
Fundamenta Informaticae 85 (2008) 1–16 1

IOS Press

SAT-based Unbounded Model Checking
of Timed Automata∗

Wojciech Penczek†‡, Maciej Szreter

Institute of Computer Science, PAS

Ordona 21, 01-237 Warsaw, Poland

penczek@ipipan.waw.pl

mszreter@ipipan.waw.pl

Abstract. We present an improvement to the SAT-based Unbounded Model Checking (UMC, for
short) algorithm [13]. Our idea consists in building blocking clauses of literals corresponding not
only to propositional variables encoding states, but also to more general subformulas over these
variables encoding sets of states. This way our approach alleviates an exponential blow-up in the
number of blocking clauses. A hybrid algorithm for verifying Timed Automata is proposed, where
the timed part of blocking clauses is computed using Difference Bound Matrices. The optimization
results in a considerable reduction in the size and the number of generated blocking clauses, thus
improving the overall performance. This is shown on the standard benchmark of Fischer’s Mutual
Exclusion protocol.

1. Introduction

Model checking is becoming an acknowledged method supporting the design of complex systems having
many successful applications around. However, the exponential state space explosion is one of its major
problems. Since the limitations of the algorithms representing state spaces explicitly are well known,
the search for new techniques is mostly focused on symbolic methods, working with sets of states rather
than with separate states only.
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The advances in this area are closely related to the theory and practical methods for propositional
logic. The problem of checking satisfiability for propositional formulas, known as the SAT-problem, is
NP-complete. However, many very efficient algorithms (heuristics) for testing satisfiability have been
designed recently. Therefore, numerous verification problems have been translated to the SAT-problem.
Bounded Model Checking (BMC, for short) seems to be the state-of-the-art SAT-based model checking
method [18]. Some types of flaws can be easily found in very large systems. However, despite of these
well-known advantages, BMC has also some weak points. It is still rather a method of falsification than
validation of timed systems. Moreover, BMC is restricted tothe universal or the existential fragment
of a branching time temporal logic. Given these facts, one can ask whether the SAT-based approach
could be used in model checking in a different way. The symbolic verification based on Binary Decision
Diagrams (BDD) [12] is an obvious analogue. It turns out thatUMC [13] emerged in 2002 as a SAT-
based counterpart of BDD. However, the method has not achieved a wide popularity since then and
although some extensions were reported [9], it seems that the performance of the algorithm is still inferior
to other symbolic approaches based on BDDs. In the conclusions of [13], two major problems are stated:

1. The formulas encoding the whole state space are represented by semi-canonical Directed Acyclic
Graphs (DAG). This representation can be much less concise than BDD in the case of equivalent
but syntactically different formulas.

2. Blocking clauses are built over a set of state variables only. This level is too detailed and it often
leads to generating exponentially many clauses.

In this paper we focus on the second item. In [13], it is stated: “If a solution can be found to this problem,
a dramatic improvement in performance might result”. As far as the above mentioned algorithm of
quantifier elimination is concerned, our modification consists in generating blocking clauses over an
extended set of variables, including the variables encoding subformulas over propositions. Blocking
clauses are generated by searching an input formula, instead of taking into account the way in which
blocking assignments have been found by a solver. Then, the above algorithm is optimized for dealing
with formulas arising from the verification of timed automata: the range of quantification is restricted by
exploring the structure of the system given by a current assignment, and a method based on Difference
Bound Matrices (DBMs, for short) is introduced for dealing effectively with formulas encoding timed
constraints.

The rest of the paper is organized as follows. In Chapter 2 theoriginal method of SAT-based quanti-
fier elimination is shown. Chapter 3 presents Timed Automataand their discretized abstract timed mod-
els, based on the detailed region graphs. The key ideas of thegeneralizations are described in Chapter 4,
beginning with the algorithm generating generalized blocking clauses, and then its further optimizations
exploring the structure of verified systems. Chapter 5 contains experimental results on verification of the
standard mutual exclusion protocol. The paper is concludedwith a summary and some directions of a
possible future work.

1.1. Related Work

The ideas similar to ours can be found in [8], where the generalized blocking assignments use circuit
cofactoring, but are not applied to timed automata. In [4] a BDD-based algorithm for verification of a
restricted class of timed automata is described. Several variants of BDDs capable of representing time
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constraints were developed [3, 14]. A symbolic verificationof timed systems, where the quantifiers are
eliminated using a BDD-based algorithm is explored in [19].The principles of the SAT-solvers can be
found in [18].

2. Quantified Propositional Logic

In this section we introduce the preliminary notions concerning Propositional Logic, a conversion of
propositional formulas to CNF, and an elimination of universal quantifiers from quantified propositional
formulas.

2.1. Propositional Logic

Let PV be a finite set of (propositional) variables. The formulas ofPropositional Logic are built from
variables ofPV in the standard way using boolean operators:∨ - disjunction and¬ - negation, with
the derived operators∧ - conjunction and⇒ - implication. LetF denote a set of all the propositional
formulas. For each propositional formulaα a set of its subformulasSubform(α) is defined in the usual
way. A literal l is a variable ofPV , or its negation. Aclausec is a disjunction of zero or more literals
l1 ∨ · · · ∨ ln. By C we denote a set of clauses. A formula is in conjunctive normalform (CNF) if it is a
conjunction of zero or more clausesc1 ∧ · · · ∧ ck.

An assignmentA is a partial functionA : PV → {1, 0}, where1 stands fortrue and0 stands for
false. An assignment is said to betotal if its domain equals toPV . An assignment is extended form
PV toF in the standard way, i.e., assuming the standard interpretation of the boolean operators. A total
assignment is said to besatisfying for a formulaα if the value ofα is 1 for the assignmentA (denoted
byA(α) = 1). We will equate an assignmentA with a conjunction of a set of literals, specifically the set
containing¬p for all p ∈ dom(A) such thatA(p) = 0 andp for all p ∈ dom(A) such thatA(p) = 1.

Following [1], we represent propositional formulas by directed acyclic graphs (DAGs), where the
graphDAG(α) represents a formulaα. Contrary to the BDD-like semantic representation, our repre-
sentation encodes explicitly the syntax instead of the truth table of a propositional formula.

In this paper we make an extensive use of efficient SAT-solvers, i.e., algorithms checking satisfiability
of propositional formulas. LetSAT () refer to a generic SAT-solver, which given a formula either returns
its satisfying assignment or diagnoses that no such assignment exists (so it returs UNSAT).

2.1.1. Conversion to CNF

Most of the SAT-solvers accept formulas in CNF. Forα ∈ F , let PV (α) ⊆ PV denote the set of
propositional variables used inα andPV C(α) = {lβ ∈ PV | β ∈ Subform(α)} be a set of the literals
corresponding to the subformulas ofα.

Let toCNF be the standard translation of propositional formulas to CNF [16]. Given a formulaα,
toCNF (α) returns the formula in CNF defined over variables ofPV C(α). Every subformulaβ of α is
represented by the literallβ ∈ PV C(α), and for every assignmentA such thatA(toCNF (α)) = 1, we
haveA(lβ) = A(β). Consequently, the CNF formulatoCNF (α) ∧ lα is satisfiable iffα is satisfiable.
This fact is commonly exploited in algorithms testing satisfiability. Moreover, a formulaα is valid when
the CNF formulaβ = toCNF (α)∧l¬α is unsatisfiable, which is used in algorithms eliminating universal
quantifiers. More details can be found in [16].
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2.1.2. Elimination of universal quantifiers

Quantified Boolean Formulas (QBF, for short) are a fragment of the First-Order Logic extending propo-
sitional logic with quantifiers ranging over propositions.The syntax of QBF is defined in the following
way:

α := p | ¬α | α ∨ α | ∃p.α | ∀p.α.

The semantics of the quantifiers is as follows:

• ∃p.α ≡ α(p← true) ∨ α(p← false), and

• ∀p.α ≡ α(p← true) ∧ α(p← false),

wherep ∈ PV andα(p ← q) denotes a substitution with the variableq of every occurrence of the
variablep in α. For a vector of variablesv = (v[1], . . . , v[m]), we use the notationv for the set
{v[1], . . . , v[m]}, and∀v.α to denote∀v[1] . . . ∀v[m].α. Moreover, for a set of variablesU ⊆ PV , by
∀U.α we mean the universal quantification ofα over all the elements ofU .

The algorithmSAT () can be used for removing universal quantifiers [13] from a QBFformula. A
pseudo-code of the procedureforall() is shown in Algorithm 1. Notice thatforall(α,U) returns a
propositional formula in CNF, which is equivalent to∀U.α.

The algorithm exploits the fact each clause of a CNF formula equivalent to the input formula must
be satisfied for any assignment of the quantified variables for which the input formula is satisfied. Thus,
the satisfying assignments forβ, i.e., these which falsifyα, are excluded by means ofblocking clauses.
These clauses produce the resulting CNF formulaχ. The algorithm works on-the-fly removing the
quantified variables as soon as a new blocking clause is generated.

Definition 2.1. (Blocking assignment, blocking clause)
Consider the procedureforall() (Alg. 1). A satisfying assignmentAα = SAT (β) for β is called a
blocking assignment. A blocking clausecb for Aα is a clause over the set of variablesPV (α) having the
following two properties: (i)Aα(cb) = 0, and (ii)α⇒ cb.

Algorithm 1 procedureforall(α,U)

1: χ = true, β = toCNF (α) ∧ l¬α

2: while (SAT (β) 6= UNSAT ) do
3: compute the blocking clausecb
4: for eachp ∈ U , remove literalsp and¬p from cb
5: χ = χ ∧ cb, β = β ∧ cb
6: return χ

Theorem 2.1. ([13])
When the formulaβ becomes unsatisfiable in Algorithm 1 (the condition in line 2is false),χ is a propo-
sitional formula in CNF equivalent to∀U.α.
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2.1.3. Quantifier elimination under a restriction

Some operations in symbolic model checking are considered under a restriction in order to improve on
their efficiency. Intuitively, given a propositional formula β describing a restriction (denoted by↓ β),
the valuations satisfying the resulting formula have to satisfy β as well. For example,forall(∀U.α) ↓ β
is evaluated by substitutingtoCNF (α) with toCNF (α) ∧ toCNF (β) ∧ lβ in line 1. This way the
algorithm considers only assignments that makeα false butβ true. The restriction is used also in fixpoint
computations in UMC, which is shown and explained at the end of the next section.

3. Timed Automata and Model Checking

In this section we define timed automata [2], their discretizations, and models generated by them. Let’s
start with some preliminary notions. In what follows,N (IR+) denotes the set of the natural numbers
(non-negative real numbers, respectively).

In timed automata, the flow of time is modeled by means ofclocks. From a semantic viewpoint the
duration of actions is equal to zero and the time flows when no action is taken. ByX we denote a finite
set{x1, . . . , xnX

} of variables, calledclocks. A clock constraintoverX is defined by the following
grammar:

ψ = true | xi ∼ c | xi − xj ∼ c | ψ ∧ ψ,

wherexi, xj ∈ X , c ∈ N, and∼ ∈ {≤, <,=, >,≥}. The constraints of the formtrue, x ∼ c and
xi−xj ∼ c are calledatomic. LetC	X denote the set of clock constraints overX , wheresCX be its subset
without the inequalities involving clock differences.

A function v : X → IR+ assigning to each clockx a positive valuev(x) is called aclock valuation.
By IRnX

+ we denote the set of all the clock valuations. For simplicity, we assume a fixed ordering onX .
For a valuationv andδ ∈ IR+, v + δ denotes the valuationv′ s.t. for allx ∈ X , v′(x) = v(x) + δ.
Moreover, for a subset of clocksX ⊆ X , v[X = 0] denotes the valuationv′ such that for allx ∈ X,
v′(x) = 0 and for allx ∈ X \X, v′(x) = v(x). Forv ∈ IRnX

+ , the satisfaction relation|= for a clock
constraintcc ∈ C	X is defined inductively as follows:

• v |= true,

• v |= (xi ∼ c) iff v(xi) ∼ c,

• v |= (xi − xj ∼ c) iff v(xi)− v(xj) ∼ c,

• v |= (cc ∧ cc′) iff v |= cc andv |= cc′.

For a constraintcc ∈ C	X , let [[cc]] denote the set of all the clock valuations satisfyingcc, i.e., [[cc]] = {v ∈
IRnX

+ | v |= cc}. By a (time) zonein IRnX
+ we mean each convex polyhedronZ ⊆ IRnX

+ defined by
a clock constraint, i.e.,Z = [[cc]] for somecc ∈ C	X (for simplicity, we identify a zone with the clock
constraint that defines it). The set of all the zones forX is denoted byZ(nX ).

Definition 3.1. (Timed automaton)
A timed automatonTA is a tuple(Σ, L, l0, E,X ,I), whereΣ is a finite set of actions,L is a finite set
of locations,l0 ∈ L is the initial location,E ⊆ L × Σ × CX × 2X × L is a transition relation,X is a
finite set of clocks, andI : L −→ CX is a state invariant function. Each elemente ∈ E is denoted by
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e = l
a,cc,Y
−→ l′, which represents a transition from the locationl to the locationl′ labelled with an actiona;

Y ⊆ X is a set of clocks to beresetafter executing the transitione, while cc ∈ CX is theguardcondition
for e.

In order to reason about a system represented by a timed automatonTA, we define a valuation function
VTA : L→ 2PV , assigning a subset of propositions ofPV to each its location.

3.1. Semantics of Timed Automata

Let TA = (Σ, L, l0, E,X ,I) be a timed automaton. Aconcrete stateof TA is a pair(l, v), where
l ∈ L andv ∈ IRnX is a clock valuation. Theconcrete state spaceof TA is the structureC(TA) =
(Qc, q

0,−→c), whereQc = L× IRnX is the set of all the concrete states,q0 = (l0, v0) with v0(x) = 0
for all x ∈ X is the initial state, and−→c ⊆ Qc× (Σ∪ IR)×Qc is the transition relation, defined by the
union of the action- and time-successors as follows:

• for δ ∈ IR, (l, v)
δ
−→c (l, v + δ) iff v, v + δ ∈ [[I(l)]] (time successor),

• for a ∈ Σ, (l, v)
a
−→c (l′, v′) iff (∃cc ∈ CX )(∃Y ⊆ X ) such thatl

a,cc,Y
−→ l′ ∈ E, v ∈ [[cc]],

v′ = v[Y = 0] andv′ ∈ [[I(l′)]] (action successor).

For (l, v) ∈ Q andδ ∈ IR+, let (l, v) + δ denote(l, v + δ). A q0-run ρ of TA is a maximal sequence

of concrete statesρ = q0
δ0−→c q0 + δ0

a0−→c q1
δ1−→c q1 + δ1

a1−→c q2
δ2−→c . . ., whereai ∈ Σ and

δi ∈ IR, for eachi ≥ IN (notice that due to the fact thatδ can be equal to0 two consecutive transitions
can be executed without any time passing in between). A runρ is said to beprogressiveiff Σi∈INδi is
unbounded. A timed automaton isprogressiveiff all its runs beginning in the initial state are progressive.
We model a concurrent system by anetwork of timed automata1 TA, i.e., a set of timed automata (called
components), whereTA = {TAi | 1 ≤ i ≤ n} with TAi = (Σi, Li, l

0

i , Ei,Xi,Ii). For a ∈ Σ, let
Σ(a) = {1 ≤ i ≤ n | a ∈ Σi} be the set of the indices of all the components includinga.

Definition 3.2. (Product of timed automata)
Theproductof a networkTA is the timed automatonTA = (Σ, L, l0, E,X ,I), whereΣ =

⋃

1≤i≤n Σi,
L =

∏

i∈{1,...,n} Li, l0 = (l01, . . . , l
0

n), X =
⋃

i∈{1,...,n}Xi, I((l1, . . . , ln)) =
∧

i∈{1,...,n} Ii(li), and the
transition relation is given by:
((l1, . . . , ln), a,

∧

i∈Σ(a) cci,
⋃

i∈Σ(a) Yi, (l
′
1, . . . , l

′
n)) ∈ E iff (∀i ∈ Σ(a))(li, a, cci, Yi, l

′
i) ∈ Ei and

(∀i ∈ {1, . . . , n} \ Σ(a)) l′i = li.

For technical reasons to be explained later, we consider only timed automata without upper invariants,
i.e., these of the formx ∼ c for ∼ ∈ {<,≤}. We also assume that the sets of clocks of each two compo-
nents are disjoint. Furthermore, letcmax denote the largest constant occurring in the clock constraints of
the automaton.

3.2. Abstract Discretized Models

In this section we define an equivalence on clock valuations [2, 16] and a discretization in order to define
finite-state abstract discretized models over which temporal properties can be model checked by means
of UMC.
1We deal with progressive timed automata only.
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In what follows, letfrac(δ) denote the fractional part ofδ, whereasbδc - its integral part, forδ ∈ IR+.

Definition 3.3. (Equivalence of clock valuations)
For two clock valuationsv, v′ ∈ IRnX

+ , v ' v′ iff for all x, x′ ∈ X the following conditions are met:

1. v(x) > cmax iff v′(x) > cmax,

2. If v(x) ≤ cmax andv(x′) ≤ cmax then

a) bv(x)c = bv′(x)c,

b) frac(v(x)) = 0 iff frac(v′(x)) = 0, and

c) frac(v(x)) ≤ frac(v(x′)) iff frac(v′(x)) ≤ frac(v′(x′)).

Let TA = (Σ, L, l0, E,X ,I) be a timed automaton withnX clocks andVTA be a valuation function.
Next, letMc(TA) = (C(TA), V c

TA) be the concrete model forTA, whereV c
TA(l, v) = VTA(l). Similarly

to BMC [16], we choose the discretization step∆ = 1/d, whered is a fixed even number2 greater than
2nX . Thediscretized clock spaceis defined asUnX , whereU = {2k∆ | 0 ≤ k∆ ≤ cmax + 1} for
k ∈ N.

We use an abstract discretized model, which is time-bisimilar with a detailed region graph imple-
menting a time-abstract semantics (the action successor combined with the time successor) of [2]. The
choice of the abstract model to be discretized is motivated by reducing the number of transitions while
still preserving theCTL properties of the detailed region graph model.

Definition 3.4. The(abstract) discretized modelof a timed automatonTA is a finite structureM(TA)=
((Q, q0,−→), V c

TA), whereQ = L×U
nX , q0 = (l0, v0) and−→ ⊆ Q×Σ×Q is defined as follows:

• (l, w)
a
−→ (l, v) iff (l, w′)

δ
−→c;

a
−→c (l, v′) for someδ ∈ IR+ and somew′, v′ ∈ U

nX such that
w ' w′ andv ' v′ (the time successor combined3 with the action successor transition relation).

By q −→ q′ we mean thatq
a
−→ q′ for somea ∈ Σ.

For specifying properties we use the logicCTL [5] having the syntax as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | AXϕ | AGϕ | A(ϕUϕ).

CTL is interpreted in the standard way overM(TA) [16].

3.3. Encoding of the Transition Relation

For the encoding we require that every componentTAi = (Σi, Li, l
0

i , Ei,Xi,Ii) of a networkTA satis-
fies the following two conditions for every actiona ∈ Σi:

1. each pair of locations is connected with at most one transition labelled with ana,

2. all the local transitions ofTAi, labelled witha, reset the same clocks.

2A good choice ford is the minimal such a number, which equals to2d
′

for somed′.
3The symbol; denotes composition of relations.
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Notice that each automaton can be translated to the above form by adding fresh transition labels.
Now we give some details of this encoding, based on [22]. Since the set of statesQ of our model is

finite, every stateq = (l, u) ∈ Q ofM(TA) can be represented by a bit vectorsq = (sq[1], . . . , sq[nb])
of lengthnb depending on the number of locations ofL, the size of the setU and the number of clocks.
Consequently, this bit vector can be encoded by a valuation of a vectorw = (w[1], . . . ,w[nb]), where
w[i], for i = 1, . . . , nb, is a propositional variable (calledstate variable). Here, the bit vectorsq =
(sC

q , s
t
q), is composed of two4 subvectors representingl andu respectively, and is encoded by the vector

w = (wC ,wt). Let lit : {0, 1} × PV → F be a function defined as follows:lit(0, p) = ¬p and
lit(1, p) = p. This function is used for encoding states. Sometimes we will treat vectors as sets of
propositional variables.

Concerning locations, if|Li| is the number of locations ofTAi, thenmi = dlog2(|Li|)e state vari-
ables suffice to encode every location. The subvectorwC

i of wC encodes the locations ofTAi. The vector
wC = (wC

1 , . . . ,w
C
m) is of lengthm =

∑n
i=1mi. DefinewC(a) to be the subvector ofwC composed

of wC
i for i ∈ Σ(a). As far as clocks are concerned, a valuationv ∈ U of a clockx ∈ X is represented

by a pair of natural numbers(Ix, Fx), such thatv = Ix +Fx/∆. It is sufficient to encodeIx andFx only,
so thatwt consists ofnX subvectorswI

i andnX subvectorswF
i havingrI = dlog2(2cmax + 2)e and

rF = dlog2(2nX )e bits each, and representingIx andFx, respectively5. Thus, each clock is encoded
by rX = rI + rF state variables, and the size ofwt is r = nX · rX . A discretized clock valuation
(v1, . . . , vnX

) is encoded bywt = (wI1,wF1
, . . . ,wInX

,wFnX
).

Next, we introduce the propositional formulasIq(w) andT(w,v) encoding a discretized stateq and
the transition relation ofM(TA) (see [22] for the details). We haveIq(w) =

∧nb

i=1 lit(sq[i],w[i]). By
Aq we denote the assignment encodingq over w, that isAq(w[i]) = sq[i] for all 1 ≤ i ≤ nb. The
formulaT(w,v) is such that for each two statesq, q′ ∈ (L×U

nX ) and for every assignmentA encoding
them overw andv (i.e.,Aq(w) = A(w) andAq′(v) = A(v)) we haveq −→ q′ iff A(T (w,v)) = 1.
In order to implementT (w,v) the clock constraints are encoded. Forcc ∈ C	X , we uselcc to denote the
encoding ofcc over the vectorwt.

3.4. Characterizing Temporal Formulas

We use the standard fixpoint characterization [7] ofCTL. Given aCTL formulaϕ, the corresponding
propositional formula[ϕ](w) is computed s.t. it encodes the states of the system that satisfy ϕ.

Definition 3.5. (Translation)
The translation[ · ] is inductively defined as follows:

• [p](w) is a formula such that we haveq |= p iff Aq([p](w)) = 1, for everyq ∈ Q,

• [¬ϕ](w) = ¬[ϕ](w),

• [ϕ ∨ ψ](w) = [ϕ](w) ∨ [ψ](w),

• [AXϕ](w) = forall(T (w,v)⇒ [ϕ](w ← v),v),

4If the system considered consists ofn automata, each part of the vector can be divided inton subvectors, each of which
represents respectively the location and the valuation of the local clocks for thei-th component, fori = 1, . . . , n.
5Notice that every clock is represented by the same number of bits, irrespectively of its maximal constant (the maximal con-
stant appearing in a constraint with this clock). An optimized encoding would represent every clock with the number of bits
depending on the respective constant.
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• [AGϕ](w) = fssmAG([ϕ](w)),

• [AϕUψ](w) = lfpAU([ϕ](w), [ψ](w)).

The UMC method is based on the fact that the formulaϕ holds in the initial stateq0 of M iff the
propositional formula[ϕ](w) ∧ Iq0 (w) is satisfiable.

Algorithm 2 fssmAG([ϕ](w))

αZ(w) = αQ(w) = [ϕ](w)
while (αZ 6= true) do
αZ(w) = forall(¬T (w,v) ∨

[ϕ](w ← v),v) ↓ αQ(w)
αQ(w) = αQ(w) ∧ αZ(w)

returnαQ(w)

Algorithm 3 lfpAU([ϕ](w), [ψ](w))

αQ(w) = false, αZ(w) = [ψ](w)
while SAT (¬(αZ =⇒ αQ)) 6= UNSAT do
αQ(w) = αQ(w) ∨ αZ(w)
αZ(w) = forall(¬T (w,v) ∨

[ϕ](w ← v),v) ∧ [ϕ](w)
returnαQ(w)

Notice that thanks to using the restriction infssmAG([ϕ](w)) in each iteration it suffices to consider
only the transitions from the states that have not been computed in the previous iterations.

4. Generalized Blocking Clauses in UMC

We have implemented the original algorithmforall(α,U) [13], where the blocking clauses are built over
propositions ofα. Our experiments have confirmed its limited efficiency. The major problem diagnosed
concerns the number of blocking clauses, generated by exploring an Alternative Implication Graph. It
seems that this approach usually works for simple formulas,but in case of these resulting from UMC it
produces clauses of maximal length.

The main idea of our paper, based on [20], consists in constructing blocking clauses not only over
the propositions ofPV (α), but also over propositions ofPV C(α) corresponding to the subformulas of
α. Consider the standard algorithmforall(α,U). We first discuss its modification in the general case
and then its application to the timed UMC. To this aim, two steps3 and4, of Algorithm 1 are modified
in the following way. The procedureDFSforall−time−opt(α,U,Aα) (Alg. 4) performs the DFS through
DAG(α). It begins with the rootvα and returns a set of literalsL1 ⊆ PV C(α)6, which imply the false
value ofα when assigned byAα. The resulting clausecb (shown to be a blocking clause in [20]) is the
disjunction of the literals fromL1 negated with respect to the current assignmentAα. Notice that the
smaller the setU , the shorthercb is. In case ofU = PV (α), no optimization is achieved. Formally, we
havecb = genBlockingCl(L1, Aα), where

genBlockingCl(L,Aα) =
∨

β∈L

l′β,

with l′β = ¬lβ if Aα(β) = 1 andl′β = lβ if A(β) = 0.
Now, let’s examine an application offorall(α,U) to computing[AXϕ](w). We useαAX(w,v)

for denotingT (w,v) ⇒ [ϕ](w ← v) andχ(w) for the formula returned byforall(αAX(w,v),v).

6The remaining sets are used in the timed UMC:L0 contains subformulas over quantified variables only (whichare removed
anyway) and is used in proofs, whileL2 contains formulas encoding time constraints.
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Unfortunately, the optimization of generalized blocking clauses is likely not to make any improvement
here. The reason is that all the state variables ofv are quantified, so each blocking clause would describe
only one state of the model. Clearly, this reduces to describing the discretized states one by one, which
in case of the full region graph is not feasible in practice7. Therefore, we have to specialize the search-
based algorithm computing generalized blocking clauses. Two orthogonal optimizations are proposed
that generalize formulas over state variables of the location and the timed part, respectively. The first
one restricts the universal quantification overv to a subset of the state variables ofvC , encoding the
locations of the components that do not participate in the blocked transition (to be defined below). The
second one is based on the explicit computation of the time zones generalizing the single clock valuation
of the blocked transition.

Let Aα(w,v) be ablocking assignment, i.e., an assignment for whichαAX(w,v) evaluates to0.
SinceAα((αAX)(w,v)) = 0 andαAX(w,v) is an implication, the formulaT (w,v) is true inAα

and it determines the transition in the model. Recall thatAα(T (w,v)) = 1 implies that for the states
qα = (lα, vα) andq′α = (l

′

α, v
′
α) such thatAqα

(w) = Aα(w) andAq′α
(v) = Aα(v) there is a transition

t = qα
a
−→ q′α for somea ∈ Σ. The transitiont is called theblocked transitionwhereasa - theblocked

action for Aα.
Consider the clause directly blockingqα:

• its location partcCONTR
b (wC) = genBlockingCl(wC , Aα) blockslα, whereas

• its timed partcDBM
b (wt) = genBlockingCl(wt, Aα) blocksvα.

Now, both the clauses above are generalized. The general framework of the optimizations is shown in the
procedureblocking_timed_clause() (Algorithm 4), which is replacing line 3 and 4 inforall(α,U). We
call the resulting algorithmforallopt. First, the blocked transition and the blocked action is identified.
Then, the input formula is searched byDFSforall_time_opt(). The search identifies the setsL0, L1, and
L2 of subformulas over the subvectorsvC(a), vC \ vC(a), andvt, respectively, which imply the false
value of[ϕ](v). Finally, the location subclause is calculated on the basisof the setL1

8, and the timed
subclause is computed using the setL2. More details of the construction are given below.

Algorithm 4 blocking_timed_clause(αAX(w,v),v, Aα)

1: Determine the blocked transitiont = qα
a
−→ q′α and the blocked actiona.

2: Search the formula:(L0, L1, L2) = DFSforall_time_opt([ϕ](w ← v),v(a), Aα).
3: Compute the control partcCONTR

b (wC) by means ofa andL1.
4: Compute the timed partcDBM

b (wt) by means ofa andL2.
5: Returncb(w) = cCONTR

b (wC) ∨ cDBM
b (wt).

The first optimization generalizes the location part of eachblocking clause. As networks of timed
automata use the asynchronous semantics determining the behavior with respect to action transitions,
the optimization introduced in [20] for untimed systems canas well be applied here. The idea consists

7The cube reduction (identifying subsets ofw
t which suffice to represent a given constraint) cannot efficiently describe a zone

corresponding to a constraint involving the difference of two clocks.
8Note that the setL0 is used only for the clarity of the proof, because in each blocking clause the enabling condition of the
blocked actiona is explicitly encoded over subvectorswi for i ∈ Σ(a).
9A similar optimization exists for the formulaβ = β1 ∨ β2 andAα(β) = 1.
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Algorithm 5 DFSforall_time_opt(α,U,Aα)

1: stack s, setL0, L1, L2

2: s.push(qα )
3: while s not emptydo
4: vβ =s.pop();
5: if ( β encodes a constraintcc ∈ C	X , i.e.,β = lcc ) then
6: if ( Aα(β) = 0 ) then
7: L2 = L2 ∪ {lcc}
8: else
9: L2 = L2 ∪ {¬lcc}

10: else ifPV (β) ∩ U = ∅ then
11: L1 = L1 ∪ {lβ}
12: else ifPV (β) ⊆ U then
13: L0 = L0 ∪ {lβ}
14: else if(β = β1 ∧ β2 andAα(β) = 0) /* an optimization9*/ then
15: for (γ ∈ {β1, β2}) do
16: if ( Aα(γ) = 0) then
17: s.push(vγ ); break
18: else
19: for (vγ ∈ succ(vβ)) /* explore all the direct subformulas ofβ */ do
20: s.push(vγ )
21: return (L0, L1, L2)

in restricting the range of quantification over the locationpart to the subvector encoding the blocked
action, in order to exclude the variables unchanged by it. Let Lpre be a set containing the literals of
Iqα

(w) occurring inwC(a), i.e., in the vectorswC
i for i ∈ Σ(a). ThusLpre encodes the location

predecessor ofa. Let L1(v ← w) denote the set containingα(v ← w) for eachα ∈ L1. Finally,
cCONTR
b (wC) = genBlockingCl(L1(v ← w) ∪ Lpre, Aα), i.e., the location part of the blocking

clause is built of the negated literals corresponding to thesource locations of the blocked transition, and
to the formulas (found by the search algorithm) encoding sets of locations of the components in which
this transition does not occur.

Now, we show how to compute timed subclauses by operating on time constraints. Our approach
is based on DBMs, which are an efficient representation of time zones. The search for generalized
subformulas is extended to subformulas encoding constraints over clock variables. These constraints
are then transformed to a zone and the computations are performed on DBMs. Finally, the resulting
constraints are encoded in the propositional logic and added directly to the blocking clause.

First, we define some useful operations on zones. Letv, v′ ∈ IRnX
+ andZ,Z ′ ∈ Z(nX ). Let v ≤ v′

iff ∃δ ∈ IR+ s.t.v′ = v + δ. The operations listed below preserve zones:

(1) Z ∩ Z ′ = {v ∈ Z | v ∈ Z ′} (intersection of zones),

(2) Z ↙ = {v′ ∈ IRnX
+ | (∃v ∈ Z) v′ ≤ v} (time predecessor),

(3) [X = 0]Z = {v | v[X = 0] ∈ Z} (clock reset inverse).
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We use the standard form ofnormalized constraints. The setX is extended with an additional fictitious
clock x0 6∈ X , which represents the constant0. The setX ∪ {x0} is denoted withX+. Then, each
constraintcc′ overX+ can be generated by the following grammar:

cc
′ = xi − xj ∼ c | xi − xj ∼ ∞ | xi − xj ∼ −∞ | cc

′ ∧ cc
′,

wherexi, xj ∈ X
+ and∼ ∈ {<,≤}. The standard conversion of the constraints inC	X to the normalized

form is described in [16]. Now, we formally introduce DBMs:

Definition 4.1. (Difference Bounds Matrix)
A difference bounds matrix (DBM) inIRnX is a (nX + 1) × (nX + 1) matrix of bounds, with rows
and columns indexed from0 to nX . The DBMD = (dij), where for eachi, j ∈ {0, . . . , nX } dij =
(dij ,∼ij), represents the zoneZ = [[

∧nX

i=0

∧nX

j=0(xi−xj∼ijdij)]]. The zone represented byD is denoted
by [[D]].

It is easy to see that for each zoneZ there exists a DBMD such thatZ = [[D]]. It is assumed that an
implementation of DBMs is available together with the operations to calculate union, clock resets, time
predecessor, and the canonical form. The details can be found in [16].

Now, we are ready to define generalized timed subclauses. Recall that t is the blocked transition,a
- the blocked action (labelling the blocked transition),ccg - the guard oft, andL2 - some subformulas
of αAX(w,v) overvt. Next, letL′ be a set of the constraints encoded by the literals inL2, defined as
L′ = {cc | lcc ∈ L2}. Then, we build the zoneZ ′ which is constructed from the tightest constraints of
L′. Formally, we introduce the ordering≤ on the constraints as follows:< is strictly less than≤ and
for cc = xi − xj ∼ c andcc′ = xi − xj ∼

′ c′ we havecc � cc′ if either c < c′ or c = c′ and∼≤∼′.
We defineZ ′ to contain all the minimal constraints fromL′. Then, letD′ be the canonical DBM forZ ′.
Next, we calculate the zoneZ being the predecessor ofZ ′ with respect to the transitiont:

Z = (
⋂

i∈Σ(a)

[[Ii((lα)i)]]) ∩
(

[[ccg]] ∩ [Y = 0](Z ′ ∩ (
⋂

i∈Σ(a)

[[Ii((l
′
α)i)]])

)

↙

Then,cDBM
b (wt) = genBlockingCl(LZ , Aα), whereLZ = {lcc | cc ∈ Z

′}.
In order to show correctness of our optimizations we formulate two conditionsC1 andC2 (below).

If they are satisfied by the clauses ofχ(w) returned byforallopt(), then they guarantee the clauses to be
blocking clauses and this wayχ(w) to properly characterize[AXϕ](w).

Definition 4.2. Consider the algorithmforallopt() called for the formulaαAX(w,v) and the variables
of v. For the clausecb in the blocking assignmentAα(w,v) of the blocked transitionqα −→ q′α define
the following two conditions:

C1: for each stateq such thatAq(cb(w))=0, there is a stateq′ such thatq −→ q′ andAq′([ϕ](w))=0,

C2: Aqα
(cb(w)) = 0.

Then, the following theorem holds:

Theorem 4.1. Let χ(w) be the formula computed byforallopt(αAX(w,v),v). If each clausecb of
χ(w) satisfies the conditionsC1 andC2, thenAq(χ(w)) = 0 iff q 6|= AXϕ, for each stateq of the
modelM(TA).
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Proof:
(⇒) If Aq(χ(w)) = 0, then there iscb(w) in χ(w) such thatAq(cb(w)) = 0. Thus, byC1 there isq′

such thatq −→ q′ andAq′([ϕ](w))=0. This implies thatq′ 6|= ϕ.

(⇐) Assume thatq 6|= AXϕ. Since the algorithm has terminated, there are two cases to consider.
Case 1. A blocking assignmentAα(w,v) was found such that it agrees withAq(w) onw. Then,χ(w)
contains a clausecb(w) such thatAq(cb(w)) = 0 (due toC2). So, we haveAq(χ(w)) = 0 (because
χ(w) is the conjunction of blocking clauses).
Case 2. No blocking assignmentAα(w,v) was found such that it agrees withAq(w) on w. Then,
since the algorithm has terminated (which follows fromC2), a blocking clausec′b(w) must have been
generated s.t.Aq(c

′
b(w)) = 0 as otherwise there would be another blocking assignment found (for

example such that it agrees withAq(w) onw). If Aq(c
′
b(w)) = 0, then, clearly, we haveAq(χ(w)) = 0.

Notice that for the simplest blocking clause composed of allthe state variables ofw (i.e., cb =
genBlockingCl(w, Aα)), both the conditionsC1 andC2 are satisfied.

Lemma 4.1. The blocking clausecb(w) generated by the algorithmforallopt() satisfies the condition
C1 andC2.

Proof:
C1 : Consider a stateq = (l, v) blocked bycb(w). First we prove that there is a transition enabled
in q. Let Aα(w,v) be the blocking assignment forcb(w), andt = qα

a
−→ q′α, whereqα = (lα, vα)

andq′α = (l
′

α, v
′
α), be the blocking transition forAα(w,v). Note that the locations of the components

of Σ(a) in l are the same as inlα (as they are encoded incb(w)). Moreover, recall that the zoneZ is
encoded incDBM

b . Becausecb(w) = cCONTR
b (wC) ∨ cDBM

b (wt) andcb(w) is false both inAα and
Aq, cDBM

b (w) is also false in these assignments and we havev, vα ∈ Z. The zoneZ was calculated
so that for everyv∗ ∈ Z there is somev′∗ ∈ Z

′ such that(l, v∗)
a
−→ (l′, v′∗). So, we haveq

a
−→ q′ for

q′ = (l′, v′) and somev′ ∈ Z ′.
Next, we prove thatAq′([ϕ])(w) = 0. Recall that the variables in the setsL0, L1, andL2 assigned as

in Aα imply thatAα([ϕ](v)) = 0 (the formula search of[ϕ](w) identified these sets so that this property
was true). The assignments of the corresponding variables over v andw in L0 are the same inAα(v)
andAq′(w), and the same holds true also forL1, but with possibly different locations encoded overv

andw (these encodings imply, however, the same values ofL1 variables). Becausev′ ∈ Z ′ andv′α ∈ Z
′,

and the most strict constraints ofL2 were chosen toZ ′, the variables ofL2 have also the same values in
Aα(v) andAq′(w).

C2 : As every literal ofcb(w) is false inAα, we haveAqα
(cb(w)) = Aα(cb(w)) = 0.

Note that the upper invariants are forbidden for efficiency reasons: some components unrelevant for the
property and not participating in the blocked action can be abstracted. Without these invariants, it is not
necessary to ensure that time can flow in them without forcingany action, so the corresponding locations
need not be taken into account.
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Figure 1. Fischer’s mutual exclusion

System Time [s] System Time [s]

n ∆ δ T/F U R V n ∆ δ T/F U R V

12 1 2 T 580 304 59 10 3 4 T 33 53 50

13 1 2 T - 657 88 11 3 4 T 125 133 71

15 1 2 T - - 154 10 2 1 F 7 49 97

18 1 2 T - - 376

20 1 2 T - - 491

Table 1. Testingϕ = EF
(
∨

1≤i,j≤n,i6=j criti ∧ critj
)

, U - Uppaal 4.0.6, R - RED 5.0, V - Verics; T/F - formula
true/false

5. Case Study: Fischer’s Mutual Exclusion

The optimized algorithm has been implemented using the representation of the propositional formulas
and the encoding of the transition relation of the module BMC[10, 16] of

��� ���
[6, 15], and the SAT

solver ZChaff. In order to evaluate the performance, we haveexamined the well-known Fischer’s Mutual
Exclusion protocol. The example models a system consistingof n independent processes(n ≥ 2) and
the controlling process. The processes indexed with1, . . . , n compete for an exclusive access to the
shared resource (indexed with0).

The experimental results comparing UMC of
��� ���

[11] to RED [21] and UppAal10 [17] are shown
in Table 1. Notice that UMC clearly performs best whenδ > ∆. The tested property consists in
reachability of a state where two processes are in their critical sections.

Notice that the performance of our tool degrades with the increase of the parameter values, which
can be explained by our inefficient and preliminary implementation where all the possible constraints
are first generated. In a lazy implementation only necessaryconstraints, currently present in the working
formula, would be generated on-the-fly. Notice also that ourmethod performs worst when the mutual
exclusion is violated. However, then a counterexample exists, and all the methods presented would be
outperformed by the BMC algorithm of

��� ���
.

10Verics: ���	
� �	
 	
�� ���� �
 �, RED: ��� �		� ��	� 	
� ���� ����∼���� ����, Uppaal:��� ��

��� �
�� ; The default
set of options is used in Uppaal, excluding the symmetry reductions.
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6. Future Work

Our experimental results are promising, but a lot of work is still necessary to get a reliable tool. The
major problem concerns the representation of propositional formulas, which is not canonical. It should be
possible to use optionally BDD graphs for a formula representation, which would significantly improve
the performance. Contrary to the current representation, adding blocking clauses would reduce the size
of a formula. Another important aim is to relax the restriction of the upper invariants. This is quite
straightforward provided an efficient representation is available. Tuning the SAT algorithm would result
in a faster search. We conjecture that after adding the features described above, the algorithm would
become a part of a standard model-checking toolset, complementary to other symbolic methods.
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