga
minimaln such thatEF≤np holds. Then, it is tested whetherp can be reached exactly at
timen. Depending on the result of this test, the bound returned is eithern orn+1 (which
follows from the result of [30] stating that the minimal timeduration of a transition
sequence is an integer value). The improvements to the algorithms, as well as methods
of deciding unreachability in steps7 and9, are the same as in the previous case.

The next pair of the algorithms is aimed at finding a minimal time after which no
state satisfyingp is reachable. This can be done by searching for a maximalc for which
EF≥cp (or EF>cp) holds. The algorithm forEF≥cp is as follows:

1. using a standard BMC approach, test whether there is ak-pathπ such thatp is
reachable from its arbitrary state (i.e., whether forπ the CTL formula EGEFp
holds),

2. if such ak-path can be found, then no maximalc exists, STOP.
3. if such ak-path cannot be found then, using the standard BMC approach,find a

reachability witness forp of a minimal length4.
4. read from the witness the timex required to reachp,
5. extend the verified TPN with a new process which is composedof one transition

t s.t. Eft(t) = Lft(t) = n, and two placespin, pout with t• = {pout} and
•t = {pin},

6. setn to dxe, and set an upper boundb (b ≥ n) on c to be searched for5,
7. run BMC to test reachability of a state satisfyingp ∧ pout in the extended TPN,
8. if such a state is reachable andn + 1 < b, then setn := n + 1 and go to 7,
9. if such a state cannot be found orn + 1 ≥ b, then setc := n − 1, STOP.

Testing whether there is ak-path s.t.p is reachable from its arbitrary state (testing
EGEFp) is done by checking whether there is a path which has a loop, and there is a
state of this loop at whichp holds. In order to ensure that there is no maximalc, we need
also the path to be progressive, i.e., such that its loop contains at least one non-zero time
step6.

Again, some optimisations to the algorithm can be introduced. The first one can
consist in applying a well-known searching technique instead of increasingn by one
in each step. The second is based on an observation that each reachability witness for
EF≥np is also a reachability witness forEF≥n−1p. Thus, no witness forEF≥np can be
shorther than the shortest one found forEF≥n−1p (if a shorter witness existed, it would
have been found while searching for a witness forEF≥n−1p). Thus, while running

4 if we cannot find such ak, then we try to prove unreachability ofp
5 the valueb can be also a parameter of the algorithm
6 Formally, letπ be ak-path,π(i) be thei-th state of the path,δπ(i, i + 1) be the time passed

while moving fromπ(i) to π(i + 1), loop(π) = {h | 0 ≤ h ≤ k ∧ π(k) → π(h)}, and
Πk(s) be the set of all thek-paths starting ats. The bounded semantics forEGEFα is as
follows: s |= EGEFα ⇐⇒ (∃π ∈ Πk(s))(loop(π) 6= ∅ ∧ (∃l ∈ loop(π)(∃l ≤ j ≤
k)(π(j) |= α ∧ Σl≤j<kδpi(j, j + 1) > 0)).
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step 7 of the algorithm, we can start withk equal to the length of the witness found in
the previous run, instead of withk = 1.

It should be noticed that, contrary to the former cases, we cannot set any upper
bound on the length ofk-paths to be tested in step 9, besides the one which follows
from the valueb assumed in the algorithm. In this case, computing the bound is done
analogously as we shown in the description of the algorithm for EF≤cp.

An algorithm for checkingEF>cp (and searching for a maximalc) is as follows:

1. using a standard BMC approach, test whether there is ak-pathπ such thatp is
reachable from its arbitrary state (i.e., whether forπ the CTL formula EGEFp
holds),

2. if such ak-path can be found, then no maximalc exists, STOP.
3. if such ak-path cannot be found then, using the standard BMC approach,find a

reachability witness forp of a minimal length7.
4. read from the witness the timex required to reachp,
5. extend the verified TPN with a new processN , which is composed of two transi-

tions t1, t2 s.t.Eft(t1) = Lft(t1) = n, Eft(t2) = Lft(t2) = 0, •t1 = {pin},
t1• = •t2 = {pmid} andt2• = {pout},

6. setn to dxe, and set an upper boundb (b ≥ n) on c to be searched for8,
7. run BMC to test reachability of a state satisfyingp ∧ pout in the extended TPN,
8. if such a state is reachable andn + 1 < b, then setn := n + 1 and go to 7,
9. if such a state is unreachable orn + 1 > b, setn := n − 1 and run BMC to test

reachability ofp ∧ pmid) in the extended TPN,
10. if such a state is reachable, thenc := n − 1, STOP;
11. if such a state is unreachable, thenc := n, STOP.

The idea behind the algorithm is similar to the previous approaches: first a maximal
n for which EF≥np is found, then the algorithm tests whether reachingp at timen is
possible. The final result depends on the answer to the latterquestion.

It should be mentioned that in practice all the above methodsare not complete (as
the BMC itself is not). It can happen that we are not able to prove unreachability of
a state, compute an upper bound on the length of ak-path to be tested, or, in spite of
finding such an upper bound, are not able to test the paths up tothis length using the
resources given. However, the preliminary experiments show that the methods can give
quite good results.

7 Experimental Results

The experimental results presented below are preliminary,since some methods men-
tioned in the previous sections are not implemented yet. We are going to complete the
implementation to the final version of this paper.

We have performed our experiments on the computer equipped with Intel Pentium
Dual CPU (2.00 GHz), 2 GB main memory and the operating systemLinux 2.6.28. We

7 if we cannot find such ak, then we try to prove unreachability ofp
8 the valueb can be also a parameter of the algorithm
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have tested some distributed time Petri nets for the standard Fischer’s mutual exclusion
protocol (mutex) [2]. The system consists ofn time Petri nets, each one modelling a
process, plus one additional net used to coordinate their access to the critical sections.
A distributed TPN modelling the system is shown in Figure 1, for the case ofn = 2.
Mutual exclusionmeans that no two processes are in their critical sections atthe same
time. The preservation of this property depends on the relative values of the time-delay
constantsδ and∆. In particular, the following holds: ”Fischer’s protocol ensures mutual
exclusion iff∆ < δ”.

Our first aim was to check that if∆ ≥ δ, then the mutual exclusion is violated.
We considered the case with∆ = 2 andδ = 1. It turned out that the conjunction of
the propositional formula encoding thek-path and the negation of the mutual exclusion
property (denotedp) is unsatisfiable for everyk < 12. The witness was found for
k = 12. We were able to test40 processes. The results are shown in Fig. 4 (left).

Our second aim was to search for a minimalc such thatEF≤cp holds. The results are
presented in Fig. 4 (right). In the case of this net, we are notable to compute an upper
bound on the length of thek-path. Unfortunately, we also could not test unreachability,
since the method is not implemented yet. Again, we considered the case with∆ = 2
andδ = 1, and the net of25 processes. The witness was found fork = 12, and the time
of the path found was between8 and9. The columnn shows the values of the parameter
in the additional component. Forn = 1 andk = 12 unsatisfiability was returned, and
testing the property on a longer path could not be completed in a reasonable time.

The next two (scalable) examples were the networks shown in Fig. 5. The net (a)
shown in the left-hand side of the figure was scaled by increasingEft(t2) andLft(t2),
according to the schemaA = 2u, B = 4u, for u = 1, 2, . . .. The property tested was
EF(p3 ∧ p6). The net (b) shown on the right was scaled by increasing the number of
componentsNi (i = 1, 2, . . .). In this case, reachability of a state satisfyingp3∧

∧j
i=1 pi

3

was checked (wherej is a number of identical processes). For both the nets we searched

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 1937 5302 0.2 3.5 0.0 1.7 NO
2 - 36448 107684 1.4 7.9 0.4 9.5 NO
4 - 74338 220335 2.9 12.8 3.3 21.5 NO
6 - 112227 332884 4.2 17.6 14.3 37.3 NO
8 - 156051 463062 6.1 23.3 257.9 218.6 NO

10 - 197566 586144 7.8 28.5 2603.8 1153.2 NO
12 - 240317 712744 9.7 34.0 87.4 140.8 YES

32.4 34.0 2967.1 1153.2

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 840 2194 0.0 3.2 0.0 1.4 NO
2 - 16263 47707 0.5 5.2 0.1 4.9 NO
4 - 33835 99739 1.0 7.3 0.6 9.1 NO
6 - 51406 151699 1.6 9.6 1.8 13.8 NO
8 - 72752 214853 2.4 12.3 20.6 27.7 NO

10 - 92629 273491 3.0 14.8 321.4 200.8 NO
12 - 113292 334357 3.7 17.5 14.3 39.0 YES
12 7 120042 354571 4.1 18.3 45.7 59.3 YES
12 6 120054 354613 4.0 18.3 312.7 206.8 YES
12 5 120102 354763 4.0 18.3 64.0 77.7 YES
12 4 120054 354601 4.1 18.3 8.8 35.0 YES
12 3 115475 340834 3.9 17.7 24.2 45.0 YES
12 2 115481 340852 3.9 17.8 138.7 100.8 YES
12 1 115529 341008 3.9 17.7 2355.4 433.4 NO

40.1 18.3 3308.3 433.4

Fig. 4. Results for mutex,∆ = 2, δ = 1, mutual exclusion violated. Left: proving reachability
for 40 processes, right: parametric verification for25 processes.
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Fig. 5. Time Petri nets tested in experiments

for a minimal timec at which a given property can be reached, and for both of them
we were able to compute an upper bound on the length of thek-path to be tested while
checking reachability in a time not exceedingn. For the net (a) the bound isK =
2(z1 + z2 + z3), wherez1 = 3n− 1, z2 = 3dn/(2u)e − 1 andz3 = 1 (where the third
process is that added to test reachability in timen); whereas for the net (b) containing
j identical components it is given byK = z0 + Σj

i=1zi + zj+1, where the bound for
the first process isz1 = 3dn/2e − 1, the bound for each of the identical processes is
zi = 3n − 1 (i = 1, . . . , j), and the bound for the additional process iszj+1 = 1. The
results for the net (a), with the values of the coefficientu given, are presented in Fig. 6.
In the case ofu = 4 we were able to test thek-paths up to the upper boundK = 46,
and to show that the parameter searched for isc = 8; for u = 5 we can only assume
that the value ofc is 10, since we were not able to test all thek-paths of the lengths up
to K = 58. Concerning the net (b), we were able to test the net containing 6 identical
processes and to show thatc = 2; the results are given in Fig. 7.

8 Final Remarks

We have shown that the BMC method for checking reachability properties of TPNs is
feasible. Our preliminary experimental results prove the efficiency of the method. How-
ever, it would be interesting to check practical applicability of BMC for other examples
of time Petri nets. On the other hand, it would be also interesting to check efficiency of
the above solutions for other (non-distributed) nets (which could be done by applying
the translations from [28]).
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tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 21 34 0.0 3.0 0.0 1.3 NO
2 - 603 1653 0.0 3.0 0.0 1.4 NO
4 - 1396 3909 0.0 3.1 0.0 1.6 NO
6 - 2174 6097 0.0 3.2 0.0 1.7 NO
8 - 3347 9429 0.1 3.3 0.0 2.0 NO

10 - 4345 12213 0.1 3.5 0.0 2.2 NO
12 - 5413 15175 0.1 3.6 0.0 2.5 NO
14 - 6551 18315 0.1 3.7 0.1 2.8 YES
14 7 8812 24886 0.1 4.0 0.1 3.3 NO
16 7 11299 31987 0.2 4.2 0.1 3.8 NO
18 7 13151 37159 0.2 4.5 0.2 4.2 NO
20 7 15103 42595 0.2 4.8 118.9 17.1 NO
22 7 17155 48295 0.3 5.0 15.6 8.3 NO
24 7 19307 54259 0.3 5.2 18.9 9.7 NO
26 7 21559 60487 0.3 5.5 133.5 19.0 NO
28 7 23911 66979 0.4 5.8 167.1 26.5 NO
30 7 27930 78424 0.4 6.2 96.4 18.5 NO
32 7 30586 85756 0.5 6.5 224.9 32.6 NO
34 7 33342 93352 0.5 6.8 339.8 36.4 NO
36 7 36198 101212 0.5 7.2 549.8 50.2 NO
38 7 39154 109336 0.6 7.5 339.8 50.7 NO
40 7 42210 117724 0.6 7.9 266.5 45.6 NO
42 7 45366 126376 0.7 8.2 1026.9 85.0 NO
44 7 48622 135292 0.7 8.6 558.6 83.3 NO
46 7 51978 144472 0.8 9.0 574.7 75.6 NO

7.6 9.0 4431.9 85.0

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 21 34 0.0 3.0 0.0 1.3 NO
2 - 619 1707 0.0 3.0 0.0 1.4 NO
4 - 1428 4017 0.0 3.1 0.0 1.6 NO
6 - 2467 6985 0.0 3.2 0.0 1.8 NO
8 - 3411 9645 0.0 3.3 0.0 2.0 NO

10 - 4425 12483 0.1 3.5 0.0 2.2 NO
12 - 5994 16945 0.1 3.6 0.0 2.6 NO
14 - 7228 20379 0.1 3.7 0.1 2.9 NO
16 - 8532 23991 0.1 3.9 0.1 3.2 NO
18 - 9906 27781 0.1 4.1 0.1 3.5 NO
20 - 11350 31749 0.2 4.2 0.1 3.8 YES
20 10 15223 42995 0.2 4.8 0.2 4.8 YES
20 9 15303 43255 0.2 4.8 5.1 6.0 NO
22 9 17375 49021 0.3 5.0 58.9 10.9 NO
24 9 20802 58804 0.3 5.4 9.1 9.7 NO
26 9 23178 65410 0.3 5.7 73.4 16.4 NO
28 9 25654 72280 0.4 5.9 139.2 21.1 NO
30 9 28230 79414 0.4 6.3 185.2 22.6 NO
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9 Appendix

Below, we provide a proof of Lemma 1:

Proof. We shall show that the relationR = {(σ, w) | σ ∈ w} is a bisimulation. It
is easy to see thatσ0Rw0, and that for eachσ ∈ w we haveVc(σ) = V (w), since
the markings of the related states are equal. Thus, considerσ = (m, clock) ∈ Σ and
w = (m, Z) ∈ W such thatσRw.

– If w
τ
→ w′, wherew′ = (m′, Z ′) ∈ W , then fromZ ′ = τ(Z) we have that for

eachv ∈ Z (and therefore for that given byv(xi) = clock(i) for all i ∈ I) there
existsδ ∈ IR+ such thatv+δ ∈ Z ′. Moreover, the conditionZ ′ |= inv(m) implies
that for eacht ∈ en(m) there isi ∈ IV(t) such that(v + δ)(xi) ≤ Lft(t). Thus,

there exists a stateσ′ ∈ Σ, given byσ′ = (m, clock + δ), satisfyingσ
δ
→c σ′ and

σ′ ∈ w′ (i.e.,σ′Rw′).

– On the other hand, ifσ
δ
→ σ′ for someσ′ = (m, clock′) ∈ Σ andδ ∈ IR+, then

for eachσ1 = (m, clock1) ∈ w one can findδ′ ∈ IR+ such that the clock valuation
v′1 given byv′1(xi) = clock1(i) + δ′ is equivalent to the clock valuationv′ given
by v′(xi) = clock′(i) (intuitively, δ′ should be chosen such that the increase from
clock1(i) to clock1(i) + δ′ should “cross” as many integer bounds as the increase
from clock(i) to clock(i) + δ, for eachi ∈ I). Moreover, from the definition of
the time-successor relation we have that for eacht ∈ en(m) there isi ∈ IV(t)
such thatclock′(i) ≤ Lft(t), and therefore from the definition of'N it holds also
clock1(i)+ δ′ ≤ Lft(t). Thus, for the extended detailed regionw′ = (m, Z ′) such
that σ′ ∈ w′ (and thereforew′R−1σ′) we haveZ ′ = τ(Z) andZ ′ |= inv(m),
which impliesw

τ
→ w′.

– If w
t
→ w′ for some transitiont ∈ T , wherew′ = (m[t〉, Z ′) ∈ W , thent ∈

en(m) andZ |= firet(m) ∧ inv(m). Thus, it is easy to see that the transition
t can be fired also at the stateσ, which leads toσ′ = (m′, clock′) ∈ Σ, with
m′ = m[t〉 andclock′(i) = 0 for i ∈ IV(t), andclock′(i) = clock(i) otherwise.
Therefore, the clock valuationv′ given byv′(xi) = clock′(i) belongs to the zone
Z[reset(t, m) := 0], which impliesσ′ ∈ w′ (and thereforeσ′Rw′).

– If σ
t
→ σ′ for some transitiont ∈ T and σ′ = (m′, clock′) ∈ Σ, then t ∈

en(m), clock(i) ≥ Eft(t) for everyi ∈ IV(t), and there existsi ∈ IV(t) such
that clock(i) ≤ Lft(t). Thus, from the definition of'N the zoneZ satisfies the
constraintsfiret(m) andinv(m). Consideringw′ = (m′, Z ′) such thatσ′ ∈ w′,
it is easy to see from the definition of'N that Z ′ = Z[reset(m, t) := 0] (the
zoneZ collects the clock valuations equivalent tov given byv(xi) = clock(i) for

eachi ∈ I; therefore fromσ
t
→ σ′ and from the definition of'N the zoneZ ′

collects the valuations which are like the elements ofZ but with the clocksxi with
i ∈ IV(t) set to zero). Thus,Z ′ = t(Z). Moreover,Z ′ |= inv(m′) in an obvious
way (we havem′ = m[t〉; if a transitiont′ ∈ en(m′) became enabled by firing
t then there existsi ∈ IV(t′) such that for allv′ ∈ Z ′ v′(xi) = 0 (and therefore
v(xi) ≤ Lft(t′)), whereas for all the other transitionst ∈ en(m′) the existence of
i ∈ I s.t. v(xi) ≤ Lft(t) follows from Z |= inv(m), since the values of clocks
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have not been increased). Thus, for the detailed regionw′ such thatσ′ ∈ w′ (and

thereforew′R−1σ′) we havew
t
→ w′, which ends the proof.
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