Fundamenta Informaticae 85 (2008) 1-16 1
I0S Press

SAT-based Unbounded Model Checking
of Timed Automata*

Wojciech Penczek!, Maciej Szreter
Institute of Computer Science, PAS
Ordona 21, 01-237 Warsaw, Poland
penczek@ipipan.waw.pl
mszreter@ipipan.waw.pl

Abstract. We present an improvement to the SAT-based Unbounded Mdustkihg (UMC, for
short) algorithm [13]. Our idea consists in building blaniclauses of literals corresponding not
only to propositional variables encoding states, but atsmbre general subformulas over these
variables encoding sets of states. This way our approaehiaties an exponential blow-up in the
number of blocking clauses. A hybrid algorithm for verifgimfimed Automata is proposed, where
the timed part of blocking clauses is computed using DiffeeeBound Matrices. The optimization
results in a considerable reduction in the size and the nuwibgenerated blocking clauses, thus
improving the overall performance. This is shown on the déad benchmark of Fischer’'s Mutual
Exclusion protocol.

1. Introduction

Model checking is becoming an acknowledged method supygpitie design of complex systems having
many successful applications around. However, the exjiahatate space explosion is one of its major
problems. Since the limitations of the algorithms repréagnstate spaces explicitly are well known,
the search for new techniques is mostly focused on symbdaibods, working with sets of states rather
than with separate states only.

*The authors acknowledge partial support from Ministry ofBce and Higher Education (3 T11C 011 28).
fAddress for correspondence: Institute of Computer ScigPs8, Ordona 21, 01-237 Warsaw, Poland
Also works: Department of Computer Science, University oli&sie, Poland

2 W. Penczek and M. Szreter/ SAT-based Unbounded Model @yextkiimed Automata

The advances in this area are closely related to the theahypeattical methods for propositional
logic. The problem of checking satisfiability for proposital formulas, known as the SAT-problem, is
NP-complete. However, many very efficient algorithms (fsios) for testing satisfiability have been
designed recently. Therefore, numerous verification j@mislhave been translated to the SAT-problem.
Bounded Model Checking (BMC, for short) seems to be the sththe-art SAT-based model checking
method [18]. Some types of flaws can be easily found in vegelaystems. However, despite of these
well-known advantages, BMC has also some weak points. tillisather a method of falsification than
validation of timed systems. Moreover, BMC is restrictedfe universal or the existential fragment
of a branching time temporal logic. Given these facts, omeask whether the SAT-based approach
could be used in model checking in a different way. The syimbarification based on Binary Decision
Diagrams (BDD) [12] is an obvious analogue. It turns out tidC [13] emerged in 2002 as a SAT-
based counterpart of BDD. However, the method has not aethiavwide popularity since then and
although some extensions were reported [9], it seems thatiormance of the algorithm is still inferior
to other symbolic approaches based on BDDs. In the conasisib[13], two major problems are stated:

1. The formulas encoding the whole state space are repegsbytsemi-canonical Directed Acyclic
Graphs (DAG). This representation can be much less corfeéseBDD in the case of equivalent
but syntactically different formulas.

2. Blocking clauses are built over a set of state variabldg drhis level is too detailed and it often
leads to generating exponentially many clauses.

In this paper we focus on the second item. In [13], it is statdé solution can be found to this problem,

a dramatic improvement in performance might resultAs far as the above mentioned algorithm of
guantifier elimination is concerned, our modification cetssin generating blocking clauses over an
extended set of variables, including the variables engpdubformulas over propositions. Blocking
clauses are generated by searching an input formula, thstiefaking into account the way in which
blocking assignments have been found by a solver. Thenbibnveaalgorithm is optimized for dealing
with formulas arising from the verification of timed automathe range of quantification is restricted by
exploring the structure of the system given by a currenigassent, and a method based on Difference
Bound Matrices (DBMs, for short) is introduced for dealirfipetively with formulas encoding timed
constraints.

The rest of the paper is organized as follows. In Chapter ?tiginal method of SAT-based quanti-
fier elimination is shown. Chapter 3 presents Timed Autoraatiatheir discretized abstract timed mod-
els, based on the detailed region graphs. The key ideas gktieralizations are described in Chapter 4,
beginning with the algorithm generating generalized hiloglclauses, and then its further optimizations
exploring the structure of verified systems. Chapter 5 d¢ostexperimental results on verification of the
standard mutual exclusion protocol. The paper is conclwdéid a summary and some directions of a
possible future work.

1.1. Related Work

The ideas similar to ours can be found in [8], where the gdimedhblocking assignments use circuit
cofactoring, but are not applied to timed automata. In [4]JDBbased algorithm for verification of a
restricted class of timed automata is described. Severainia of BDDs capable of representing time

W. Penczek and M. Szreter/ SAT-based Unbounded Model @gexdkiimed Automata 3

constraints were developed [3, 14]. A symbolic verificatidriimed systems, where the quantifiers are
eliminated using a BDD-based algorithm is explored in [1Bhe principles of the SAT-solvers can be
found in [18].

2. Quantified Propositional Logic

In this section we introduce the preliminary notions cong®y Propositional Logic, a conversion of
propositional formulas to CNF, and an elimination of unsadrquantifiers from quantified propositional
formulas.

2.1. Propositional Logic

Let PV be a finite set of (propositional) variables. The formula®odpositional Logic are built from
variables of PV in the standard way using boolean operators: disjunction and- - negation, with
the derived operators - conjunction and=- - implication. LetF denote a set of all the propositional
formulas. For each propositional formulea set of its subformulaSubform(«) is defined in the usual
way. Aliteral [is a variable ofPV, or its negation. Aclausec is a disjunction of zero or more literals
Iy vV --- Vi, ByC we denote a set of clauses. A formula is in conjunctive nofforah (CNF) if it is a
conjunction of zero or more clausesA - - - A cg.

An assignmentA is a partial functionA : PV — {1,0}, wherel stands fortrue and0 stands for
false. An assignment is said to lietal if its domain equals td®V. An assignment is extended form
PV to F in the standard way, i.e., assuming the standard intetfmetaf the boolean operators. A total
assignment is said to kmatisfying for a formula« if the value of« is 1 for the assignment (denoted
by A(a) = 1). We will equate an assignmenrtwith a conjunction of a set of literals, specifically the set
containing—p for all p € dom(A) such thatd(p) = 0 andp for all p € dom(A) such thatd(p) = 1.

Following [1], we represent propositional formulas by diedl acyclic graphs (DAGs), where the
graphDAG(«) represents a formula. Contrary to the BDD-like semantic representation, oureep
sentation encodes explicitly the syntax instead of thé traible of a propositional formula.

In this paper we make an extensive use of efficient SAT-sg)ver., algorithms checking satisfiability
of propositional formulas. Le¥ AT () refer to a generic SAT-solver, which given a formula eitteums
its satisfying assignment or diagnoses that no such assiginexists (so it returs UNSAT).

2.1.1. Conversion to CNF

Most of the SAT-solvers accept formulas in CNF. kore F, let PV (a) C PV denote the set of
propositional variables used inand PV (a) = {lg € PV | B € Subform(c)} be a set of the literals
corresponding to the subformulasf

Let toC N F be the standard translation of propositional formulas td~-@N6]. Given a formulay,
toC N F(c) returns the formula in CNF defined over variables%f© (). Every subformulas of « is
represented by the literg} € PV (a), and for every assignment such thatd(toCNF(a)) = 1, we
haveA(lg) = A(5). Consequently, the CNF formutaC N F'(«) A [, is satisfiable iffo is satisfiable.
This fact is commonly exploited in algorithms testing J&disility. Moreover, a formulax is valid when
the CNF formulas = toC' N F(a) Al is unsatisfiable, which is used in algorithms eliminating/arsal
quantifiers. More details can be found in [16].

4 W. Penczek and M. Szreter/ SAT-based Unbounded Model @yextkiimed Automata

2.1.2. Elimination of universal quantifiers

Quantified Boolean Formulas (QBF, for short) are a fragmétheFirst-Order Logic extending propo-
sitional logic with quantifiers ranging over propositiorighe syntax of QBF is defined in the following
way:

a:=p|-alaValIp.a|Vp.a.

The semantics of the quantifiers is as follows:

e dp.a = ap < true) V a(p « false), and
o Vp.ao = ap « true) A ap « false),

wherep € PV anda(p < ¢) denotes a substitution with the variakjeof every occurrence of the
variablep in «. For a vector of variables = (v[1],...,v[m]), we use the notatiow for the set
{v[1],...,v[m]}, andVv.«a to denotevv[l] ... Vv[m].c.. Moreover, for a set of variablds C PV, by
YU.a we mean the universal quantification@bver all the elements df .

The algorithmS AT () can be used for removing universal quantifiers [13] from a @BFula. A
pseudo-code of the proceduferall() is shown in Algorithm 1. Notice thaforall(a, U) returns a
propositional formula in CNF, which is equivalent\d’. .

The algorithm exploits the fact each clause of a CNF formalaivalent to the input formula must
be satisfied for any assignment of the quantified variableg/fich the input formula is satisfied. Thus,
the satisfying assignments f@ i.e., these which falsifyy, are excluded by means bfocking clauses
These clauses produce the resulting CNF formulaThe algorithm works on-the-fly removing the
quantified variables as soon as a new blocking clause is gjexer

Definition 2.1. (Blocking assignment, blocking clause)
Consider the procedurgorall() (Alg. 1). A satisfying assignmentt, = SAT(/3) for g is called a
blocking assignmenfA blocking clause, for A, is a clause over the set of variablB¥ («) having the
following two properties: (i)A4(cy) = 0, and (i) o = .

Algorithm 1 procedureforall(c,U)
1: x = true, 8 = toCNF(a) Al
while (SAT(B) # UNSAT) do
compute the blocking clausg
for eachp € U, remove literalg and—p from ¢,
X=xAc,B=0BAc
return x

Theorem 2.1. ([13])
When the formulad becomes unsatisfiable in Algorithm 1 (the condition in linis false),y is a propo-
sitional formula in CNF equivalent taU.«.

W. Penczek and M. Szreter/ SAT-based Unbounded Model @gexdkiimed Automata 5

2.1.3. Quantifier elimination under a restriction

Some operations in symbolic model checking are consideme@ra restriction in order to improve on
their efficiency. Intuitively, given a propositional foraus describing a restriction (denoted byy/),
the valuations satisfying the resulting formula have tesats as well. For exampleforall(VU.«x) | 5

is evaluated by substitutinthC' N F'(«) with toCNF (o) A toCNF () A lg in line 1. This way the
algorithm considers only assignments that makalse butg true. The restriction is used also in fixpoint
computations in UMC, which is shown and explained at the drideonext section.

3. Timed Automata and Model Checking

In this section we define timed automata [2], their discegiins, and models generated by them. Let's
start with some preliminary notions. In what follows, (IR..) denotes the set of the natural numbers
(non-negative real numbers, respectively).

In timed automata, the flow of time is modeled by meanslotks From a semantic viewpoint the
duration of actions is equal to zero and the time flows whenctiorais taken. ByX we denote a finite
set{z1,...,zn, } Of variables, callectlocks A clock constraintover X is defined by the following
grammar:

Y =true|z; ~clx—x;~clP Ay,

wherez;,z; € X, c € N, and~ € {<,<,=,>,>}. The constraints of the forrtrue, ~ ¢ and
x; —x; ~ care callecatomic Let C?{ denote the set of clock constraints ovrwhere< y be its subset
without the inequalities involving clock differences.

A functionv : X — IR assigning to each clock a positive valuey(z) is called aclock valuation
By IR"* we denote the set of all the clock valuations. For simplicitg assume a fixed ordering én
For a valuationv andd € IR, v + ¢ denotes the valuation’ s.t. for allz € X, v'(x) = v(z) + 4.
Moreover, for a subset of clock§ C X, v[X = 0] denotes the valuatio’ such that for all: € X,
v'(z) = 0and forallz € X\ X, v'(z) = v(z). Forv € R, the satisfaction relatiop= for a clock
constraintcc € C5, is defined inductively as follows:

e v |- true,
o v (z; ~c)iff v(z;) ~ec,
o v = (x; —xj ~c)iff v(z;) —v(xj) ~c

e v = (ccAcd)iff v = ccando | .

For a constraintc € C3, let [cc] denote the set of all the clock valuations satisfying.e., [cc] = {v €
IR* | v = cc}. By a(time) zonen IR’ we mean each convex polyhedréhC IR!* defined by
a clock constraint, i.eZ = [cc] for somecc € C5 (for simplicity, we identify a zone with the clock
constraint that defines it). The set of all the zones¥as denoted by (ny).

Definition 3.1. (Timed automaton)

A timed automatorV A is a tuple(X, L,1°, E, X, T), whereX is a finite set of actionsl. is a finite set
of locations,° € L is the initial location,E C L x ¥ x Cy x 2% x L is a transition relationd’ is a
finite set of clocks, and : L — Cy is a state invariant function. Each element F is denoted by

6 W. Penczek and M. Szreter/ SAT-based Unbounded Model @yextkiimed Automata

a,cc,Y

e =1 == I, which represents a transition from the locatida the location’ labelled with an actiom;
Y C X is a set of clocks to beesetafter executing the transitian while cc € Cy is theguardcondition
for e.

In order to reason about a system represented by a timed aitof4, we define a valuation function
Vs : L — 2PV, assigning a subset of propositions/e¥ to each its location.

3.1. Semantics of Timed Automata

Let 74 = (X, L,I°, E,X,7) be a timed automaton. ABoncrete statof 7A4 is a pair(l,v), where

| € L andv € IR"* is a clock valuation. Theoncrete state spaaef 7A is the structure”(7A) =
(Qec, ¢°, —¢), WhereQ,. = L x IR"* is the set of all the concrete state$,= (I°, v°) with v°(z) =0
forall z € X is the initial state, and—. C Q. x (X UIR) x Q. is the transition relation, defined by the
union of the action- and time-successors as follows:

e foro € IR, (I,v) 2. (l,v+9)iff v,v+ 6 € [Z(1)] (time successdr

a,cc,Y

o fora € %, (I,v) L. (I',0v') iff (3cc € Cx)(AY C X) such thatl == ' € E, v € [c],
v/ =v[Y = 0] andv’ € [Z(I')] (action successdr

For (l,v) € Q andé € IRy, let(l,v) + ¢ denote(l,v + §). A go-run p of A is a maximal sequence

of concrete stateg = ¢ Lo, g0 + 0 . 1 LN @+ 01 5. g0 22, ... whereq; € ¥ and

0; € IR, for eachi > IN (notice that due to the fact thatcan be equal t0 two consecutive transitions
can be executed without any time passing in between). Aprisnsaid to beprogressiveiff 3;cwd; is
unbounded. A timed automatonpsogressiveff all its runs beginning in the initial state are progressi
We model a concurrent system byetwork of timed automataz?2, i.e., a set of timed automata (called
components where®2 = {7TA; | 1 < i < n}with 74, = (%;, L;, 19, E;, X;,Z;). Fora € X, let
Y(a) ={1 <i<n|ac€ X} bethe set of the indices of all the components including

Definition 3.2. (Product of timed automata)

The productof a networkT is the timed automatofA = (X, L,1°, E, X,T), whereX = | J, ., ,, i,
L=Tlicqp,my Lo 1°= (3, 10), X = Uieqr,my X Z((1s -+ 1n)) = Nicqa,...ny Zilli), @nd the
transition relation is given by:

(s ln)sas Niesa) €05 Uieso) Yoo (14, -+ 13)) € B iff (Vi € X(a))(l, a,ce;, Y5,) € E; and
(Vie{l,...,n}\ 2(a) ll =1.

For technical reasons to be explained later, we considgrtoned automata without upper invariants,
i.e., these of the form ~ ¢ for ~ € {<, <}. We also assume that the sets of clocks of each two compo-

nents are disjoint. Furthermore, tg},.. denote the largest constant occurring in the clock comtr aif
the automaton.

3.2. Abstract Discretized Models

In this section we define an equivalence on clock valuatign$] and a discretization in order to define
finite-state abstract discretized models over which tealgmoperties can be model checked by means
of UMC.

!We deal with progressive timed automata only.

W. Penczek and M. Szreter/ SAT-based Unbounded Model @gexdkiimed Automata 7

In what follows, letfrac(d) denote the fractional part éf whereag J| - its integral part, fov € R.

Definition 3.3. (Equivalence of clock valuations)
For two clock valuations, v’ € IR}, v ~ o iff for all z,2’ € X the following conditions are met:

1. v(x) > g Iff V'(2) > Cmazs
2. Ifv(z) < epar @ando(a’) < epqq then

a) [v(z)] = [V'(2)],

b) frac(v(z)) = 0iff frac(v'(x)) =0, and

c) frac(v(z)) < frac(v(x))iff frac(v'(x)) < frac(v'(z')).
Let 7A = (X, L,1°, E, X,7) be a timed automaton withy clocks andV’z4 be a valuation function.
Next, let M¢(TA) = (C(TA), V44) be the concrete model fatA, whereVy, (I, v) = Vz4(1). Similarly
to BMC [16], we choose the discretization stap= 1/d, whered is a fixed even numbégreater than
2ny. Thediscretized clock space defined ad)"~, whereU = {2kA | 0 < kA < ¢pae + 1} for
ke N.

We use an abstract discretized model, which is time-biaimilith a detailed region graph imple-
menting a time-abstract semantics (the action successabined with the time successor) of [2]. The
choice of the abstract model to be discretized is motivatetetucing the number of transitions while
still preserving the”'T' L properties of the detailed region graph model.

Definition 3.4. The(abstract) discretized modef a timed automatofiA is a finite structureM (7A) =
((Q,q°% —),Vi4), whereQ = L x U"¥, ¢° = (I°,0v°) and— C Q x X x @ is defined as follows:

o (I,w) % (1,v)iff (I,w) —0;—2 (1,0') for somes € IR, and somev/, v’ € U™* such that
w ~ w andv ~ v’ (the time successor combirfedith the action successor transition relation).

By ¢ — ¢’ we mean thay —— ¢’ for somea € X.
For specifying properties we use the logi@’ L [5] having the syntax as follows:

pu=p| @ |eVe| AXp | AGp | A(pUp).

CTLis interpreted in the standard way oveet(7A) [16].

3.3. Encoding of the Transition Relation

For the encoding we require that every comporigat = (%;, L;, I, E;, X;, Z;) of a networkT2(satis-
fies the following two conditions for every actiane X;:

1. each pair of locations is connected with at most one tiiandabelled with aru,
2. all the local transitions df 4;, labelled witha, reset the same clocks.

2A good choice ford is the minimal such a number, which equalszfl(/)for somed’.
3The symbol denotes composition of relations.

8 W. Penczek and M. Szreter/ SAT-based Unbounded Model @yextkiimed Automata

Notice that each automaton can be translated to the abavebfpradding fresh transition labels.

Now we give some details of this encoding, based on [22]. &Sihe set of state§ of our model is
finite, every statg = (I,u) € Q of M(7A) can be represented by a bit vecsgr= (s,[1],...,sq[n))
of lengthn, depending on the number of locationsiafthe size of the sét/ and the number of clocks.
Consequently, this bit vector can be encoded by a valuafienvectorw = (w[l],...,w[n]), where
wli], fori = 1,...,n, is a propositional variable (callestate variablg. Here, the bit vectos, =
(sqc, sz)’ is composed of twbsubvectors representirigindu respectively, and is encoded by the vector
w = (w¢ wt). Letlit : {0,1} x PV — F be a function defined as followsit(0,p) = —p and
lit(1,p) = p. This function is used for encoding states. Sometimes wktreg#t vectors as sets of
propositional variables.

Concerning locations, ifL;| is the number of locations 6fA;, thenm; = [loga(|L;|)] State vari-
ables suffice to encode every location. The subveefoof w® encodes the locations @4;. The vector
w¢ = (w{,...,w$) is of lengthm = >, m;. Definew"(a) to be the subvector o&“ composed
of w¢ for i € ¥(a). As far as clocks are concerned, a valuatioa U of a clockx € X is represented
by a pair of natural numbefd,, F,), such thav = I, + F,./A. Itis sufficient to encodé, andF;, only,
so thatw! consists ofry subvectorsw! andny subvectorsw!” havingr! = [logy(2¢ma. + 2)] and
rt" = [logy(2nx)] bits each, and representig and F., respectively. Thus, each clock is encoded
by rx = r! + rf state variables, and the size wf is r = nxy - rx. A discretized clock valuation
(v1,...,vny) is encoded bw' = (wr, Wry,..., Wz, ,WEg,).

Next, we introduce the propositional formulagw) and7(w, v) encoding a discretized stajeand
the transition relation ofM (7A) (see [22] for the details). We havg(w) = A, lit(sy[i], wli]). By
A, we denote the assignment encodipgver w, that is A,(w[i]) = s4[i] forall 1 < ¢ < n;. The
formulaT(w, v) is such that for each two states;’ € (L x U™~) and for every assignmert encoding
them overw andv (i.e., A,(w) = A(w) andA, (v) = A(v)) we haveg — ¢ iff A(T'(w,v)) = 1.

In order to implement’(w, v) the clock constraints are encoded. koe C, we usel. to denote the
encoding ofcc over the vectomw?.

3.4. Characterizing Temporal Formulas

We use the standard fixpoint characterization [7{af L. Given aCT L formula ¢, the corresponding
propositional formuldy](w) is computed s.t. it encodes the states of the system thatysati

Definition 3.5. (Translation)
The translatiorj - | is inductively defined as follows:
e [p](w) is a formula such that we have= p iff A,([p](w)) = 1, for everyq € Q,
[=el(w) = =[el(w),
o [pVil(w) = [el(w) V [¢](w),
[AX¢|(w) = forall(T(w,v) = [¢](w «— V), V),

4If the system considered consistsofautomata, each part of the vector can be divided insubvectors, each of which

represents respectively the location and the valuatiohefdcal clocks for theé-th component, foi =1, ..., n.

SNotice that every clock is represented by the same numbeitgfitrespectively of its maximal constant (the maximah<o

stant appearing in a constraint with this clock). An optietizncoding would represent every clock with the number tsf bi
depending on the respective constant.

W. Penczek and M. Szreter/ SAT-based Unbounded Model @gexdkiimed Automata 9

o [AGpl(w) = fssmac([#](W)),
o [ApUy|(w) = Lfpau([e](w), [¢](w)).

The UMC method is based on the fact that the formgl&olds in the initial state;® of M iff the
propositional formuldy](w) A I,0 (w) is satisfiable.

Algorithm 2 fssmaa([¢](w))

az(w) = ag(w) = [¢](w)
while (az # true) do

Algorithm 3 I fpau([¢](w), [¥](w))
ag(w) = false, az(w) = [¢](w)

az(w = orall(=T(w,v while SAT(—~(az = aq)) # UNSAT do
A [(W j) V)”j 041;2((“7,) v ag(w) = ag(w) V az(w)
ag(w) = ag(w) AQZ(W) az(w) = forall(=T(w,v) V
retumaq(w) returnog (w) Al vl At

Notice that thanks to using the restriction frsm ac([p](w)) in each iteration it suffices to consider
only the transitions from the states that have not been ctedpn the previous iterations.

4. Generalized Blocking Clauses in UMC

We have implemented the original algorithfarall(a, U) [13], where the blocking clauses are built over
propositions ofx. Our experiments have confirmed its limited efficiency. Traanproblem diagnosed
concerns the number of blocking clauses, generated by raxglan Alternative Implication Graph. It
seems that this approach usually works for simple formddasin case of these resulting from UMC it
produces clauses of maximal length.

The main idea of our paper, based on [20], consists in caststgublocking clauses not only over
the propositions oV («), but also over propositions @V ¢ («) corresponding to the subformulas of
«. Consider the standard algorithferall(a, U). We first discuss its modification in the general case
and then its application to the timed UMC. To this aim, twgsteand4, of Algorithm 1 are modified
in the following way. The procedur® F'S ¢orqii—time—opt (@, U, An) (Alg. 4) performs the DFS through
DAG(a). It begins with the root,, and returns a set of literals; C PV ()8, which imply the false
value ofa when assigned byl,,. The resulting clause, (shown to be a blocking clause in [20]) is the
disjunction of the literals froml; negated with respect to the current assignmé&nt Notice that the
smaller the set/, the shorther; is. In case o/ = PV («), no optimization is achieved. Formally, we
havec, = genBlockingC1(L1, Ay), where

genBlockingCl(L A,) = \/ llﬁ,
BEL

with Iy = =g if Ao(B) = 1andly =l if A(8) = 0.
Now, let's examine an application gforalli(a,U) to computing[AX¢](w). We useaax(w, V)
for denotingT'(w,v) = [p](w «— v) andx(w) for the formula returned by orall(aax(w,v),v).

5The remaining sets are used in the timed UMG:contains subformulas over quantified variables only (wkighremoved
anyway) and is used in proofs, while, contains formulas encoding time constraints.

10 W. Penczek and M. Szreter/ SAT-based Unbounded Model @yexdkiimed Automata

Unfortunately, the optimization of generalized blockiHguses is likely not to make any improvement
here. The reason is that all the state variables afe quantified, so each blocking clause would describe
only one state of the model. Clearly, this reduces to desgrithe discretized states one by one, which
in case of the full region graph is not feasible in practicEherefore, we have to specialize the search-
based algorithm computing generalized blocking claus@g drthogonal optimizations are proposed
that generalize formulas over state variables of the lonatind the timed part, respectively. The first
one restricts the universal quantification oweto a subset of the state variableswsf, encoding the
locations of the components that do not participate in tieekad transition (to be defined below). The
second one is based on the explicit computation of the timeszgeneralizing the single clock valuation
of the blocked transition.

Let A,(w,v) be ablocking assignmeni.e., an assignment for whichx(w, v) evaluates td.
Since A, ((aax)(w,v)) = 0 and aax(w,v) is an implication, the formuld’(w,v) is true in A,
and it determines the transition in the model. Recall that7'(w,v)) = 1 implies that for the states
Go = (lo,vo) andg’, = (I, v,) such thatd, (w) = A, (w) andAy (v) = A,(v) there is a transition
t = qo — ¢/, for somea € X. The transitiort is called theblocked transitiorwhereas: - the blocked
actionfor A,,.

Consider the clause directly blocking:

o its location part{ONTE(w®) = genBlockingCl(wC, A,) blocksl,, whereas
o its timed partt?BM (wt) = genBlockingCl(w', A,) blocksv,.

Now, both the clauses above are generalized. The generadirark of the optimizations is shown in the
procedurelocking_timed_clause() (Algorithm 4), which is replacing line 3 and 4 iforall(«, U). We
call the resulting algorithnyforall,,. First, the blocked transition and the blocked action isfdied.
Then, the input formula is searched BVW'S o, time_opt()- The search identifies the sets, L, and
Ly of subformulas over the subvector§' (a), v© \ v©(a), andv?, respectively, which imply the false
value of[](v). Finally, the location subclause is calculated on the bafstee setl;8, and the timed
subclause is computed using the et More details of the construction are given below.

Algorithm 4 blocking_timed_clause(aax (w,v), v, Aqy)

1: Determine the blocked transitian= ¢, — ¢/, and the blocked actiom.
Search the formula(Lo, L1, L2) = DFStorai_time_opt ([¢](W — V), v(a), Aqa).
Compute the control paef OV (w®) by means of: and L.

Compute the timed parf’5M (w') by means of: and Lo.

Returncy(w) = ¢/ ONTE(wC) v (DBM (wl),

The first optimization generalizes the location part of ebldtking clause. As networks of timed
automata use the asynchronous semantics determining tia@ibe with respect to action transitions,
the optimization introduced in [20] for untimed systems earwell be applied here. The idea consists

"The cube reduction (identifying subsetsvef which suffice to represent a given constraint) cannot efftjelescribe a zone
corresponding to a constraint involving the differencevad tlocks.

8Note that the sef is used only for the clarity of the proof, because in eachlbtag clause the enabling condition of the
blocked actioru is explicitly encoded over subvectoss; for i € X(a).

%A similar optimization exists for the formuld = 1 V 82 andA.(8) = 1.

W. Penczek and M. Szreter/ SAT-based Unbounded Model @gexdkiimed Automata 11

Algorithm 5 DFStorair_time_opt (@0, U, Aq)
1: stack s, seLq, L1, Lo

2: s.push(g,)

3: while s not emptydo

4: wvg =s.pop();

5. if (3 encodes a constraint € C3, i.e., = I) then
6: if (Ao(8) =0) then

7 Lo= Ly U {lcc}

8: else

9: Lo= Ly U {_‘lcc}

10: elseif PV (B) NU = () then

11: L=11U {lﬁ}

12 elseif PV () C U then

13: Lo=LyU {lﬁ}

14: elseif(3 = B A B2 and A, (B) = 0) /* an optimizatiof*/ then
15: for (y € {51, 52}) do

16: if (Aa(y)=0)then

17: s.pushy,); break

18: else

19: for (vy € succ(vg)) I* explore all the direct subformulas ¢f*/ do
20: s.pushg,)

21: return (Lo, L1, L)

in restricting the range of quantification over the locatjmart to the subvector encoding the blocked
action, in order to exclude the variables unchanged by it /Lg. be a set containing the literals of
I, (w) occurring inw®(a), i.e., in the vectorsv{ for i € %(a). ThusL,.. encodes the location
predecessor of. Let L;(v < w) denote the set containing(v < w) for eacha € L;. Finally,
fONTE(wC) = genBlockingCl(Li(v «— w) U Ly, A,), i.e., the location part of the blocking
clause is built of the negated literals corresponding tasthece locations of the blocked transition, and
to the formulas (found by the search algorithm) encoding e&tocations of the components in which
this transition does not occur.

Now, we show how to compute timed subclauses by operatingnos ¢onstraints. Our approach
is based on DBMs, which are an efficient representation o tamnes. The search for generalized
subformulas is extended to subformulas encoding constrawer clock variables. These constraints
are then transformed to a zone and the computations arerpedoon DBMs. Finally, the resulting
constraints are encoded in the propositional logic andaddectly to the blocking clause.

First, we define some useful operations on zoneswL&t e IRT‘ andZ,Z' € Z(ny). Letv </
iff 30 € Ry s.t.v’ = v + 4. The operations listed below preserve zones:

(1) ZnZ ={v e Z|v e Z'} (intersection of zones),
(2 Z /={v e R} | (Fv e Z) v < v} (time predecessor),

(3) [X =0]Z ={v | v[X =0] € Z} (clock reset inverse).

12 W. Penczek and M. Szreter/ SAT-based Unbounded Model @yexdkiimed Automata

We use the standard form nbrmalized constraintsThe setX’ is extended with an additional fictitious
clock zo ¢ X, which represents the constant The sett U {z¢} is denoted witht*. Then, each
constraintec’ over X+ can be generated by the following grammar:

/
o =z —wj~e|r—xj~ o0 w—xj~—oc | ed Acd,

wherez;, z; € X and~ € {<, <}. The standard conversion of the constraint§jito the normalized
form is described in [16]. Now, we formally introduce DBMs:

Definition 4.1. (Difference Bounds Matrix)

A difference bounds matrix (DBM) ilR"* is a(ny + 1) x (ny + 1) matrix of bounds, with rows
and columns indexed from to ny. The DBM D = (d;;), where for each,j € {0,... ,ny} d;; =
(dl-][»[, N]]Z-j), represents the zoré = [A% A%, (w; — zj~i;d;;)]. The zone represented Byis denoted
by [D].

It is easy to see that for each zoffethere exists a DBMD such thatZ = [D]. It is assumed that an
implementation of DBMs is available together with the opierss to calculate union, clock resets, time
predecessor, and the canonical form. The details can be fiola6].

Now, we are ready to define generalized timed subclausesllRieat ¢ is the blocked transitiony
- the blocked action (labelling the blocked transitiott), - the guard oft, and L, - some subformulas
of aax(w,v) overv’. Next, letL’ be a set of the constraints encoded by the literals.indefined as
L' = {cc | Il € Lo}. Then, we build the zong’ which is constructed from the tightest constraints of
L'. Formally, we introduce the ordering on the constraints as follows: is strictly less than< and
for cc = z; — z; ~ canded = x; — x; ~' ¢/ we havece < ¢ if eitherc < ¢ ore = ¢ and~<~/'.
We defineZ’ to contain all the minimal constraints frofi. Then, letD’ be the canonical DBM fog’.
Next, we calculate the zong being the predecessor gf with respect to the transition

Z=() D)0 (e N[y = 012" 0 (() [Z(W)ID)
i€3(a) i€3(a)
Then,cPPM(wt) = genBlockingCl(Lz, Ay), whereLyz = {l. | cc € Z'}.
In order to show correctness of our optimizations we forreutevo conditionsC'1 andC2 (below).
If they are satisfied by the clauses)dfw) returned byforali,,(), then they guarantee the clauses to be
blocking clauses and this way(w) to properly characterizpA X p|(w).

Definition 4.2. Consider the algorithnforall,,() called for the formulax 4 x (w, v) and the variables
of v. For the clause, in the blocking assignmem,, (w, v) of the blocked transition, — ¢/, define
the following two conditions:

C1: for each state such thatd,(c,(w)) =0, there is a statg’ such thayy — ¢’ and A ([¢](w))=0,
C2: Ay, (ep(w)) = 0.
Then, the following theorem holds:

Theorem 4.1. Let x(w) be the formula computed byorall,:(aax(w,v),v). If each clauses, of
x(w) satisfies the condition§’l and C2, thenA,(x(w)) = 0 iff ¢ = AX¢p, for each state of the
model M (7A).

W. Penczek and M. Szreter/ SAT-based Unbounded Model @gexdkiimed Automata 13

Proof:
(=) If Ay(x(w)) = 0, then there is;(w) in x(w) such thatd,(c,(w)) = 0. Thus, byC1 there isq/
such thay — ¢ and A, ([¢](w))=0. This implies that’ }~= .

(<) Assume that; = AX¢p. Since the algorithm has terminated, there are two casemgider.

Case 1. A blocking assignmeHt, (w, v) was found such that it agrees with,(w) onw. Then,x(w)

contains a clause,(w) such thatd,(c,(w)) = 0 (due toC2). So, we haved,(x(w)) = 0 (because

x(w) is the conjunction of blocking clauses).

Case 2. No blocking assignment, (w, v) was found such that it agrees with,(w) on w. Then,

since the algorithm has terminated (which follows fr6ff), a blocking clause; (w) must have been

generated s.t.A,(c,(w)) = 0 as otherwise there would be another blocking assignmemidfdtor

example such that it agrees withy (w) onw). If A,(c;(w)) = 0, then, clearly, we have,(x(w)) = 0.
-4

Notice that for the simplest blocking clause composed oftladl state variables ofv (i.e., ¢, =
genBlockingCl(w, A,)), both the conditiong'1 andC2 are satisfied.

Lemma 4.1. The blocking clause;(w) generated by the algorithrfiorall,,() satisfies the condition
C1landC2.

Proof:

C1 : Consider a statg = (I,v) blocked byc,(w). First we prove that there is a transition enabled
in ¢. Let A,(w,v) be the blocking assignment fog(w), andt = ¢, — ¢, whereq, = (lo, va)
andq), = (I,,,v.,), be the blocking transition fod,,(w, v). Note that the locations of the components
of X(a) in [are the same as i (as they are encoded ifp(w)). Moreover, recall that the zon# is
encoded inc?BM. Becauser,(w) = ¢ ONTE(wC) v cPBM(w) andc,(w) is false both inA,, and
Ay, cPBM(w) is also false in these assignments and we havg € Z. The zoneZ was calculated
so that for every, € Z there is some’, € Z’ such that(l,v,) = (I’,v.). So, we havey - ¢’ for

¢ = (I',v") and some’ € Z'.

Next, we prove thatl, ([¢])(w) = 0. Recall that the variables in the séig, L, andL, assigned as
in A, imply that A, ([¢](v)) = 0 (the formula search dfp](w) identified these sets so that this property
was true). The assignments of the corresponding variabiesvoandw in L, are the same i, (v)
and A, (w), and the same holds true also oy, but with possibly different locations encoded ower
andw (these encodings imply, however, the same valuds ofariables). Becaus€ € Z’ andv!, € 7/,
and the most strict constraints bf were chosen t&’, the variables of., have also the same values in
A (v) andAy (w).

C2 : As every literal ofc,(w) is false inA,, we haveA,, (c,(w)) = Aa(cp(w)) = 0. .

Note that the upper invariants are forbidden for efficieregsons: some components unrelevant for the
property and not participating in the blocked action canlisracted. Without these invariants, it is not
necessary to ensure that time can flow in them without foramgaction, so the corresponding locations
need not be taken into account.

14 W. Penczek and M. Szreter/ SAT-based Unbounded Model @yexdkiimed Automata

tryl try2
exitl m
try2
{x2}
exit2 set2 i exitl
exit2
setl setd
S|

T9 <A
{x2} {x2}
enterl(: > enter2< : > cetl ° etz
crity 21> 6 crity 29> 6 enter enterz
Process1 Process2 Shared Variable

Figure 1. Fischer's mutual exclusion

System Time [s] System Time [s]

n A | 4§ | TIF u R Y, n A | 4§ | TIF u R \Y
12 1 2 T 580 | 304 | 59 10 | 3 4 T 33 53 50
13 1 2 T - 657 88 11 3 4 T 125 133 71
15| 1 2 T - - 154 | 10 | 2 1 F 7 49 97
18 | 1 2 T - - 376
20 | 1 2 T - - 491

Table 1. Testing = EF(\/,<; j<, ., criti Acrit;), U - Uppaal 4.0.6, R - RED 5.0, V - Verics; T/F - formula
true/false o

5. Case Study: Fischer's Mutual Exclusion

The optimized algorithm has been implemented using theesgmtation of the propositional formulas
and the encoding of the transition relation of the module B, 16] of Verics [6, 15], and the SAT
solver ZChaff. In order to evaluate the performance, we leaaenined the well-known Fischer’'s Mutual
Exclusion protocol. The example models a system consistingindependent processés > 2) and
the controlling process. The processes indexed Wwith.,n compete for an exclusive access to the
shared resource (indexed with

The experimental results comparing UMCVefrics [11] to RED [21] and UppAdP [17] are shown
in Table 1. Notice that UMC clearly performs best whérn> A. The tested property consists in
reachability of a state where two processes are in theicargections.

Notice that the performance of our tool degrades with theeimge of the parameter values, which
can be explained by our inefficient and preliminary impletagaon where all the possible constraints
are first generated. In a lazy implementation only necessargtraints, currently present in the working
formula, would be generated on-the-fly. Notice also thatrmathod performs worst when the mutual
exclusion is violated. However, then a counterexampletgxand all the methods presented would be
outperformed by the BMC algorithm dkrics.

Verics: verics.ipipan.waw.pl, RED:www.iis.sinica.edu.tw/~farn/red, Uppaal:www.uppaal .com; The default
set of options is used in Uppaal, excluding the symmetryctols.

6.

W. Penczek and M. Szreter/ SAT-based Unbounded Model @gexdkiimed Automata 15

Future Work

Our experimental results are promising, but a lot of worktil Isecessary to get a reliable tool. The
major problem concerns the representation of propositionaulas, which is not canonical. It should be
possible to use optionally BDD graphs for a formula represtémn, which would significantly improve
the performance. Contrary to the current representatidading blocking clauses would reduce the size
of a formula. Another important aim is to relax the restaatiof the upper invariants. This is quite
straightforward provided an efficient representation ilable. Tuning the SAT algorithm would result
in a faster search. We conjecture that after adding the festdescribed above, the algorithm would
become a part of a standard model-checking toolset, congpitery to other symbolic methods.

References

(1]

(2]

(3]

(4]

(5]
(6]

[7]

(8]

9]

[10]

[11]

[12]

P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachgbdnalysis based on SAT-solvers. Bnoc. of the
6th Int. Conf. on Tools and Algorithms for the Constructiordanalysis of Systems (TACAS'0@lume
1785 ofLNCS pages 411-425. Springer-Verlag, 2000.

R. Alur and D. Dill. Automata-theoretic verification ogal-time systems. IRormal Methods for Real-Time
Computing, Trends in Software Seripages 55-82. John Wiley & Sons, 1996.

G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and VEffitient timed reachability analysis using Clock
Difference Diagrams. IRroc. of the 11th Int. Conf. on Computer Aided VerificatioAY®9), volume 1633
of LNCS pages 341-353. Springer-Verlag, 1999.

D. Beyer. Rabbit: Verification of real-time systems. Pnoc. of the Workshop on Real-Time Tools (RT-
TOOLS'01) pages 13-21, 2001.

E. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 1999.

P. Dembhnski, A. Janowska, P. Janowski, W. Penczek, A. Pétrola, Met8g, B. Wozna, and A. Zbrzezny.
Verics: A tool for verifying timed automata and Estelle specifioas. InProc. of the 9th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systém&CAS’03) volume 2619 ofLNCS pages
278-283. Springer-Verlag, 2003.

E. A. Emerson and E. Clarke. Characterizing correctmeeperties of parallel programs using fixpoints.
In Proc. of the 7th Int. Colloquium on Automata, Languages araj”amming (ICALP’80) volume 85 of
LNCS pages 169-181. Springer-Verlag, 1980.

M. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based umtzted symbolic model checking using circuit
cofactoring. InProc. of the Int. Conf. on Computer-Aided Design (ICCAD;@gges 510-517, 2004.

M. Kacprzak, A. Lomuscio, and W. Penczek. From boundedribounded model checking for temporal
epistemic logicFundamenta Informatica®3(2-3):221-240, 2004.

Magdalena Kacprzak, Alessio Lomuscio, Artur Niewiatkki, Wojciech Penczek, Franco Raimondi, and
Maciej Szreter. Comparing bdd and sat based techniquesddeichecking chaum’s dining cryptographers
protocol. Fundam. Inform.72(1-3):215-234, 2006.

W. Nabiatek M. Kacprzak, A. Niewiadomski, W. Penczek, Breter A. Pélrola, and B. Wozna. Wes
2006: A model checker for real time and multi-agent systdm®roc. of the Int. Workshop on Concurrency,
Specification and Programming (CS&P’Qpages 345-356. Warsaw University, 2007.

K. L. McMillan. Symbolic Model Checkind<luwer Academic Publishers, 1993.

16 W. Penczek and M. Szreter/ SAT-based Unbounded Model @yexdkiimed Automata

[13] K. L. McMillan. Applying SAT methods in unbounded symlmomodel checking. IrProc. of the 14th Int.
Conf. on Computer Aided Verification (CAV'Q2plume 2404 olLNCS pages 250-264. Springer-Verlag,
2002.

[14] J. Mgller, J. Lichtenberg, H. Andersen, and H. Hulga&ifference Decision Diagrams. Proc. of the 13th
Int. Workshop Computer Science Logic (CSL)98)lume 1683 oLNCS pages 111-125. Springer-Verlag,
1999.

[15] W. Nabiatek, A. Niewiadomski, W. Penczek, A. PétroladaM. Szreter. Vacs 2004: A model checker
for real time and multi-agent systems. MBioc. of the Int. Workshop on Concurrency, Specification and
Programming (CS&P’04)volume 170(1) ofnformatik-Berichte pages 88—99. Humboldt University, 2004.

[16] W. Penczek and A. PétrolaAdvances in Verification of Time Petri Nets and Timed AutamatTemporal
Logic Approachvolume 20 ofStudies in Computational Intelligenc8pringer-Verlag, 2006.

[17] P. Pettersson and K. G. LarsenpihaL2k. Bulletin of the European Association for Theoretical Cotepu
Science70:40-44, February 2000.

[18] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survéyerent advances in sat-based formal verification.
STTT 7(2):156-173, 2005.

[19] S. Seshia and R. Bryant. Unbounded, fully symbolic niadteecking of timed automata using boolean
methods. IrProc. of the 15th Int. Conf. on Computer Aided VerificatiodA{®3), volume 2725 oLNCS
pages 154-166. Springer-Verlag, 2003.

[20] Maciej SzreterSAT-based model checking of distributed systdph® thesis, Instytut Podstaw Informatyki
PAN, 2006.

[21] F. Wang. FRD: Model checker for timed automata with clock-restrictiadagtam. InProc. of the Int.
Workshop on Real-Time Tools (RT-TOOLS;@D01.

[22] B. Wozna.Ograniczona weryfikacja modelowa dla logik czasu rozdgatggo: Szybka metoda falsyfikacji
PhD thesis, IPI PAN, June 2003. In Polish.

