
Fundamenta Informaticae ??? (2009) 1001–1015 1001

IOS Press

A New Approach to Model Checking of UML State Machines∗

Artur Niewiadomski

ICS, University of Podlasie, Poland, artur@iis.ap.siedlce.pl

Wojciech Penczek

ICS, University of Podlasie and Institute of Computer Science, PAS, Poland, penczek@ipipan.waw.pl

Maciej Szreter

Institute of Computer Science, PAS, Poland, mszreter@ipipan.waw.pl

Abstract. The paper presents a new approach to model checking of systems specified in UML. All
the executions of an UML system (unfolded to a given depth) are encoded directly into a boolean
propositional formula, satisfiability of which is checked using a SAT-solver. Contrary to other UML
verification tools we do not use any of the existing model checkers as we do not translate UML
specifications into an intermediate formalism. The method has been implemented as the (prototype)
tool BMC4UML and some experimental results are presented.

Keywords: UML, Bounded Model Checking, symbolic verification

1. Introduction

Unified Modeling Language (UML) [15] is a graphical specification language widely used in develop-
ment of various systems. The current version (2.1) consistsof thirteen types of diagrams. Each diagram
allows for describing a system from a different point of view, with many levels of abstraction. Nowadays,
model-checking techniques that are able to verify crucial properties of systems, at a very early stage of
the design process, are used in development of IT systems increasingly often. The current paper presents
results of our work aiming at development of a novel symbolicverification method that avoids an in-
termediate translation and operates directly on systems specified in a subset of UML. The method is a

Address for correspondence: A. Niewiadomski, Institute ofComputer Science, University of Podlasie, ul. Sienkiewicza 51,
08-110 Siedlce, Poland
∗Partly supported by the Ministry of Education and Science under the grant No. N N516 370436

1002 A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines

version of a symbolic bounded model checking, designed especially for UML systems. All the possible
executions of a system (unfolded to a given depth) are encoded into a boolean propositional formula sat-
isfiability of which is checked using a SAT-solver. Contraryto other UML verification systems we do not
make use of any existing model checker as we do not translate UML specifications into any intermediate
formalism.

There have been a lot of attempts to verify UML state machines- all of them based on the same
idea: translate a UML specification to the input language of some model checker, and then perform
verification using the underlying model checker. Some of theapproaches [10, 12] translate UML to
Promela and then make use of the model checker Spin [9]. Others [6, 11] exploit timed automata as an
intermediate formalism and use UPPAAL [1] for verification.The third group of tools [4, 7, 8] apply the
symbolic model checkers SMV [13] or NuSMV [3] via translating UML to their input languages.

An important advantage of our method consists in an efficientencoding of hierarchical state machines
(HSM, for short). Most of other methods, that can handle hierarchy, perform flattening of HSM so they
are likely to cause the state explosion of models generated.To the best of our knowledge only the paper
[7] handles hierarchies directly without flattening. Another disadvantage of traditional methods follows
from the fact that it is hard to reconcile UML semantics with intermediate formalism semantics. This
results in a significant growth of the model size caused by adding special control structures that force
execution w.r.t. UML semantics.

One of the most serious problems hindering the verification of UML is the lack of its formal seman-
tics. The OMG standard [15] describes all the UML elements, but it deals with many of them informally.
Moreover, there are numeroussemantic variation pointshaving several possible interpretations. Many
papers on the semantics of UML have been published so far, butmost of them skip some important issues
such as completion events or composite states. The interested reader is referred to the surveys [2, 5].

The approach of [7], which considers a similar subset of UML,is the closest to our work. The paper
[7] deals with variables, their types, and the instructionsallowed to be executed while firing transitions,
but it does not support time events, internal transitions aswell as entry and exit actions. Moreover, it
simplifies handling of concurrent transitions. On the otherhand we do not consider choice pseudostates
and deferred events.

The rest of the paper is organised as follows. The next section describes the subset of UML con-
sidered and formalises its semantics as a labelled transition system. We present a symbolic encoding in
Section 3, and discuss some preliminary experimental results in Section 4. Final remarks are given in the
last section.

2. Syntax and Semantics of an UML Subset

This section defines an UML subset considered and its operational semantics. We give only an intuitive
explanation of the concepts and the symbols used for definingthe semantics. All the remaining details
and formal definitions can be found in our Technical Report [14]. We assume also that the reader is
familiar with basic UML state machine concepts.

2.1. Overview

We start with an overview of a syntax and a semantics of UML, while in the next section we give a formal
operational semantics. The syntax is illustrated with the diagrams of the Generalized Railroad Crossing

A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines 1003

(a) Class and object diagrams (b) State machine diagram of class Train

Figure 1. Specification of Generalized Railroad Crossing system

system, which is also used as a benchmark in Section 4.
The systems considered are specified by a single class diagram which definesk classes (e.g. see Fig.

1(a)), a single object diagram which definesn objects (e.g. in Fig. 1(a)), andk state machine diagrams
(e.g. in Fig. 1(b), 2), each one assigned to a different classof the class diagram.

The class diagram defines a list of attributes and a list of operations (possibly with parameters) for
each class. The object diagram specifies the instances of classes (objects) and (optionally) assigns the
initial values to variables. All the objects are visible globally, and the set of objects is constant during
the life time of the system - dynamic object creation and termination is not allowed. We denote the set
of all the variables byV, the set of the integer variables byV int ⊆ V, and the set of the object variables
by Vobj ⊆ V. The values of object variables are restricted to the set of all objects defined in the object
diagram, denoted byO, and the special valueNULL.

Each object is assigned an instance of a state machine that determines the behavior of the object. An
instance of a state machine assigned toith object is denoted bySMi. A state machine diagram typically
consists of states, regions and transitions connecting source and target states. The set of all states ofSMi

is denoted bySi, whereasS =
⋃n

i=1 Si is the set of all states from all instances of state machines.We
consider several types of states, namely: simple states (e.g. Away in Fig. 1(b)), composite states, (e.g.
Main in Fig. 2), final states, and initial pseudostates1, (e.g. Initial in Fig. 2). For each object we define
the set ofactivestatesAi, whereAi ⊆ Si, Ai 6= ∅, andi = 1, . . . , n. The areas filling the composite
states are calledregions. The regions contained in the same composite state areorthogonal(e.g. Gate
andController in Fig. 2). The regions contain states and transitions, and thus introduce ahierarchyof
state machines. We assume that a definition of the hierarchy relation is given, and we implicitly refer to
this relation by using the terms ancestor and descendant. See [14] for more details.

The transitions are labelled with expressions of the formtrigger[guard]/action, where each of
these components can be empty. A transition can be fired if thesource state isactive, the guard (a
Boolean expression) is satisfied, and the trigger matching event occurs. An event can be of the following
three types: anoperation call, acompletion event, or atime event. In general, firing of a transition causes

1A pseudostate is an abstraction that encompasses differenttypes of transient vertices in the state machine graph, e.g.initial,
choice, or history pseudostates.

1004 A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines

Figure 2. Specification of Generalized Railroad Crossing system - state machine diagram of class GateController

deactivation and activation of some states (depending on the type of the transition and the hierarchy of
given state machine). We say that the state machineconfigurationchanges then. More details can be
found in [14].

A time event, defined by an expression of the formafter(δ1, δ2), whereδ1, δ2 ∈ N andδ1 ≤ δ2,
can occur not earlier than after passing ofδ1 time units and no later than before passing ofδ2 time units.
This is an extension of the standardafter(x) expression, which allows one to specify an interval of
time in which a transition is enabled. However, we follow thediscrete-time semantics where the clock
valuations are natural numbers. For measuring time implicit natural variables, calledclocks, are used.
The time flow is measured from entering thetime state, which is the source state of a transition with the
trigger of the formafter(δ1, δ2). The set of all time states fromSMi is denoted byΓi, and the set of all
time states from all instances of state machines is denoted by Γ, whereΓ =

⋃n
i=1 Γi.

The operation calls coming to the given object are put into the event queueof the object, and then,
one at a time, they are handled. The event from the head of the queue either fires a transition (or many
transitions) and is consumed, or it is discarded if it cannotfire any transition. The transitions with non-
empty trigger are calledtriggered transitions. We refer to the processing of a single event from the
queue or a time event as to theRun-To-Completion (RTC) step. Next, an event can be handled only
if the previous one has been fully processed, together with all the completion events which eventually
have occurred. A completion event (denoted byκ) occurs for a state that has completed all of its internal
activities. The completion events fire thecompletion transitions, i.e., transitions without a trigger defined
explicitly. The completion transitions have priority overthe triggered transitions.

The execution of the whole system follows the interleaving semantics similar to [6]. During a single
step only one object performs its RTC step. If more than one object can execute such a step, then an
object is chosen in a non-deterministic way. However, if none of the objects can perform anuntimed
action (i.e., any action but a timed transition), then time flows. Note that this happens when all event
queues are empty and all the completion events have been handled. The time flow causes occurrences of
time events. The time events are processed in the next RTC steps.

A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines 1005

2.2. Operational semantics

There are two key notions of our semantics, namely,global statesand atransition relation. Below, we
give several definitions, exploited later in the operational semantics.

Definition 2.1. (State machine configuration)
A set of states isconsistentif for each pair of its distinct states these states either belong to orthogonal
regions or one is an ancestor of the other. A state iscompletedif a completion event has occurred for this
state, but has not been handled yet.
A configurationof the state machine of thei-th object is a pair〈Ai, Ci〉, whereAi ⊆ Si is aconsistent
set ofactive states, andCi ⊆ Ai is a set ofcompleted states. The set of all the configurations of thei-th
object is denoted bŷSi while Ŝ is the set of all the configurations of all the objects.

Definition 2.2. (Valuation)
Let E andQ denote respectively the set of all the events and the set of all the event queues. LetΩ =

Z ∪ O ∪ (E \ {κ})⋆ ∪ Ŝ, whereZ is the set of integer numbers, and(E \ {κ})⋆ is the set of all finite
sequences of events (without completion events).
A valuation functionv is defined as:v : V∪Q∪O 7−→ Ω, wherev(V int) ⊆ Z, v(Vobj) ⊆ O∪{NULL},
v(Q) ⊆ (E \ {κ})⋆ andv(O) ⊆ Ŝ. The functionv assigns an integer to each integer variable, an object
or NULL to each object variable, a sequence of events to each event queue, and an active configuration
to each object.

The configuration of thei-th object for a given valuationv is denoted by〈Av
i , C

v
i 〉, whereasϑ(v, α)

denotes the valuationv′ computed fromv after the execution of the actionα. Theinitial valuation v0 is
a valuation that returns an empty sequence (ε) for all the event queues, the initial states marked as active
and completed for all the objects and the initial values for all the variables.

Definition 2.3. (Clocks valuation)
A clocks valuationfunction µ : S 7−→ N assigns a natural number to each time state and zero to any
other state. Fors ∈ Γ, a clock valuationµ(s) indicates how long ago the system entered the time states,
or how long ago the system started ifs has not been active yet.

Let µ + δ (for δ ∈ N) denote the clocks valuation such thatµ′(s) = µ(s) + δ for s ∈ Γ andµ′(s) = 0
for s ∈ S \ Γ. ForY ⊆ S let µ[Y := 0] denote the clocks valuationµ′ such thatµ′(s) = 0 for s ∈ Y
andµ′(s) = µ(s) for s ∈ S \ Y . The valuationµ0 such that∀s∈S µ0(s) = 0 is called theinitial clocks
valuation. A pair g = 〈v, µ〉 is called aglobal state. It is determined by the active configuration of all
instances of state machines, the valuations of all the variables, the contents of all the event queues, and
the valuations of all the clocks.

Definition 2.4. (Operational semantics)
The operational semantics of the systems specified in the selected UML subset is defined by the labelled
transition system〈G, g0,Σ,→〉, where:

• G = ΩO∪V∪Q × N
Γ is a set of the global states,

• g0 = 〈v0, µ0〉 is the initial state,

• Σ = N is a set of the labels corresponding to time units passing during transitions,

1006 A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines

• → ⊆ G × Σ × G is the transition relation such that forg = 〈v, µ〉, g′ = 〈v′, µ′〉, andσ ∈ Σ we
haveg

σ
→ g′ iff one of the following conditions holds:

1. ∃i∈{1,...,n} Iv
i 6= ∅ ∧ σ = 0 ∧ v′ = ϑ

(
v, discard(Iv

i)
)
∧ µ′ = µ

2. ∃i∈{1,...,n} C
v
i 6= ∅ ∧ Iv

i = ∅ ∧ σ = 0 ∧ v′ = ϑ
(
v, λ(tκ)

)
∧ µ′ = µ

[
Λ(tκ) := 0

]

3. ∃i∈{1,...,n} C
v
i = ∅ ∧ enabled(g, oi) 6= ∅ ∧ σ = 0 ∧ v′ = ϑ

(
v, λ(ϕ)

)
∧ µ′ = µ

[
Λ(ϕ) := 0

]

4. ∃i∈{1,...,n} C
v
i = ∅ ∧ v(qi) 6= ε∧enabled(g, oi) = ∅ ∧ σ = 0∧ v′ = ϑ

(
v, cons(qi)

)
∧µ′ = µ

5. ∀i∈{1,...,n} C
v
i = ∅ ∧ v(qi) = ε ∧ σ = x ∧ 0 < X1 ≤ x ≤ X2 ∧ v′ = v ∧ µ′ = µ + x

where:

– the setIv
i ⊆ Cv

i contains the completed states of thei-th object that are the source states for
the completion transitions not enabled in the stateg,

– discard(Iv
i) is the action of removing the elements of the setIv

i from Cv
i ,

– λ(tκ) is the sequence of actions w.r.t. the specification of the completion transitiontκ exe-
cuted,

– Λ(tκ) is the set of states activated as a result of firing the transition tκ,

– enabled(g, oi) is the set of triggered transitions ofi-th object enabled in the stateg,

– λ(ϕ) is the sequence of actions w.r.t. the specifications of the sequence of triggered transi-
tionsϕ executed,

– Λ(ϕ) is the set of states activated as a result of firing the set of transitionsϕ ⊆ enabled(g, oi),

– v(qi) is the content of thei-th event queue in the stateg,

– cons(qi) is the action of removing an event from the head ofi-th event queue,

– X1,X2 ∈ N are respectively the starting time of the earliest time event and the earliest
expiration time of the considered time events.

It follows from Definition 2.4 that at a stateg = 〈v, µ〉 the system can perform one of the following
transitions (the ordering given follows the priorities of the transitions):

1. Consumption of the completion events.Removes all the completion events that cannot fire any
completion transition for thei-th object in the stateg.

2. Execution of a completion transition. Handles one completion eventκ causing a firing of one
completion transitiontκ, and changes the valuation according to the sequence of actionsλ(tκ),
that is: exit actions and deactivation of leaving states, the transition action, the entry actions and
activation of the entered states, and producing completionevents for some of the activated states.
Moreover the clocks of the entered timed states are reset.

3. Execution of triggered transitions. Firing of the set of non-conflicting triggered transitions en-
abled by the event in the head of the event queue. The resolution of conflicts is based on the nesting
level of the source states of transitions and is described indetail in [14]. We deal with changes
of the valuation in a way similar to the level 2. If a transition is triggered by an event from the
queue, then it is additionally consumed. The second possibility is the firing of a timed transition

A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines 1007

triggered by a time event. In this case the enabling condition depends rather on the clock valuation
than the queue contents. Moreover, in the presence of orthogonal (concurrent) regions more than
one transition can be fired in a single RTC step, so the action sequenceλ(ϕ), which changes the
valuation, contains the actions caused by all executed transitions (the setϕ).

4. Discarding of an event.Discards an event from the head of thei-th event queue if the event does
not enable any transition.

5. Time flow. If all the event queues are empty and all the completion events have been processed,
thenx time units passes, where0 < X1 ≤ x ≤ X2. We consider all the time transitions with guard
expressions satisfied and with active states as the sources.Then, we compute the set of the allowed
values ofx by subtracting the lower and upper bound of the time events specifications from the
clock valuations for the active time states (µ(s) − δ1 andµ(s) − δ2). The set is bounded by the
starting time of the earliest time event (X1) and the earliest expiration time of the considered time
events (X2). In other words, every number of time units lower thanX1 does not enable any timed
transition, while every number of time units higher thanX2 causes an expiration of at least one
timed transition.

3. Symbolic Encoding

Below we present a symbolic encoding of the operational semantics introduced in the previous section.
First, the encoding of the global states is defined in order togive the symbolic transition relation. The
most important details of the encoding of particular transition types can be found at the end of this
section.

Our aim is to encode symbolically all the executions of length k (called k-paths) of a system by
means of a propositional formulapathk. Then, we check satisfiability of the conjunction ofpathk and
some encoded property to be tested (e.g., a reachability property) using a SAT-solver. If the formula
is satisfiable, then we obtain a valuation satisfying the formula, which can be interpreted as a concrete
execution of the system. This valuation is decoded as a sequence of global states leading to the state in
which the property tested holds.

3.1. Binary representation of the global states

In order to define a symbolic encoding of our UML semantics we have to first represent the global states
by sequences of bits. To this aim each global stateg is represented byn binary sequences, where each
sequence stands for a state of one object. The representation of a single object consists of five binary
sequences that encode respectively a set of active states, aset of completed states, a contents of the event
queue, a valuation of the variables, and a valuation of the clocks.

Observe that the following conditions hold:

1. The number of bitsr needed to encode one global state is given as follows:

r = Σn
i=1

(
|Si| + |Cmpl(oi)| + m ∗ b(i) + 2 ∗ ⌈log2 m⌉ + (|Vi| + |Reg(Γi)|) ∗ intsize

)

2. The number of clocks sufficient for representing a state oftheith object is equal to the number of
regions that directly contain time states.

1008 A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines

Let Si = {s1, . . . , sk} be a set of the UML states of theith object. A set of active states of the
ith object is represented by a binary sequence of length|Si| such that itsjth element is equal to1 iff
the statesj is active in the stateg. The second binary sequence representing a set of the completed
states ing is defined in the similar way, but we consider only thecompletion sensitivestates (from the
setCmpl(oi) ⊆ Si), i.e., the states being the source states for completion transitions. The third binary
sequence represents the contents of the event queue ing. A single event queueqi is represented by an
m-element cyclic buffer, and a pair of the indices of the first and the last event in the queue. A maximal
size of a single element of a queue is equal to the maximal number of bits needed to represent the longest
event (an operation with the maximal number of the parameters for a given class), denoted byb(i). So,
we need a sequence ofm ∗ b(i) + 2 ∗ ⌈log2 m⌉ bits to encode thei-th event queue. The last two binary
sequences in the representation ofg are for the valuations of the variables and of the clocks ing. In our
prototype implementation, we treat all the types of the variables (including clocks) as integers. In order
to keep our verification problem decidable, we assume that the domain of values for each variable is
finite. For the integer variables we bound the domain to〈−maxint,maxint〉. Then, the number of bits
for encoding an integer variable is equal tointsize = ⌈log2 maxint⌉+ 1. So, the number of bits needed
to represent the valuation of the variables of theith object is equal to|Vi| ∗ intsize, and to represent the
valuation of the clocks of theith object we need|Reg(Γi)| ∗ intsize bits, whereReg(Γi) is the set of
regions that directly contain time states.

A proof of the second condition follows from the observationthat at most one UML state directly
contained in a region can be active at the same time. So the time states contained in the same region can
share the same clock.

From now on, we identify a global state with its binary representation.

3.2. A symbolic path

Now, we give an encoding of the symbolic transition relation. The description is structured in a top-down
manner, i.e., first, we provide an encoding of the symbolic path, then the transition relation, and finally
we give the detailed encoding of some particular transitiontypes.

In order to encode all the executions of lengthk for a given system, as the formulapathk, we deal
with vectors of propositional variables, calledstate variables. Denote bySv a set of state variables,
containing the symbolstrue and false. Each state of ak-path can be symbolically represented as a
valuation of a vector of state variablesw = (w1, . . . , wr).

Definition 3.1. (Valuation of state variables)
Let us define a valuation of the state variables asV : Sv 7−→ {0, 1}. Then, a valuation of the vectors of
r state variablesV : Sv

r 7−→ {0, 1}r is given as:V (w1, . . . , wr) = (V (w1), . . . ,V (wr)).

All the k-paths can be encoded over a symbolick-path, i.e.,k + 1 vectors of state variableswj for
j = 0, . . . , k . Each vectorwj is used for encoding global states of a system. Specifically,w0 encodes
the initial state (g0), whereaswk encodes the last states of thek-path, for givenk.

Let w andw
′ be vectors of state variables, andV - a valuation of state variables, as discussed above.

Define the following formulae:

• I(w) is a formula s.t. for every valuationV we have thatV satisfiesI(w) iff V (w) is equal to the
initial stateg0 of the transition system.

A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines 1009

• T(w,w′) - a formula s.t. for every valuationV we have thatV satisfiesT(w,w′)

iff V (w)
x
−→ V (w′), for x ∈ N.

Hence the formula encoding a symbolick-path is defined as follows:

pathk(w
0, . . . ,wk) = I(w0) ∧

k−1∧

i=0

T(wi,wi+1) (1)

3.3. Symbolic transition relation

The following subsection introduces a set of helper formulae that encode enabling conditions and ex-
ecution of transitions of types 1 - 5, given in Def. 2.4. Theseare necessary for defining an encoding
of the symbolic transition relation. In order to improve readability, we apply the naming convention of
the helper formulae, where their names consist of the letters E (from Enabling),X (from eXecution),C
(from Class),O (from Object),S (from State),T (from UML Transition), and the numbers 1 – 5 (from the
priorities of transitions). We define propositional formulae for the transitions of types 1 – 4 that encode
their preconditions over the vectorw for the objecto: EO1(o,w), EO2(o,w), EO3(o,w), EO4(o,w).
We also define the propositional formulae encoding an execution of these transitions over the vectors
w,w′ for the objecto: XO1(o,w,w′),XO2(o,w,w′),XO3(o,w,w′),XO4(o,w,w′) and the for-
mula encoding the time flowX5(w,w′).

The transitions of types 1–4 are calledlocal as their execution does not depend on which type of
transition can be fired by other objects (on the contrary, thetime transition of type 5 is calledglobal,
because it can be fired only if all the objects can execute no untimed transition of type 1–4). The execution
of local transitions for the objecto over the vectors of state variablesw andw

′ is encoded as:

XO(o,w,w′) = EO1(o,w) ∧ XO1(o,w,w′) ∨ ¬EO1(o,w) ∧ (EO2(o,w) ∧ XO2(o,w,w′)∨

¬EO2(o,w) ∧ (EO3(o,w) ∧ XO3(o,w,w′) ∨ ¬EO3(o,w) ∧ EO4(o,w) ∧ XO4(o,w,w′)))(2)

We ensure that a transition of some level becomes enabled only if the transitions of the preceding levels
cannot be executed, by nesting the conditions for the consecutive levels. Then, iterating over the objects
of classc, we encode the execution of local transitions for the classc:

XC(c,w,w′) =
∨

o∈Objects(c)

XO(o,w,w′) (3)

Now we are ready to give an encoding of the transition relation:

T(w,w′) =
∨

c∈Classes

XC(c,w,w′) ∨ E5(w) ∧ X5(w,w′) (4)

where the formulaE5(w) encodes the enabling conditions andX5(w,w′) encodes the execution of the
time flow transition.

3.4. Symbolic encoding: details

In this section we introduce a symbolic encoding of all of thetransition types. We give the encoding
of the preconditions of particular transition types as formulae beginning withE, and the encoding of
postconditions (execution) as formulae beginning withX.

1010 A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines

Transitions of type 1 (discarding of completion events). A precondition for a transition of level one
for objecto (EO1) is satisfied if in a symbolic statew there exists an UML states that is completed and
there does not exist any completion transition, outgoing from s, having the guard satisfied.

ES1(s,w) =
(
compl(s,w) ∧

∧

t∈outCmpl(s)

¬(guard(t,w)
)
, EO1(o,w) =

∨

s∈Cmpl(o)

ES1(s,w)

wherecompl(s,w) is evaluated totrue iff the states is completed inw, outCmpl(s) is a set of all
completion transitions outgoing from the states, and the formulaguard(t,w) encodes the guard of
transitiont over the state variables fromw. The execution of this transition is encoded as the formula:

XO1(o,w,w′) =
∧

s∈Cmpl(o)

(
ES1(s,w) =⇒ ¬compl(s,w′)

)
∧ cpRest(w,w′)

The states satisfying the preconditionES1 are marked as not completed in the statew
′, and the formula

cpRest(w,w′) encodes copying of the state variables unchanged fromw to w
′.

Transitions of type 2 (execution of completion transition). The enabling condition of this type of
transition holds for an objecto if there exists a completion transition, the guard of which is satisfied,
outgoing from a state marked as completed:

ET2(t,w) = compl(src(t),w) ∧ guard(t,w), EO2(o,w) =
∨

s∈Cmpl(o)

∨

t∈outCmpl(s)

ET2(t,w)

XO2(o,w,w′) =
∨

s∈Cmpl(o)

∨

t∈outCmpl(s)

(
ET2(t,w) ∧ TEffect(t,w,w′)

)
∧ cpRest(w,w′))

whereTEffect encodes a change of a global state according to the specification of the transition exe-
cuted (i.e., deactivation of the states left, activation ofthe states entered and the change of the variables
and event queues if the transition’s action is not empty).

Event queues and queue interface. Before we give an encoding of the transitions of types 3 and 4,
which make use of event queues, we introduce some important details of a symbolic representation of
the event queues. Under an assumption that at most one methodcan be called as a result of executing a
single transition, we improved the encoding of the event queues by a kind of a symmetry optimization.
For each step of the symbolic path we introduce a pair of additional event queues calledqueue interface.
The operations of inserting and removing an event are encoded over the queue interface. Then, depending
on the object which fires a triggered transition, the contents of the respective event queue is copied to
the interface, the operation is performed and the modified contents of the queue interface is copied back
to the queue of the appropriate object. In this way we avoid the encoding of complex operations over
the event queue of each object. Below we use the formulaemsg(w) andpopMsg(w,w′) that encode,
respectively, the event in the head of the queue interface and the operation of removing the event from
the queue interface.

A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines 1011

Transitions of type 3 (execution of triggered transition). A transition of type 3can be fired if its
source state is active, the guard is satisfied and the triggermatches the event in the front of the queue, or
if respective clock value is between the time constraints, in the case of a timed transition:

ET3(t,w) = active(src(t),w) ∧ guard(t,w) ∧

{
match

(
msg(w), trig(t)

)
, for t untimed

inT ime(t,w) ∧ ¬exp(t,w), for t timed

EO3(o,w) =
∨

s∈States(o)

∨

t∈out(s)

ET3(t,w)

wheretrig(t) is the trigger of the transitiont, match(message, trigger) is a formula evaluating totrue
iff message matches thetrigger, States(o) is the set of all UML states of objecto, andout(s) is the set
of all triggered transitions outgoing from states. The formulaeinT ime(t,w) andexp(t,w) concern the
timed transition and encode respectively that the transition t has entered its allowed time period and that
the transitiont is expired. An execution of this type of transition is similar to the type 2. Additionally, in
the case of firing a triggered transition, the event is removed from the queue.

XT3(t,w,w′) = TEffect(t,w,w′) ∧ cpRest(t,w,w′) ∧

{
popMsg(w,w′), for t untimed

true, for t timed

XO3(o,w,w′) =
∨

s∈States(o)

∨

t∈out(s)

(
ET3(t,w) ∧ XT3(t,w,w′)

)

Transitions of type 4 (implicit consumption of event). The transition of type 4 for an objecto can be
fired if the enabling conditionsEO3, EO2 andEO1 (see formula 2) are not satisfied and the queue is
not empty. The execution is simple: the event is removed fromthe queue and all the other state variables
are copied to the next symbolic statew

′.

EO4(o,w) = ¬queueEmpty(o,w), XO4(o,w,w′) = popMsg(w,w′) ∧ cpRest(o,w,w′)

Transitions of type 5 (time flow). The enabling condition for the transition of type 5 is defined as:

E5(w) =
∧

c∈Classes

∧

o∈Objects(c)

(
queueEmpty(o,w) ∧

∧

s∈Cmpl(o)

¬compl(s,w)
)

The definition ofE5 follows from the fact that the transitions of type 1 and 2 can be fired only if there
exists at least one state marked as completed, and the transitions of type 4 and untimed transitions of
level 3 are enabled only if there exists at least one non emptyevent queue. Note that the time flow and
firing of timed transitions can be interleaved. A time transition can be fired at any point of its time period
(i.e., it fires immediately when it becomes enabled, or the firing can be delayed, but at most to the end of
its time period). The execution of the time flow transition isencoded as:

X5(w,w′) = incClocks(w,w′) ∧
∧

t∈timeTr

notExpire(t,w,w′) ∧
∨

t∈timeTr

inT ime(t,w′)

1012 A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines

whereincClocks(w,w′) is the formula that encodes incrementing all the clocks by some positive value
x, and the formula:

notExpire(t,w,w′) =(
¬exp(t,w) ∧ guard(t,w) ∧ active

(
src(t),w

))
=⇒

(
exp(t,w) ⇔ exp(t,w′)

)

bounds the maximum value ofx, i.e., if a timed transitiont is potentially enabled, then it will not expire
after the time flow. The last part of the formulaX5 bounds the minimum value ofx, i.e., the time step
must be big enough to enable at least one timed transition.

3.5. Discussion on complexity of the encoding

In this section we estimate the complexity of the encoding ofthe transition relation. To this purpose we
estimate first the complexity of the encoding of the helper formulae. We base our assessments on the
paper [16], which defines an encoding of arithmetic operations.

The complexity of the encoding of particular helper formulae is as follows:

• guard(t,w), TEffect(t,w,w′) - polynomial w.r.t. the size of an input expression (the guard
or the action of transitiont), or exponential in the case when the input expression contains a
multiplication.

• compl(s,w), active(s,w) - constant. Both the formulae are just one of the state variables.

• cpRest(w,w′) - quadratic w.r.t. the number of objects.

• match(message, trigger) - linear w.r.t. the number of operations per class.

• inT ime(t,w), exp(t,w), incClocks(w,w′) - polynomial w.r.t. the size of clock variables.

• the queue interface operations - polynomial w.r.t. the length of the event queue.

It follows from the above that the complexity of the encodingof the transition relation is polynomial
except for the case when the multiplication is used in the specification of the system, which makes the
encoding exponential.

4. Experimental Results

Our prototype implementation has been tested using two example specifications. The first one – Master-
Slave system (Fig. 3) – is an untimed specification of a simplesystem consisting of one instance of class
Master andN instances of class Slave. The objects of type Slave send requests to the object of type
Master (m) that handles the messages and decreases the variableresources. When the variable is equal
to 0 the objectm goes to the statedeadlock.

Table 1 presents our experimental results of testing the reachability of thedeadlock state. The
columnk contains the depth of the symbolic path for SMUML and our tool. The variableresources has
been initially set to4, the size of the event queue has been set to3, and the integer variables have been

A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines 1013

N k Hugo/Uppaal [s] SMUML/NuSMV [s] BMC4UML [s]

2 26 2.14 20.2 59.55

3 24 17.74 35.62 167.44

4 22 110.05 36.77 59.24

5 22 Out of memory 55.16 65.73

6 22 - 108.62 179.18

7 22 - 282.03 131.44

8 22 - 1 257.71 529.07

9 22 - 2 402.96 666.41

Table 1. The experimental results of verification of Master-Slave

(a) Class diagram (b) Object diagram

(c) State machine of class Slave (d) State machine of class Master

Figure 3. Specification of Master-Slave system

N k Hugo/Uppaal [s] BMC4UML [s] BMC4UML* [s], k = 18

3 24 2.89 86.07 40.44

4 25 175.41 139.39 50.41

5 26 >2500 221.4 59.9

6 27 - 1354.89 75.21

7 - - - 92.6

10 - - - 152.36

15 - - - 279.61

20 - - - 448.64

Table 2. The experimental results of verification of GRC

1014 A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines

encoded over6 bits. The tests have been performed on the computer equippedwith Pentium M 1.73 GHz
CPU and 1.2 GB RAM running Linux.

The second specification tested is a variant of the well knownGeneralised Railroad Crossing (GRC)
benchmark (Fig. 1, 2). The system, operating a gate at a railroad crossing, consists of a gate, a controller,
andN tracks which are occupied by trains. Each track is equipped with sensors that indicate a position
of a train and send an appropriate message to the controller.Depending on the track occupancy the
controller can either open or close the gate.

We were not able to use SMUML to verify the GRC system, becauseSMUML does not support
timed specifications. On the other hand we had to model GRC in away that minimises the semantic
differences between Hugo and our tool, e.g., with the minimal number of completion transitions. The
UML semantics implemented in Hugo allows to freely delay of handling of completion events, while our
semantics (following the OMG standard) gives them the highest priority.

Table 2 presents the results of verification of GRC, whereN denotes the number of trains, andk the
depth of symbolic path at which the tested property is satisfiable. The results in the column marked with
an asterisk concern the symbolic paths of length 18 that start from a non-initial state of the GRC system,
but from the state where all trains are in the statesAwayand the objectctl is in the statesMain, Open,
andcontrol (see Fig. 1, 2). In other words the paths have been made shorter by the “initialization part”.

Although this trick can be applied to all systems, it guarantees an improvement only for those where
the initialisation part of all the objectsalwaystakes place before any other transitions. For other systems
it can lead to increasing the length of the path or even incorrect results. In case of GRC the first non-
completion transition, which can be fired, is a timed one going from the stateAwayto the stateApproach
in one of theTrain objects. In order to fire such a transition the clocks have to be increased, so the
time flow should happen first. It follows from the semantics that the time flow transition can be fired
only if all untimed activities are done. Hence, this kind of apath reduction can be applied here, and the
experimental results confirm it.

5. Final Remarks

In this paper we described a new approach to Bounded Model Checking for UML. Instead of dealing
with a translation to a standard formalism of timed automata, we encoded the verification problem di-
rectly into SAT. We believe that this is a way in which symbolic methods can be used to handle complex
programming and specification languages. Our preliminary results are very promising. We have shown
that our method is more efficient than two UML verifiers for some classes of systems and tested proper-
ties. A future work is to enlarge the subset of the UML state machines handled as well as to introduce
more optimisations at the level of the symbolic encoding andthe implementation.

A. Niewiadomski, W. Penczek, M. Szreter / A New Approach to Model Checking of UML State Machines 1015

References

[1] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi, and M. Hendriks. UPPAAL 4.0.
In QEST, IEEE Computer Society, pages 125–126, 2006.

[2] P. Bhaduri and S. Ramesh. Model Checking of Statechart Models: Survey and Research Directions.ArXiv
Computer Science e-prints, July 2004.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tac-
chella. Nusmv 2: An opensource tool for symbolic model checking. In CAV, pages 359–364, London, UK,
2002. Springer-Verlag.

[4] K. Compton, Y. Gurevich, J. Huggins, and W. Shen. An automatic verification tool for UML. Technical
Report CSE-TR-423-00, University of Michigan, 2000.

[5] M. L. Crane and J. Dingel. On the semantics of UML state machines: Categorization and comparison.
Technical Report 2005-501, School of Computing, Queen’s University, Kingston, Ontario, Canada, 2005.

[6] K. Diethers, U. Goltz, and M. Huhn. Model checking UML statecharts with time. InCritical Systems Devel-
opment with UML – Proceedings of the UML’02 workshop, pages 35–52. Technische Universität München,
2002.

[7] J. Dubrovin, T. Junttila, and K. Heljanko. Symbolic stepencodings for object based communicating state
machines. Technical Report B24, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, 2007.

[8] M. E. B. Gutiérrez, M. Barrio-Solórzano, C. E. C. Quintero, and P. de la Fuente. UML Automatic Verification
Tool with Formal Methods.Electr. Notes Theor. Comput. Sci., 127(4):3–16, 2005.

[9] G. J. Holzmann.The SPIN Model Checker : Primer and Reference Manual. Addison-Wesley Professional,
September 2003.

[10] T. Jussila, J. Dubrovin, T. Junttila, T. Latvala, and I.Porres. Model checking dynamic and hierarchical UML
state machines. InMoDeV2a, pages 94–110, 2006.

[11] A. Knapp, S. Merz, and C. Rauh. Model checking - timed UMLstate machines and collaborations. In
FTRTFT, pages 395–416, 2002.

[12] J. Lilius and I. Paltor. vUML: A tool for verifying uml models. InASE, pages 255–258, 1999.

[13] K. Mcmillan. The SMV system. Technical Report CMU-CS-92-131, School of computer Science, Carnegie
Mellon University, 1992.

[14] A. Niewiadomski, W. Penczek, and M. Szreter. Semantykaoperacyjna wybranych diagramów UML (in
Polish). Technical Report 1009, ICS PAS, 2008.

[15] OMG. Unified Modeling Language. http://www.omg.org/spec/UML/2.1.2, 2007.

[16] A. Zbrzezny. A boolean encoding of arithmetic operations. InProc. of the Int. Workshop on Concurrency,
Specification and Programming (CS&P’08), volume 225(3) ofInformatik-Berichte, pages 536–547. Hum-
boldt University, 2008.

