
Towards Bounded Model Checking for UML⋆

Artur Niewiadomski1, Wojciech Penczek1,2, and Maciej Szreter2

1 Institute of Computer Science, University of Podlasie, Siedlce, Poland,
artur@iis.ap.siedlce.pl,

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland,
{penczek,mszreter}@ipipan.waw.pl

Abstract. The paper presents a preliminary version of BMCU - a Boun-
ded Model Checker for UML. All the executions of an UML system
(unfolded to a given depth) are encoded into a boolean propositional
formula, satisfiability of which is checked using a SAT-solver. Contrary
to other UML verification tools we do not use any of the existing model
checkers as we do not translate UML specifications into an intermediate
formalism. The paper provides also preliminary experimental results.

1 Introduction

Unified Modelling Language (UML) [1] is a graphical specification language
widely used in development of various systems. The current version (2.1) consists
of thirteen types of diagrams. Each diagram allows for describing a system from
a different point of view, with many levels of abstractions. Nowadays, model-
checking techniques that are able to verify crucial properties of systems, at a
very early stage of the design process, are used in development of IT systems
increasingly often. The current paper presents preliminary results of our work
aiming at development of a novel symbolic verification method that avoids an
intermediate translation and operates directly on systems specified in a subset of
UML. The method is a version of a symbolic bounded model checking, designed
especially for UML systems. All the possible executions of a system (unfolded
to a given depth) are encoded into a boolean propositional formula satisfiability
of which is checked using a SAT-solver. Contrary to other UML verification sys-
tems we do not make use of any existing model checker as we do not translate
UML specifications into any intermediate formalism.

There have been a lot of attempts to verify UML state machines - all of them
based on the same idea: translate an UML specification to the input language
of some model checker, and then perform verification using this model checker.
Some of the approaches [2, 3] translate UML to Promela language and then
make use of the model checker Spin [4]. Other [5, 6] exploit timed automata as
an intermediate formalism and use UPPAAL [7] for verification. The third group
of tools [8–10] apply the symbolic model checkers SMV [11] or NuSMV [12] via
translating UML to their input languages.

⋆ Partly supported by the Ministry of Education and Science under the grant
No. 3 T11C 011 28

An important advantage of our method consists in an efficient encoding of
hierarchical state machines (SM), which is linear in the size of SM. Most of
other methods, that can handle hierarchy, perform flattening of SM so they
are likely to cause the state explosion of models generated. To the best of our
knowledge only the paper [10] handles hierarchies directly without flattening.
Another disadvantage of traditional methods follows from the fact that it is
hard to reconcile UML semantics with intermediate formalism semantics. This
results in a significant grow of the model size caused by adding special control
structures that force execution w.r.t. UML semantics.

Our implementation has proven to be quite non-trivial, featuring advanced
encodings of several UML constructs. In this paper we discuss a preliminary
version, with the major parts of the formalism provided. The experience of the
authors with symbolic model checking techniques [13–15] allows us to expect
that there is a potential for many optimizations.

One of the most serious problems hindering the verification of UML is the
lack of its formal semantics. The OMG standard [1] describes all the UML ele-
ments, but it deals with many of them informally. Moreover, there are numerous
semantics variation points having several possible interpretations. Many papers
on the semantics of UML have been published so far, but most of them skip
some important issues. The interested reader is referred to the surveys [16, 17].

The approach of [10], which considers a similar subset of UML, is most close
to our work. The paper [10] deals with variables, their types and the instructions
allowed to be executed during firing of transitions in abstractions, but it does
not support time events, internal transitions as well as entry and exit actions.
Moreover, it simplifies the handling of concurrent transitions. On the other hand
we do not consider choice pseudo-states and deferred events.

The rest of the paper is organised as follows. The next section describes the
subset of UML considered and formalises the semantics as a labelled transi-
tion system. Then, we present the symbolic encoding and give the preliminary
experimental results. Final remarks are given in the last section.

Notice that due to the lack of space a lot of details of the UML syntax and
semantics, given in our report [18], have been omitted here.

2 Semantics of UML Subset

This section defines an UML subset considered and its operational semantics.
Due to the space limitations we give only intuitive explanations of the concepts
and the symbols used for defining the transition system. All the remaining details
and formal definitions can be found in the report [18]. We assume also that the
reader is familiar with basic UML state machine concepts.

The systems considered are specified by a single class diagram which defines
k classes, a single object diagram which defines n objects, and k state machine
diagrams, each one assigned to a different class of the class diagram.

The class diagram defines a list of attributes and a list of operations (possibly
with parameters) for each class. The object diagram specifies the instances of

classes (objects) and (optionally) assigns the initial values to variables. All ob-
jects are visible globally, and the set of objects is constant during the life time of
the system - dynamic object creation and termination is not allowed. We denote
the set of all the variables by V , the set of the integer variables by V int ⊆ V
and the set of the object variables by Vobj ⊆ V . The values of object variables
are restricted to the set of all objects defined in the object diagram, denoted by
O, and the special value NULL. Each object has been assigned an instance of
a state machine that determines the behaviour of the object. A state machine
diagram may consist of simple states composite states, final states, and initial
pseudostates, as well as regions (the areas filling the composite states) and tran-
sitions connecting source and target states. The transitions are labelled with the
expressions of the form trigger[guard]/action, where each of these components
can be empty.

A transition can be fired if the source state is active, the guard (a Boolean
expression) is satisfied, and the trigger matching event occurs. An event can be
of the following three types: an operation call, a completion event, or a time
event. In general, firing of a transition causes deactivation and activation of
some states (depending on the type of the transition and the hierarchy of given
state machine). We say that the state machine configuration changes then. More
details can be found in [18].

A time event, defined by an expression of the form after(δ1, δ2), where
δ1, δ2 ∈ N and δ1 ≤ δ2, can occur not earlier than after the flow of δ1 time
units and no later than before the flow of δ2 time units. The time flow is mea-
sured from entering the time state, which is the source state of a transition with
the trigger of the form after(δ1, δ2).

The operation calls and the time events coming to the given object are put
into the event queue of the object, and then, one at a time, they are handled.
The event from the head of queue fires a transition (or many transitions) and is
consumed, or is discarded, if it cannot fire any transition. The transitions that
can fire due to the events taken from queues are called triggered transitions.
We refer to the processing of a single event from the queue as to the Run-To-
Completion (RTC) step. Next, an event can be handled only if the previous
one has been fully processed, together with all the completion events which
eventually have occurred.

A completion event (denoted by κ) occurs for a state that has completed all
of its internal activities. The completion events fire the completion transitions,
i.e., transitions without a trigger defined explicitly. The completion transitions
have the priority over the triggered transitions.

The execution of the whole system follows the interleaving semantics, similar
to [6]. During a single step only one object performs its RTC step. If more than
one object can execute its step, then an object is chosen in a non-deterministic
way. However, if none of the objects can perform an action, then the time flows.
Note that this happens when all event queues are empty and all the completion
events have been handled. The time flow can cause the occurrence of time events.

The time events are placed in the queues of respective objects and processed in
next RTC steps.

There are two key notions of our semantics, namely, global states and tran-
sition relation. A global state is determined by the active configuration of all
instances of state machines, the valuations of all the variables, the content of all
the event queues, and the valuations of all the clocks measuring how long ago
the system has entered the given state.

A configuration of the state machine of the i-th object (SMi, i ∈ {1, . . . , n})
is a pair 〈Ai, Ci〉, where Ai is a set of active states, and Ci ⊆ Ai is a set of
completed states. We say that a state is completed when the completion event
has occurred for the state, but has not been handled yet. The set of all the
configurations for the i-th object is denoted by Ŝi.

Let E and Q denote respectively the set of all the events and the set of
all the event queues. Let Ω = Z ∪ O ∪ (E \ {κ})⋆ ∪ Ŝ, where Z is the set of
integer numbers, (E \ {κ})⋆ is the set of all finite sequences of events (without

completion events), and Ŝ is the set of all configurations of all the objects. Let
us define the valuation function v : V ∪ Q ∪ O 7−→ Ω such that v(V int) ⊆ Z,

v(Vobj) ⊆ O ∪ {NULL}, v(Q) ⊆ (E \ {κ})⋆ and v(O) ⊆ Ŝ.
The function v assigns an integer number to each integer variable, an object

or NULL to each object variable, a sequence of events to each event queue, and
an active configuration to each object. The active configuration of the i-th object
for a given valuation v is denoted by 〈Av

i , Cv
i 〉, and ϑ(v, α) denotes the valuation

v′ computed from v after the execution of the action α.
The initial valuation v0 is the valuation that returns an empty sequence (ε)

for all the event queues, the initial states marked as active and completed for all
objects, and the initial values for all variables.

Let S be the set of all states from all instances of state machines. Let Γ ⊆ S
be the set of all time states. The clocks valuation function µ : S 7−→ N assigns
a natural number to each time state and zero to any other state. For s ∈ Γ , the
clock valuation µ(s) indicates how long ago the system has entered to the time
state s, or how long ago the system has started, if s has not been active yet.

Let µ + δ for δ ∈ N denote the clocks valuation such that µ′(s) = µ(s) + δ
for s ∈ Γ and µ′(s) = 0 for s /∈ Γ . Let µ[Y := 0] for Y ⊆ S denote the
clocks valuation µ′ such that µ′(s) = 0 for s ∈ Y and µ′(s) = µ(s) for s /∈ Y .
The valuation µ0 such that ∀s∈S µ0(s) = 0 is called the initial clocks valuation.
Formally the global state is a pair g = 〈v, µ〉 ∈ ΩO∪V∪Q × N

Γ .

2.1 Behaviour of the system

At the state g = 〈v, µ〉 the system can perform one of the following transitions
(the ordering given follows the priorities of the transitions):

1. Consumption of the completion events. Removes all the completion
events that cannot fire any completion transition for the i-th object in the
state g. The elements of the set Iv

i are removed from Cv
i (we denote this

by discard(Iv
i)). The set Iv

i ⊆ Cv
i contains the completed states of the i-th

object that are not the source states for the completion transitions enabled
in the state g.

2. Execution of a completion transition. Handles one completion event κ
causing the firing of one completion transition tκ, and changes the valuation
according to the sequence of actions λ(tκ), that is: exit actions and deactiva-
tion of leaving states, the transition action, the entry actions and activation
of the entered states, producing completion events for some of the activated
states, and clock resets for the entered timed states.

3. Discarding of the event. Discards the event from the head of i-th event
queue, when it does not enable any transition. It is denoted by cons(qi).

4. Execution of triggered transitions. Firing of the set of non-conflicting
triggered transitions enabled by the event in the head of the event queue.
The resolution of conflicts is based on the nesting level of the source states
of transitions and is described in detail in [18]. We deal with changes of
the valuation in a way similar to 2, but additionally the event in the head
of queue is consumed. Moreover, in the presence of orthogonal (concurrent)
regions more than one transition can be fired in the single RTC step, so
the action sequence λ(ϕ) which changes the valuation contains the actions
caused by all executed transitions (the set ϕ).

5. Time passage. If all the event queues are empty and all completion events
have been processed, then x ∈ X ⊂ N time units passes. We consider all
the time transitions with guard expressions satisfied and with active states
as sources. Then, we compute the set X by subtracting of the lower and
upper bound of the time events specifications from the clock valuations for
the active time states (µ(s) − δ1 and µ(s) − δ2). The set X is bounded by
the starting time of the earliest time event and the earliest expiration time
of the considered time events.
A time transition must be fired not later than its expiration time indicates,
but obviously it can be fired earlier, even at its starting time. Thus, in order
to choose the set of objects Ox ⊆ O to the queues of which the time event
will be added, we choose the transitions which expire after passing x time
units and any subset of the remaining transitions that are enabled after this
time. The sequence of actions which place the time events in the event queues
of the objects from Ox is denoted by τ(Ox).

2.2 Transition system

The operational semantics of the systems specified in the selected UML subset
is defined by the labelled transition system 〈G, g0, Σ,→〉, where:

– G = ΩO∪V∪Q × N
Γ is the set of states,

– g0 = 〈v0, µ0〉 is the initial state,
– Σ = N is the set of labels corresponding to time units passing during tran-

sitions,
– →⊆ G × Σ × G is the transition relation. Let g = 〈v, µ〉, g′ = 〈v′, µ′〉 and

σ ∈ Σ. There exists a transition from the state g leading to the state g′

labelled with σ iff:

∃i∈{1,...,n} Iv
i 6= ∅ ∧ σ = 0 ∧ v′ = ϑ

(
v, discard(Iv

i)
)

∧ µ′ = µ(1)

or

∃i∈{1,...,n} Cv
i 6= ∅ ∧ Iv

i = ∅

∧ σ = 0 ∧ v′ = ϑ
(
v, λ(tκ)

)
∧ µ′ = µ

[
Λ(tκ) := 0

]
(2)

or

∃i∈{1,...,n} Cv
i = ∅ ∧ v(qi) 6= ε ∧ enabled(g, oi) = ∅

∧ σ = 0 ∧ v′ = ϑ
(
v, cons(qi)

)
∧ µ′ = µ(3)

or

∃i∈{1,...,n} Cv
i = ∅ ∧ v(qi) 6= ε ∧ enabled(g, oi) 6= ∅

∧ σ = 0 ∧ v′ = ϑ
(
v, λ(ϕ)

)
∧ µ′ = µ

[
Λ(ϕ) := 0

]
(4)

or

∀i∈{1,...,n} C
v
i = ∅ ∧ v(qi) = ε ∧ σ = x ∧ v′ = ϑ

(
v, τ(Ox)

)
∧ µ′ = µ + x(5)

where v(qi) is the content of the i-th event queue in the state g, Λ(tκ) is the
set of states activated as a result of firing the transition tκ, and Λ(ϕ) is the
set of states activated as a result of firing the set of transitions ϕ.

3 Symbolic Encoding

In order to define a symbolic encoding of our UML semantics we have to first
represent the global states by sequences of bits. To this aim each global state g is
represented by n binary sequences, where each sequence stands for a state of one
object. The representation of a single object consists of five binary sequences that
encode respectively a set of active states, a set of completed states, a contents
of the event queue, a valuation of the variables, and a valuation of the clocks.

3.1 Binary representation of the global states

Let Si = {s0
i , . . . , s

li
i }. A set of active states is represented by a binary sequence

of length |Si| such that its jth element is equal to 1 iff the state s
lj
i is active in

g. The second binary sequence representing a set of the completed states in g is
defined in the similar way. The third binary sequence represents the contents of
the event queue in g. A single event queue qi is represented by a m-element cyclic
buffer, and a pair of the indices of the first and the last event in the queue. A
maximal size of a single element of a queue is equal to the maximal number of bits
needed to represent the longest event (an operation with the maximal number
of the parameters for a given class), denoted by b(i). So we need a sequence of
m ∗ b(i) + 2 ∗ ⌈log2 m⌉ bits to encode the i-th event queue. The last two binary
sequences in the representation of g are for the valuations of the variables and
of the clocks in g. In our prototype implementation, we treat all the types of the

variables (including clocks) as integers. In order to keep our verification problem
decidable, we assume that the domain of values for each variable is finite. For the
integer variables we bound the domain to 〈−maxint, maxint〉. Then, the number
of bits for encoding an integer variable is equal to intsize = ⌈log2 maxint⌉ + 1.
So, the number of bits r needed to encode one global state is equal to:

r = Σn
i=1

(
2 ∗ |Si| + m ∗ b(i) + 2 ∗ ⌈log2 m⌉ + (|Vi| + |Γi|) ∗ intsize

)

From now on, we identify a global state with its binary representation.

3.2 A symbolic path

Our aim is to encode symbolically all the executions of length k (called k-paths)
of a system by means of a propositional formula pathk. Then, we check sat-
isfiability of the formula which is the conjunction of pathk and some encoded
property to be tested (e.g. a reachability property) using a SAT-solver. If the
formula is satisfiable, then we obtain a valuation satisfying the formula, which
can be interpreted as a concrete execution of the system. This valuation can be
decoded as a sequence of global states leading to the state in which the property
tested holds.

In order to construct the formula pathk for a given system we deal with
vectors of propositional variables, called state variables. Denote by Sv a set of
state variables, containing the symbols true and false. Each state of a k-path
can be symbolically represented as a valuation of a vector of state variables w =
(w1, . . . , wr). Let us define an valuation of state variables as V : Sv 7−→ {0, 1}.
Then, a valuation of vectors of r state variables V : Sv

r 7−→ {0, 1}r is given as:
V (w1, . . . , wr) = (V (w1), . . . , V (wr)).

All the k-paths can be encoded over a symbolic k-path, i.e., k + 1 vectors of
state variables wj for j = 0, . . . , k . Each vector wj is used for encoding global
states of a system. Specifically, w0 encodes the initial state (g0) whereas wk

encodes the last states of the k-paths. A vector wj consists of n sub-vectors of
state variables o

wj

i for i = 1, . . . , n, where o
wj

i encodes a state of the i-th object.
A state of the i-th object is encoded over a sequence of five vectors of state
variables: a

wj

i , c
wj

i , q
wj

i , v
wj

i , and τ
wj

i that represent a set of active states, a set
of completed states, a contents of the event queue, a valuation of the variables,
and a valuation of the clocks, respectively.

Let w and w′ be vectors of state variables, and V - a valuation of state
variables, as discussed above. Define the following formulae:

– I(w) is a formula s.t. for every valuation V have we that V satisfies I(w) iff
V (w) is equal to the initial state g0 of the transition system.

– T(w,w′) - a formula s.t. for every valuation V we have that V satisfies

T(w,w′) iff V (w)
x
−→ V (w′), for x ∈ N,

3.3 Symbolic transition relation

In Section 2.2 we defined five types of transitions that are executed according
to their priorities. Here, we define the propositional formulae for transitions of
types 1 – 4 that encode their preconditions over the vector w for the i-th object:
prep

i (w), where p ∈ {1, 2, 3, 4}. For all the types of the transitions we define
the propositional formulae encoding an execution of these transitions over the
vectors w,w′ for the i-th object: postpi (w,w′), where p ∈ {1, . . . , 5}.

The transitions of types 1–4 are “local” i.e. their execution does not depend
on which type of transition can be fired by other objects (on the contrary, the
time transition of type 5 is “global”, because it can be fired only if all the
objects can execute no transition of type 1–4). Because of the lack of space we
show some details describing the implementation of the pre- and postconditions
only for transitions of the type 1.

Let us define a helper formula compl(s,w) that holds true iff a state s is
completed in a global state w, and a helper formula guard(t,w) that holds true
iff the guard of a transition t is satisfied in a global state w. Let Tcs denote the
set of completion transitions outgoing from the state s. Then, let the formula:

preCS1(s,w) = compl(s,w) ∧
∧

t∈Tcs

¬guard(t,w) (6)

be a precondition for a transition of type 1 for some state s: it is true iff state
s is completed in global state w, and there exists no completion transition with
guard satisfied outgoing from s. Now, if for some object oi there exists a state
s for which preCS1(s,w) is satisfied, then the precondition for the transition of
type 1 holds:

pre1
i (w) =

∨

s∈Si

preCS1(s) (7)

The postcondition for a transition of type 1 for object oi is defined as follows:

post1i (w,w′) =
∧

s∈Si

(
preCS1(s) ∧ ¬compl(s,w′) (8)

∨¬preCS1(s) ∧
(
compl(s,w) ⇔ compl(s,w′)

))

That is, for every potentially completed state, if the precondition holds true and
the state is completed, we set the completion bit false for this state, while in the
opposite case we simply copy the value of this bit.

Using the analogous formulas encoding postconditions for other ”local” tran-
sitions we construct the formula describing the execution of the corresponding
transitions, nesting the conditions for the consecutive levels. So that a transi-
tion of some level becomes enabled only if the transitions of the preceding levels
cannot be executed:

posti(w,w′) = pre1
i (w,w′) ∧ post1i (w,w′) (9)

∨¬pre1
i (w) ∧

(
pre2

i (w,w′) ∧ post2i (w,w′)

∨¬pre2
i (w) ∧

(
pre3

i (w,w′) ∧ post3i (w,w′)

∨¬pre3
i (w) ∧

(
pre4

i (w,w′) ∧ post4i (w,w′)
)))

Finally, we combine all the transition levels to encode the transition relation:

T(w,w′) =

n∨

i=1

posti(w,w′) ∨
n∧

i=1

4∧

p=1

¬prep
i (w) ∧ post5(w,w′) (10)

Now, we can define pathk over w0, . . . ,wk as the following propositional formula:

pathk(w0, . . . ,wk) ::= I(w0)

k−1∧

j=0

T(wj,wj+1) (11)

4 Experimental Results

The prototype implementation has been tested on a well known Generalised
Railroad Crossing (GRC) benchmark. The system, operating a gate at a railroad
crossing, consists of a gate, a controller and N tracks which are occupied by
trains. Each track is equipped with sensors that indicate a position of a train and
send appropriate message to the controller. Depending on the track occupancy
the controller can either open or close the gate.

Our version of GRC consits of 3 classes: Gate, Controller and Train, and
N+2 objects: N instances of Train, one instance of Gate and one instance of
Controller (Fig. 1).

We have tested reachability of a global state in which some train is in the
state Critical, whereas the gate is in the state open. Indeed the GRC specifi-
cation contains a subtle error that allows this kind of behaviour. The obtained
counterexample shows the situation when one train leaves the gate behind, the
gate is in the state opening and the other train is approaching. Then, the mes-
sage down sent to the gate by the controller is discarded, and the train crosses
the railroad when the gate is open.

(a) Class and object diagrams

(b) State machine for class Train

(c) State machine for class Controller (d) State machine for class Gate

Fig. 1. State machines of GRC system

Table 1 presents the preliminary results of GRC verification for 2 and 3
trains. The results are very encouraging. As it can be seen, quite long paths (of
size 34) can be handled. In order to see how the tool is dealing with shorter
counterexamples, we have simplified the GRC specification by merging the gate
and controller into one class. It appears that the simplified specification also
contains an error, in this case, reachable at a smaller depth, so more processes
can be verified. The results of verification of the simplified GRC are presented
in Table 2.

N k Obj. States Trans. Vars Clauses Encoding [s] SAT time[s] SAT MB

2 30 4 22 22 198339 601217 5.872 41.067 93.30

3 34 5 28 28 287041 877738 9.416 347.662 201.12
Table 1. Preliminary results of verification of GRC system

The tests have been performed on the computer equipped with Pentium M
1.73 GHz CPU and 1.2 GB RAM running Linux. The maximum size of event
queues has been set to 5 messages.

N k Obj. States Trans. Vars Clauses Encoding [s] SAT time[s] SAT MB

2 7 3 11 11 40306 121949 1.064 0.896 19.52

10 15 11 43 43 307254 959121 10.34 9.629 147.70

20 25 21 83 83 1045219 3272066 43.835 95.026 553.09

22 27 23 91 91 1254636 3927279 54.532 130.336 693.20
Table 2. Preliminary results of verification of simplified GRC system

5 Final Remarks

In this paper we described a new approach to Bounded Model Checking for
UML. Instead of dealing with a translation to a standard formalism of timed
automata, we encoded the verification problem directly into SAT. We believe
that this is a way in which symbolic methods can be used to handle advanced
languages. Our preliminary results are very promising.

A plan for a future work is to add more functionality of the UML State
Diagrams language, and to provide a detailed comparison with the existing tools
for UML. The latter is not trivial given the lack of common semantics used by
the tools. Another possible extension is to use a temporal logic as a specification
formalism.

References

1. OMG: Unified Modeling Language. http://www.omg.org/spec/UML/2.1.2 (2007)
2. Lilius, J., Paltor, I.: vUML: A tool for verifying uml models. In: ASE. (1999)

255–258
3. Jussila, T., Dubrovin, J., Junttila, T., Latvala, T., Porres, I.: Model checking

dynamic and hierarchical UML state machines. In: MoDeV2a. (2006) 94–110
4. Holzmann, G.J.: The SPIN Model Checker : Primer and Reference Manual.

Addison-Wesley Professional (September 2003)
5. Knapp, A., Merz, S., Rauh, C.: Model checking - timed UML state machines and

collaborations. In: FTRTFT. (2002) 395–416
6. Diethers, K., Goltz, U., Huhn, M.: Model checking UML statecharts with time. In:

Critical Systems Development with UML – Proceedings of the UML’02 workshop,
Technische Universität München (2002) 35–52

7. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST. IEEE Computer Society (2006) 125–126

8. Compton, K., Gurevich, Y., Huggins, J., Shen, W.: An automatic verification tool
for UML. Technical Report CSE-TR-423-00, University of Michigan (2000)

9. Gutiérrez, M.E.B., Barrio-Solórzano, M., Quintero, C.E.C., de la Fuente, P.: Uml
automatic verification tool with formal methods. Electr. Notes Theor. Comput.
Sci. 127(4) (2005) 3–16

10. Dubrovin, J., Junttila, T., Heljanko, K.: Symbolic step encodings for object based
communicating state machines. Technical Report B24, Helsinki University of Tech-
nology, Laboratory for Theoretical Computer Science (2007)

11. Mcmillan, K.: The SMV system. Technical Report CMU-CS-92-131, School of
computer Science, Carnegie Mellon University (1992)

12. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: CAV, London, UK, Springer-Verlag (2002) 359–364

13. Penczek, W., Szreter, M.: SAT-based Unbounded Model Checking of Timed Au-
tomata. In: ACSD. (2007) 236–237

14. Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F.,
Szreter, M.: Comparing BDD and SAT Based Techniques for Model Checking
Chaum’s Dining Cryptographers Protocol. Fundam. Inform. 72(1-3) (2006) 215–
234

15. Penczek, W., Pólrola, A.: Advances in Verification of Time Petri Nets and Timed
Automata: A Temporal Logic Approach. Volume 20 of Studies in Computational
Intelligence. Springer (2006)

16. Bhaduri, P., Ramesh, S.: Model Checking of Statechart Models: Survey and Re-
search Directions. ArXiv Computer Science e-prints (July 2004)

17. Crane, M.L., Dingel, J.: On the semantics of uml state machines: Categoriza-
tion and comparison. Technical Report 2005-501, School of Computing, Queen’s
University, Kingston, Ontario, Canada (2005)

18. Niewiadomski, A., Penczek, W., Szreter, M.: Semantyka operacyjna wybranych
diagramów UML (in Polish). Technical Report 1009, ICS PAS (2008)

