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Abstract. We introduce basic partial order reduction techniques in a
temporal-epistemic setting. We analyse the semantics of interpreted sys-
tems with respect to the notions of trace-equivalence for the epistemic
linear time logic LTLK−X .

1 Introduction

In recent years there has been growing attention to the area of verification
of multi-agent systems (MAS) by automatic model checking. Differently from
standard reactive systems where plain temporal logics are often used, MAS are
specified by using rich, intensional logics such as epistemic and deontic logics in
combination with temporal logic. To accommodate for these needs several tech-
niques for model checking have been suitably extended. For instance in [4, 20]
OBDD-based techniques for temporal epistemic logic were introduced. Simi-
lar analysis were carried out previously for SAT-based approaches, including
bounded and unbounded model checking [10, 18]. These approaches have now
been implemented [1, 4, 13] and experimental results obtained in a variety of ar-
eas such as verification of security protocols, web-services, etc. Several extensions
to other logics, including ATL, real-time, and others, have also been analysed.

It is surprising however that two mainstream techniques in symbolic verifica-
tion, i.e., predicate abstraction and partial order reduction have not so far been
applied to the verification of MAS logics. In this paper we begin the analysis of
partial order reduction for temporal epistemic logic. Specifically, we look at the
case of the linear temporal logic LTLK−X (i.e., the standard LTL [14] without
the X next-time operator in which an epistemic modality is added [3]). The
main contributions of this research note are the notions of weak and strong path
equivalence defined on MAS semantics, the corresponding dependency relations,
and a proof showing that these equivalences preserve the satisfaction of LTLK−X

formulas.
The rest of the paper is organised as follows. In Section 2 we introduce syntax,

semantics of our setting together with some basic notions. In Section 3 we present
the definitions of path equivalence and dependency which are used in Theorem 1,
the key result of the paper, showing that strongly equivalent paths preserve
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LTLK−X formulas. We exemplify the methodology in Section 4 while discussing
an example, and present our conclusions in Section 5.

2 Preliminaries

We introduce here the basic technical background to the present paper. In par-
ticular we discuss the semantics of interpreted systems, properly augmented with
suitable concepts for our needs, and the basic syntax we shall be using in the
rest of the paper.

2.1 Interpreted Systems

The semantics of interpreted systems provides a setting to reason about MAS.
Interpreted systems were originally developed independently by Parikh and Ra-
manujam [16], Halpern and Moses [8] and Rosenschein [21]. Their adoption as
a semantics of choice for several MAS concept follows the publication of [3].
Although several valuable extensions have been proposed, in their basic settings
interpreted systems offer a natural synchronous semantics for linear time and
an external account of knowledge of the agents in the system. The following is
a brief summary of the fundamental concepts needed for the rest of the paper;
we refer to [3] for more details.

We begin by assuming a MAS to be composed of n agents A = {1, . . . , n}1.
We associate a finite set of possible local states Li = {l1i , l

2
i , . . . , l

nli
i } and actions

Acti = {a1
i , a

2
i , . . . , a

nai

i } to each agent i ∈ A. In the interpreted systems model
the actions of the agents are selected and performed synchronously according to
each agent’s local protocol Pi : Li → 2Acti; the local protocol effectively models
the program the agent is executing. A global state g = (l1, . . . , ln) is a tuple of
local states for all the agents in the MAS corresponding to an instantaneous
snapshot of the system at a given time. Given a global state g = (l1, . . . , ln), we
denote gi = li as the local component of agent i ∈ A in g. Global transitions
are executed by means of joint actions on global states. In a nutshell, the global
evolution function t : G × Act1 × · · · × Actn → G defines the target global state
from a global state when a joint action (a1, . . . , an) ∈ Act1×· · ·×Actn is selected
and performed by all agents in the system. More details can be found in [3].

In the following analysis we differ from the standard presentation by abstract-
ing from the actual protocols and actions being performed and focus on the
transitions only. For this reason we simply focus on the set of all possible
global transitions T = {(g, g′) | ∃(a1, . . . , an) ∈ Act1 × · · · × Actn such that
t(g, a1, . . . , an)= g′}. For simplicity we shall often use lower case letters t1, t2, . . .
to denote elements of T . Given the set T of global transitions we denote by
Ti, i ∈ A, the set of all local transitions of the form ti = (lki , lk+1

i ) for an agent
i ∈ A. The set of all local transitions can be obtained by projecting T over the
corresponding dimension for the agent in question; more formally (lki , lk+1

i ) ∈ Ti

1 Note in the present study we do not consider the environment component. This may
be added with no technical difficulty at the price of heavier notation.
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if there exists a joint action (a1, . . . , an) such that t(gk, a1, . . . , an) = gk+1, where
the local component for agent i in gk (respectively gk+1) is lki (respectively lk+1

i ).
With slight abuse of notation for any global transition t = (g, g′) ∈ T we write
t = (t1, . . . , tn), where each ti ∈ Ti, i ∈ A is such that ti(gi, g

′
i), and say that all

ti, i = 1, . . . , n, are the local transitions in t.
With respect to the above we use the following notations. Given a local tran-

sition ti = (li, l′i) we write source(ti) = li and target(ti) = l′i. Further, if li = l′i,
we denote ti as ε. We use similar notation for global transitions too with ob-
vious meaning in terms of source and target on global states. A sequence of
global states ρ = g0g1g2 . . . is called a path (or a run) if for every gk, gk+1 ∈ ρ
(k ≥ 0) we have that (gk, gk+1) ∈ T . Given a path ρ we say ρ|i = g0

i g1
i g

2
i . . .

is the local path for agent i in ρ. Given a path ρ = g0g1g2 . . . , ρ(k) = gk, and
ρ〈k〉 = (gk, gk+1) = tk. Similarly, the k-th state and k-th transition in ρ|i are
denoted as ρ|i(k) and ρ|i〈k〉 respectively. Let ρ[0..k] = g0g1 . . . gk (respectively
ρ|i[0..k] = g0

i g1
i . . . gk

i ) be the prefix of ρ (respectively ρ|i) and ρ[k] = gkgk+1 . . .
(respectively ρ|i[k] = gk

i gk+1
i . . . ) the suffix. The set of paths originating from g

is denoted as Π(g).
We express synchronisation of transitions as follows. Local transitions are

synchronised if they are always performed jointly by the system; this is formally
expressed as follows.

Definition 1 (Synchronisation). For any i, j ∈ A (i �= j), a local transition
ti is said to be semi-synchronised to a local transition tj if whenever ti appears
in a global transition t = (t1, . . . , tn) so does tj. Two local transitions ti, tj are
synchronised if ti is semi-synchronised to tj and tj is semi-synchronised to ti.

We write t1 → t2 to denote the fact that t1 is semi-synchronised to t2 and t1 ↔ t2
denote t1 is synchronised to t2. Figure 1 shows an interpreted system composed
of three agents. The dotted lines represents synchronised transitions, i.e., the
local transitions t21 and t22 are synchronised.

Definition 2 (Interpreted Systems). Given a set of atomic propositions P ,
an interpreted system (or simply a model) is a tuple M = (G, G0, Π, h), where G
is a set of global states, G0 ⊆ G is a set of initial (global) states, Π =

⋃

i∈G0

Π(i)

is the set of paths originating from all states in G0, and h : P → 2G is an

Fig. 1. A synchronous system



Towards Partial Order Reduction 109

interpretation for the atomic propositions. Particularly, we define a local atomic
proposition pj

i for each local state lji of the agent i ∈ A such that h(pj
i ) = {g |

g ∈ G and gi = lji }. We assume G to be the set of states reachable from G0 by
any path in Π.

We can now define the syntax and interpretation of our language.

2.2 Syntax

Combinations of linear time and knowledge have long been used in the analysis
of temporal epistemic properties of systems [3, 7]. In partial order reduction for
LTL one typically excludes from the syntax the next time operator X as the
preservation results [12] do not hold when X is present. Given this we consider
LTLK−X in this paper.

Definition 3 (Syntax). Let PV be set of atomic propositions to be interpreted
over the global states of a system. The syntax of LTLK−X is defined by the
following BNF grammar:

φ ::= true | false | p | ¬p | φ ∧ φ | φ ∨ φ | φUφ | φRφ | Kiφ | Kiφ,

where p ∈ PV .

The temporal operators U and R are named as usual until and release respectively.
The formula Kiφ represents ”agent i knows φ” and Kiφ is the corresponding dual
representing ”agent i does not know whether or not φ holds”. The
epistemic modalities are defined by means of the following relations as standard.

Definition 4 (Epistemic relation). For each agent i ∈ A, ∼i ⊆ G × G is
an epistemic indistinguishably relation over global states defined by g ∼i g′ if
gi = g′i.

Given a model M = (G, G0, Π, h), where h(p) is the set of global states where p
holds. Let Π denote the suffix-closure of Π , i.e., the set of all the paths in Π and
their suffices. The formal semantics of an LTLK−X formula φ being satisfied by
M and ρ ∈ Π , denoted as M, ρ |= φ, is recursively defined as follows.

Definition 5 (Satisfaction).

– M, ρ |= true for each ρ ∈ Π;
– M, ρ �|= false for each ρ ∈ Π;
– M, ρ |= p iff ρ(0) ∈ h(p);
– M, ρ |= ¬p iff M, ρ �|= p;
– M, ρ |= φ1 ∧ φ2 iff M, ρ |= φ1 and M, ρ |= φ2;
– M, ρ |= φ1 ∨ φ2 iff M, ρ |= φ1 or M, ρ |= φ2;
– M, ρ |= φ1Uφ2 iff M, ρ[k] |= φ2 for some k ≥ 0 and M, ρ[j] |= φ1 for all

0 ≤ j < k;
– M, ρ |= φ1Rφ2 iff either M, ρ[k] |= φ2 and M, ρ[k] �|= φ1 for all k ≥ 0, or

M, ρ[k] |= φ1 for some k ≥ 0 and M, ρ[j] |= φ2 for all 0 ≤ j ≤ k;
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– M, ρ |= Kiφ iff all paths ρ′ ∈ Π we have that ρ′(0) ∼i ρ(0) implies M, ρ′ |= φ.
– M, ρ |= Kiφ iff for some path ρ′ ∈ Π we have that ρ′(0) ∼i ρ(0) and

M, ρ′ |= φ.

Given a global state g of M and an LTLK−X formula φ, we use the following
notations:

– M, g |= φ iff M, ρ |= φ for all the paths ρ ∈ Π(g).
– M |= φ iff M, g |= φ for all g ∈ G0.
– Props(φ) ⊆ PV is the set of atomic propositions that appear in φ.

In order to define partial order reduction for LTLK−X , we transform each for-
mula ¬p into a fresh atomic proposition q such that h(q) = G \ h(p). Next, we
present the main notions used for our reduction.

Definition 6 (Simple State Expression). Let I ⊆ A. A set LI ⊆
⋃

i∈I Li

is said to be simple if it contains exactly one element from each set Li. Given
a simple set LI , a simple state expression P for an atomic proposition p is a
Boolean formula of the form:

P =
∧

lji∈LI

pj
i , (1)

where pj
i is the local atomic proposition corresponding to lji and for all g ∈ G

and i ∈ I: gi ∈ LI implies g ∈ h(p).

In the above definition, each local atomic proposition in P denotes a local state
which “forces” any global state in which it appears to satisfy p. Given any I ⊆ A,
let [p] denote the set of all valid simple state expressions for p. Given an atomic
proposition p, a set I ⊆ A and a simple state expression P , we write [P ] for LI

and A|P for I.
Let G|P ⊆ G be the set of global states in which P holds. Given two simple

state expressions Pk, P ′
k ∈ [p], we write Pk ≤ P ′

k iff G|Pk
⊆ G|P′

k
and Pk < P ′

k iff
Pk ≤ P ′

k and Pk �= P ′
k. Clearly, ([p], ≤) is a poset. Let Max[p] be the set of the

maximal elements in [p]. Note that the maximal elements intuitively correspond
to the “smallest” simple state expressions.

Definition 7 (Full State Expression). The full state expression Ep for an
atomic proposition p is a Boolean formula of the form:

Ep =
∨

P∈Max[p]

P , (2)

In other words, Ep encodes the set of global states where p holds, i.e., h(p).
In what follows we also use the following shortcuts: A|p =

⋃
P∈Max[p] A|P (A|p

denotes the set of agents appearing in the full state expression of p), and A|φ =⋃
p∈Props(φ) A|p.
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3 Partial Order Reduction on Interpreted Systems

In the literature, partial order reduction has been studied intensively for asyn-
chronous systems, e.g., [5, 6, 9, 11, 15, 17, 19, 22]. The technique permits the
exploration of a portion of the state space when checking for satisfaction of a
formula in a system. The basic idea consists in observing that two consecutive
independent transitions in a path can sometimes be interchanged with no effect
to the satisfaction of a formula. Because of this, the set of all the paths in a sys-
tem can be partitioned into subsets, named traces [2]. In this section, we aim to
define a dependency relation between transitions in order to be able to partition
paths into traces. We begin with the notion of stuttering [12].

Definition 8. The stutter normal form of a path ρ is a sequence #ρ such that
each consecutive repetition of states in ρ is replaced by a single state. Two paths
are said to be equivalent up to stuttering if they have the same stutter normal
form.

For example, two paths g1g2g2g3g3 and g1g2g2g2g3 are equivalent up to stut-
tering since their stutter normal form is g1g2g3. The same definition applies to
local paths ρ|i.

Definition 9 (Weak equivalence). Two paths ρ and ρ′ are weakly equivalent
iff ρ|i and ρ|′i are equivalent up to stuttering, for all agents i ∈ A.

Figure 2 and 3 display two weakly equivalent paths in the system of Figure 1
based on the above definition.

Observe that even if two paths are weakly equivalent, they may not satisfy the
same LTLK−X formula. For example, consider the system in Figure 1 and two
atomic propositions p and q such that p holds in all the global states containing
s1 while q holds in all the global states containing w2. The formula

pUq (3)

holds in the path in Figure 3, but does not hold in the one in Figure 2.
Now we start to define dependency relations between transitions to strengthen

weak equivalence in order to get strong equivalence preserving the LTLK−X

formulae.

Fig. 2. A path ρ
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Fig. 3. A path weakly equivalent to ρ

Definition 10 (Basic dependency relation). For any agent i ∈ A, the de-
pendency relation Di is the symmetric closure of the relation:

di = {(ti, t′i) | ti, t
′
i ∈ Ti and ( either (ti �= ε, t′i �= ε) or

(ti �= ε and ∃tj ∈ Tj , tj �= ε, t′i → tj or tj → t′i) or
((∃tj ∈ Tj , tj �= ε, ti → tj or tj → ti) and(∃tk ∈ Tk, tk �= ε, t′i → tk or tk → t′i)))}.

The basic dependency relation relates two local transitions if either they cause an
effective change of local states or they do not but they are (semi-)synchronised
to other local transitions that do so.

Definition 11 (Dependency relation for synchronisation). The depen-
dency relation Dsyn is the symmetric closure of the following relation:

dsyn = {(ti, tj)|ti ∈ Ti, tj ∈ Tj and ti → tj}.

We now define the dependency relation for an LTLK−X formula. We begin with
the dependency relation for an atomic proposition.

Definition 12 (Dependency relation for atomic propositions). For an
atomic proposition p with corresponding full state expression Ep =

∨
P∈Max[p] P,

the dependency relation Dp for p is

Dp = {(ti, tj)|ti ∈ Ti, tj ∈ Tj , i �= j, P ∈ Max[p], P ′ ∈ Max[p],

target(ti) ∈ [P ] and ti �= ε and source(tj) ∈ [P ′] and tj �= ε}.

Dp requires that each non-ε transition ti entering a local state in [P ] is de-
pendent on every non-ε transition tj leaving a local state in any [P ′]. The
reason for this is that p may become satisfied after ti is executed and be-
come unsatisfied after tj is executed. For example, consider an atomic propo-
sition p with full state expression s2 ∧ r2 (as shown in Figure 1). We have
Dp = {(t11, t23), (t13, t21), (t23, t11), (t21, t13)}.

To define the dependency relation for an arbitrary LTLK−X formula φ, we
need to preform some pre-processing on φ. Firstly, we need to make sure that each
atomic proposition p occurs only once in φ. If there is more than one occurrence
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for p, we generate a fresh atomic proposition p′ for each occurrence and define
h(p′) = h(p). It follows that Ep′ = Ep. For example, we transform φ = Kip∨Kjp
into Kip1 ∨ Kjp2 with h(p1) = h(p2) = h(p). Secondly, we define the epistemic
nesting depth {ψ}K for every sub-formula ψ of φ. The epistemic nesting of a
sub-formula corresponds to the “epistemic depth” of a sub-formula in a formula.
Intuitively, the “deeper” a sub-formula is in an epistemic formula the higher
its nesting will be. To calculate the nesting we assign a level 0 of nesting to the
whole formula and increase it by 1 every time we find an epistemic operator while
exploring the parse tree of the formula. More formally, we proceed as follows.

Definition 13 (Epistemic nesting depth). Given a formula φ, the epistemic
nesting {ψ}K of a sub-formula ψ of φ is defined as follows.

– If ψ = φ, then {φ}K = {ψ}K = 0;
– If ψ ∈ {ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1Uψ2, ψ1Rψ2}, then {ψ1}K = {ψ2}K = {ψ}K;
– If ψ ∈ {Kiψ1, Kiψ1}, then {ψ1}K = {ψ}K + 1;
– If ψ = p, then {p}K = {ψ}K.

Let |φ|K = max{{p}K | p ∈ Props(φ)} be the maximum epistemic nesting
depth of φ. Let APm

φ be the subset of Props(φ) such that for each p ∈ APm
φ ,

{p}K = m, and APφ =
⋃

0≤m≤|φ|K
APm

φ . Assume i1, i2, . . . , im is the sequence of

indexes for the epistemic modalities scoping p (e.g., for φ = K1q∧K2(EF (K1p)),
the sequence of indexes for p is (2, 1)). Then we perform the following two steps
on APφ:

1. For each p ∈ APm
φ for all m > 0, we generate the set of propositions

Σp ={pj1,j2,...,jm | lj1i1 ∈Li1 , . . . , l
jm

im
∈ Limand Epj1,j2,...,jm

= pj1
i1

∧· · ·∧pjm

im
∧Ep},

where pjk

ik
is the local atomic proposition for ljk

ik
. For example, consider φ =

EF (K2p) with Ep = s2 ∧ r2 in the system of Figure 1. Since {p}K = 1, we
generate the propositions p1, p2, p3 with Ep1 = w1∧s2∧r2, Ep2 = w2∧s2∧r2
and Ep3 = w3 ∧ s2 ∧ r2. Let AP ′

φ =
⋃

0<m≤|φ|K
(

⋃

p∈AP m
φ

Σp) be the set of the

newly generated atomic propositions.
2. For each pair of atomic propositions p and q in AP 0

φ ∪AP ′
φ, we define a fresh

atomic proposition r with h(r) = h(p) ∪ h(q). Let AP r
φ be the set of atomic

propositions generated in this step.

Definition 14 (Dependency relation for an LTLK−X formula φ). The
dependency relation Dφ for φ is defined as follows:

Dφ =
⋃

p∈AP 0
φ∪AP ′

φ∪AP r
φ

Dp.

Consider the example φ = EF (K2p) with Ep = s2 ∧r2 again. Dφ is the symmetric
closure of the following set: {(t12, t

1
1), (t

1
2, t

1
3), (t

1
1, t

2
3), (t

1
3, t

2
1), (t

2
2, t

1
1), (t

2
2, t

1
3), (t

1
2, t

2
1),
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(t12, t
2
3), (t

2
2, t

2
1), (t

2
2, t

2
3)}. The above dependency relation is used to avoid inconsis-

tencies among weakly equivalent paths where a formula holds in one path but does
not hold in the other. For example, the paths in Figure 2 and Figure 3 can be distin-
guished now with respect to Formula (3). Since DpUq = {(t11, t

1
2), (t

1
2, t

1
1)}, t11 and

t12 are not interchangeable and the execution order between them has an impact on
the satisfaction of the formula.

Definition 15 (Extended Formula). For any LTLK−X formula φ, an ex-
tended formula φ′ for φ is defined by replacing each subformula ψ = Kiϕ with

ψ′ = Ki((p1
i ∧ ϕ) ∨ . . . ∨ (pnli

i ∧ ϕ)),

where pj
i is the local atomic proposition corresponding to lji (1 ≤ j ≤ nli). The

substitution is carried out bottom-up in the parse tree.

Note that obviously Dφ = Dφ′ . So in what follows we assume to be dealing with
extended formulae only.

Given an LTLK−X formula φ, let

D = (
⋃

i∈A
Di) ∪ Dsyn ∪ Dφ. (4)

For a path ρ containing two specific occurrences ti and tj (i, j ∈ A) of local
transitions, we write ti <ρ tj if ti happens earlier than tj in ρ. We write ti =ρ tj
if they are executed together in a global transition. We use ti ≤ρ tj to denote
either ti <ρ tj or ti =ρ tj .

Now we are ready to present the main result of this note. To this aim we
first define strong equivalence, and then show that it preserves the LTLK−X

formulae.

Definition 16 (Strong equivalence). Two paths ρ and ρ′ are strongly equiv-
alent with respect to an LTLK−X formula φ iff the following two conditions
hold:

(1) ρ and ρ′ are weakly equivalent,
(2) for any two occurrences t and t′ of local transitions in ρ and (t, t′) ∈ D,

t <ρ t′ implies t <ρ′ t′, and t =ρ t′ implies t =ρ′ t′.

Given the above equivalence, we formulate two auxiliary lemmas.

Lemma 1. The following two conditions hold:

A) For a path ρ and an LTLK−X formula φ, if M, ρ |= φ and M, ρ[1] �|= φ, then
there exists p ∈ Props(φ) such that M, ρ |= p and M, ρ[1] �|= p,

B) if M, ρ �|= φ and M, ρ[1] |= φ, we can find an atomic proposition p ∈
Props(φ) such that M, ρ �|= p and M, ρ[1] |= p.

Proof. We prove A) by induction on the structure of φ. The condition B) can
be shown similarly.
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1. φ = p. This case is obvious.
2. φ = ψ1 ∧ψ2. We have M, ρ |= ψ1∧ψ2 and M, ρ[1] �|= ψ1∧ψ2. If M, ρ[1] �|= ψ1,

given that M, ρ |= ψ1, it follows that there exists an atomic proposition p in
ψ1 such that M, ρ |= p and M, ρ[1] �|= p.

3. φ = ψ1 ∨ ψ2. This case is similar to the previous one.
4. φ = ψ1Uψ2. We have M, ρ |= ψ1Uψ2 and M, ρ[1] �|= ψ1Uψ2. So M, ρ |= ψ2

and M, ρ[1] �|= ψ2. Therefore, by induction the case holds.
5. φ = ψ1Rψ2. We have M, ρ |= ψ1Rψ2 and M, ρ[1] �|= ψ1Rψ2. If ψ2 holds

in all states in ρ and ψ1 does not holds in any states, then M, ρ[1] |= φ.
Thus there exists k such that ψ1 holds in ρ(k) and ψ2 holds in ρ(j) for all
0 ≤ j ≤ k. Similarly to the U case, k = 0, and ψ1 or ψ2 does not hold in
ρ(1). Then there exists p in ψ1 or ψ2 satisfying the lemma.

6. φ = Kiψ. We have M, ρ |= Kiψ and M, ρ[1] �|= Kiψ. So ρ|i(0) �= ρ|i(1). Since
φ is an extended formula, we know that M, ρ |= Ki((p1

i ∧ψ)∨ ...∨(pnli
i ∧ψ)),

and there exists a 1 ≤ j ≤ nl1 such that pj
i is the local atomic proposition

corresponding to ρ|i(0). We have M, ρ |= pj
i and M, ρ[1] �|= pj

i .
7. φ = Kiψ. This case is similar to the one above. �

Lemma 2. Let φ be an LTLK−X formula and paths ρ, ρ′ ∈ Π be strongly equiv-
alent. Then there exist k, k′ ≥ 0 such that the following two conditions hold:

A) If M, ρ[k] |= φ, then M, ρ′[k′] |= φ;
B) There exists an i ∈ A|φ such that the paths ρ|i[0..k] and ρ′|i[0..k′] are equiva-

lent up to stuttering, and if M, ρ[k−1] �|= φ and M, ρ[k] |= φ, then ρ|i〈k〉 �= ε.

Proof. A) By induction on the structure of φ.
The base case: φ = p.
Assume M, ρ[k] |= p for some k ≥ 0. Given that ρ(k) ∈ h(p), we have that

there exists a simple state expression P ∈ Max[p] for some simple set LI , I ⊆ A
and ρ(k) ∈ G|P . For any i ∈ I, consider the shortest and longest prefixes of
the projections of ρ′ onto i that are equivalent to ρ|i[0..k] up to stuttering.
Call ρ′|i[0..ji] the shortest and ρ′|i[0..ji] the longest. Given ρ and ρ′ are strongly
equivalent, they are weakly equivalent and therefore, we have ρ′|i(ji) = ρ′|i(ji) =
ρ|i(k). Consider the following two cases, which may arise.

1.
⋂

i∈I

[ji, ji] �= ∅. Then, there is a k′ ≥ 0 such that k′ ∈
⋂

i∈I

[ji, ji]. Given that

ρ′|i(k′) = ρ|i(k) for all i ∈ I, we have that M, ρ′[k′] |= p.
2.

⋂

i∈I

[ji, ji] = ∅. Then, there must exist x, y ∈ I such that jx > jy. This implies

that the transitions tjx−1
x and tjy are dependent. However, by the inductive

hypothesis ρ, ρ′ are strongly equivalent and therefore we have tjy ≤ρ′ tjx−1
x .

This is a contradiction. So, we have
⋂

i∈I

[ji, ji] �= ∅.

The induction steps.

1. φ = ψ1∧ψ2. Assume M, ρ[k] |= ψ1∧ψ2, therefore M, ρ[k] |= ψ1 and M, ρ[k] |=
ψ2. By the inductive assumption there exist k′, k′′ ≥ 0 such that M, ρ′[k′] |=
ψ1 and M, ρ′[k′′] |= ψ2. If k′ = k′′, then M, ρ′[k′] |= ψ1 ∧ψ2. So, we are done.
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Without loss of generality, assume now that k′ < k′′. Let k̄′ ≥ k′ be the
biggest natural number such that M, ρ′[j] |= ψ1 for k′ ≤ j ≤ k̄′ and M, ρ′[k̄′+
1] �|= ψ1. Similarly let k̄′′ be the smallest natural number such that M, ρ′[j] |=
ψ2 for k̄′′ ≤ j ≤ k′′ and M, ρ′[k̄′′ − 1] �|= ψ2. If k̄′′ ≤ k̄′ then there exists a
k′′′ such that M, ρ′[k′′′] |= ψ1 ∧ ψ2.

Otherwise, we have k̄′ < k̄′′. By Lemma 1, there exists an atomic propo-
sition p in ψ1 such that M, ρ′[k̄′] |= p and M, ρ′[k̄′ + 1] �|= p, and an atomic
proposition q in ψ2 such that M, ρ′[k̄′′ −1] �|= q and M, ρ′[k̄′′] |= q. Assume p
is satisfied by the simple state expression P1 ∈ Max[p] for some I ⊆ A and
q by P2 ∈ Max[q] for some I ′ ⊆ A. Therefore, there exist an agent i ∈ I
such that tk̄

′

i = ρ′|i〈k̄′〉 (tk̄
′

i �= ε) leaves the local state ρ′|i(k̄′) ∈ [P1], and
an agent j ∈ I ′ such that tk̄

′′−1
j = ρ′|j〈k̄′′ − 1〉 (tk̄

′′−1
j �= ε) enters the local

state ρ′|j(k̄′′) ∈ [P2] (note that i �= j, otherwise we would have k′ = k′′.).
According to the construction of Dφ, tk̄

′

i and tk̄
′′−1

j are dependent. So we

have tk̄
′

i ≤ρ′ tk̄
′′−1

j and tk̄
′′−1

j <ρ tk̄
′

i . But ρ and ρ′ are strongly equivalent by
the inductive hypothesis, so we get a contradiction.

2. φ = ψ1 ∨ ψ2. This case is immediate.
3. φ = ψ1Uψ2. Assume M, ρ[k] |= ψ1Uψ2. By definition we have that there

exists a k′ ≥ k such that M, ρ[k′] |= ψ2 and M, ρ[j] |= ψ1 for k ≤ j ≤ k′.
Then by induction, we have that there exists a k′′ such that M, ρ′[k′′] |= ψ2.
So we have M, ρ′[k′′] |= ψ1Uψ2.

4. φ = ψ1Rψ2. According to the semantics of R, we know that M, ρ[k] |= ψ2
and thus there exists k′ such that M, ρ′[k′] |= ψ2. If for all j > k, M, ρ[j] �|=
ψ1, then for all j′ > k′, M, ρ′[j′] �|= ψ1 (otherwise, there exists j̄ > k such
that M, ρ[j̄] |= ψ1). If there exists j (j ≥ k), M, ρ[j] |= ψ1, then ψ1Rψ2 =
ψ2U(ψ1 ∧ ψ2) and the case may be shown similarly to the above.

5. φ = Kiψ. Assume M, ρ[k] |= Kiψ. Since ρ, ρ′ are strongly equivalent, ρ|i[0..k]
and ρ′|i[0..k′] are equivalent up to stuttering for some k′. So ρ|i(k) = ρ′|i(k′).
Therefore M, ρ′[k′] |= φ.

6. φ = Kiψ. It is the same as the Ki case.

B) A proof of this condition follows from the above proof. �

Strong equivalence for an LTLK−X formula φ naturally partitions Π into traces
of strongly equivalent paths. We have the following theorem.

Theorem 1. For any LTLK−X φ and any two strongly equivalent paths ρ, ρ′ ∈
Π, we have M, ρ |= φ iff M, ρ′ |= φ.

Proof. By induction on the structure of φ.
The base case φ = p is obvious given ρ(0) = ρ′(0).
The induction steps φ = ψ1 ∧ ψ2, φ = ψ1 ∨ ψ2, φ = Kiψ and φ = Kiψ can
be obtained similarly. In the following, we prove the case φ = ψ1Uψ2. A similar
proof can be obtained for φ = ψ1Rψ2.
φ = ψ1Uψ2. Assume M, ρ |= ψ1Uψ2. If M, ρ |= ψ2, then M, ρ′ |= ψ2 and therefore
M, ρ′ |= φ. Assume there exists a k ≥ 0 such that M, ρ[k] |= ψ2 and M, ρ[j] |=
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ψ1 for 0 ≤ j < k. By Lemma 2, there exists a smallest k′ > 0 such that
M, ρ′[k′] |= ψ2; we need to show that M, ρ′[j] |= ψ1 for all 0 ≤ j < k′. Assume
that M, ρ′[j] �|= ψ1 for the smallest 0 ≤ j < k′. Note that M, ρ′[0] |= ψ1; so
this implies that M, ρ′[j − 1] |= ψ1. So there must exist a set of agents I ⊆ A
such that ρ′|i(j − 1) �= ρ′|i(j) for all i ∈ I. Similarly observe there exists a set
of agents I ′ ⊆ A such that ρ′|i(k′) �= ρ′|i(k′ − 1) for all i ∈ I ′. So by observing
there are atomic propositions changing values from ρ′(k′ − 1) to ρ′(k′) and from
ρ′(j − 1) to ρ′(j), and reasoning similarly to the case of conjunction in the proof
of Lemma 2, we can reach a contradiction with hypothesis of ρ, ρ′ being strongly
equivalent. �

Theorem 1 implies that partial order reduction based on the relation of strong
equivalence preserves LTLK−X properties.

4 Example

We exemplify the technique above on the system of three agents A = {1, 2, 3}
of Figure 1 with respect to the formula

φ = ♦K3 p.

We assume p is an atomic proposition that holds in the global state (s2, w2, r5),
i.e., its full state expression is

Ep = s2 ∧ w2 ∧ r5.

Before we start to explore the state space, we need to generate the dependency
relation according to the formula 4.

– The basic dependency relation is defined as follows.

D1 = {(t11, t
1
1), (t

2
1, t

2
1), (t

1
1, t

2
1), (t

2
1, t

1
1)}
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2
2), (t
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(t33, t
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3)}

– The dependency relation for synchronisation is as follows.

Dsyn = {(t21, t
2
2), (t

2
2, t

2
1)}

– The dependency relation for atomic propositions is as follows.

Dp = {(t21, t
4
3), (t

2
2, t

4
3), (t

4
3, t

2
1), (t

4
3, t

2
2)}
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– The dependency relation for the formula is defined as follows. For K3 p, we
construct a new atomic proposition p′ such that

Ep′ =
∨

l3∈L3

(l3 ∧ s2 ∧ w2 ∧ r5)

= (r1 ∧ s2 ∧ w2 ∧ r5) ∨ (r2 ∧ s2 ∧ w2 ∧ r5) ∨ (r3 ∧ s2 ∧ w2 ∧ r5)∨
(r4 ∧ s2 ∧ w2 ∧ r5) ∨ (r5 ∧ s2 ∧ w2 ∧ r5)∨

= s2 ∧ w2 ∧ r5
= Ep.

Therefore, we have Dφ = Dp.
By means of the technique discussed, to check the validity of the formula above

we do not need to explore the full state space shown in Figure 4. Since p does
not hold in the state (s1, w2, r5) (nor in (s1, w1, r5), (s2, w1, r5), (s3, w3, r5))
and (s1, w2, r5) ∼3 (s2, w2, r5), K3 p does not hold in the model.

After applying partial order reduction, we are able to check that K3 p does not
hold. Figure 5 illustrates the reduced state space, clearly showing the potential
of this technique.

It is easy to see that any path in Figure 4 has a strongly equivalent path in
Figure 5. For example, the path

(s1, w1, r1)(s1, w1, r2)(s2, w2, r3)(s2, w2, r4)(s2, w2, r5)(s3, w3, r5)

is equivalent to

(s1, w1, r1)(s1, w1, r2)(s1, w1, r3)(s1, w1, r4)(s1, w1, r5)(s2, w2, r5)(s3, w3, r5).

We can use similar considerations to check any LTLK−X formulae effectively.

Fig. 4. The full state space
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Fig. 5. The reduced state space

5 Conclusions

In this research note we have extended a partial order reduction technique to a
basic logic for knowledge and linear time. Our main result concerns the preser-
vation of satisfaction of LTLK−X formulae on equivalent paths on synchronous
interpreted systems semantics.

The dependency relation we defined is quite general, as we do not impose
any restrictions on the underlying models. While this makes it easier to design
an algorithm ans test its effectiveness, we believe we can further enhance its
effectiveness by exploring particular properties in the temporal epistemic logic.

We are currently investigating the feasibility of an algorithm to verify satis-
fiability on reduced traces and plan to test its implementation against known
results for temporal epistemic specification available in the multi-agent systems
literature.
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