SAT-Based (Parametric) Reachability
for Time Petri Nets *

Wojciech Penczek?, Agata Potrol4, and Andrzej Zbrzezny

1 Institute of Computer Science, PAS, Ordona 21, 01-237 WarBaland
2 Institute of Informatics, Podlasie Academy, Sienkiewib2a08-110 Siedice, Poland
penczek@ pi pan. waw. pl
3 Jan Dlugosz University, IMCS, Armii Krajowej 13/15, 42-2Q&estochowa, Poland
4 University of L6dz, FMCS, Banacha 22, 90-238 £6dz, Pdla

Abstract. Formal methods - among them the model checking techniquies - p
an important role in the design and production of both systarmd software. In
this paper we deal with an adaptation of the bounded modelkaig methods
for timed systems, developed for timed automata, to the cime Petri nets.
We focus on distributed time Petri nets and parametric iagaitity checking, but
the approach can be easily adapted to verification of othdskof properties
for which the bounded model checking methods exist. A thémedescription
is supported by some experimental results, generated asirgxtension of the
model checker Vecs.

1 Introduction

The process of design and production of both systems anda@ft- among others,
the concurrent ones — involves testing whether the produtfiocms its specification.
To this aim, various kinds of formal methods can be appliege Of the possible ap-
proaches, widely used and intensively developedipaydel checking techniques

In order to perform a formal verification, the system to béseés usually modelled
using a theoretical formalism, e.g., a version of autom@#dri nets, state diagrams
etc. Obviously, the kind of the formalism depends on theufiest of the system to be
described. One of the approaches, used to represent centaystems with timing
dependencies [10, 11, 20], d@ime Petri net{TPNs) by Merlin and Farber [21]. After
modelling the system in the above way, a suitable verificati@thod is applied.

The main problem to cope with while verifying timed systemsithie so-calledtate
explosionin order to check whether the system satisfies a propertyswelly need to
search through its state space, which in most cases is wegy taue to infinity of the
dense time domain. Furthermore, in the case of concurretegmg the size of the state
space is used to grow exponentially when the number of thgpooenmts increases. So,
searching for verification methods which are able to overetime above problem is an
important subject of research.

* Partly supported by the Polish Ministry of Science and HigBducation under the grant
No. N N206 258035

Bounded Model Checking (BMC) is an efficient verificationhaizue whose main
idea consists in translating a model checking problem sddvan a fraction of a model
into a test of propositional satisfiability, which is thenadeausing a SAT-checker. The
method has been successfully applied to verification of tioted and untimed sys-
tems|[3,4,7,12,16, 27,31, 35]. In this paper, we show hovdapathe BMC methods,
presented in [27,34—36] and developed for timed automatthe case of time Petri
nets. The adaptation exploits, in some sense, a methodrsldtang a time Petri net
to a timed automaton, described in [28]. However, we perfoonstructural translation
between these two formalisms, but use directly the tramsitelation defined by the
translation. In order to benefit from the concurrent strrestof the system, we focus
ondistributednets (i.e., sets of communicating processes), and exptwhastandard
approach to their concrete semantics, which consist incégsuog a clock with each
of the processes [28]. In this work, we deal with testing wkethe system (net) can
ever be in a state satisfying certain properties (i.e., vatithabilitychecking), but the
presented solutions can be also easily adapted to verdficafiother classes of prop-
erties for which BMC methods exist (see [23] for a survey)e Higorithm has been
implemented as an extension of the model checkac¥g3]. The next topic we dealt
with was searching for bounds on which the property testacheareached (searching
for a value of the parameteiin formulasEF~“p, corresponding to these considered in
[14]). In the final part of the paper we provide some prelimjrexperimental results.

To our knowledge, no BMC method for time Petri nets has beéinetéso far, al-
though some solutions for untimed Petri nets exist [16, 2Bgrefore, the main contri-
bution of this work consists in showing how to apply and inmpéant for TPNs the above
technique of verification (a general idea of the approachileas already sketched in
[23], but no details are given there). As a result, we obtaiaféicient method of check-
ing reachability, as well as searching for counterexamiplethe properties expressible
by formulas of the logicsA\CTL* and TACTL. Although the adaptation of the BMC
methods is almost straightforward, the practical consegegseem to be quite useful.

The rest of the paper is organised as follows: in Sect. 3 wednte time Petri nets,
and the abstraction of their state spaces, i.eexd@nded detailed region grapha the
further part we sketch the idea of reachability checkingg8MC (Sect. 4), and show
its implementation for time Petri nets (Sect. 5). Searcifiimdounds on time at which
a state satisfying a property can be reached (parametgbabdity) is considered in
Sect. 6. Sections 7 and 8 contain experimental results amduwding remarks.

2 Related work

The methods of reachability checking for time Petri netsstiyoconsisting in build-
ing anabstract modebf the system, are widely studied in the literature [6,5,33
19]. Detailed region graphs for time Petri nets, based o gt@ndard semantics (i.e.,
the one associating a clock with each transition of the netevwpresented in [22, 33].
Some BMC methods for (untimed) Petri Nets were described &) 26]. Parametric
verification for time Petri nets was considered in [32].

The current work is a modification and extension of the papét (published in
proceedings of a local workshop with the status of a tecthnéqeort).

3 Time Petri Nets

Let IR denote the set of non-negative redsthe set of rationals, anil (IN;) - the
set of (positive) natural numbers. We start with a definitbtime Petri nets:

Definition 1. Atime Petri net (TPN, for short) is a six-element tuple= (P, T, F, m°,
Eft,Lft), whereP = {p1,...,pn, } is afinite set oplacesT = {t1,...,tn .} IS @
finite set otransitions ' C (P x T)) U (T x P) is theflow relation m® C P is theini-
tial markingof M/, andEf¢t : T'— IN, Lft : T — IN U {oo} are functions describing
the earliestand thelatest firing timeof the transition; where for each € T we have
Eft(t) < Lft(t).

For a transitiont € T we define itspresetet = {p € P | (p,t) € F} andpostset

te = {p € P | (t,p) € F}, and consider only the nets such that for each transition
the preset and the postset are non-empty. We need also tbwifm notations and
definitions:

— amarkingof NV is any subsetn C P;

— atransitiort € T is enabledatm (m|t) for short) ifet C m andten(m \ et) = 0;
andleads fromm to m/, if it is enabled atn, andm’ = (m \ t) Ute. The marking
m’ is denoted byn|t) as well, if this does not lead to misunderstanding;

— en(m) = {t € T | m[t)} is the set of all the transitions enabled at the marking
of NV;

— amarkingm C P is reachabldf there exists a sequence of transitians. . ., ¢; €
T and a sequence of markings, . .., m; such thatng = m°, m; = m, and for
eachi € {1,...,1} t; € en(m;—1) andm; = m;_1[t;);

— a markingm concurrently enableswo transitionst,t’ € T if t € en(m) and
t' € en(m\ ot);

— a net issequentiaif no reachable marking ot/ concurrently enables two transi-
tions.

It should be mentioned that the time Petri nets defined aseadn@voften called-safe
in the literature.

Next, we introduce the notion of distributed time Petri netThe definition is an
adaptation of the one from [17]:

Definition 2. Letd = {i4,...,i,} be afinite ordered set of indices, and 9t= {N; |

i € 3}, whereN; = (P, T;, F;,m?, Eft;, L ft;) be a family of 1-safe, sequential time
Petri nets (callegprocessesindexed withl, with the pairwise disjoint set; of places,
and satisfying the conditiofViy,ix € 7)(Vt € T3, N T3,) (Efti, (t) = Efti,(t) A
Lfti,(t) = Lfti,(t)). Adistributed time Petri ne\ = (P, T, F,m°, Eft, Lft) is
the union of theprocessesVi, i.e., P = Jicg P, T = Uiy Tis F' = Uiy Fr m0 =
Uieg m, Eft = Uiy Efti, andLft = Uy L fti.

Notice that the functiod' ft;, (L ft;,) coincides withE ft;, (L ft,, resp.) for the joint
transitions of each two processgsandi,. The interpretation of such a system is a
collection of sequential, non-deterministic processel wommunication capabilities
(via joint transitions).

ied ieJ

/ \
 sext J
\) ’/‘
criticalll
idiel startl enterl /
® :
116, 00)

S S
\JQ/

(@) place 0
N

A
/{ \
/ \\ \

// \ start2

[0 »
\ uilz»z [0,00) trying2 “,,xz_c,,p Taiting [eA'_‘Z’)Z critical}
0 4] \
Ferx2 \

/
b T 2

Fig. 1. A net for Fischer’s mutual exclusion protocol for= 2

An example of a distributed TPN (Fischer’s mutual exclugiootocol) is shown in
Fig. 1. The net consists of three communicating processibstiaé sets of placeB; =
{idle;, trying;, enter;, critical;} for i = 1,2, and Ps = {place0, placel, place2}.
All the transitions of the process; and all the transitions of the proceds are joint
with the processvs.

In what follows, we consider distributed nets only, and assuhat all their pro-
cesses arstate machineg.e., foreach € Jand each € T}, | e t| = |t o | = 1), which
implies that in any marking o/, there is exactly one place of each process. It is im-
portant to mention that a large class of distributed net$easlecomposed to satisfy the
above requirement [18]. Moreover, foe T we definelV(t) = {i€J | ot N P, # 0},
and say that a proced§ is involved in a transitiort iff i € IV(t).

3.1 Concrete State Spaces and Models

The current state of the net is given by its marking and the fiassed since each of the
enabled transitions became enabled (which influences theefbehaviour of the net).
Thus, aconcrete stater of N’ can be defined as an ordered pair, clock), wherem
is a marking, an@lock : I — IR is a function which for each indexof a process of
N gives the time elapsed since the marked place of this prdmessme marked most
recently [28]. The set of all the concrete states is denoged brhe initial state of\ is
% = (mP, clock?), wherem? is the initial marking, andlock® (i) = 0 for eachi € J.
Foré € R, letclock+4 denote the function given Hylock+48)(i) = clock(i)+4,
and let(m, clock)+ § denote(m, clock + §). The states ol can change when the time
passes or a transition fires. In consequence, we introdwatgetldd timed consecution
relation—.C ¥ x (T UIR,) x X given as follows:

— In a states = (m, clock) a timed € IR, can pass leading to a new state=

(m, clock’ + 0) (denoteds N o') iff for eacht € en(m) there exists € IV(t)
such thatlock(i) + 6 < Lft(t) (time-successor relatign

— In a statec = (m,clock) a transitiont € T can fire leading to a new state
o' = (m/,clock’) (denoteds 5. o') if t € en(m), for eachi € IV(t) we
haveclock(i) > Eft(t), and there i € IV(¢) such thatclock(i) < Ljft(t).
Then,m’ = m]t), and for alli € J we haveclock/(i) = 0if i € IV(t), and
clock! (i) = clock(i) otherwise éction-successor relatign

Intuitively, the time-successor relation does not chamgenarking of the net, but in-
creases the clocks of all the processes, provided that nolezh&ransition becomes
disabled by passage of time (i.e., for edch en(m) the clock of at least one process
involved in the transition does not excekdlt(t)). Firing of a transitiort takes no time -
the action-successor relation does not increase the ¢logkenly sets to zero the cloks
of the involved processes (note that each of these procesat&sins exactly one input
and one output place of as the processes are state machines); and is allowed edovid
thatt is enabled, the clocks of all the involved processes arderédzankE ft(t), and
there is at least one such process whose clock does not ekgeg&d.

Then, we define #med runof N starting at a state, € X' (op-run) as a maximal
sequence of concrete states, transitions and time passirgs g Ec oo + do 30
o1 3o+ 61 By B ..., whereo; € 5, t; € T ands; € Ry foralli € IN. A
states, € X is reachablef there exists ar’-run p andi € IN such thawv, = o; + 6;,
whereo; + §; is an element of. The set of all the reachable states\6fis denoted by
Reach .

Given a set of propositional variablé3l”, we introduce avaluation functionV,. :
X — 2PV which assigns the same propositions to the states with the saarkings.
We assume the sélV to be such that eache PV corresponds to exactly one place
p € P, and use the same names for the propositions and the plaeedufictionV,
is defined byp € V.(0) & p € m for eacho = (m,-). The structureM.(N) =
(TURL, X,0% —,),V.) is called aconcrete(dens¢ model of V. It is easy to see
that concrete models are usually infinite.

3.2 Extended Detailed Region Graph

In order to deal with countable structures instead of untahla ones, we introduce
extended detailed region grapffisr distributed TPNs. They correspond to the well-
known graphs defined for timed automata in [1] and adaptedirfoe Petri nets [22,
33], but involve disjunctions of constraints, the reflexiv@nsitive closure of the time
successor of [1], and make no use of the maximal constantaipgen the invariants
and enabling conditions. To do this, we assign a clock to eate processes of a net.

Given a distributed time Petri nét’ whose processes are indexed with a set of
indicesJ with |[J| = n for somen € IN,. Let X = {zy,...,z,} be a finite set of
real-valued variables, calledocks A clock valuationon X' is an-tuplev € IR;. The
value of a clocke; in v is denoted by(x;). For a valuatiorv and a subset of clocks
X C X, byv[X := 0] we denote the valuatiosf such that/(z) = 0 forall x € X,

andv’(z) = v(x) for all 2 € X\ X. Moreover, for somé € R, by v + § we
denote the valuation’ such that/(z) = v(x) + ¢ for all z € X. The seCC» of clock
constraintsover X' is defined by the following grammar:

cc:= true|x; ~c|ecAcce|ccV e,

wherez; € X, ~€ {<,<,=,>,>}andc € IN. A valuationv satisfiesa constraint
cc € Cx (denoted [cc) iff

cc is of the formtrue,

— v(zi) ~ ¢, andcc is of the formz; ~ ¢,

v E g A v ceg, andcec is of the formee; A cco,
v E 1 V vk o, andcecis of the formee; V ccs.

The set of clock valuations satisfying a given constrairis denoted byfcc] ([cc] C
IRY}).

We assume the clock valuations to be such that for any canstatier = (m, clock),
for eachi € Jwe havev(z;) = clock(i). Thus, the clock constraint expressing the con-
ditions under which the net can be in a markimg(the marking invarian} can be

written as
nv(m) = /\ \/ xy < Lft(t),
teen(m) s.t.Lft(t)<oco i€lV(t)

if {t €T |teen(m)ALft(t) < oo} # 0, and asnv(m) = true otherwise, which
intuitively means that staying im is allowed as long as for each enabled transition
t with finite latest firing time there is a proce3g, involved in this transition, whose
clock is not greater thad ft(t) (and therefore has not been disabled by passage of
time). Moreover, for a marking: and a transition € en(m) we define the constraint

fires(m) = /\ x> Eft(t)

ieIV(t)

which expresses the condition under whictan be fired atn (note that the marking
invariant, which obviously holds iV is in the markingm, implies that at least one
process involved inhas the value of its clock not greater thiafit(¢)). Given a marking
m andt € en(m), firing ¢t atm results in assigning the valweto the clocks belonging
to the set

reset(m,t) = {x; € X |1 € IV(t)}.

Having all the above components, we can introduce the egtbdétailed region
graph for\. LetCar C Cx be a non-empty set of constraints defined by
cc:= x; > Eft(t) | x < Lt(t') | ce A ce,

wherex; € X, and, foragiven € J,¢t € Ty andt’ € T, N {t € T | Lft(t) < oo}.
Moreover, letfrac(a) denote the fractional part of a numhee IR, and|a] denote
its integral part. Then, we define equivalence classes okataluations [37]:

Definition 3. For two clock valuations, v' € IR'}, v ~ o' iff for all z,2" € X the
following conditions are met:

L |u(@)] = [v'(2)],
2. frac(v(z)) = 0iff frac(v'(z)) =0,
3. frac(v(z)) < frac(v(z")) iff frac(v'(z)) < frac(v'(z)).

The last condition implies thgtrac(v(x)) = frac(v(z")) iff frac(v'(x)) = frac(v'(a')).
We call the equivalence classes of the relation (extendejldetailed zonefor X,
and denote the set of all of them B}Z (n). It is easy to see from the definition ofy
that the number of extended detailed zones is countablaghahfbr eachc € Cnr and
eachZ € DZ(n) eitherv |= ccforallv € Z, orv = cc for all v € Z. We say that
Z € DZ(n) satisfies a clock constraint € Cx (denoted byZ = cc) iff we have
v |= cc foreachv € Z.
Given an extended detailed zofflec DZ(n), we introduce the operatiofi| X :=
0] = {v[X := 0] | v € Z}. Moreover, letZ? = {v € R} | (V& € X) v(z) = 0}.
Then, we define a successor relation on zones:

A~

Definition 4 (Time successor)Let Z and Z’ be two zones iDZ(n). The zone&Z’ is
said to be théime successaf Z, denoted-(7), iff for eachv € Z there exist$ € R
suchthat + 6 € Z'.

Definition 5 (Action successor)Let Z,Z' € DZ(n). The zoneZ’ is said to be the
action successaf Z by a transitiont € T', denoted(Z2), if there exists a marking: C
P witht € en(m) suchthatZ = fire,(m) A inv(m) andZ’ = Z[reset(m,t) := 0].

An (extended detailgdegionis a pair(m, Z), wherem C P andZ € DZ(n).
Notice that the set of all the extended detailed regions isytable. Given a concrete
statec = (m’, clock’) we defineoc € (m, Z) if m = m’ andv € Z, wherev is the
clock valuation satisfying(z;) = clock/(i) for all i € J. Next, we define a countable
abstraction of the concrete state spacé/of anextended detailed region graph

Definition 6. Theextended detailed region grafibr a net A is a structurel"(N) =
(T U{r},W,uw’, —), whereW = 2P x DZ(n), w® = (m° Z), and the successor
relation —=C W x (T'U {r}) x W, wherer ¢ T, is defined in the following way:

- (m,2) 5 (m, 2" iff Z,Z" = inv(m) andZ' = 7(2);
—forteT,(m,2) 5 (m',Z)iff t € en(m), m’ =mlt), Z' = t(Z), Z |= inv(m)
andZ’ = inv(m/).

By anabstract modebased on/’(A) we mean a structurd/(N) = (I'(N), V),
where for eachv € W and eactr € w we haveV (w) = V(o).

Notice that the definition of> is correct: in spite of a possibly non-convex form of
[inv(m)], its definition ensures that#f, Z’ € DZ(n), Z, Z' |= inv(m) and(m, Z) =
(m, Z"), then for any otheZ” € DZ(n) s.t.Z" = 7(Z) andZ’' = 7(Z") (i.e., for
a region(m, Z") “traversed” when the time passes betwéen Z) and(m, Z')) the
conditionZ” |= inv(m) is satisfied as well. This follows from the fact that if in the
zoneZ somex; € X satisfies the condition(z;) > Lft(t), then the same holds also
for all the time successors ¢f, and, on the other hand, if it satisfiegr;) < Lft(t)

and this condition is violated for son&’ = 7(Z), then there is n&’ = 7(Z") for
which it holds again.

In order to show that the modél/-(\') preserves the behaviours of the net, we
shall prove that it ibisimulation equivalenwith M. (N), where the bisimulation equiv-
alence is defined as follows:

Definition 7. Let M = ((L, S, so,—),V) and M" = ((L', 5, s;,—'), V') be two
models of a time Petri neV/. A relation~,C S’ x S is asimulationfrom M’ to M if
the following conditions hold:

® 50~ S0,
e foreachs € Sands’ € 5/, if ' ~4 s,thenV(s) = V’(s’), and for every; € S
I

such thats - s; for somel € L, there issy € S’ such thats’ LR s} for some
I e L' ands] ~ s1.

The modelM’ simulatesM (M’ ~»s M) if there is a simulation from/’ to M. Two
models)M and M’ are calledbisimulation equivalenif M’ ~», M and M (~4) =t M’,
where(~4)~! is the inverse of-.

Then, we can prove the following lemma:

Lemma 1. For a given time Petri net\" the models\/.(N) = (TURy, X, o2,
—), Ve)and Mr(N) = (T U {7}, W,w°, —), V) are bisimulation equivalent.

The proof can be found in the appendix.

4 Testing Reachability via BMC

The reachability problem for a systef consists in checking, given a propernty
whetherS can ever be in a state whepeholds (which can be described by thE'L
formulaEFp - “there exists a path s.t. at that path the properfinally holds”). The
property is expressed in terms of propositional variadleshe case the systeisi is
represented by a time Petri n&f, the propositions correspond to the set of its places
P. Therefore, the reachability verification can be transldtetesting whether the set
Reachys contains a state whose marking includes a given subskt @hecking this
can be performed by an explicit exploration of the concrittespace (model), but due
to its infinity such an approach is usually very inefficient.

If a reachable state satisfying the propestgxists, this can be usually proven ex-
ploiting a part of the model only. This enables us to applyidbended model checking
approach. The basic idea of testing reachability using BM@ststs in searching for a
reachability witnes®f a bounded length (i.e., for a path of a length € IN,, called a
k-path which leads from the initial state to a state satisfyihgSearching for a reach-
ability witness is performed by generating a propositidoahula that is satisfiable iff
such a witness exists. Satisfiability of this formula is dtegtusing a SAT-solver.

To apply the above procedure, we represent the states of el thbdV) for a given
time Petri net\" as vectors of boolean variables, and express the transéiation

of the model in terms of propositional formulas. Then, ereodeall the k-paths of

M (N) starting at its initial state as a propositional formala and check satisfiability

of a formulary;, which is the conjunction ofy;, and a propositional formula expressing
that the property holds at some state of/apath. The above process is started from
k = 1, and repeated iteratively up fo= |M]|. It, however, can be stopped, since if
for somek the formulay; is satisfiable, then reachability of a state is proven, and no
further tests are necessary.

The above method can be inefficient if no state satisfyirgists, since the length
of the k-path strongly influences the size of its propositional @ireg. Therefore, in
order to prove unreachability of a state satisfying@nother solution, shown in [36], is
applied. A sketch of the idea is as follows: using the BMC prbhares, we search for a
longestk-path starting from an arbitrary state bf (afree path) such thap holds only
in the last state of this path. If such a patlis found, then this means that in order to
learn whether a state satisfyipds reachable we need to explore the model only to the
depth equal to the length af

5 Implementation for Time Petri Nets

In order to apply the above approach to verification of a paldr distributed time
Petri net\, we deal with a model obtained bydéscretisationof its extended detailed
region graph. The model is of an infinite but countable stestwhich, however, is
sufficient for BMC (which deals with finite sequences of sataly). Below, we show
this discretisation, and then encode the transition maif the model.

5.1 Discretisation of Extended Detailed Region Graphs

Let '(N) = (T U {7}, W,w°, —) be the extended detailed region graph for a dis-
tributed time Petri nef\/, and X’ be the set of clocks corresponding to its processes.
Instead of dealing with the whole extended detailed regi@plyl'(N\), we discre-
tisethis structure, chosing for each region one or more appatgrepresentatives. The
discretisation scheme is based on the one for timed autdi®#}aand preserves the
gualitative behaviour of the underlying system.

Let n be the number of clocks, and let,...(\) be the largest constant appearing
in Cy (i.e., the greatest finite value é&fft and L ft). For eachn € IN, we define

D, ={deQ|(3FkeN)d 2™ =k},

and
En={e€cQ|(BkeN)e-2" =kAe < cnazN)+1}.

Thediscretised clock spads defined a®", whereD = | J,°_, D,,. Similarly, the set
of possible values of time passings is definetas | J,°_, E,,. The above definitions
give us that the maximal values of time passings are restrittc,, .. (N) + 1, which

is sufficient to express the behaviour of the net. Moreoweths clock space and the
set of lengths of timed steps ensure that for any repre$emtsftan extended detailed
region there is another representative of this region whih be reached by a time

step of a lengtle € E. It should be mentioned that such a solution (different timan
[24]) allows us to compute precisely the time passed aldagath (which was difficult
while using the so-called “adjust transitions” of [24]).

Now, we can introduce discretised region graphs and models:

Definition 8. The extended discretised region grabbsed on the extended detailed
region graphl"(\), is a structurel'(N) = (TUE, W, w° , —a), Wherel = 2P x Dn,

w® = (m?, Z9), and the labelled transition relatior-;C W x (TUE) x W is defined
as

1. fort € T, (m,v) Sq (m/,0))iff t € en(m), m’ = mlt), v = fires(m) Ainv(m),
v = v[reset(m,t) := 0], andv’ |= inv(m') (action transitioly

2. foré € E, (m,v) LA (m,v") iff v/ = v + 6 andv, v’ | inv(m) (time transition.

Given an abstract moda{(N) = (I'(N), V) based o (N) = (TU{r}, W, w°,
—) and the discretised modeﬁ(/\/) we can deflne aliscretized modebased on
I'(N), which is a structure/(N) = (I'(N), V), whereV : W — 2PV is a val-
uation function such that for eaeh € W being a representative af € W we have
V(w) = V(w). This model will be exploited in BMC-based reachability ckiag.

5.2 Encoding of the Transition Relation of the Discretized Mdel

In order to apply SAT-based verification methods describe8idc. 4, we need to rep-
resent (encode) the discretized moﬂ%}(]\/) as a boolean formula. To do that, we
assume that each statec W is given in a unique binary form, i.ez; € {0, 1}"(™),
whereh(m) is a function of the greatest exponent appearing in the devadors of
clock values inw (see [37] for details). The digits in the binary formwofare denoted
by w(1),...,w(h). Therefore, the elements f can be “generically” represented by
avectorw = (w[1],...,w[h(m)]) of propositional variables (calledsymbolic statg
whose valuation (i.e., assignment of values to the var&bkpresents iff for each
Jj € {1,...,h(m)} we have Wj] = true iff w(j) = 1, and wWj] = false otherwise.
Moreover, eaclk-path inf(/\/) can be represented by a finite sequewge. . . , wy, of
symbolic states, and again, such a representation is Gadigaibolick-path

In what follows, bystate variablesve mean propositional variables used to encode
the states of (V). The set of all the state variables, containing the symbals and
false, will be denoted bySV, and the set of all the propositional formulas built over
SV - by SF. The elements of F' are calledstate formulas

In order to encode the transition relation HF(N), we introduce the following
functions and propositional formulas:

— lit: {0,1} x SV — SF, which is defined byit(0, p) = —p andlit(1,p) = p

= Ly(w) = /\;?:1 lit(w(j), w[j]) which is true iff the vectow represents the state
w,

— T(w,w’) which is true iff for the states), w’ € W, represented by vectovs and
w’, respectively, it holdss =, w’ for somee € T UE.

10

The formula which encodes all tikepaths inf(/\/) starting at the initial state is of the
form

k—1
ag = Io(wo) A N\ T(wj, wjin),
=0

wherewyg, ..., wy iS a symbolick-path. In practice, we considérpaths with some

restrictions on repetition of the action and time transisicand on lengths of the time
steps (see [37] for details). Encoding the fact that a staisfes a given property is
straightforward.

6 Parametric Reachability Checking

Besides testing whether a state satisfying a propdsyeachable, one can be interested
in finding a minimal time in which a state satisfyipgcan be reached, or finding a
minimal time after whictp does not hold. To this ainparametric reachability checking
can be used.

In order to be able to perform the above verification, we ihiie an additional
restriction on the nets under consideration, i.e., regbhigg contain no cycl€’ of tran-
sitions such that for each € C we haveEft(t) = 0 (which guarantees that the
time increases when the net progresses, and is a typicahpisn when analysing
timed systems). Moreover, we introduce the notatBRS “p, with ~¢ {<, <, >, >}
andc € IN, which express that a state satisfyings reached in a time satisfying the
constraint in the superscriptThe problems intuitively presented at the beginning of
the section can be expressed respectively as finding a miriswech thatEF<<p (or
EF<¢p) holds, and finding a maximalsuch thateF>¢p (or EF=p) holds.

An algorithm for finding a minimat such that? F<¢p holds looks as follows:

L

Using the standard BMC approach, find a reachability \g&ref minimal lengthy

2. read from the witness the time required to rea¢tienotedr). Now, we know that
¢ < [z] (where[-] is theceiling function);

3. extend the verified TPN with a new procégswhich is composed of one transition

ts.t. Eft(t) = Lft(t) = n, and two place®;,, pou: With et = {p;,} andte =

{Pout} (see Fig. 2(a)),

setnto [z] — 1,

Run BMC to test reachability of a state satisfying p;,, in the extended TPN,

if such a state is reachable, set=n — 1 and go to 5,

if such a state is unreachable, thes= n + 1, STOP.

No ok

Some comments on the above algorithm are in place. First,df ahould be ex-
plained that the BMC method described in Sec. 4 founds a eduldly witness of a
shortest length (i.e., involving the shortest possibigath). However, the shortest path
is not necessarily that of minimal time. An example can bersee~ig. 3, where the

! The full version of the logic, for a discrete semantics anthwi restricted to< only, can be
found in [14].
2 if we cannot find such a witness, then we try to prove unreatityadf p.

11

é
Ox

t
P l"(:) onut

[n,n) [n,n] [0,0]

(@) (b)

Fig. 2. The processes added to the nets to test parametric reaghabil

OMIM

t3

[1,1] ty 1,1]

O

Fig. 3. An example net

[10,10]

shortest path leading to the place satisfying the progesty consists of one time step
and one action step (i.e., passirigtime units and then firing;), whereas minimal time
of reaching such a statedswhich corresponds to firing, ¢3 andt,, each of them pre-
ceded by passing one unit of time. Due to this, after findinggelhability witness fop

in step 1 of the algorithm, we test whethetan be reached in a shorter time. Extending
the net with a new process allows us to express the requirgimarthe time at which

p is reached is not greater than(n € IN), since at timen the transitiort has to fire,
which unmarks the placg,, .

The second comment to the algorithm concerns the possililmisptions. Firstly,
the algorithm can be optimized by applying one of the weltnkn searching algorithms
instead of decreasingby one in each step. Secondly, it is easy to see that if BMC finds
a reachability witness faw of lengthk, then a witness for reachingin a smaller time
cannot be shorter than(if such a witness existed, it would have been found preWygus
Thus, in step 5 of the algorithm the BMC method can start widgual to the length of
the witness found in the previous run, instead of with: 1.

Finally, step 7 of the algorithm should be explained. In otdedecide that no state
satisfyingp A p.,, is reachable, we should either prove unreachability ofstese using
the method of [36], or to find an upper bound on the length ofitpaths such that
unreachability ofp A p;, on the paths up to this length allows us to decide that no
state of interest is reachable. We can do the latter in sosesaanly, i.e., when some
restrictions on the nets considered are assumed. Thisd#ispeby the following two
lemmas:

Lemma 2. If a net /' contains no transitiort with Ef¢(¢) = 0, then the length of a
reachability witness foEF=¢p, in which time- and action steps alternate, is bounded
by2 - c.

Proof. We make use of the result of [29], which states that each eddetmarking

of a TPN can be reached on a path whose time steps are of iM&ges only. Since
from the stucture of the net and from the structure of the pagthave that zero-time

12

steps are not allowed, the shortest time steps are of lemgthTthe boundc is then
straightforward.

Lemma 3. Let\ be a distributed net consisting afprocessesV; = (P, T, Fi, m?,
Eft, Lft;) (i €I ={1,...,n}), each of which contains no cycle besides (possibly)
being a cycle itself and satisfies the condititdn, tx € T; (et1 N P, = eta N P, <—

t; e NP, = t, « NP;). The length of a reachability witness fBF<¢p, in which time-
and action steps alternate, is boundedy= 2 - X , z;, where each;, fori € J, is
computed according to the following algorithm:

1. setg := 0, time := 0, andnextTrans to sucht € T; thatet = m? andEft(t) =
min(Eftt') |t € T, A ot =m?),
2. do
x time := time + E ft(nextTrans);
* if time < cthen sely := g + 1 ands, := nextTrans;
* setnextTrans to sucht € T; thatet = s,_1e and Eft(t) = min(Eft(t') |
t'eTiNotl =s4_10),
whiletime <= cands, e NP; # 0,
3. whileEft(sy) = 0and(es, N P,) ¢ Prop(p), whereProp(p) is the set of propo-
sitions occuring in the property, dog := g — 1;
4. setz; :=g.

Proof. From the structure of a process/gt we have that the algorithm far computes
first the number of transitions which can be executed in tipvided that\V; proceeds
as fast as possible, and then optimises the value obtainesiiwing a number of final
steps which influence neither the time nor reaching the ptppested. The length of
the path in which time- and action steps alternate is thezefqual t2z;. Taking the
sum of these values for all the processes corresponds taeonig the worst case, in
which all the processes proceed independently, perforasngany steps as possible.

An algorithm for finding a minimat such thafeF <¢p holds is similar to the previ-
ous one:

1. Using the standard BMC approach, find a reachability g&ref minimal lengtPy
2. read from the witness the time required to rea¢tenotedr). Now, we know that
c < [x];

3. extend the verified TPN with a new procegswhich is composed of two transi-
tionstl, ty S.t. Eft(tl) = Lft(tl) = n, Eft(tg) = Lft(tg) =0, ot; = {pzn}i
t10 = oty = {pmia} andize = {p,.+} (see Fig. 2(b)),

. setnto [z] — 1,

. run BMC to test reachability of a state satisfying p;,, in the extended TPN,

. if such a state is reachable, set=n — 1 and go to 5,

. if such a state is unreachable, set= n + 1 and run BMC to test reachability of a
state satisfying A p...;q in the extended TPN,

8. if such a state is reachable, then=n + 1, STOP,

9. if such a state is unreachable, then= n, STOP.

~N o o1 b~

8 if we cannot find such a witness, then we try to prove unredbtityadf p.

13

In this case, the additional process contains the placehnd@n be marked only if the
time passed since the net started is equal tbhe algorithm proceeds in the following
way: the stepd - 6 (analogous as in the previous algorithm) are aimed at finding
minimaln such thaEF<"p holds. Then, it is tested whethecan be reached exactly at
timen. Depending on the result of this test, the bound returneithisre: or n+1 (which
follows from the result of [30] stating that the minimal tindeiration of a transition
sequence is an integer value). The improvements to theitlgw, as well as methods
of deciding unreachability in stefsand9, are the same as in the previous case.

The next pair of the algorithms is aimed at finding a minimaletiafter which no
state satisfying is reachable. This can be done by searching for a maxitfimaiwhich
EFZ¢p (or EF>“p) holds. The algorithm foEF=¢p is as follows:

1. using a standard BMC approach, test whether therekigpath = such thatp is
reachable from its arbitrary state (i.e., whether #othe CTL formula EGEFp
holds),

2. if such ak-path can be found, then no maximadxists, STOP.

3. if such ak-path cannot be found then, using the standard BMC apprdiacha

reachability witness fop of a minimal length.

read from the witness the timerequired to reach,

5. extend the verified TPN with a new process which is compo$ethe transition

t st Eft(t) = Lft(t) = n, and two place®i,, pout With te = {p,,:} and

ot = {pln}y

setn to [], and set an upper boundb > n) onc to be searched féy

run BMC to test reachability of a state satisfying p,.: in the extended TPN,

if such a state is reachable amd- 1 < b, then set :==n +1andgoto 7,

if such a state cannot be foundros- 1 > b, then set :=n — 1, STOP.

»

© o~NO

Testing whether there isfapath s.tp is reachable from its arbitrary state (testing
EGEFp) is done by checking whether there is a path which has a louptleere is a
state of this loop at which holds. In order to ensure that there is no maximate need
also the path to be progressive, i.e., such that its loopounat least one non-zero time
steps.

Again, some optimisations to the algorithm can be introdudée first one can
consist in applying a well-known searching technique imdtef increasing: by one
in each step. The second is based on an observation thatessability witness for
EF2"pis also a reachability witness f&F ="~ 1p. Thus, no witness fdEFZ"p can be
shorther than the shortest one foundid="~1p (if a shorter witness existed, it would
have been found while searching for a witness d="~1p). Thus, while running

4 if we cannot find such &, then we try to prove unreachability pf

® the valueb can be also a parameter of the algorithm

® Formally, letr be ak-path, () be thei-th state of the pathi. (i, + 1) be the time passed
while moving fromz (i) to w(é + 1), loop(w) = {h | 0 < h < k A w(k) — =w(h)}, and
II,(s) be the set of all thé-paths starting at. The bounded semantics f@#@GEFa is as
follows: s E EGEFa <= (3m € IIi(s))(loop(w) # O A (31 € loop(m)(A < j <
k)(m(5) E a A Xi<j<ibpi(j,j + 1) > 0)).

14

step 7 of the algorithm, we can start withequal to the length of the witness found in
the previous run, instead of with= 1.

It should be noticed that, contrary to the former cases, waagset any upper
bound on the length of-paths to be tested in step 9, besides the one which follows
from the valueb assumed in the algorithm. In this case, computing the bosidgmne
analogously as we shown in the description of the algorithinicf <¢p.

An algorithm for checkingZ? '~ ¢p (and searching for a maxima) is as follows:

1. using a standard BMC approach, test whether therekigpath = such thatp is
reachable from its arbitrary state (i.e., whether #othe CTL formula EGEFp
holds),

if such ak-path can be found, then no maximatxists, STOP.

3. if such ak-path cannot be found then, using the standard BMC apprdiacha
reachability witness fop of a minimal lengtA.

read from the witness the timerequired to reach,

5. extend the verified TPN with a new procegswhich is composed of two transi-
tionstl, ty S.t. Eft(tl) = Lft(tl) = n, Eft(tg) = Lft(tg) =0, ot; = {pzn}i
t1e = oty = {pmid} andtQ. = {pout}v

setn to [], and set an upper boundb > n) onc to be searched féy

run BMC to test reachability of a state satisfyimg p,.: in the extended TPN,

if such a state is reachable amd- 1 < b, then seth :=n + 1andgoto 7,

if such a state is unreachableror- 1 > b, setn := n — 1 and run BMC to test
reachability ofp A p...q) in the extended TPN,

10. if such a state is reachable, thep=n — 1, STOP;

11. if such a state is unreachable, thes- n, STOP.

N

»

©m~No®

The idea behind the algorithm is similar to the previous apphes: first a maximal
n for which EF2"p is found, then the algorithm tests whether reachirag timen is
possible. The final result depends on the answer to the Gistion.

It should be mentioned that in practice all the above metlaoesot complete (as
the BMC itself is not). It can happen that we are not able tos@ranreachability of
a state, compute an upper bound on the length /ojath to be tested, or, in spite of
finding such an upper bound, are not able to test the paths thstéength using the
resources given. However, the preliminary experiments/ghat the methods can give
quite good results.

7 Experimental Results

The experimental results presented below are prelimirsamge some methods men-
tioned in the previous sections are not implemented yet. Megaing to complete the
implementation to the final version of this paper.

We have performed our experiments on the computer equipgibdntel Pentium
Dual CPU (2.00 GHz), 2 GB main memory and the operating sysfienx 2.6.28. We

" if we cannot find such &, then we try to prove unreachability pf
8 the valueb can be also a parameter of the algorithm

15

have tested some distributed time Petri nets for the stdrkischer's mutual exclusion
protocol (mutex) [2]. The system consists aftime Petri nets, each one modelling a
process, plus one additional net used to coordinate the@sacto the critical sections.
A distributed TPN modelling the system is shown in Figuredt,the case ofi = 2.
Mutual exclusiommeans that no two processes are in their critical sectiotieagame
time. The preservation of this property depends on theivelaalues of the time-delay
constantg andA. In particular, the following holds:Fischer’s protocol ensures mutual
exclusion iffA < .

Our first aim was to check that it > ¢, then the mutual exclusion is violated.
We considered the case with = 2 andé = 1. It turned out that the conjunction of
the propositional formula encoding thepath and the negation of the mutual exclusion
property (denoteg) is unsatisfiable for every < 12. The witness was found for
k = 12. We were able to tedl) processes. The results are shown in Fig. 4 (left).

Our second aim was to search for a minimaiich thaEF<¢p holds. The results are
presented in Fig. 4 (right). In the case of this net, we areabé# to compute an upper
bound on the length of thie-path. Unfortunately, we also could not test unreachabilit
since the method is not implemented yet. Again, we consibite case withA = 2
andd = 1, and the net o025 processes. The witness was found#ce 12, and the time
of the path found was betwe8rand9. The columm shows the values of the parameter
in the additional component. Far= 1 andk = 12 unsatisfiability was returned, and
testing the property on a longer path could not be completedeéasonable time.

The next two (scalable) examples were the networks showimginS-The net (a)
shown in the left-hand side of the figure was scaled by inangdsft(t2) andL ft(t2),
according to the schemé& = 2u, B = 4u, foru = 1,2, The property tested was
EF(ps A pg). The net (b) shown on the right was scaled by increasing tinebeu of
components; (i = 1,2,...). Inthis case, reachability of a state satisfying\ A7_, p}
was checked (whergis a number of identical processes). For both the nets welsear

tpnBMC RSat
k] n|variables| clause§ sed MB seq MB]J sat
0] - 840 2194| 0.0 3.2 0.0 1.4 NO
2|- 16263| 47707 0.5| 5.2 0.1 4.9 NO
k[n]variables] tglgss'\g? sedq MB secRsall\t/IB sat 4 33835 99739 10| 7.3 0.6] 9.1} NO
6|- 51406 151699 1.6 9.6 1.8| 13.8| NO

0f- 1937 5302| 0.2] 35 0.0 1.7] NO
8- 72752(214853 2.4(12.3 20.6| 27.7| NO

2] - 36448(107684 14| 7.9 0.4 9.5|] NO
10 - 92629 273491| 3.0(14.8| 321.4| 200.8[NO

4] - 74338(220335 2.9(12.8 3.3 21.5(NO
12| - | 113292| 334357| 3.7|17.5 14.3| 39.0| YES|

6| -| 112227(332884 4.2|17.6 14.3 37.3| NO
12 (7| 120042| 354571| 4.1]18.3 45.7| 59.3| YES|

8| -| 156051| 463062 6.1|23.3| 257.9| 218.6| NO
12 6| 120054| 354613| 4.0|18.3| 312.7(206.8| YES|

10]-| 197566] 586144| 7.8]28.5]2603.8] 1153.2] NO
o[- 240317 712744 9.7 34.0 87 4] 1408/ YES 12| 5| 120102| 354763| 4.0|18.3 64.0(77.7| YES
32'4 34'0 2967.1 1153'2 12| 4| 120054| 354601| 4.1|18.3 8.8] 35.0(YES]
. . . . 12| 3| 115475| 340834| 3.9|17.7 24.2| 45.0| YES
12 (2| 115481| 340852| 3.9|17.8| 138.7(100.8| YES|
12 1| 115529| 341008 3.9| 17.7| 2355.4| 433.4| NO

40.1]18.3] 3308.3| 433.4

Fig. 4. Results for mutexA = 2, § = 1, mutual exclusion violated. Left: proving reachability
for 40 processes, right: parametric verification #5rprocesses.

16

a@“"
Cx

[1 9 ?
1)@ T @ [A . P@ z‘ls @ tl‘z
T t -

Fig. 5. Time Petri nets tested in experiments

for a minimal timec at which a given property can be reached, and for both of them
we were able to compute an upper bound on the length df-{h&th to be tested while
checking reachability in a time not exceedingFor the net (a) the bound & =
2(z1 + 22 + z3), wherez; = 3n — 1, 25 = 3[n/(2u)] — 1 andzz = 1 (where the third
process is that added to test reachability in timewhereas for the net (b) containing

Jj identical components it is given by = 2o + X/_,z; + z;4+1, where the bound for
the first process is; = 3[n/2] — 1, the bound for each of the identical processes is
zi =3n—1(G =1,...,7), and the bound for the additional process,is; = 1. The
results for the net (a), with the values of the coefficiegiven, are presented in Fig. 6.
In the case ofs = 4 we were able to test thie-paths up to the upper bourd = 46,

and to show that the parameter searched fer4s 8; for v = 5 we can only assume
that the value ot is 10, since we were not able to test all thepaths of the lengths up
to K = 58. Concerning the net (b), we were able to test the net comgidiidentical
processes and to show that 2; the results are given in Fig. 7.

8 Final Remarks

We have shown that the BMC method for checking reachabitiyperties of TPNs is
feasible. Our preliminary experimental results prove fifieiency of the method. How-
ever, it would be interesting to check practical applidapdf BMC for other examples
of time Petri nets. On the other hand, it would be also intergso check efficiency of
the above solutions for other (non-distributed) nets (Witould be done by applying
the translations from [28]).

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model checking femai-time systems. IRroc. of
the 5th Symp. on Logic in Computer Science (LICS'@#@pes 414-425. IEEE Computer
Society, 1990.

2. R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wijefoi. An implementation of
three algorithms for timing verification based on automagtiness. InProc. of the 13th

17

tpnBMC RSat

k] n|variables] clause$ sed MB sed MB]J sat tpnBMC RSat

o] - 21 34]/0.0{3.0 0.0 1.3| NO k] n |variables| clause$ sed MB sed MB]J sat

2| - 603 1653| 0.0| 3.0 0.0 1.4 NO 0] - 21 3410.0| 3.0 0.0 1.3| NO

41 - 1396(3909|0.0]3.1 0.0 1.6 NO 2| - 619 1707|0.0| 3.0 0.0 1.4] NO

6| - 2174| 6097|0.0| 3.2 0.0 1.7| NO 41 - 1428 4017|0.0|3.1 0.0 1.6| NO

8] - 3347| 9429|0.1|3.3 0.0 2.0 NO 6| - 2467| 6985|0.0|3.2 0.0 1.8| NO
10| - 4345| 12213(0.1| 3.5 0.0| 2.2| NO 8| - 3411 9645/0.0(3.3 0.0 2.0| NO
12| - 5413| 15175|0.1| 3.6 0.0 2.5(NO 10| - 4425| 12483(0.1| 3.5 0.0 2.2 NO
141 - 6551| 18315/0.1|3.7 0.1| 2.8|YES 12| - 5994| 16945/0.1 3.6 0.0 2.6| NO
1417 8812| 24886|0.1| 4.0 0.1| 3.3 NO 141 - 7228| 20379|0.1|3.7 0.1 29| NO
16| 7 11299| 31987|0.2| 4.2 0.1| 3.8 NO 16| - 8532| 23991|0.1|3.9 0.1 3.2 NO
18| 7 13151 37159|0.2| 4.5 0.2 4.2 NO 18| - 9906 27781|0.1|4.1 0.1 3.5 NO
20(7 15103| 42595|0.2|4.8| 118.9|17.1| NO 20| - 11350 31749|0.2|4.2 0.1 3.8| YES
227 17155| 48295|0.3| 5.0 15.6| 8.3 NO 20| 10 15223| 42995|0.2| 4.8 0.2 4.8| YES
2417 19307| 54259|0.3|5.2 18.9| 9.7| NO 20| 9 15303| 43255|0.2| 4.8 5.1 6.0 NO
26| 7| 21559| 60487|0.3|5.5| 133.5|19.0| NO 22|19 17375| 49021|0.3| 5.0 58.9| 10.9] NO
28| 7 23911| 66979|0.4|5.8| 167.1| 26.5| NO 24| 9 20802| 58804|0.3|5.4 9.1 9.7| NO
30(7 27930| 78424(/0.4|6.2 96.4| 18.5| NO 26| 9 23178| 65410(0.3|5.7 73.4| 16.4] NO
32(7 30586| 85756(0.5| 6.5 224.9|32.6| NO 28| 9 25654| 72280(0.4(5.9 139.2| 21.1| NO
34(7 33342| 93352|0.5|6.8| 339.8|36.4| NO 30| 9 28230| 79414|/0.4|6.3 185.2| 22.6| NO
36(7 36198| 101212| 0.5| 7.2| 549.8| 50.2| NO 32| 9 30906| 86812|0.5|6.6| 1974.1| 115.3| NO
38| 7| 39154| 109336/ 0.6 7.5| 339.8|50.7| NO 34| 9 33682| 94474|/0.5/6.9| 566.0] 64.9| NO
407 42210| 117724/ 0.6 7.9 266.5|45.6| NO 36| 9 36558 102400(0.5| 7.2 955.7| 67.8] NO
42| 7| 45366| 126376| 0.7 | 8.2| 1026.9| 85.0| NO 38| 9 39534 110590| 0.6| 7.6| 2931.3| 160.6| NO
4417 48622 135292| 0.7| 8.6| 558.6(83.3| NO 40| 9 42610| 119044(0.7 8.0 4771.1| 187.6| NO
46| 7 51978| 144472(0.8| 9.0 574.7| 75.6| NO 5.7(8.0] 11669.7| 187.6

7.6(9.0[4431.9]| 85.0

Fig. 6. Results for net (a). Leftz = 4, K = 46 (unreachability proven). Rightt = 5, K = 58

(unreachability not proven)

IEEE Real-Time Systems Symposium (RTSS®)es 157-166. IEEE Computer Society,
1992.

. G. Audemard, A. Cimatti, A. Kornilowicz, and R. SebastigBounded model checking for

timed systems. IfProc. of the 22nd Int. Conf. on Formal Techniques for Netwdrknd
Distributed Systems (FORTE’Q2)olume 2529 oLNCS pages 243-259. Springer-Verlag,
2002.

. M. Benedetti and A. Cimatti. Bounded model checking fostRdL. In Proc. of the 9th Int.

Conf. on Tools and Algorithms for the Construction and Asalypf Systems (TACAS'03)
volume 2619 oLNCS pages 18-33. Springer-Verlag, 2003.

. B. Berthomieu and M. Diaz. Modeling and verification of éirdependent systems using

time Petri netsIEEE Trans. on Software Endl7(3):259-273, 1991.

. B. Berthomieu and M. Menasche. An enumerative approaciniayzing time Petri nets. In

Proc. of the 9th IFIP World Computer Congresslume 9 ofinformation Processingpages
41-46. North Holland IFIP, September 1983.

. A. Biere, A. Cimatti, E. Clarke, M.Fujita, and Y. Zhu. Syoitlc model checking using SAT

procedures instead of BDDs. Proc. of the ACMIEEE Design Automation Conference
(DAC'99), pages 317-320, 1999.

. H. Boucheneb and K. Barkaoui. Relevant timed schedulesk @aluations for constructing

time Petri net reachability graph. Iroc. of the 6th Int. Workshop on Formal Analysis
and Modeling of Timed Systems (FORMATS'@®Jume 5215 ofLNCS pages 265-279.
Springer-Verlag, 2008.

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

tpnBMC RSat
k variables| clause§ seq MB seq MB]J sat
0 71 124 0.0| 3.0 0.0 1.3] NO
2 1567 4394 0.0 3.1 0.0 1.6| NO
41 - 3754| 10753(0.1| 3.3 0.0 21| NO
6

8

e

6661| 19240(0.1| 3.7 0.0| 2.8| NO
9273| 26794(0.2| 4.0 0.0] 3.4| NO

10| - 12105| 34956|0.2| 4.4 0.1| 4.0 NO
12| - 16672| 48307|0.3| 4.9 0.2| 5.1| NO
141 - 20194| 58445/0.4| 5.4 0.5 5.9]| NO
16| - 23936 69191|0.4| 5.8 1.4] 6.8] NO
18] - 27898| 80545|0.5| 6.3 29| 8.0] NO
201 - 32080 92507|0.6| 6.8| 10.1| 10.2| NO
22| - 39247| 113458/ 0.7| 7.7| 88.9] 19.0{ NO
24| - 44119| 127396| 0.8| 8.3| 341.1] 26.9| NO
26| - 49211| 141942| 0.8| 8.9| 489.3| 42.4] NO
28] - 54523| 157096/ 0.9| 9.6 6.2| 14.5| YES

28| 2| 60704| 175021| 1.0| 10.3| 40.6| 24.0| YES|
28| 1| 60816 175385| 1.1| 10.4| 3027.4| 243.0| NO
30| 1| 67021]193096| 1.1|11.1| 393.9| 75.2| NO
9.4| 11.1| 4402.6| 243.0

Fig. 7. Results for net (b) containingidentical processes; the bouid = 30.

. H. Boucheneb and G. Berthelot. Towards a simplified bogdif time Petri nets reachability

graph. InProc. of the 5th Int. Workshop on Petri Nets and Performancedls pages 46-55,
October 1993.

G. Bucci, A. Fedeli, L. Sassoli, and E. Vicaro. Modelingxible real time systems with
preemptive time Petri nets. Proc. of the 15th Euromicro Conference on Real-Time Systems
(ECRTS'03)pages 279-286. IEEE Computer Society, 2003.

G. Bucci and E. Vicaro. Compositional validation of thtrétical systems using communi-
cating time Petri netdEEE Trans. on Software End21(12):969-992, 1995.

E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded modetadting using satisfiability
solving. Formal Methods in System Desigid(1):7-34, 2001.

P. Dembinski, A. Janowska, P. Janowski, W. Penczekp#oR, M. Szreter, B. Wozna, and
A. Zbrzezny. Vercs: A tool for verifying timed automata and Estelle specifioas. InProc.

of the 9th Int. Conf. on Tools and Algorithms for the Condinrcand Analysis of Systems
(TACAS'03) volume 2619 of NCS pages 278-283. Springer-Verlag, 2003.

E. A. Emerson and R. Trefler. Parametric quantitativepteal reasoning. IrProc. of
the 14th Symp. on Logic in Computer Science (LICS'payes 336—-343. IEEE Computer
Society, July 1999.

G. Gardey, O. H. Roux, and O. F. Roux. Using zone graphadefibr computing the state
space of a time Petri net. Proc. of the 1st Int. Workshop on Formal Analysis and Modglin
of Timed Systems (FORMATS’08plume 2791 oL NCS pages 246-259. Springer-Verlag,
2004.

K. Heljanko. Bounded reachability checking with praceemantics. IfProc. of the 12th
Int. Conf. on Concurrency Theory (CONCUR'QYplume 2154 ofLNCS pages 218-232.
Springer-Verlag, 2001.

M. Huhn, P. Niebert, and F. Wallner. Verification basedamal states. IrProc. of the 4th
Int. Conf. on Tools and Algorithms for the Construction amakysis of Systems (TACAS’98)
volume 1384 oLNCS pages 36-51. Springer-Verlag, 1998.

R. Janicki. Nets, sequential components and concyrmetations. Theoretical Computer
Science29:87-121, 1984.

19

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

. J. Lilius. Efficient state space search for time Petr$.néh Proc. of MFCS Workshop on
Concurrency, Brno’98volume 18 ofENTCS Elsevier, 1999.

R. Mascarenhas, D. Karumuri, U. Buy, and R. Kenyon. Madehnd analysis of a virtual
reality system with time Petri nets. Proc. of the 20th Int. Conf. on Software Engineering
(ICSE’98) pages 33-42. IEEE Computer Society, 1998.

P. Merlin and D. J. Farber. Recoverability of commun@aprotocols — implication of a
theoretical studylEEE Trans. on Communication24(9):1036-1043, 1976.

Y. Okawa and T. Yoneda. Symbolic CTL model checking ottifetri netsElectronics and
Communications in Japan, Scripta Techniga(4):11-20, 1997.

W. Penczek and A. Potrola. Specification and model dhgakf temporal properties in time
Petri nets and timed automata. Rnoc. of the 25th Int. Conf. on Applications and Theory of
Petri Nets (ICATPN’04)volume 3099 of NCS pages 37-76. Springer-Verlag, 2004.

W. Penczek, A. Potrola, B. WoZzna, and A. Zbrzezny. Rimehmodel checking for reachabil-
ity testing in time Petri nets. IRroc. of the Int. Workshop on Concurrency, Specification and
Programming (CS&P’04)volume 170(1) ofnformatik-Berichtepages 124—135. Humboldt
University, 2004.

W. Penczek, B. Wozna, and A. Zbrzezny. Bounded modelkihg for the universal frag-
ment of CTL. Fundamenta Informaticaé1(1-2):135-156, 2002.

W. Penczek, B. Wozna, and A. Zbrzezny. Branching timended model checking for ele-
mentary net systems. Technical Report 940, ICS PAS, Ordbn@12237 Warsaw, January
2002.

W. Penczek, B. Wozna, and A. Zbrzezny. Towards boundedeirchecking for the univer-
sal fragment of TCTL. IrProc. of the 7th Int. Symp. on Formal Techniques in Real-Time
and Fault Tolerant Systems (FTRTFT'02plume 2469 of NCS pages 265-288. Springer-
Verlag, 2002.

A. Potrola and W. Penczek. Minimization algorithmstiane Petri netsFundamenta Infor-
maticag 60(1-4):307—-331, 2004.

L. Popova. On time Petri netsElektronische Informationsverarbeitung und Kybernetik
27(4):227-244, 1991.

L. Popova-Zeugmann and D. Schlatter. Analyzing pathsme Petri nets. Fundamenta
Informaticae 37(3):311-327, 1999.

O. Strichman. Tuning SAT checkers for bounded modelkihgc In Proc. of the 12th
Int. Conf. on Computer Aided Verification (CAV'0@plume 1855 of. NCS pages 480—494.
Springer-Verlag, 2000.

L-M. Tranouez, D. Lime, and O. H. Roux. Parametric modedaking of time Petri nets
with stopwatches using the state-class graphProc. of the 6th Int. Workshop on Formal
Analysis and Modeling of Timed Systems (FORMATS@8ume 5215 ofLNCS pages
280-294. Springer-Verlag, 2008.

I. B. Virbitskaite and E. A. Pokozy. A partial order methfor the verification of time
Petri nets. IfFundamental of Computation Theomolume 1684 oL NCS pages 547-558.
Springer-Verlag, 1999.

B. Wozna. ACTL properties and bounded model checkingundamenta Informaticae
63(1):65-87, 2004.

B. Wozna, A. Zbrzezny, and W. Penczek. Checking realityaproperties for timed au-
tomata via SAT Fundamenta Informatica&5(2):223-241, 2003.

A. Zbrzezny. Improvements in SAT-based reachabiliglysis for timed automatd&unda-
menta Informaticag60(1-4):417-434, 2004.

A. Zbrzezny. SAT-based reachability checking for tirmetbmata with diagonal constraints.
Fundamenta Informatica&7(1-3):303-322, 2005.

20

9 Appendix

Below, we provide a proof of Lemma 1:

Proof. We shall show that the relatioR = {(o,w) | ¢ € w} is a bisimulation. It
is easy to see that"Rw", and that for eaclr € w we haveV, (o) = V(w), since
the markings of the related states are equal. Thus, consiger(m, clock) € X and
w = (m, Z) € W such thav Rw.

—If w 5 ', wherew' = (m’,Z') € W, then fromZ’ = 7(Z) we have that for
eachv € Z (and therefore for that given by(x;) = clock(i) for all i € J) there
existsd € IR suchthav+6 € Z’. Moreover, the conditio&’ = inv(m) implies
that for eacht € en(m) there isi € IV(t) such tha{v + §)(zi) < Lft(¢). Thus,

there exists a state’ € X, given byo’ = (m, clock + §), satisfyingo 2. o' and
o' e w (i.e.,0’Ruw’).

— On the other hand, & % o' for somes’ = (m,clock’) € ¥ andé € R4, then
for eachoy = (m, clock,) € w one can find’ € IR, such that the clock valuation
v} given byv (z;) = clocky (i) + ¢’ is equivalent to the clock valuatior given
by v'(x;) = clock’(i) (intuitively, 8’ should be chosen such that the increase from
clock: (i) to clocky (i) + &' should “cross” as many integer bounds as the increase
from clock(i) to clock(i) + ¢, for eachi € J). Moreover, from the definition of
the time-successor relation we have that for eaeh en(m) there isi € 1V(t)
such thatlock’ (i) < Lft(t), and therefore from the definition of it holds also
clocki (i) + ¢ < Lft(t). Thus, for the extended detailed regioh= (m, Z’) such
thato’ € w' (and thereforas’R~10’) we haveZ’ = 7(Z) andZ’ = inv(m),
which impliesw = w'.

—If w % ' for some transitiont € T, wherew’ = (mlt),Z’) € W, thent €
en(m) andZ = fire;(m) A inv(m). Thus, it is easy to see that the transition
t can be fired also at the state which leads too’ = (m/,clock’) € X, with
m’ = mt) andclock’(i) = 0 fori € IV(t), andclock’ (i) = clock(i) otherwise.
Therefore, the clock valuationf given byv’(z;) = clock’(i) belongs to the zone
Z[reset(t,m) := 0], which impliess’ € v’ (and therefore’ Rw'’).

—If ¢ % o for some transitiont € T ando’ = (m’,clock’) € X, thent €
en(m), clock(i) > Eft(t) for everyi € IV(t), and there exists € IV(¢) such
thatclock(i) < Lft(t). Thus, from the definition of-,, the zoneZ satisfies the
constraintsfire;(m) andinv(m). Consideringy’ = (m/, Z’") such that’ € w’,
it is easy to see from the definition ofy, that Z' = Zreset(m,t) := 0] (the
zoneZ collects the clock valuations equivalentit@iven bywv(z;) = clock(i) for

eachi € 7J; therefore fromo %, &' and from the definition ofv,s the zoneZz’
collects the valuations which are like the elementg dfut with the clockse; with

i € IV(t) setto zero). ThusZ’ = ¢(Z). Moreover,Z’ = inv(m’) in an obvious
way (we haven’ = m]t); if a transitiont’ € en(m’) became enabled by firing
t then there exists € IV(¢') such that for alb’ € Z’ v'(x;) = 0 (and therefore
v(zi) < Lft(t')), whereas for all the other transitiong en(m’) the existence of
i€ Jsto(z) < Lft(t) follows from Z | inv(m), since the values of clocks

21

have not been increased). Thus, for the detailed regiosuch that’ € w’ (and
thereforew'R~15") we havew - w’, which ends the proof.

22

