Fundamenta Informaticae ??? (2009) 1001-1015 1001
10S Press

A New Approach to Model Checking of UML State Machines

Artur Niewiadomski
ICS, University of Podlasie, Poland, artur@iis.ap.siedfd

Wojciech Penczek
ICS, University of Podlasie and Institute of Computer SoieiPAS, Poland, penczek@ipipan.waw.pl

Maciej Szreter
Institute of Computer Science, PAS, Poland, mszreter@ipipaw.pl

Abstract. The paper presents a new approach to model checking of sysguified in UML. All
the executions of an UML system (unfolded to a given deptl)esrcoded directly into a boolean
propositional formula, satisfiability of which is checkesing a SAT-solver. Contrary to other UML
verification tools we do not use any of the existing model &bes as we do not translate UML
specifications into an intermediate formalism. The methasllieen implemented as the (prototype)
tool BMC4UML and some experimental results are presented.

Keywords: UML, Bounded Model Checking, symbolic verification

1. Introduction

Unified Modeling Language (UML) [15] is a graphical specifioa language widely used in develop-
ment of various systems. The current version (2.1) consfdtsrteen types of diagrams. Each diagram
allows for describing a system from a different point of vievith many levels of abstraction. Nowadays,
model-checking techniques that are able to verify crudiaperties of systems, at a very early stage of
the design process, are used in development of IT systemeagingly often. The current paper presents
results of our work aiming at development of a novel symbuwédfication method that avoids an in-
termediate translation and operates directly on systemcfigd in a subset of UML. The method is a

Address for correspondence: A. Niewiadomski, Institut€€ofmputer Science, University of Podlasie, ul. Sienkiewib,
08-110 Siedice, Poland
*Partly supported by the Ministry of Education and Scienageuithe grant No. N N516 370436



1002 A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach teMghecking of UML State Machines

version of a symbolic bounded model checking, designedcgdpefor UML systems. All the possible
executions of a system (unfolded to a given depth) are eicode a boolean propositional formula sat-
isfiability of which is checked using a SAT-solver. Contré&myother UML verification systems we do not
make use of any existing model checker as we do not transhdtegpecifications into any intermediate
formalism.

There have been a lot of attempts to verify UML state machingé of them based on the same
idea: translate a UML specification to the input languageonfes model checker, and then perform
verification using the underlying model checker. Some ofapproaches [10, 12] translate UML to
Promela and then make use of the model checker Spin [9]. ©fBel1] exploit timed automata as an
intermediate formalism and use UPPAAL [1] for verificatidrhe third group of tools [4, 7, 8] apply the
symbolic model checkers SMV [13] or NuSMV [3] via translaiblML to their input languages.

Animportant advantage of our method consists in an effi@anbding of hierarchical state machines
(HSM, for short). Most of other methods, that can handleanihy, perform flattening of HSM so they
are likely to cause the state explosion of models generatthe best of our knowledge only the paper
[7] handles hierarchies directly without flattening. Anatthlisadvantage of traditional methods follows
from the fact that it is hard to reconcile UML semantics witliermediate formalism semantics. This
results in a significant growth of the model size caused bynadsbecial control structures that force
execution w.r.t. UML semantics.

One of the most serious problems hindering the verificatfddML is the lack of its formal seman-
tics. The OMG standard [15] describes all the UML elemenisitlleals with many of them informally.
Moreover, there are numerogemantic variation pointhaving several possible interpretations. Many
papers on the semantics of UML have been published so famsttof them skip some important issues
such as completion events or composite states. The irtdressider is referred to the surveys [2, 5].

The approach of [7], which considers a similar subset of UMlIthe closest to our work. The paper
[7] deals with variables, their types, and the instructiallewed to be executed while firing transitions,
but it does not support time events, internal transitionsvels as entry and exit actions. Moreover, it
simplifies handling of concurrent transitions. On the ottend we do not consider choice pseudostates
and deferred events.

The rest of the paper is organised as follows. The next sedéscribes the subset of UML con-
sidered and formalises its semantics as a labelled transtistem. We present a symbolic encoding in
Section 3, and discuss some preliminary experimentaltseisubection 4. Final remarks are given in the
last section.

2. Syntax and Semantics of an UML Subset

This section defines an UML subset considered and its opeedtsemantics. We give only an intuitive

explanation of the concepts and the symbols used for defthmgemantics. All the remaining details

and formal definitions can be found in our Technical Repof].[IWe assume also that the reader is
familiar with basic UML state machine concepts.

2.1. Overview

We start with an overview of a syntax and a semantics of UMlilenh the next section we give a formal
operational semantics. The syntax is illustrated with tlagrhms of the Generalized Railroad Crossing



A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach tieMehecking of UML State Machines 1003

class GRC / object GRC / stmTrain
Train t1 :Train .

Initial

after(1,10)
/7t enter()

GateController after(1,2)
- trins: int 78 exit)
+ enter() : void ctl :GateController
+ exit() : void
+ open() : void
+ close() : void
(a) Class and object diagrams (b) State machine diagram of class Train

Figure 1. Specification of Generalized Railroad Crossirgjey

system, which is also used as a benchmark in Section 4.

The systems considered are specified by a single class dliaghéch defines: classes (e.g. see Fig.
1(a)), a single object diagram which definesbjects (e.g. in Fig. 1(a)), andstate machine diagrams
(e.g. in Fig. 1(b), 2), each one assigned to a different @&tise class diagram.

The class diagram defines a list of attributes and a list ofadjgss (possibly with parameters) for
each class. The object diagram specifies the instancesssfesldobjects) and (optionally) assigns the
initial values to variables. All the objects are visible logdly, and the set of objects is constant during
the life time of the system - dynamic object creation and teation is not allowed. We denote the set
of all the variables by, the set of the integer variables by’ C V, and the set of the object variables
by V°¥ C V. The values of object variables are restricted to the sell obgects defined in the object
diagram, denoted b§, and the special valu¥U L L.

Each object is assigned an instance of a state machine tieatnilees the behavior of the object. An
instance of a state machine assigneéthmbject is denoted by M;. A state machine diagram typically
consists of states, regions and transitions connectingsaund target states. The set of all stateS.bf;
is denoted byS;, whereasS = |J;-_; S; is the set of all states from all instances of state machivis.
consider several types of states, namely: simple statgsAeiayin Fig. 1(b)), composite states, (e.g.
Main in Fig. 2), final states, and initial pseudostatgg.qg. Initial in Fig. 2). For each object we define
the set ofactivestatesA;, whereA; C S;, A; # 0, andi = 1,...,n. The areas filling the composite
states are calletegions The regions contained in the same composite stateréinegonal(e.g. Gate
andController in Fig. 2). The regions contain states and transitions, hnd introduce ierarchy of
state machines. We assume that a definition of the hieraathtian is given, and we implicitly refer to
this relation by using the terms ancestor and descendaaf18¢for more details.

The transitions are labelled with expressions of the forigger|guard]/action, where each of
these components can be empty. A transition can be fired iEdlece state isctive the guard (a
Boolean expression) is satisfied, and the trigger matchiegteccurs. An event can be of the following
three types: anperation cal] acompletion evenbr atime eventln general, firing of a transition causes

A pseudostate is an abstraction that encompasses diffgye of transient vertices in the state machine graph,ieitial,
choice, or history pseudostates.



1004 A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach teMghecking of UML State Machines

stm GateController /
Init a\ Main
[Gate]
B Open Closing
close
g
aften1,1) aften1,2)
Opening Closed

open [trains=0]

[Controller]

enter

ftrains:=trains+1; "this.close()
ic il

exit
Jtrains:=trains-1; “this.open()

Figure 2. Specification of Generalized Railroad Crossirgesy - state machine diagram of class GateController

deactivation and activation of some states (depending etytie of the transition and the hierarchy of
given state machine). We say that the state mactiméigurationchanges then. More details can be
found in [14].

A time event, defined by an expression of the farifter(d;,d2), whered;, d2 € N andd; < ds,
can occur not earlier than after passingipfime units and no later than before passing-ofime units.
This is an extension of the standaidter(xz) expression, which allows one to specify an interval of
time in which a transition is enabled. However, we follow thiscrete-time semantics where the clock
valuations are natural numbers. For measuring time imipi&iural variables, calledlocks are used.
The time flow is measured from entering tivee statewhich is the source state of a transition with the
trigger of the forma fter(d1, d2). The set of all time states froM; is denoted by';, and the set of all
time states from all instances of state machines is dengtét Wherel' = [ J;"_, T';.

The operation calls coming to the given object are put intoethent queu®f the object, and then,
one at a time, they are handled. The event from the head ofuagegeither fires a transition (or many
transitions) and is consumed, or it is discarded if it carfinetany transition. The transitions with non-
empty trigger are callettiggered transitions We refer to the processing of a single event from the
gueue or a time event as to tRun-To-Completion (RTC) stefNext, an event can be handled only
if the previous one has been fully processed, together Wlitthe completion events which eventually
have occurred. A completion event (denotedpwpccurs for a state that has completed all of its internal
activities. The completion events fire thempletion transitiond.e., transitions without a trigger defined
explicitly. The completion transitions have priority ow@e triggered transitions.

The execution of the whole system follows the interleaviemantics similar to [6]. During a single
step only one object performs its RTC step. If more than orjecblzan execute such a step, then an
object is chosen in a non-deterministic way. However, ifaofi the objects can perform amtimed
action (i.e., any action but a timed transition), then time flows.té\that this happens when all event
gueues are empty and all the completion events have beetebdarithe time flow causes occurrences of
time events. The time events are processed in the next RPE. ste



A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach tieMehecking of UML State Machines 1005

2.2. Operational semantics

There are two key notions of our semantics, namgliybal statesand atransition relation Below, we
give several definitions, exploited later in the operati@gmantics.

Definition 2.1. (State machine configuration)

A set of states igonsistentf for each pair of its distinct states these states eithtrigeto orthogonal
regions or one is an ancestor of the other. A stateispletedf a completion event has occurred for this
state, but has not been handled yet.

A configurationof the state machine of thieth object is a paif.A;,C;), whereA; C S; is aconsistent
set ofactive statesandC; C A; is a set ofcompleted statesThe set of all the configurations of tiih
object is denoted b@ while S is the set of all the configurations of all the objects.

Definition 2.2. (Valuation)
Let £ and Q denote respectively the set of all the events and the set tifeabvent queues. L&l =

ZUOU (E\ {k})* US, whereZ is the set of integer numbers, anB \ {x})* is the set of all finite
sequences of events (without completion events).

A valuation functiory is defined asv : YVUQUO — Q, wherev(V"™) C Z, v(V°) C OU{NULL},
v(Q) C (E\ {x})* andv(©) C 8. The functionv assigns an integer to each integer variable, an object
or NU LL to each object variable, a sequence of events to each eveme gand an active configuration
to each object.

The configuration of the-th object for a given valuatiom is denoted by(AY,C?), whereasd(v, «)
denotes the valuationl computed fromv after the execution of the actien Theinitial valuation v° is
a valuation that returns an empty sequerddr all the event queues, the initial states marked asectiv

and completed for all the objects and the initial values fotha variables.

Definition 2.3. (Clocks valuation)

A clocks valuatiorfunction i, : S —— N assigns a natural number to each time state and zero to any
other state. Fos € I, a clock valuationu(s) indicates how long ago the system entered the time state

or how long ago the system started ifias not been active yet.

Let u + ¢ (for § € N) denote the clocks valuation such théfs) = u(s) + d for s € T'andpu/(s) =0
fors e S\T. ForY C Sletu[Y := 0] denote the clocks valuatign such that/(s) = 0fors € Y
andy/(s) = u(s) for s € S\ Y. The valuation.:® such thatv,cs 1°(s) = 0 is called theinitial clocks
valuation A pairg = (v, u) is called aglobal state It is determined by the active configuration of all
instances of state machines, the valuations of all the blasathe contents of all the event queues, and
the valuations of all the clocks.

Definition 2.4. (Operational semantics)
The operational semantics of the systems specified in teetedl UML subset is defined by the labelled
transition systeniG, ¢°, &, —), where:

o G =0OWUQ « NI s a set of the global states,
e ¢ = (0% 1O is the initial state,

e ¥ = Nis a set of the labels corresponding to time units passinggl@ransitions,



1006 A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach teMghecking of UML State Machines

e — C G x X x G is the transition relation such that for= (v, u), ¢ = (v/, '), ando € X we
haveg % ¢ iff one of the following conditions holds:
L Jiep, b L #0 AN o=0 AV =9(v, discard(I})) N p' = p
2. Jicq, mp CPAONT =0 A o=0A v =9(v, A(tx)) A 1 = p[A(ts) = 0]
3. Jicq1,..n} C/ =0 A enabledg, o) #0A o =0A v =9 (v, A()) A p' = p[A@) := 0]
4. Jicqr,. .y CY = 0 Av(gi) # e Aenabledg, 0;) = 0 Ao = 0NV =D (v, cons(q;)) A = p
5 Vieq1,..}C = 0N v(g)) =eNo=2AN0< X1 <2< Xo AV =vA W =p+o

where;

— the setl C C} contains the completed states of thih object that are the source states for
the completion transitions not enabled in the state

— discard(I}) is the action of removing the elements of the Gefrom C7,

— A(tx) is the sequence of actions w.r.t. the specification of theptetion transitiort,, exe-
cuted,

— A(t,) is the set of states activated as a result of firing the tiansit,,

— enabledy, o;) is the set of triggered transitions #th object enabled in the stage

— A(¢) is the sequence of actions w.r.t. the specifications of theesee of triggered transi-
tions ¢ executed,

— A(p) is the set of states activated as a result of firing the seapn$itionsp C enabledy, o;),

— v(g;) is the content of thé-th event queue in the staje

— cons(q;) is the action of removing an event from the head-tf event queue,

— X1, X, € N are respectively the starting time of the earliest time eeenl the earliest
expiration time of the considered time events.

It follows from Definition 2.4 that at a state = (v, ) the system can perform one of the following
transitions (the ordering given follows the priorities béttransitions):

1. Consumption of the completion eventsRemoves all the completion events that cannot fire any
completion transition for théth object in the stateg.

2. Execution of a completion transition. Handles one completion eventcausing a firing of one
completion transitiort,;, and changes the valuation according to the sequence ohacitit,),
that is: exit actions and deactivation of leaving states,tthnsition action, the entry actions and
activation of the entered states, and producing completi@mts for some of the activated states.
Moreover the clocks of the entered timed states are reset.

3. Execution of triggered transitions. Firing of the set of non-conflicting triggered transitions e
abled by the event in the head of the event queue. The remolitconflicts is based on the nesting
level of the source states of transitions and is describetkifail in [14]. We deal with changes
of the valuation in a way similar to the level 2. If a trangitits triggered by an event from the
gueue, then it is additionally consumed. The second pdisgitsi the firing of a timed transition



A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach teMghecking of UML State Machines 1007

triggered by a time event. In this case the enabling comddiepends rather on the clock valuation
than the queue contents. Moreover, in the presence of antladgdconcurrent) regions more than
one transition can be fired in a single RTC step, so the acéqoence\(y), which changes the
valuation, contains the actions caused by all executeditiams (the sep).

4. Discarding of an event.Discards an event from the head of thiéh event queue if the event does
not enable any transition.

5. Time flow. If all the event queues are empty and all the completion eveane been processed,
thena time units passes, whebe< X; < z < X5. We consider all the time transitions with guard
expressions satisfied and with active states as the sodrees, we compute the set of the allowed
values ofx by subtracting the lower and upper bound of the time everdgsifipations from the
clock valuations for the active time states {) — J; andu(s) — d2). The set is bounded by the
starting time of the earliest time event{) and the earliest expiration time of the considered time
events X5). In other words, every number of time units lower thEpdoes not enable any timed
transition, while every number of time units higher th&p causes an expiration of at least one
timed transition.

3. Symbolic Encoding

Below we present a symbolic encoding of the operational stingintroduced in the previous section.
First, the encoding of the global states is defined in ordejiue the symbolic transition relation. The
most important details of the encoding of particular tréositypes can be found at the end of this
section.

Our aim is to encode symbolically all the executions of langt(called k-paths) of a system by
means of a propositional formujauth;. Then, we check satisfiability of the conjunctionefth; and
some encoded property to be tested (e.g., a reachabilipefsd using a SAT-solver. If the formula
is satisfiable, then we obtain a valuation satisfying thenfda, which can be interpreted as a concrete
execution of the system. This valuation is decoded as a sequs global states leading to the state in
which the property tested holds.

3.1. Binary representation of the global states

In order to define a symbolic encoding of our UML semantics asgetto first represent the global states
by sequences of bits. To this aim each global sgaterepresented by binary sequences, where each
sequence stands for a state of one object. The representdtasingle object consists of five binary
sequences that encode respectively a set of active staeispbcompleted states, a contents of the event
gueue, a valuation of the variables, and a valuation of theksl

Observe that the following conditions hold:

1. The number of bits needed to encode one global state is given as follows:
r =3 (1Sil 4 [Cmpl(0:)| +m x b(i) + 2+ [logy m] + (IVi] + [Reg(T)]) % imtyize

2. The number of clocks sufficient for representing a statb@ifth object is equal to the number of
regions that directly contain time states.



1008 A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach teMghecking of UML State Machines

LetS; = {s1,...,sx} be a set of the UML states of thiéh object. A set of active states of the
ith object is represented by a binary sequence of lefthsuch that itsjth element is equal ta iff
the states; is active in the statg. The second binary sequence representing a set of the dewhple
states iny is defined in the similar way, but we consider only tteampletion sensitivetates (from the
setCmpl(o;) C S;), i.e., the states being the source states for completéositions. The third binary
sequence represents the contents of the event queueAirsingle event queue; is represented by an
m-~element cyclic buffer, and a pair of the indices of the firad ¢he last event in the queue. A maximal
size of a single element of a queue is equal to the maximal euoflbits needed to represent the longest
event (an operation with the maximal number of the pararadtera given class), denoted byi). So,
we need a sequence of « b(i) + 2 * [log, m | bits to encode théth event queue. The last two binary
sequences in the representatiory@fre for the valuations of the variables and of the clocks. itm our
prototype implementation, we treat all the types of thealads (including clocks) as integers. In order
to keep our verification problem decidable, we assume tleatidmain of values for each variable is
finite. For the integer variables we bound the domaitHawazint, maxint). Then, the number of bits
for encoding an integer variable is equaltd,;.. = [log, mazint] + 1. So, the number of bits needed
to represent the valuation of the variables of itheobject is equal toV;| * ints;.., and to represent the
valuation of the clocks of théth object we needReg(T';)| * ints;. bits, whereReg(T';) is the set of
regions that directly contain time states.

A proof of the second condition follows from the observattbat at most one UML state directly
contained in a region can be active at the same time. So tleestiates contained in the same region can
share the same clock.

From now on, we identify a global state with its binary repraation.

3.2. A symbolic path

Now, we give an encoding of the symbolic transition relatibhe description is structured in a top-down
manner, i.e., first, we provide an encoding of the symbolib péen the transition relation, and finally
we give the detailed encoding of some particular transitypes.

In order to encode all the executions of lengtlfor a given system, as the formuybath, we deal
with vectors of propositional variables, callsthate variables Denote bys, a set of state variables,
containing the symboltrue andfalse Each state of &-path can be symbolically represented as a
valuation of a vector of state variables= (wq, ..., w,).

Definition 3.1. (Valuation of state variables)
Let us define a valuation of the state variableg/ass, — {0,1}. Then, a valuation of the vectors of
r state variables’ : §,” — {0, 1}" is given as:¥(wy, ..., w,) = (V(wy),..., V(w,)).

All the k-paths can be encoded over a symbdlipath, i.e.,k+ 1 vectors of state variables; for
j =0,...,k. Each vectow; is used for encoding global states of a system. Specificatiygncodes
the initial state {"), whereasw;, encodes the last states of thgath, for giverk.
Letw andw’ be vectors of state variables, and a valuation of state variables, as discussed above.
Define the following formulae:

e J(w) is aformula s.t. for every valuatiow we have that’ satisfiesI(w) iff 7/(w) is equal to the
initial stateg” of the transition system.



A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach tieMehecking of UML State Machines 1009

e T(w,w’) - aformula s.t. for every valuatiosy we have that’ satisfiest(w, w’)
iff ¥(w) > 9(w'),forz € N.
Hence the formula encoding a symbaligath is defined as follows:
k—1

pathp(w?, ..., wF) = J(wO) A /\ T(w', with) (1)
i=0

3.3. Symbolic transition relation

The following subsection introduces a set of helper formulzat encode enabling conditions and ex-
ecution of transitions of types 1 - 5, given in Def. 2.4. Thase necessary for defining an encoding
of the symbolic transition relation. In order to improvedehility, we apply the naming convention of
the helper formulae, where their names consist of the lidifrom Enabling),X (from eXecution),C'
(from Class) O (from Object),S (from State);I" (from UML Transition), and the numbers 1 -5 (from the
priorities of transitions). We define propositional formelfor the transitions of types 1 — 4 that encode
their preconditions over the vectar for the object: EO1(o,w), EO2(0o,w), EO3(0,w), EO4(0,w).

We also define the propositional formulae encoding an ei@cuaif these transitions over the vectors
w,w’ for the objecto: XO1(o,w,w’), XO2(o,w,w'), XO3(o,w,w'), XO4(0,w,w’) and the for-
mula encoding the time flod 5(w, w’).

The transitions of types 1-4 are callextal as their execution does not depend on which type of
transition can be fired by other objects (on the contrarytithe transition of type 5 is calledlobal,
because it can be fired only if all the objects can execute timed transition of type 1-4). The execution
of local transitions for the objeetover the vectors of state variablesandw’ is encoded as:

XO(o,w,w') = EO1(0o,w) A XO1(o,w,w') V =EO1(0,w) A (EO2(0,w) A XO2(0,w,w')V
—FEO02(0,w) A (EO3(0,w) A XO3(0,w,w') V ~EO3(0,w) A EO4(0,w) A XO4(o,w,w")))(2)
We ensure that a transition of some level becomes enablgdfdhé transitions of the preceding levels

cannot be executed, by nesting the conditions for the catigedevels. Then, iterating over the objects
of classc, we encode the execution of local transitions for the ctass

XCle,w,w') = \/ XO(o,w,w") (3)
o€O0bjects(c)
Now we are ready to give an encoding of the transition ratatio
T(w,w') = \/ XC(c,w,w')V E5(w) A X5(w,w') (4)
ceClasses

where the formuldZ5(w) encodes the enabling conditions akid(w, w’) encodes the execution of the
time flow transition.

3.4. Symbolic encoding: details

In this section we introduce a symbolic encoding of all of trensition types. We give the encoding
of the preconditions of particular transition types as folae beginning withZ, and the encoding of
postconditions (execution) as formulae beginning with



1010 A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach teMghecking of UML State Machines

Transitions of type 1 (discarding of completion events). A precondition for ansiéion of level one
for objecto (F'O1) is satisfied if in a symbolic state there exists an UML statethat is completed and
there does not exist any completion transition, outgoingfs, having the guard satisfied.

ES1(s,w) = (compl(s, w) A /\ —(guard(t,w)), EO1l(o,w)= \/ ES1(s,w)
teoutC'mpl(s) seCmpl(o)

wherecompl(s,w) is evaluated tdrue iff the states is completed inw, outCmpl(s) is a set of all
completion transitions outgoing from the stateand the formulaguard(t, w) encodes the guard of
transitiont over the state variables from. The execution of this transition is encoded as the formula:

XO1(o,w,w') = /\ (ES1(s,w) = —compl(s,w')) A cpRest(w,w')
seCmpl(o)

The states satisfying the preconditiéif1 are marked as not completed in the stafeand the formula
cpRest(w, w’) encodes copying of the state variables unchanged wwamw’.

Transitions of type 2 (execution of completion transition). The enabling coioditof this type of
transition holds for an object if there exists a completion transition, the guard of whistsatisfied,
outgoing from a state marked as completed:

ET2(t,w) = compl(src(t), w) A guard(t,w), EO2(o,w) = \/ \/ ET2(t,w)
s€Cmpl(o0) teoutCmpl(s)
XO02(o,w,w') = \/ \/ (ET2(t,w) NTEf fect(t,w,w")) A cpRest(w,w"))

seCmpl(o) t€outCmpl(s)

whereT E f fect encodes a change of a global state according to the speofificHtthe transition exe-
cuted (i.e., deactivation of the states left, activationhef states entered and the change of the variables
and event queues if the transition’s action is not empty).

Event queues and queue interface. Before we give an encoding of the transitions of types 3 and 4,
which make use of event queues, we introduce some impor&ailgiof a symbolic representation of
the event queues. Under an assumption that at most one negthdzk called as a result of executing a
single transition, we improved the encoding of the evenugaedy a kind of a symmetry optimization.
For each step of the symbolic path we introduce a pair of edtait event queues calleplieue interface
The operations of inserting and removing an event are eoogs the queue interface. Then, depending
on the object which fires a triggered transition, the comstarftthe respective event queue is copied to
the interface, the operation is performed and the modifiedierds of the queue interface is copied back
to the queue of the appropriate object. In this way we avoédaihcoding of complex operations over
the event queue of each object. Below we use the formulag(w) andpopM sg(w, w’) that encode,
respectively, the event in the head of the queue interfadetanoperation of removing the event from
the queue interface.



A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach teMghecking of UML State Machines 1011

Transitions of type 3 (execution of triggered transition). A transition of typec@n be fired if its
source state is active, the guard is satisfied and the triggéshes the event in the front of the queue, or
if respective clock value is between the time constraimtshé case of a timed transition:

match(msg(w), trig(t)),for t untimed

ET3(t,w) = active(src(t),w) A guard(t,w)\N§ _
inTime(t,w) A —exp(t,w),for t timed

EO3(o,w) = \/ \/ ET3(t,w)

s€States(o) teout(s)

wheretrig(t) is the trigger of the transitioty match(message, trigger) is a formula evaluating toue

iff message matches therigger, States(o) is the set of all UML states of objeot andout(s) is the set

of all triggered transitions outgoing from stateThe formulagnTime(t, w) andexp(t, w) concern the
timed transition and encode respectively that the tramsithas entered its allowed time period and that
the transitiory is expired. An execution of this type of transition is simila the type 2. Additionally, in
the case of firing a triggered transition, the event is rerddk@m the queue.

popM sg(w, w’), for t untimed

XT3(t,w,w') = TEffect(t,w,w') A cpRest(t,w,w') A
( ) Jfeell JNep ( ) true, for ¢ timed

XO3(o,w,w') = \/ \/ (ET3(t,w) AN XT3(t,w,w'))

seStates(o) teout(s

Transitions of type 4 (implicit consumption of event). The transition of type 4 #n objecto can be
fired if the enabling condition& 03, £O2 and EO1 (see formula 2) are not satisfied and the queue is
not empty. The execution is simple: the event is removed fi@mueue and all the other state variables
are copied to the next symbolic staté.

EO4(o,w) = ~queue Empty(o,w), XO4(o,w,w') = popMsg(w,w’) A cpRest(o,w,w')

Transitions of type 5 (time flow). The enabling condition for the transition of &p is defined as:

E5(w) = /\ /\ (queueEmpty(o, w) A /\ —compl (s, W))

ceClasses o€Objects(c) seCmpl(o)

The definition of E'5 follows from the fact that the transitions of type 1 and 2 carfiked only if there
exists at least one state marked as completed, and thetivaasif type 4 and untimed transitions of
level 3 are enabled only if there exists at least one non eenept queue. Note that the time flow and
firing of timed transitions can be interleaved. A time tréinsi can be fired at any point of its time period
(i.e., it fires immediately when it becomes enabled, or thiedican be delayed, but at most to the end of
its time period). The execution of the time flow transitiorerecoded as:

X5(w,w') = incClocks(w,w’) A /\ notEzpire(t,w,w’) A \/ inTime(t,w')
tetimelr tetimelr



1012 A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach tieMehecking of UML State Machines

whereincClocks(w, w’) is the formula that encodes incrementing all the clocks loyespositive value
z, and the formula:

notExpire(t,w,w') =

(ﬂemp(t, w) A guard(t, w) A active(src(t), W)) = <eacp(t, w) < exp(t, w'))

bounds the maximum value of i.e., if a timed transitiori is potentially enabled, then it will not expire
after the time flow. The last part of the formuk5 bounds the minimum value af, i.e., the time step
must be big enough to enable at least one timed transition.

3.5. Discussion on complexity of the encoding

In this section we estimate the complexity of the encodintheftransition relation. To this purpose we
estimate first the complexity of the encoding of the helpemidae. We base our assessments on the
paper [16], which defines an encoding of arithmetic openatio

The complexity of the encoding of particular helper forneuia as follows:

e guard(t,w), TEf fect(t,w,w’) - polynomial w.r.t. the size of an input expression (the duar
or the action of transitiort), or exponential in the case when the input expression ot
multiplication.

e compl(s,w), active(s, w) - constant. Both the formulae are just one of the state vasab
e cpRest(w,w') - quadratic w.r.t. the number of objects.

e match(message,trigger) - linear w.r.t. the number of operations per class.

e inTime(t,w), exp(t,w), incClocks(w,w’) - polynomial w.r.t. the size of clock variables.
¢ the queue interface operations - polynomial w.r.t. the tlerd the event queue.

It follows from the above that the complexity of the encodwifgthe transition relation is polynomial
except for the case when the multiplication is used in theifipation of the system, which makes the
encoding exponential.

4. Experimental Results

Our prototype implementation has been tested using two pbeaspecifications. The first one — Master-
Slave system (Fig. 3) —is an untimed specification of a sirepdtem consisting of one instance of class
Master andN instances of class Slave. The objects of type Slave sen@éstxjto the object of type
Master (n) that handles the messages and decreases the vatiable-ces. When the variable is equal
to 0 the objectn goes to the statéeadlock.

Table 1 presents our experimental results of testing thehedality of the deadlock state. The
columnk contains the depth of the symbolic path for SMUML and our tddle variableresources has
been initially set tot, the size of the event queue has been sét and the integer variables have been



A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach teMghecking of UML State Machines

N k Hugo/Uppaal [s]| SMUML/NuSMV [s] | BMC4UML [s]
2 | 26 2.14 20.2 59.55
3| 24 17.74 35.62 167.44
4 | 22 110.05 36.77 59.24
5 | 22 | Outof memory 55.16 65.73
6 | 22 - 108.62 179.18
7 | 22 - 282.03 131.44
8 | 22 - 1257.71 529.07
9 | 22 - 2 402.96 666.41
Table 1. The experimental results of verification of Mastave
Mas ter Slave

- resources: int

+ process() : void

(a) Class diagram

@ ) proms @

Initial

m :Master

sl :Slave s2:Slave

local2 local
Initial

(c) State machine of class Slave

(b) Object diagram

process [re sources>0] B
processing
/resources:=resources-1

[res s<=0]

deadlock

(d) State machine of class Master

Figure 3. Specification of Master-Slave system

N k Hugo/Uppaal [s] | BMC4UML [s] | BMC4UML* [s], k=18
3 | 24 2.89 86.07 40.44

4 25 175.41 139.39 50.41

5 | 26 >2500 221.4 59.9

6 27 - 1354.89 75.21

7 - - - 92.6

10 | - - - 152.36

15 - - - 279.61

20 | - - - 448.64

Table 2. The experimental results of verification of GRC

1013



1014 A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach teMghecking of UML State Machines

encoded ove bits. The tests have been performed on the computer equipife®entium M 1.73 GHz
CPU and 1.2 GB RAM running Linux.

The second specification tested is a variant of the well kn@&neralised Railroad Crossing (GRC)
benchmark (Fig. 1, 2). The system, operating a gate at aadilcrossing, consists of a gate, a controller,
and N tracks which are occupied by trains. Each track is equippiéiud sensors that indicate a position
of a train and send an appropriate message to the contr@epending on the track occupancy the
controller can either open or close the gate.

We were not able to use SMUML to verify the GRC system, bec&@M&/ML does not support
timed specifications. On the other hand we had to model GRCwayathat minimises the semantic
differences between Hugo and our tool, e.g., with the mihimianber of completion transitions. The
UML semantics implemented in Hugo allows to freely delay afitiling of completion events, while our
semantics (following the OMG standard) gives them the Hghdority.

Table 2 presents the results of verification of GRC, wh€érdenotes the number of trains, ahthe
depth of symbolic path at which the tested property is sabifi The results in the column marked with
an asterisk concern the symbolic paths of length 18 thatfsten a non-initial state of the GRC system,
but from the state where all trains are in the sta#tesyand the objecttl is in the stateMain, Open
andcontrol (see Fig. 1, 2). In other words the paths have been made shgrtiee “initialization part”.

Although this trick can be applied to all systems, it guagastan improvement only for those where
the initialisation part of all the objectdwaystakes place before any other transitions. For other systems
it can lead to increasing the length of the path or even imoonresults. In case of GRC the first non-
completion transition, which can be fired, is a timed one gdiom the statéAwayto the stateApproach
in one of theTrain objects. In order to fire such a transition the clocks haveetonbreased, so the
time flow should happen first. It follows from the semanticattthe time flow transition can be fired
only if all untimed activities are done. Hence, this kind gfath reduction can be applied here, and the
experimental results confirm it.

5. Final Remarks

In this paper we described a new approach to Bounded Modati@igefor UML. Instead of dealing
with a translation to a standard formalism of timed automat encoded the verification problem di-
rectly into SAT. We believe that this is a way in which symbatiethods can be used to handle complex
programming and specification languages. Our preliminasylts are very promising. We have shown
that our method is more efficient than two UML verifiers for sbatasses of systems and tested proper-
ties. A future work is to enlarge the subset of the UML statemirzes handled as well as to introduce
more optimisations at the level of the symbolic encoding tlledmplementation.



A. Niewiadomski, W. Penczek, M. Szreter/ A New Approach tieMehecking of UML State Machines 1015

References

(1]

(2]

G. Behrmann, A. David, K. G. Larsen, J. Hakansson, ReP&ton, W. Yi, and M. Hendriks. UPPAAL 4.0.
In QEST IEEE Computer Society, pages 125-126, 2006.

P. Bhaduri and S. Ramesh. Model Checking of Statechadeé¥ Survey and Research DirectiodgXiv
Computer Science e-printduly 2004.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglié. Pistore, M. Roveri, R. Sebastiani, and A. Tac-

(4]

(5]

(6]

chella. Nusmv 2: An opensource tool for symbolic model cliregkin CAV, pages 359-364, London, UK,
2002. Springer-Verlag.

K. Compton, Y. Gurevich, J. Huggins, and W. Shen. An awtimverification tool for UML. Technical
Report CSE-TR-423-00, University of Michigan, 2000.

M. L. Crane and J. Dingel. On the semantics of UML state hiaes: Categorization and comparison.
Technical Report 2005-501, School of Computing, Queeniséfgity, Kingston, Ontario, Canada, 2005.

K. Diethers, U. Goltz, and M. Huhn. Model checking UML seaharts with time. IrCritical Systems Devel-
opment with UML — Proceedings of the UML'02 workshppges 35-52. Technische Universitat Minchen,
2002.

[7] J. Dubrovin, T. Junttila, and K. Heljanko. Symbolic stepcodings for object based communicating state

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]

machines. Technical Report B24, Helsinki University of Mieclogy, Laboratory for Theoretical Computer
Science, 2007.

M. E. B. Gutiérrez, M. Barrio-Sol6rzano, C. E. C. Quend, and P. de la Fuente. UML Automatic Verification
Tool with Formal MethodsElectr. Notes Theor. Comput. Scd27(4):3-16, 2005.

G. J. Holzmann.The SPIN Model Checker : Primer and Reference Manéaldison-Wesley Professional,
September 2003.

T. Jussila, J. Dubrovin, T. Junttila, T. Latvala, an®arres. Model checking dynamic and hierarchical UML
state machines. IMloDe\?a, pages 94-110, 2006.

A. Knapp, S. Merz, and C. Rauh. Model checking - timed Utate machines and collaborations. In
FTRTFT, pages 395-416, 2002.

J. Lilius and I. Paltor. vUML: A tool for verifying uml mdels. INASE pages 255-258, 1999.

K. Mcmillan. The SMV system. Technical Report CMU-C3-231, School of computer Science, Carnegie
Mellon University, 1992.

A. Niewiadomski, W. Penczek, and M. Szreter. SemantyBaracyjna wybranych diagraméw UML (in
Polish). Technical Report 1009, ICS PAS, 2008.

OMG. Unified Modeling Language. http:www.omg.org'spe¢ UML /2.1.2,2007.

A. Zbrzezny. A boolean encoding of arithmetic operatio InProc. of the Int. Workshop on Concurrency,
Specification and Programming (CS&P’Q8plume 225(3) ofinformatik-Berichte pages 536-547. Hum-
boldt University, 2008.



