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Abstract. Bounded Model Checking (BMC) is an efficient verification
method for reactive systems. BMC has been applied so far to verifica-
tion of properties expressed in (timed) modal logics, but never to their
parametric extensions. In this paper we show, for the first time, that
BMC can be extended to PRTECTL – the parametric extension of the
existential version of CTL. To this aim we define a bounded semantics
and a translation to SAT for PRTECTL. The implementation of the
algorithm for Elementary Net Systems is presented together with some
experimental results.

1 Introduction

Bounded Model Checking (BMC) [BCCZ99] is a method of performing veri-
fication by stepwise unwinding a verified model and translating the resulting
fragment, as well as the property in question, to a propositional formula. The
resulting formula is then checked by means of efficient external tools, i.e., SAT-
solvers. This method is usually incomplete from the practical point of view, but
can find counterexamples in systems that appear too large for other approaches.

BMC was invented in late 1990s, and since then has become an established
method among verification approaches. BMC is applied to verification of prop-
erties specified in temporal, dynamic, epistemic, and timed logics [BCC+99],
[BC03], [Hel01], [PWZ02], [Woź03]. In fact, for many system specifications and
property languages devised for explicit-state model checking, the BMC coun-
terparts have been developed. In this paper we show how parametric model
checking can be performed by means of BMC.

The rest of the paper is organized as follows. In Section 2 we shortly explore
the motivations for the choice of parameterized temporal logics vRTCTL and
PRTCTL to which the BMC method is applied. Referenced and cited works are
mentioned along with an outline of the contents. Section 3 recalls from [ET99]
the syntax and semantics of the logics used in this work. In Section 3 we de-
fine existential fragments of the considered logics – vRTECTL and PRTECTL,
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respectively. Section 4 introduces k-models together with bounded semantics
for vRTECTL and PRTECTL. In Section 5 a translation of a model and a
property under investigation is presented together with an algorithm for BMC.
Section 6 contains an application of the above method to Elementary Net Sys-
tems. We choose two standard problems: the Mutual Exclusion and the Dining
Philosophers and test some associated parameterized properties in Section 7.
The concluding remarks and an outline of some future work are in Section 8.

2 Related Work

The logics investigated in this paper were introduced in [ET99] while the appli-
cation of BMC to the existential fragment of the CTL originates from [PWZ02]
with a further optimization in [Zbr08]. The work presented in this paper falls into
a broad area of the Parametric Model Checking – an ambiguous term which may
mean that we deal with the parameters in models (as in [AHV93] and [HRSV01]),
in logics (as in [ET99] and [BDR08]) or in both (as in [RB03]). There are two rea-
sons limiting the practical applications of the Parametric Model Checking. The
first – computational complexity of the problem – is the result of the presence
of satisfiability in the Presburger Arithmetic (PA) as a subproblem. In case of
the translation of the existential fragment of TCTL to PA formulae proposed in
[BDR08], the joint complexity of the solution is 3EXPTIME. The second – unde-
cidability of the problem for Parametric Timed Automata in general [AHV93] –
results in a fact that some of the proposed algorithms need not to stop [HRSV01].
To the best knowledge of the authors, this paper presents the first extension of
BMC to parameterized temporal logics.

3 Parameterized Temporal Logics

In this section we recall the temporal logics vRTCTL and PRTCTL, first defined
in [ET99], both being extensions of Computation Tree Logic (CTL) introduced
in [EC82]. The logic vRTCTL allows superscripts of form ≤η, where η is a linear
expression over path quantifiers of CTL. An example of a formula of this logic
is EF≤Θ1+Θ2(w1 ∧ EG¬c1). The formulae of PRTCTL are built from formu-
lae of vRTCTL by adding additional existential or universal quantifiers which
may be restricted or unrestricted. As an example of a PRTCTL formula con-
sider ∃Θ1≤1∀Θ2≤2EF

≤Θ1+Θ2(w1∧EG¬c1). Following E. A. Emerson’s approach
[ET99], the formulae are interpreted in standard Kripke structures, which seem
to be appropriate for application in many computer science fields, as motivated
in [ET99]. The logics mentioned above essentially extend CTL, as they allow
to formulate properties involving lengths of paths in a model. We interpret su-
perscripts as time bounds, assuming that a transition in a model takes the unit
of time. Throughout this paper by N we denote the set of all natural numbers
(including 0). By a sentence of a logic we mean a formula without free variables,
and by α(Θ1, . . . , Θn) we point out that the formula α contains free parameters
Θ1, . . . , Θn.



3.1 Syntax

Let Θ1, . . . , Θn be variables, called here parameters. An expression of the form
η =

∑n
i=1 ci · Θi + c0, where c0, . . . , cn ∈ N, is called a linear expression. A

function υ : {Θ1, Θ2, . . . , Θn} −→ N is called a parameter valuation. Let Υ be a
set of all the parameter valuations.

Definition 1. Let PV be a set of propositional variables containing the symbol
true. Define inductively the formulae of vRTCTL :

1. every member of PV is a formula,
2. if α and β are formulae, then so are ¬α, α ∧ β and α ∨ β,
3. if α and β are formulae, then so are EXα, EGα, EαUβ,
4. if η is a linear expression, α and β are formulae of vRTCTL, then so are

EG≤ηα, EαU≤ηβ.

The conditions 1, 2, and 3 alone define CTL. Notice that η is allowed to be
a constant. The logic defined by a modification of the above definition, where
η = a for a ∈ N, is called RTCTL in [ET99]. For example EF≤3(w1 ∧ EG¬c1)
is an RTCTL formula.

Definition 2. The formulae of PRTCTL are defined as follows:

1. if α ∈ vRTCTL, then α ∈ PRTCTL,
2. if α(Θ) ∈ vRTCTL or α(Θ) ∈ PRTCTL, where Θ is a free parameter, then

∀Θα(Θ), ∃Θα(Θ), ∀Θ≤aα(Θ), ∃Θ≤aα(Θ) ∈ PRTCTL for a ∈ N.

The following inclusions hold: CTL ⊆ RTCTL ⊆ vRTCTL ⊆ PRTCTL. In this
paper we consider only sentences of PRTCTL.

Additionally we use the derived modalities: EFα
def
= E(trueUα), AFα

def
=

¬EG¬α, AXα
def
= ¬EX¬α, AGα

def
= ¬EF¬α (CTL modalities) and EF≤ηα

def
=

E(trueU≤ηα), AF≤ηα
def
= ¬EG≤η¬α, AG≤ηα

def
= ¬EF≤η¬α. Each modality of

CTL has an intuitive meaning. The path quantifier A stands for ”on every path”
and E means ”there exists a path”. The modality X means ”in the next state”,
G stands for ”in the all states”, F means ”in some state”, and U has a meaning
of ”until”.
The introduced superscripts will become clear when the semantics of vRTCTL is
presented. As to give an example of the intuitive meaning of an RTCTL formula,
EG≤3p may be perceived as the statement ”there exists a path such that in the
first four states of this path p holds”. The logic vRTCTL adds a possibility of
expressing similar properties under parameter valuations, and PRTCTL allows
for stating that some property holds in a model under some class of parameter
valuations.

Definition 3. The logics vRTECTL, RTECTL, and PRTECTL are defined as
the restrictions of, respectively, vRTCTL, RTCTL, and the set of sentences of
PRTCTL such that the negation can be applied to the propositions only.



3.2 Semantics

We evaluate the truth of the sentences and the formulae accompanied with
parameter valuations in Kripke structures.

Definition 4. Let PV be a set of propositional variables containing the symbol
true. A Kripke structure (a model) is defined as a tuple (S,→,L) where:

1. S is a finite set of states,
2. → ⊆ S × S is a transition relation such that for every s ∈ S there exists

s′ ∈ S with s→ s′ (i.e., the relation is total),
3. L : S −→ 2PV is a labelling function satisfying true ∈ L(s) for s ∈ S.

The labelling function assigns to an each state s a set of propositions which
are assumed to be true at s. An infinite sequence π = (s0, s1, . . .) of states of a
model such that si → si+1 for i ∈ N is called a path. By π(i) we denote the i–th
position on a path π. The number of the states of M is called the size of M and
denoted by |M |. For a parameter valuation υ and a linear expression η, by υ(η)
we mean the evaluation of η under υ.

Definition 5. (Semantics of vRTCTL)
Let M be a model, s – a state, α, β – formulae of vRTCTL. M, s |=υ α denotes
that α is true at the state s in the model M under the parameter valuation υ. We
omit M where it is implicitly understood. The relation |=υ is defined inductively
as follows:

1. s |=υ p ⇐⇒ p ∈ L(s)
2. s |=υ ¬p ⇐⇒ p 6∈ L(s),
3. s |=υ α ∧ β ⇐⇒ s |=υ α ∧ s |=υ β,
4. s |=υ α ∨ β ⇐⇒ s |=υ α ∨ s |=υ β,
5. s |=υ EXα ⇐⇒ ∃π

(

π(0) = s ∧ π(1) |=υ α
)

,

6. s |=υ EGα ⇐⇒ ∃π

(

π(0) = s ∧ ∀i≥0π(i) |=υ α
)

,

7. s |=υ EαUβ ⇐⇒ ∃π

(

π(0) = s ∧ ∃i≥0

[

π(i) |=υ β ∧ ∀j<iπ(j) |=υ α
])

,

8. s |=υ EG
≤ηα ⇐⇒ ∃π

(

π(0) = s ∧ ∀0≤i≤υ(η)π(i) |=υ α
)

,

9. s |=υ EαU
≤ηβ ⇐⇒ ∃π

(

π(0) = s∧ ∃0≤i≤υ(η)

[

π(i) |=υ β ∧ ∀j<iπ(j) |=υ α
])

.

If α is a formula of RTCTL, then the validity of s |=υ α does not depend on the
parameter valuation υ, as there are no parameters in the formula. In this case
we write M, s |= α omitting the parameter valuation subscript.
Observe that for every formula α of RTCTL there exists a formula β of vRTCTL
and a parameter valuation υ such, that α = υ(β), where υ(β) denotes the formula
obtained by substituting all the linear expressions with their evaluations under υ.
For example the formula EF≤5(w1∧EG¬c1) can be obtained from EF≤Θ1(w1∧
EG¬c1) by valuation υ such that υ(Θ1) = 5 or from EF≤Θ1+Θ2(w1 ∧ EG¬c1)
by valuation υ′ such that υ′(Θ1) = 3 and υ′(Θ2) = 2.

The semantics of PRTCTL is defined in such a way that by eliminating the
quantifiers we eventually arrive at a sequence of conjunctions and/or disjunctions
of RTCTL formulae. By a fresh (integer) variable we mean a new variable which
is not a parameter and is not present in the considered formula.



Definition 6. (Semantics of PRTCTL)
Let M be a model, s – a state, and α – a formula of PRTCTL. M, s |= α denotes
that α holds at the state s in the model M. The relation |= is defined inductively
as follows:

1. s |= ∀Θα(Θ) iff
∧

iΘ≥0 s |= α(iΘ),
2. s |= ∀Θ≤aα(Θ) iff

∧

0≤iΘ≤a s |= α(iΘ),
3. s |= ∃Θα(Θ) iff

∨

iΘ≥0 s |= α(iΘ),
4. s |= ∃Θ≤aα(Θ) iff

∨

0≤iΘ≤a s |= α(iΘ),

where iΘ is a fresh integer variable.

For example:

M, s |= ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG¬c1)

⇐⇒
∧

0≤iΘ1
≤1

∨

0≤iΘ2
≤2

M, s |= EF≤iΘ1
+iΘ2 (w1 ∧ EG¬c1).

It is straightforward to check that for a model M and a state s, M, s |=υ EGα

⇐⇒ M, s |=υ EG≤|M|α and M, s |=υ EαUβ ⇐⇒ M, s |=υ EαU≤|M|β. The
proof of this fact is based on the observation that in every path a prefix of length
greater or equal than |M | contains a loop.
Recall Theorem 1 from [ET99]:

Theorem 1. Let M be a model and Q1Θ1
. . . QnΘn

α(Θ1, . . . , Θn) where Qi ∈
{∀, ∃} and α(Θ1, . . . , Θn) ∈ vRTCTL, be a PRTCTL sentence. Then M, s |=
Q1Θ1

. . .QnΘn
α(Θ1, . . . , Θn) iff M, s |= Q1Θ1≤|M| . . . QnΘn≤|M|α(Θ1, . . . , Θn).

In this paper we enhance the above theorem by the following lemma.

Lemma 1. Let M be a model and Q1Θ1≤c1
. . . QnΘn≤cn

α(Θ1, . . . , Θn) where
Qi ∈ {∀, ∃} and α(Θ1, . . . , Θn) ∈ vRTCTL be a sentence of PRTCTL. Then
M, s |= Q1Θ1≤c1

. . . QnΘn≤cn
α(Θ1, . . . , Θn) iff

M, s |= Q1Θ1≤min(c1,|M|) . . .QnΘn≤min(cn,|M|)α(Θ1, . . . , Θn).

Proof. See the Appendix.

Basically, Theorem 1 allows for replacing the unrestricted quantifiers with their
versions bounded with the size of the model and Lemma 1 states that it suffices
to consider the bounds not greater that |M |. Therefore, in the rest of this paper
we restrict our research to vRTCTL and PRTCTL formulae with superscripted
modalities and restricted quantifiers.

3.3 Example

In Figure 1 the states of the model M are drawn as circles, whereas the values
of the labelling function (a set of propositions assumed to be true) are rendered
inside. The transitions are drawn as arrows connecting states. The presented
Kripke structure is induced by the Petri net modelling the classical problem of



Mutual Exclusion for 3 processes (see Subsection 7.1). It is straightforward to
check that:

M, start |= ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG¬c1),

M, start |= ∃Θ1≤3∀Θ2
E

(

w1U
≤Θ1EG≤Θ2r2

)

.

Notice that in the first formula there is no superscript over EG, nevertheless, as
we have shown it can be rewritten in the equivalent form:

M, start |= ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG

≤8¬c1).

Similarly, the second formula can be rewritten in an equivalent form, with the
parameter Θ2 bounded by |M | :

M, start |= ∃Θ1≤3∀Θ2≤8E
(

w1U
≤Θ1EG≤Θ2r2

)

.

Fig. 1.
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4 Bounded Semantics

The idea of bounded model checking is based on a concept of unfolding the
computation tree of a given model only to a limited depth. In order to make
things more clear we need the following definitions.



Definition 7. Let M be a model and k ∈ N. Let Pathk be the set of all sequences
(s0, . . . , sk) of states of M, where si → si+1 for each 0 ≤ i < k. The pair
(Pathk,L) is called the k-model of M and is denoted by Mk.

An element of Pathk is called a k-path and denoted by πk.

Definition 8. Let Mk be a k-model of M and πk ∈ Pathk. Define a function
loop : Pathk −→ 2N as:

loop(πk) = {l | l ≤ k and πk(k) → πk(l)}.

A k-path πk is called a loop if loop(πk) 6= ∅. Observe that loops are essentially a
way of representing some infinite paths in a finite way.

Definition 9. (Bounded semantics for vRTECTL)
Let Mk be a k-model, s – a state, α, β ∈ vRTECTL, p – an atomic proposition, η
– a linear expression, and υ – a parameter valuation. By Mk, s |=υ α let denote
that α is true (valid) at the state s of Mk. Again, Mk is omitted if it is implicitly
understood. Define the relation |=υ as follows:

1. s |=υ p iff p ∈ L(s)
2. s |=υ ¬p iff p 6∈ L(s),
3. s |=υ α ∧ β iff s |=υ α and s |=υ β,

4. s |=υ α ∨ β iff s |=υ α or s |=υ β,

5. s |=υ EXα iff ∃πk∈Pathk
(πk(0) = s ∧ πk(1) |=υ α),

6. s |=υ EG
≤ηα iff ∃πk∈Pathk

(

πk(0) = s∧
[

((υ(η) ≤ k)∧
∧

0≤i≤υ(η) πk(i) |=υ α)

∨((υ(η) > k) ∧
∧

0≤i≤k πk(i) |=υ α ∧ loop(πk) 6= ∅)
])

,

7. s |=υ E(αU≤ηβ) iff ∃πk∈Pathk

(

πk(0) = s ∧ ∃0≤i≤min(k,υ(η))

[

πk(i) |=υ β ∧
∧

0≤j<i πk(i) |=υ α
])

.

The above definition differs from its counterpart for ECTL ([PWZ02]) in the
points 6 and 7. In case of the point 6, we need to consider two cases. The first
case deals with the situation when α is checked along a finite path of length υ(η)
smaller or equal than the depth k of the unfolding of the model. Each such a
finite path is then a prefix of some k-path. In the second case we deal with the
situation when α should be checked along a finite path of length strictly greater
than k. Therefore we have to check α along the loop – hence we have the loop
condition. Both the cases are combined in the disjunction. In case of the point
7, we check the existence of such a k-path πk that the subformula β is valid on
its position πk(i) where i ≤ min(k, υ(η)), and for all positions πk(j) where j < i

we have πk(j) |=υ α.

Definition 10. (Bounded semantics for PRTECTL)
Let Mk be a k-model of M, s – a state, α – a sentence of PRTECTL and a ∈ N.

Define the relation |= as follows:

1. Mk, s |= ∀Θα(Θ) iff
∧

iΘ≥0Mk, s |= α(iΘ),
2. Mk, s |= ∀Θ≤aα(Θ) iff

∧

0≤iΘ≤aMk, s |= α(iΘ),
3. Mk, s |= ∃Θα(Θ) iff

∨

iΘ≥0Mk, s |= α(iΘ),



4. Mk, s |= ∃Θ≤aα(Θ) iff
∨

0≤iΘ≤min(a,k)Mk, s |= α(iΘ),

where iΘ is a fresh integer variable.

The next two lemmas bring forward the essential properties of bounded seman-
tics. Basically they state that the truth of a formula in some k-model is main-
tained also in a larger l-model and in the whole model M. Therefore if we prove
that a formula holds in the k-model (hopefully k is much smaller than |M |), then
we obtain also the validity of the formula in the model M. These lemmas form
a base for the idea of Bounded Model Checking. Namely, we start the search for
a proof in a k-model with k = 0, then the length k of the paths is incremented
until the proof is found or k reaches |M |. Then, the conditions 2 of Lemmas 2
and 3 guard that the property holds also in the model M. On the other hand,
the conditions 3 of Lemmas 2 and 3 show, that if k = |M | is reached and no
proof was found, the considered property is not valid in M.

Lemma 2. Let Mk be a k-model of M, s – a state, υ – a parameter valuation,
and α – a formula of vRTECTL. Then, the following conditions hold:

1. ∀l≥k

(

Mk, s |=υ α implies Ml, s |=υ α
)

,
2. Mk, s |=υ α implies M, s |=υ α,
3. M, s |=υ α implies M|M|, s |=υ α.

Proof. (Sketch) The proof is straightforward. The first and second condition is
proved by induction on the length of a formula. In order to prove the third
condition notice that each infinite path in the model M contains a looped prefix
of length smaller or equal than |M |.

Notice that Lemma 2 has its counterpart concerning PRTECTL as stated below.

Lemma 3. Let M be a model, s – a state and α – a PRTECTL sentence. Then,
the following conditions hold:

1. ∀l≥k

(

Mk, s |= α implies Ml, s |= α
)

,
2. Mk, s |= α implies M, s |= α,
3. M, s |= α implies M|M|, s |= α.

Proof. (Sketch) The proof is based on the observation that the existential and
universal quantifiers can be replaced by disjunctions and conjunctions, respec-
tively. Then, the results of Lemma 2 are applied.

4.1 Example

Recall the formulae and the model M from Example 3.3. One can check that

M2, start |= ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG¬c1),

while this property does not hold in the bounded semantics for the k–models
with k strictly smaller than 2. Similarly, we have

M2, start |= ∃Θ1≤3∀Θ2
E

(

w1U
≤Θ1EG≤Θ2r2

)

,

while this does not hold for the k–models with k strictly smaller than 2.



5 Bounded Model Checking

The algorithm of the bounded model checking is based on the idea of a transla-
tion of a part of the model and the formula to a propositional formula. Satisfi-
ability of the result means that the translated formula is true in the model. In
the first part of this section we formulate definitions and theorems concerning
submodels, the second part presents the rules for the translation, whereas the
last part includes the description of the BMC algorithm.

5.1 Submodels

We aim at giving a method of checking the validity of temporal formulae in
k-models. In order to obtain the acceptable efficiency, the algorithm works on
submodels of the k-model.

Definition 11. Let Mk = (Pathk,L) be the k-model. A substructure
M ′

k = (Path′k,L
′), where Path′k ⊆ Pathk and L′ is the restriction of L to the

states present in the paths of Path′k is called a submodel of Mk.

The bounded semantics of vRTECTL formulae and PRTECTL sentences over
submodels is defined as for k-models. IfM ′

k = (Path′k,L
′) andM ′′

k = (Path′′k ,L
′′)

are submodels of some k-model Mk, such that Path′′k ⊆ Path′k, we write M ′′
k ⊆

M ′
k.

Lemma 4. Let Mk be a k-model, M ′
k and M ′′

k – its submodels, such that M ′′
k ⊆

M ′
k and s a state present in some path of M ′′

k . Then, we have:

1. M ′′
k , s |=υα⇒M ′

k, s |=υα for α∈vRTECTL and any parameter valuation υ,

2. M ′′
k , s |= α⇒ M ′

k, s |= α, for α ∈ PRTECTL.

Proof. (Sketch) The first part of the lemma is easily proved by the structural
induction. In order to prove the second part, notice that in the bounded se-
mantics the non-modal quantifiers are rewritten as, respectively, conjunctions or
disjunctions, and use the result of the first part.

It was proven in [PWZ02] that in order to determine the truth of an ECTL
formula in Mk it is sufficient to consider only submodels of a size given by a
special function on the checked formula. We extend these results to vRTECTL
and PRTECTL.

Definition 12. Let α, β ∈ vRTECTL, p – an atomic proposition, η – a linear
expression and υ – a parameter valuation. Recall that Υ is the set of all parameter
valuations. We define recursively the special function gk : vRTECTL × Υ −→ N

as follows:

1. gk(p, υ) = gk(¬p, υ) = 0,
2. gk(α ∨ β, υ) = max(gk(α, υ), gk(β, υ)),
3. gk(α ∧ β, υ) = gk(α, υ) + gk(β, υ),
4. gk(EXα, υ) = gk(α, υ) + 1,



5. gk(EG≤ηα, υ) = (min(υ(η), k) + 1) · gk(α, υ) + 1,
6. gk(EαU≤ηβ, υ) = min(υ(η), k) · gk(α, υ) + gk(β, υ) + 1.

Definition 13. Let α ∈ PRTECTL. We define recursively the special function
fk : PRTECTL −→ N as follows:

1. if α ∈ RTCTL then fk(α) = gk(α, υ) for any υ,
2. if α = ∀Θ≤cβ(Θ) then fk(α) =

∑

iΘ≤c fk(β(iΘ)),
3. if α = ∃Θ≤cβ(Θ) then fk(α) = maxiΘ≤min(c,k){fk(β(iΘ))}

where iΘ is a fresh integer variable.

As the RTCTL formulae considered in the condition 1 of Definition 13 contain
no free parameters, the above definition is unambiguous. The following lemmas
state that we can determine the truth of vRTECTL and PRTECTL formulae
in the k-model using submodels of size bounded by the value of the appropriate
function fk or gk.

Lemma 5. Let α ∈ vRTECTL, Mk be the k-model and υ – a parameter valu-
ation. For any state s present in some path of Mk, Mk, s |=υ α if and only if
there exists a submodel M ′

k of Mk such that M ′
k, s |=υ α and |Path′k| ≤ gk(α, υ).

Proof. (Sketch) The ”if” part follows directly from Lemma 4. For the ”only if”
part, use induction on the length of a formula and Lemma 4.

Lemma 6. Let β be a PRTECTL sentence and Mk be the k-model. For any
state s present in some path of Mk, Mk, s |= β if and only if there exists a
submodel M ′

k of Mk such that M ′
k, s |= β and |Path′k| ≤ fk(β).

Proof. (Sketch) The proof uses the similar observation as in the proof of Lemma
1 – by recalling the results of Lemma 5 for one-parameter vRTECTL formulae
and the structural induction on the number of the nonmodal quantifiers.

From Lemmas 5,6, Lemma 4 (notice that the k-model is also a submodel) and
Lemmas 2,3 we obtain that the truth of a formula in some submodel of size
bounded by the appropriate gk or fk function implies the truth in a model. On
the other hand, Lemmas 2,3 state that if a formula is true in a model, then it
is also true in some k-model, or equivalently, by Lemmas 2,3 in its submodel of
size bounded by the value of appropriately gk or fk.

5.2 Translation to SAT

In order to translate the problem of validity of a sentence α ∈ PRTECTL in the
submodel M ′

k to the problem of satisfiability of a propositional formula
[

α
]

k
we

have to encode M ′
k and α, and then combine the results together. We present

an adapted version of the efficient translation introduced in [Zbr08].

Consider the model M. As the number of the states of M is finite, they can be
perceived as a bit vectors of the length r = ⌈log|M |⌉. Therefore, we can perceive



the states as the valuations of the vector w = (w1, . . . , wr). This vector is called
a global state variable while each its member wi is called a state variable. Denote
by SV a set of state variables, then a valuation V : SV −→ {0, 1} naturally
extends to the valuation of global state variables V̂ : SVr −→ {0, 1}r in such a
way that V̂ (w1, . . . , wr) = (V (w1), . . . , V (wr)). With a slight notational abuse,
we denote by V̂ (w) a state encoded by bit vector. The symbolic k-path is a vector
of global state variables. As we need a number of symbolic k-paths to represent
the k-paths in a translated submodel, by (w0,i, w1,i, . . . , wr,i) we denote the i-th
symbolic k-path, where wj,i is a global state variable.
Let w,w′ be global state variables, s a state and p a proposition. In the rules of
the translation the following propositional formulae are used:

1. p(w) denotes a formula such that V |= p(w) iff p ∈ L(V̂ (w)),
2. T (w,w′) denotes a formula such that V |= T (w,w′) iff V̂ (w) → V̂ (w′) (i.e.,

there exists a transition between V̂ (w) and V̂ (w′) in the model M),
3. H(w,w′) is a formula such that V |= H(w,w′) iff V̂ (w) = V̂ (w′) (encoding

the equality of states),

4. Lk(j) =
∨k

i=0 T (wk,j , wi,j) encodes a loop, that is V |= Lk(j) iff
loop((V (w0,j), . . . , V (wk,j))) 6= ∅,

5. Is(w) is a formula such that V |= Is(w) iff V̂ (w) = s (encoding the initial
state).

Let M be a model and A be a finite subset of N. Then the unfolding of the
transition relation is defined as

[

M
]A

k
:=

∧

j∈A

k−1
∧

i=0

T (wi,j , wi+1,j).

It is easy to see that V |=
[

M
]A

k
iff for each j ∈ A, (V (w0,j), . . . , V (wk,j)) is a k-

path inM. As the translation introduced in [Zbr08] was an essential improvement
over the original one of [PWZ02], we follow A. Zbrzezny’s approach in our work.
We recall the following definitions from [Zbr08].
Let A and B be finite subsets of N. By A ≺ B we denote, that x < y for all
x ∈ A and y ∈ B. Let k,m, p ∈ N and m ≤ |A|, then:

1. ĝL(A,m) is the subset B of A such that |B| = m and B ≺ A\B,
2. ĝR(A,m) denotes the subset B of A such that |B| = m and A\B ≺ B,

3. hX(A) is the set A\{min(A)},
4. if k + 1 divides |A| − 1 then hG(A, k) is the sequence of sets (B0, . . . , Bk)

such that
⋃k

i=0 Bi = A\{min(A)}, |Bi| = |Bj | and Bi ≺ Bj for every
0 ≤ i < j ≤ k,

5. if k divides |A|−1−p, then hU (A, k, p) denotes the sequence of sets (B0, . . . , Bk)

such that
⋃k

i=0 Bi = A\{min(A)}, Bi ≺ Bj for every 0 ≤ i < j ≤ k,

|B0| = . . . = |Bk−1| and |Bk| = p.

We also need a sequence element selector, that is if hG(A, k) = (B0, . . . , Bk)
then define hG(A, k)(i) = Bi for 0 ≤ i ≤ k and if hU (A, k, p) = (B0, . . . , Bk),



define hU (A, k, p)(i) = Bi for 0 ≤ i ≤ k.

The functions ĝL and ĝR are used to divide the set of path indices into the two
parts of the sizes sufficient to perform the independent translation of subformulae
α and β of formula α∧ β. Similarly, the functions hG and hU are used to divide
the set of path indices into the sequences (hence the use of the selector) of subsets
which are of the sizes sufficient to perform the translation of subformulae α and
α together with β of, respectively, formulae EG≤ηα and EαUηβ. For a more
in-depth description we refer to [Zbr08].

Definition 14. (Translation of vRTECTL)
Let α, β ∈ vRTECTL, p – an atomic proposition, υ – a parameter valuation, η
– a linear expression, (m,n) ∈ N × N, and A ⊆ N.

[

p
][m,n,A,υ]

k
:= p(wm,n) and

[

¬p
][m,n,A,υ]

k
:= ¬p(wm,n),

[

α ∧ β
][m,n,A,υ]

:=
[

α
][m,n,ĝL(A,gk(α,υ)),υ]

∧
[

β
][m,n,ĝR(A,gk(β,υ)),υ]

,

[

α ∨ β
][m,n,A,υ]

:=
[

α
][m,n,ĝL(A,gk(α,υ)),υ]

∧
[

β
][m,n,ĝL(A,gk(β,υ)),υ]

,

[

EXα
][m,n,A,υ]

:= H(wm,n, w0,min(A)) ∧
[

α
][1,min(A),hX (A),υ]

k
.

The translation of the formula EG≤ηα depends on the value of υ(η). If υ(η) > k,
then:

[

EG≤ηα
][m,n,A,υ]

:= H(wm,n, w0,min(A)) ∧ Lk(min(A)) ∧
k

∧

j=0

[

α
][j,min(A),hG(A,k)(j),υ]

k

and if υ(η) ≤ k, then

[

EG≤ηα
][m,n,A,υ]

:= H(wm,n, w0,min(A)) ∧

υ(η)
∧

j=0

[

α
][j,min(A),hG(A,υ(η))(j),υ]

k
.

The translation of EαU≤ηβ is defined as follows:
[

EαU≤ηβ
][m,n,A,υ]

:= H(wm,n, w0,min(A))

∧

min(υ(η),k)
∨

i=0

([

β
][i,min(A),hU (A,min(υ(η),k),gk(β,υ))(min(υ(η),k)),υ]

k

∧

min(υ(η),k)−1
∧

j=0

[

α
][j,min(A),hU (A,min(υ(η),k),gk(β,υ))(j),υ]

k

)

.

The above encoding is based on the definition of the bounded semantics for
vRTECTL – see the Definition 9 together with the associated comment.

Definition 15. (Translation of PRTECTL)
Let α ∈ PRTECTL, A ⊆ N, (m,n) ∈ N × N, and c ∈ N. If α contains no
quantifiers and no free parameters, then:

[

α
][m,n,A]

k
:=

[

α
][m,n,A,υ]

k
, where υ is any parameter valuation.



As in the above case α ∈ vRTECTL and it contains no free parameters, the
choice of υ is irrelevant.

[

∀Θ≤cα(Θ)
][m,n,A]

k
:=

[

α(c)
][m,n,ĝL(A,fk(α(c)))]

k
∧

[

∀Θ≤c−1α(Θ)
][m,n,ĝR(A,fk(∀Θ≤c−1α(Θ)))]

k
,

Let d = min(c, k), then:

[

∃Θ≤cα(Θ)
][m,n,A]

k
:=

[

α(d)
][m,n,ĝL(A,fk(α(d)))]

k
∨

[

∃Θ≤d−1α(Θ)
][m,n,ĝL(A,fk(∃Θ≤d−1α(Θ)))]

k
.

Let Mk be the k-model. If α ∈ vRTECTL and υ is a parameter valuation, then
define Gk(α, υ) := {i ∈ N | 1 ≤ i ≤ gk(α, υ)}. Similarly, if β ∈ PRTECTL then
define Fk(β) := {i ∈ N | 1 ≤ i ≤ fk(β)}. The sets Gk and Fk contain the indices

of symbolic k-paths used to perform the translation. The formulae
[

M
]Gk(α,υ)

k

and
[

M
]Fk(β)

k
encode all the Mk submodels of the size not greater than needed

to validate the truth of formulae α, β as indicated in Lemmas 5, 6.
Now we are in the position to complete the translation of the problem of validity
in vRTECTL and PRTECTL to the problem of satisfiability of propositional
formulae. Let Mk be a k-model, α ∈ vRTECTL and υ be a parameter valuation.
Denote

[

M
]α,υ

k
:=

[

M
]Gk(α,υ)

k
∧ Is(w0,0) ∧

[

α
][0,0,Gk(α,υ),υ]

k
.

Similarly, let β ∈ PRTECTL, then denote

[

M
]β

k
:=

[

M
]Fk(β)

k
∧ Is(w0,0) ∧

[

β
][0,0,Fk(β)]

k
.

The following theorems ensure completeness and correctness of the translation.

Theorem 2. Let Mk be a k-model of M, υ – a parameter valuation, α– a for-
mula of vRTECTL containing at least one modality, and s a state. Then, the
following equivalence holds: Mk, s |=υ α iff

[

M
]α,υ

k
is satisfiable.

Proof. (Sketch) The modification of the proof of Theorem 3.1 from [Zbr08].
The proof is divided into two parts – the proof of correctness and the proof of
completeness of the translation, both obtained by the induction on the length
of the formula.

Theorem 3. Let Mk be a k-model of M, β – a sentence of PRTECTL contain-
ing at least one modality, and s – a state. Then, the following equivalence holds:

Mk, s |= β iff
[

M
]β

k
is satisfiable.

Proof. (Sketch) Replace the non-modal quantifiers in a formula of PRETCTL
with, appropriately, conjunctions or disjunctions. To conclude, use Theorem 2.

5.3 Example

Consider the model M from Example 3.3 and the formula:

α = ∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG¬c1).



The number of the paths needed to encode α in the 2–model is computed as
following:

fk(α) =
∑

iΘ1
≤1

maxiΘ2
≤2{fk(EF≤iΘ1

+iΘ2 (w1 ∧ EG¬c1))}.

Let β = EF≤iΘ1
+iΘ2 (w1 ∧ EG¬c1)), and observe that if iΘ1

≤ 1 and iΘ2
≤

2 are fixed, then fk(β) = gk(β, υ) where υ(Θ1) = iΘ1
and υ(Θ2) = iΘ2

. As
gk(true, υ) = 0, we have gk(β, υ) = gk(w1∧EG¬c1, υ)+1 = 2, therefore fk(α) =
4. Thus, the encoding in the 2–model of M is as follows:

[

∀Θ1≤1∃Θ2≤2EF
≤Θ1+Θ2(w1 ∧ EG¬c1)

][0,0,{1,2,3,4}]

2

=
[

∃Θ2≤2EF
≤Θ2(w1∧EG¬c1)

][0,0,{1,2}]

2
∧
[

∃Θ2≤2EF
≤1+Θ2(w1∧EG¬c1)

][0,0,{3,4}]

2

=
2

∨

i=0

[

EF≤i(w1 ∧ EG¬c1)
][0,0,{1,2}]

2
∧

2
∨

j=1

[

EF≤j(w1 ∧EG¬c1)
][0,0,{3,4}]

2
.

As the illustration of the further steps of the translation, consider:

[

EF≤2(w1 ∧ EG¬c1)
][0,0,{3,4}]

2
= H(w0,0, w0,3) ∧

2
∨

i=0

[

w1 ∧ EG¬c1
][i,3,{3,4}]

2

= H(w0,0, w0,3) ∧
2

∨

i=0

([

w1

][i,3,∅]
∧

[

EG¬c1
][i,3,{4}]

2

)

= H(w0,0, w0,3) ∧
2

∨

i=0

(

pw1
(wi,3) ∧H(wi,3, w0,4) ∧ L2(4) ∧

2
∧

j=0

¬pc1
(wj,4)

)

.

5.4 The BMC algorithm

Let M be a model and α ∈ PRTECTL.

BMCverifyPRTECTL(α)

for k := 1 to |M |
compute the translation

[

M
]α,υ

k

if
[

M
]α,υ

k
is satisfiable return true

end for

return false

Checking the satisfiability of a propositional formula is delegated to an efficient
SAT-solver. Obviously the algorithm terminates in a finite number of iterations.
By Theorem 2 and Lemma 3 the result is positive (that is – the translation of
the formula α is satisfiable) if and only if α is valid in the state s of a model M.

It is easy to present similar algorithm for checking the validity of vRTECTL
formulae under a parameter valuation υ – the only difference is the choice of the
appropriate translation.



6 Implementation of Parametric BMC for Elementary

Net Systems

In this section we recall some basic definitions concerning Elementary Net Sys-
tems (called also Elementary Petri Nets) and present the implementation of
BMC for a model generated by a net. The formulations of this section originate
from [PWZ02]. We consider only the safe Petri Nets, i.e., each place can be
marked with at the most one token.

6.1 Elementary Net Systems

Definition 16. A net is a triple N = (B,E, F ), where B (the places) and E

(the transitions) are finite sets satisfying B ∩ E = ∅, the relation (called a flow
relation) F ⊆ (B × E) ∪ (E × B) has the property that for every t ∈ E there
exists p, q ∈ B such that (p, t), (t, q) ∈ F .

Let N be a net and t ∈ E, then •t = {p ∈ B | (p, t) ∈ F} is called the pre-set of
t and t• = {p ∈ B | (t, p) ∈ F} is called the post-set of t. A configuration of a
net N = (B,E, F ) is a subset C of B. An usual method of visualisation of nets
is where the places are rendered as circles, the transitions as boxes, the elements
of flow relation as arrows, and the configuration C is represented by placing a
”token” in every circle corresponding to a place in C. A place not marked by a
token is called free.

Definition 17. A quadruple EN = (B,E, F,Cin), where (B,E, F ) is a net and
Cin ⊆ B is the initial configuration, is called an elementary net system.

Definition 18. Let EN = (B,E, F,Cin) be an elementary net system and t ∈
E.

1. Let C ⊆ B be a configuration. If t is a transition, •t ⊆ C, and (t• \ •t)∩C =
∅, then the transition t is enabled in C (denoted by C

[

t
〉

).
2. Let C,D ⊆ B be configurations. A transition t fires from C to D (denoted

by C
[

t
〉

) if C
[

t
〉

and D = (C \ • t) ∪ t • .
3. Let t1, . . . , tn ∈ E. A configuration C ⊆ B is reachable if there are config-

urations C0, C1, . . . , Cn ⊆ B with C0 = Cin, Cn = C and Ci−1

[

ti
〉

Ci for all
1 ≤ i ≤ n. We denote the set of all the reachable configuration by CEN .

Informally, the arrows of the flow relation can be thought of as the directed
paths of movement of tokens. If there is an arrow directed from a place b to a
transition t, then we say that b enters t. If there exists an arrow directed from
a transition t to a place b, then we say that t fills b. The transition t is enabled
if all the places entering t are marked with tokens and all the places filled by t
and not entering the transition t are free. If a transition t fires, then the tokens
from all the places entering t disappear and the tokens appear in all the places
filled by t.



6.2 Implementation

Our goal is to construct a Kripke model reflecting the states (markings) and
actions (firings) in an elementary net system. Consider an elementary net system
EN = (B,E, F,Cin) and number the places of the net with integers smaller
or equal than n = |B|. We use a set {p1, . . . , pn} of propositions, where pi is
interpreted as the presence of a token in the place number i. If w is a state,
then by pi ∈ w we mean that the i-th place is marked in the corresponding
configuration.
We define the model M = (S,→,L) for EN by placing S = CEN (the reachable
configurations are the states), w → v iff there exists t ∈ E such that w

[

t
〉

v (the
transitions model the firings) for w, v ∈ S, and pi ∈ L(w) iff pi ∈ w (the labelling
models the markings).
It is easy to see, that we can encode the states of S by valuations of a vector of
the state variables w = (w[1], . . . , w[n]), where w[i] = pi for 0 ≤ i ≤ n. Moreover,
let P = {1, . . . , n} and let pre(t), post(t) ⊆ P be finite sets of the indices of the
places of, respectively, pre−set(t) and post−set(t). Denote the initial state Cin

by s and let ξ(s) ⊆ P be the set of indices of the places in s.

We are in the position to present the definitions:

1. Is(w) :=
∧

i∈ξ(s) w[i] ∧
∧

i∈P\ξ(s) ¬w[i],

2. T (w, v) :=
∨

t∈E

(
∧

i∈pre(t) w[i]∧
∧

i∈(post(t)\pre(t))¬w[i]∧
∧

i∈(pre(t)\post(t))¬v[i]

∧
∧

i∈post(t) v[i] ∧
∧

i∈(P\(pre(t)∪post(t)))∪(pre(t)∩post(t)) w[i] ⇐⇒ v[i]
)

,

3. pi(w) := w[i],
4. H(w, v) :=

∧

1≤i≤n w[i] ⇐⇒ v[i].

7 Experimental Results

We have implemented the presented algorithm on top of the BMC module of
Verics model checking tool. The Elementary Net Systems are used as an input
specification formalism, and PRTECTL is used as an input logic.

In order to show the performance and present some case studies we use
standard scalable benchmarks. The detailed descriptions of these examples can
be found in [PWZ02].

The tables with results show the following data in the columns from left
to right: the formula verified, the number of processes (denoted by NoP), the
depth k of the unfolding of the model, the size of the corresponding propositional
formula (numbers of variables and clauses) together with the description of how
much resources (time and memory) does the translation take, the time it took
for MiniSat SAT solver to check the satisfiability, and finally the SAT? column
indicating whether the tested formula is satisfiable (») or not satisfiable (Ö).

The experiments were performed on a Linux machine with dual core 1.6
GHz processor. We tested satisfiability using the MiniSAT solver [Min06]. The
presented models are relatively simple, yet classical, and the considered formulae
were chosen as to show the difference between the expressive power of CTL and



PRECTL. As our work is still in its preliminary stage, we do not include any
real-world example, however it should be mentioned that many of problems lead
to models similar to presented in Examples 7.1 and 7.2. Tables 1 and 2 show
some quantitative details of the experiments.

7.1 Mutual Exclusion

The elementary net system of Figure 2 models the well-known mutual exclusion
problem. The system consists of n+ 1 processes (where n ≥ 2) of which n com-
pete for the access to the shared resource and one, called the permission process,
guards so that no two processes use the resource simultaneously. The presence
of a token in the place labelled by wi means that the i-th process is waiting
for the access to the critical section while the token in ci means that the i-th
process has acquired the permission and entered the critical section. The place
ri models the unguarded part of the process and the presence of token in place
p indicates that the resource is available.

The Kripke structure constructed for 3 processes along the lines of Subsection

Fig. 2. Mutual exclusion

6.2 is presented in Figure 1. Let us consider the formula ϕb
1 = ∀Θ≤bEF (¬p ∧

EG≤Θc1). We explore the validity of this formula with respect to the value of
b. We can see that in order for the restricted EG operator to hold we need to
have a path on which the first process enters its critical section and then other
processes execute their local transitions di.

Let us explain how the verification works for this formula. For example, for
3 processes and b = 2, first the processes 2 and 3 enter their places r2 and r3
resp., then the process 1 enters its place c1 and then 2 and 3 execute d2 and
d3 respectively along the path of the length 2 on which c1 holds. Of course,
the order between 2 and 3 may be different. Notice that for b = 3 this formula
does not hold in this model. Note that the non-parameterized counterpart of the
formula ϕ1, i.e., EF (¬p∧EGc1) does not hold in our model, as there is no cycle
in which c1 is true starting in a state where p is false.



formula NoP k PBMC MiniSAT SAT?

vars clauses sec MB sec »/Ö
ϕ1

1 3 2 1063 2920 0.01 1.3 0.003 Ö
ϕ1

1 3 3 1505 4164 0.01 1.5 0.008 »
ϕ2

1 3 4 2930 8144 0.01 1.5 0.01 Ö
ϕ2

1 3 5 3593 10010 0.01 1.6 0.03 »
ϕ2

1 30 4 37825 108371 0.3 7.4 0.2 Ö
ϕ2

1 30 5 46688 133955 0.4 8.9 0.52 »
ϕ3

1 4 6 8001 22378 0.06 2.5 0.04 Ö
ϕ3

1 4 7 9244 25886 0.05 2.8 0.05 »
Table 1. Mutual exclusion, testing the formula ϕb

1

7.2 Dining Philosophers

Another benchmark we consider is the Dining Philosophers Problem. Consider
n (n ≥ 2) philosophers sitting around a round table. Each philosopher has a
plate in front of him, and between the two neighbouring plates there lies a fork.
Whenever a philosopher eats, he uses both the forks from both the sides of his
plate. When a philosopher has finished eating, he lays backs both of his forks on
the table and starts thinking. The elementary net system modelling the system
described above is shown in Fig. 3. The conditions ri, wi, si denote that i-th
philosopher is thinking, waiting for both the forks and eating, respectively; ci
represents that the i-th fork is not taken.
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Fig. 3. Dining Philosophers



Let us consider the following properties: ϕb
2 = ∀Θ≤bEF (s1 ∧ EG≤Θ(¬c1 ∧

¬cn ∧
∧

1<i<n ci)) and ϕb
3 = ∀Θ≤bEF (s1 ∧ EG≤Θ

∧

1≤i≤n ¬ci). The formula ϕb
2

expresses that it is possible that in the future there exists a state where for the
b time units the first philosopher is eating (therefore his forks are taken) while
all the remaining forks are laid on the table. The formula ϕb

2 states the similar
property, namely that there exists a future state in which for the b time units
the first philosopher eats while all the remaining forks are taken.

Note that ϕ3
3 does not hold in the model, because there is no path of length

3 along which the first process can stay in the s1 state.

formula NoP k PBMC MiniSAT SAT?

vars clauses sec MB sec »/Ö
ϕ1

2 4 1 1240 3347 0.01 1.5 0.008 Ö
ϕ1

2 4 2 2124 5839 0.02 1.64 0.004 »
ϕ3

2 4 1 2518 6821 0.01 1.8 0.004 Ö
ϕ3

2 4 2 4298 11837 0.01 2.01 0.01 »
ϕ1

3 4 3 3014 8343 0.02 1.8 0.1 Ö
ϕ1

3 4 4 3898 10385 0.03 1.9 0.2 »
ϕ2

3 4 3 4549 12600 0.04 2.07 0.008 Ö
ϕ2

3 4 4 5875 16338 0.06 2.32 0.04 »
ϕ2

3 10 9 37981 107724 0.25 7.3 3.78 Ö
ϕ2

3 10 10 42043 119310 0.28 8 8.97 »
Table 2. Dining philosophers, testing the formulae ϕb

2 and ϕb
3

8 Conclusions

In this paper we showed how parametric model checking can be performed by
means of Bounded Model Checking. We presented an implementation and tested
it against some benchmarks. Our work is still in its preliminary phase and can be
extended in several directions. One of them is to investigate the remaining para-
metric logics presented in [ET99], of which General Parametric CTL (GPCTL)
seems to be the most interesting. The formulae of GPCTL allow for referring
to the number of occurrences of some event. In case of GPCTL, the computa-
tional complexity of the model checking problem is at least NP-complete, which
is likely to make the BMC approach especially fruitful. Another possibility is
to include the parameters to the model. Introducing the real time can also be
considered, given that it has been done for non-parametric BMC.
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9 Appendix

The proof of Lemma 1:

Proof. Throughout this proof we denote k = |M |. We start with formulae ψ of
vPRTCTL. Let υ be a parameter valuation such that υ(Θ′) = c > k. Define
another valuation

υ′(Θ) =

{

υ(Θ), for Θ 6= Θ′

k, for Θ = Θ′.
(1)

We prove that for each state s, M, s |=υ ψ ⇐⇒ M, s |=υ′ ψ. The proof goes by
the structural induction. The cases of ψ = p, ψ = ¬α, ψ = α∨ γ, ψ = α∧ γ and



ψ = EXα are easy to prove.
Let us focus on proving M, s |=υ EG

≤βα ⇐⇒ M, s |=υ′ EG≤βα.

If Θ′ 6∈ Parameters(β), then the equivalence is valid by υ(β) = υ′(β) and the
inductive assumption. Assume that Θ ∈ Parameters(β).
If M, s |=υ EG

≤βα, then there exists a path π such that π(0) = s and M,π(i) |=υ

α for all i ≤ υ(β). Now, from υ′(β) < υ(β) and the inductive assumption we
have M, s |=υ′ EG≤βα. Similarly, if M, s |=υ′ EG≤βα, then there exists a path
π such that π(0) = s and M,π(i) |=υ′ α for all i ≤ υ′(β). As υ′(β) ≥ k, there
exists a l ≤ υ′(β) such that π(l) = π(n) for some n < l. Therefore we can define
a path π′ as follows:

π′(i) =

{

π(i), for i < l

π(l − i+ n), for i ≥ l.
(2)

As π′(0) = π(0) = s and M,π′(i) |=υ′ α for all i ∈ N, by the inductive assump-
tion we obtain M, s |=υ α.

Now, let us move to the case of ψ = EαU≤βγ. We deal with the case of
Θ′ ∈ Parameters(β) only. If M, s |=υ EαU≤βγ, then there exists a path π

having π(0) = s, such that for some i ≤ υ(β) it occurs that M,π(i) |=υ γ and
M,π(j) |=υ α for all j < i. If i ≤ υ′(β), then M, s |=υ′ EαU≤βγ follows in-
stantly from the inductive assumption. If i > υ′(β), notice that from υ′(β) > k

we get π(i) > k, thus π(i) = π(n) for some n < k < υ′(β) from which follows
M, s |=υ′ EαU≤βγ.

Therefore, by induction on the number of the parameters we get that for for-
mulae ψ ∈ vPRTCTL, the parameter valuation υ and valuation υ′ defined as
υ′(Θ) = min(υ(Θ), k) we have M, s |=υ ψ ⇐⇒ M, s |=υ′ ψ.

In order to prove the general case, consider a one–parameter vPRTCTL formula
g(Θ). We have

M, s |= ∀Θ≤cg(Θ) ⇐⇒
∧

0≤i≤c

M, s |={Θ:=i} g(Θ).

Based on what we have already proven concerning vPRTCTL formulae, we can
substitute {Θ := i} by {Θ := min(i, k)} in the right-hand side of the above
formula, obtaining:

∧

0≤i≤c

M, s |={Θ:=min(i,k)} g(Θ) ⇐⇒
∧

0≤i≤min(c,k)

M, s |={Θ:=i} g(Θ).

Therefore, we have M, s |= ∀Θ≤cg(Θ) ⇐⇒ M, s |= ∀Θ≤min(c,k)g(Θ). The equiv-
alence M, s |= ∃Θ≤cg(Θ) ⇐⇒ M, s |= ∃Θ≤min(c,k)g(Θ) is proved in the similar
way.
Finally, notice that for the formula h = Q1Θ1≤min(c1,k) . . .QtΘt≤min(ct,k)f of
PRTCTL where f ∈ vPRTCTL we can define a one–parameter subformula
µ(Θ1) = Q2Θ2≤min(c2,k) . . . QtΘt≤min(ct,k)f(Θ1). Now, this formula can be rewrit-
ten as a vPRTCTL formula µ̂(Θ1) by substituting universal and existential quan-
tifiers with, appropriately, conjunctions and disjunctions. Therefore, by induc-
tion on the number of parameters, the thesis of the lemma follows.


