Verics 2006 - a Model Checker
for Real-Time and Multi-Agent Systems

*

Magdalena Kacprzak!, Wojciech Nabialek?, Artur NiewiadomskiZ,
Wojciech Penczek??, Agata Pétrola®, Maciej Szreter?,
Bozena Wozna®, and Andrzej Zbrzezny®

! Bialystok University of Technology, FCS, Wiejska 45a, 15-351 Bialystok, Poland
2 Podlasie Academy, ICS, Sienkiewicza 51, 08-110 Siedlce, Poland
3 ICS PAS, Ordona 21, 01-237 Warsaw, Poland
4 University of Lodz, FMCS, Banacha 22, 90-238 Lodz, Poland
® Jan Dlugosz Academy, IMCS, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
verics@ipipan.waw.pl

Abstract. The papers presents the current stage of the development
of VerICSs - a model checker for real-time and multi-agent systems. De-
pending on the type of a system considered, it enables to test various
classes of properties - from reachability to temporal, epistemic and deon-
tic formulas. The model checking methods used to this aim include both
SAT-based and enumerative ones. In the paper we focus on new features
of the verifier: SAT-based model checking for multi-agent systems and
several extensions and improvements to real-time systems’ verification.

1 Introduction

The paper presents the current stage of the development of Verics, a model
checker for real-time and multi-agent systems. Depending on the type of a sys-
tem considered, the verifier enables to test various classes of properties - from
reachability of a state satisfying certain conditions to more complicated features
expressed by formulas of (timed) temporal, epistemic, or deontic logics. The
model checking methods implemented include both SAT-based and enumerative
ones (where by the latter we mean these consisting in generating abstract models
for systems). Our first work [3] presenting Verics dealt mainly with verification
of Real-Time Systems (RTS). In this paper we focus on Verics’ new features,
i.e., SAT-based model checking for MAS (Multi-Agent Systems), and several
extensions to RTS verification.

2 Related Work

Verics enables verification of real-time and multi-agent systems. A survey of
model checkers for RTS can be found in [16]. Considering MAS verification,

* Partly supported by the Ministry of Education and Science under the grant No.
3 T11C 011 28

Verics is, to our best knowledge, one of the three existing model checkers for
verifying MAS directly, and the only one which applies SAT to this aim. The
other two: MCMAS [11] and MCK [6] implement BDD-based verification meth-
ods. Some other tools like CASP [1,20] or MABLE [20] enable translations from
MAS to languages accepted by “general purpose” model checkers like Spin or
JavaPathFinder.

3 Theoretical Background

A network of communicating (timed) automata is the basic Verics’ formalism for
modelling a system to be verified. Timed automata are used to specify RTS (pos-
sibly with clock differences expressing constraints on their behaviour), whereas
timed or untimed automata are applied to model MAS (possibly extended in a
way to handle certain features of interest, like deontic automata in [9]).

The tuples of local states of the automata in a network N define the global
states of the system considered. The set of all the possible runs (i.e., infinite
evolutions from a given initial state) of an RTS modelled by N gives us a com-
putation tree which, after labelling the states with propositions from a given set
PV which are true at these states (i.e., changing the tree into a model), is used to
interpret the formulas of timed or untimed temporal logics (like CTL or TCTL)
expressing properties to be checked. In the case of modelling a MAS we augment
the model with epistemic or deontic accessibility relations. The resulting struc-
ture enables us to interpret formulas involving temporal operators, epistemic
operators - to reason about what agents know [5], and deontic operators - to
reason about correctness of their behaviour.

SAT-based verification methods represent the models and properties of sys-
tems in the form of boolean formulas in order to reduce the state explosion.
These for MAS involve bounded (BMC) and unbounded model checking (UMC).
Currently, Verics implements UMC for CTL,K (Computation Tree Logic with
knowledge and past operators) [8], and BMC for ECTLKD (the existential frag-
ment of CTL extended with knowledge and deontic operators) [9,15,21,22] as
well as TECTLK (the existential fragment of timed CTL extended with knowl-
edge operators) [12]. Considering verification of RTS, it offers BMC for proving
(un)reachability [23] (also for timed automata with clock differences [24]), and
UMC for proving CTL properties for slightly restricted timed automata [18].
Below we present some more details of BMC for ECTLK and UMC for CTL K.

3.1 Bounded Model Checking

Bounded Model Checking (BMC) is a symbolic method aimed at verification of
temporal properties of distributed (timed) systems. It is based on the observation
that some properties of a system can be checked over a part of its model only. In
the simplest case of reachability analysis, this approach consists in an iterative
encoding of a finite symbolic path (computation) as a propositional formula.

The satisfiability of the resulting propositional formula is then checked using an
external SAT-solver.

Consider a system consisting of n agents. Let GG be the set of global states
(i.e., tuples of n local states) of the system under consideration, ¢g* be its initial
state, Q@ C G be the set of states reachable from ¢°, T C G x G be a transition
relation, ~;C G x G for i = 1,...,n, be the epistemic accessibility relation', and
V : G — 2PV be a valuation function. Moreover, let for k € IN; a k-path be a
finite sequence of k + 1 states = = (go,. .., gr), where g; € G for i =0, ...,k and
(gi, giv1) € T for each 0 < i < k. For a k-path 7 = (go, ..., gx), let w(i) = g; for
each 0 <i < k. By II;(g) we denote the set of all the k-paths starting at g. We
assume that the reader is familiar with the standard syntax and semantics of
CTL, CTLK, and CTL,K (details can be found in [10]). In order to restrict the
semantics of ECTLK to a part of the model we introduce the following definition:

Definition 1. Let M = (G,Q, ¢°,T,~1,...,~n,V) be a model and k € IN,.
The k—model for M is defined as My, = (Q, g°, Px,~1,...,~n, V'), where Py is
the set of all the k-paths of M over Q, i.e., Py = UseQ II(s), and V' =V]q.

In order to identify k-paths that represent infinite paths we define the function
loop : Py — 2N as: loop(nr) = {l | 0 <1< kand (x(k), ©(l)) € T}, which
returns the set of indices [of 7 for which there is a transition from 7 (k) to 7 (1).
Then, we define a bounded semantics of ECTLK (we omit here the operators
D,E and C):

Definition 2. Let My, be a k—model and o, 3 be ECTLK formulas. My, s = «
denotes that « is true at the state s of My. My is omitted if it is clear from the
context. The relation = for modal operators is defined inductively as follows:

s E EXa iﬁ(ﬂﬂe Py(s)) w(1) | «,

s EEGa iff 3r € Px(s)) (V0 < 5 < k)(7(j) E a and loop(w) # 0),

s E E(aUP) zﬁ(ﬂﬂ € Pi(s))(30 < j < k)(m(j) = B and (YO < i < j)m(i) = o),
s = K;a iff 3 € Py(1))(30 < j < k) (7(j) E a and s ~; 7(j)),

Model checking over models can be reduced to model checking over k-models.
The main idea of BMC for ECTLK is that we can check ¢ over My by testing
the satisfiability of the propositional formula [M, @]y, := [M*®9"]; A[¢] M, , Where
the first conjunct represents (a part of) the model under consideration and the
second a number of constraints that must be satisfied on M, for ¢ to be satisfied.
Once this translation is defined, checking satisfiability of an ECTLK formula
can be done by means of a SAT-checker. Typically, we start with & := 1, test
satisfiability for the translation, and increase k by one until either [M ‘P*QO] A
[¢] a1, becomes satisfiable, or k reaches the maximal depth of M .2

Translation. Below, we provide some details of the translation. Given a MAS
represented by a network of automata. Each global state g of the system can be

! Two global states are in the relation ~; if they share the same i-th local states.
2 The upper limit is |Q|.

represented by w = (w[l],...,w[m]), for some m € N, (which we shall call a
global state variable), where each w[i] for i = 1,...,m is a propositional variable.
A sequence wy j, ..., wy,; of global state variables is called a symbolic k-path j.

Let fr be a function which determines the number of k-paths sufficient for
checking a given ECTLK formula (see [21]). Moreover, let PV = {-p | p €
PV} be the set of negated propositions of PV, and let lit: {0,1} x PV —
PV U PV be a function defined as follows: lit(0,p) = —p and lit(1,p) = p.
Furthermore, let w, v be two global state variables. We use the formula I;(w) :=
Aitq lit(gi, w[i]) to encode a global state g = (g1,...,9m) of the model, i.e., if
gi = 1, then it is encoded by w[i], and if g; = 0, then it is encoded by —wl[i].
The propositional formula [M W’go]k, representing the k-paths in the k-model,
is defined as [M#9°], = Iy (woy0) A /\;’“:(f) /\f;ol T(w; 5, wit1,5), where wg,o
and w;; for 0 < ¢ < kand 1 < j < fi(p) are global state variables, and
T(w;,j, wit+1,;) is a formula encoding the transition relation 7.

The next step of the algorithm consists in translating an ECTLK formula ¢
into a propositional formula. Let w, v be global state variables. We make use of
the following propositional formulas in the encoding:

— p(w) encodes a proposition p of ECTLK over w;

— H(w,v) := A\j_, w[j] & v[j] represents logical equivalence between global
state encodings u and v (i.e., encodes that u and v represent the same global
states);

— HEKi(w,v) = Njcr,, wlj] € v[j] represents logical equivalence between i-
local state encodings u and v, (i.e., encodes that u and v share i-local states);

— Ly ;(1) encodes a backward loop connecting the k-th state to the I-th state
in the symbolic k—path j, for 0 <[< k.

The translation of ¢ at the state w,y, , into the propositional formula [¢] Ecm’n] is
as follows (we give the translation of selected formulas only):

[EXa][m] ka(w) H(wmm’ww) A [a]LM]),
m,n k ,z
[EGal™™ i= VI (H wmnywoi) A (Visg L)) A A Oal[
m,n . k 32 ,l
EQUAI™™ = VI (H (wmnwos) A Vg (B8 A NZglal™)
[Kl][m] — ka-(@) I 0(w0i) A V;C o ([Q]Eg’] A HE(wmmw]z)
Given the translations above, we can now check @ over My by checkmg the

satisfiability of the propositional formula [M¥-9] kA[p]ar, , where (@], = 0 [0,0]

3.2 Unbounded Model Checking

Unlike BMC, UMC is capable of handling the whole language of the logic. Our
aim is to translate CTL,K formulas into propositional formulas in conjunctive
normal form. Specifically, for a given CTL,K formula ¢ we compute a corre-
sponding propositional formula [p](w), where w is a global state variable (i.e.,
a vector of propositional variables for representing global states) encoding these
states of the model where ¢ holds. To calculate the actual translations we use

either the QBF or the fixed-point characterisation of CTL,K formulas. Below,
we recall the necessary notions.

Formulas in CNF and QBF. Let PV be a finite set of propositional variables.
A literal is a propositional variable p € PV or its negation —p. A clause is a
disjunction of a set of zero or more literals [[1] V... VI[n]. A disjunction of zero
literals is taken to mean the constant false. A formula is in a conjunctive normal
form (CNF) if it is a conjunction of a set of zero or more clauses c[1] A ... A¢c[n].
An assignment A is a partial function from PV to {true, false}.

In our method, in order to have a more succinct notation for complex op-
erations on boolean formulas, we also use Quantified Boolean Formulas (QBF),
an extension of propositional logic by means of quantifiers ranging over propo-
sitions. The BNF syntax of a QBF formula is given by:

axz=p|-alaAal|Ipalpa.

The semantics of the quantifiers is defined by Jp.a iff a(p «— true) V a(p «—
false), and Vp.« iff a(p < true) A a(p « false), where o € QBF, p € PV
and a(p < ¢) denotes substitution with the variable g of every occurrence of the
variable p in formula a.. We will use the notation Vv.«, where v = (v[1],...,v[m])
is a vector of propositional variables, to denote Yv[1].Vv[2] .. . Vv[m].a. For a given
QBF formula Yv.«, we can construct a CNF formula equivalent to it by using
the algorithm forall [13].

Our aim is to translate the whole CTL K language into boolean formulas.
To this aim, we first need to translate CTL,K formulas into QBF form. Before
doing so, we need to be able to present the CTL K language in terms of fixed-
points. This is shown in the next subsection. In our presentation, we follow and
adapt definitions given in [2].

Fixed-point characterisation of CTL,K. Let M = (G,Q,¢°, T, ~1,...,~n,
V) be a model defined as in Sec. 3.1. Notice that the set 2% of all subsets of G
forms a lattice under the set inclusion ordering. Each element G’ of the lattice
can also be thought of as a predicate on G, where the predicate is viewed as
being true for exactly the states in G’. The least element in the lattice is the
empty set, which corresponds to the predicate false, and the greatest element in
the lattice is the set G, which corresponds to true. A function 7 mapping 2¢ to
2C is called a predicate transformer. A set G’ C G is a fized point of a function
7:26 20 if 7(G') = G'.

Whenever 7 is monotonic (i.e., when P C P’ implies 7(P) C 7(P’)), a
function 7 has a least fixed point denoted by uZ.7(Z), and a greatest fixed
point, denoted by v¥Z.7(Z). When 7 is monotonic and [J-continuous (i.e., when
Py C P, C ... implies 7(U,) = U, 7(P)), then pZ.7(Z) = U;>, 7" (false).
When 7 is monotonic and ()-continuous (i.e., when P, O P, D ... implies
(N, P) =N, 7(P)), then vZ.7(Z) = ;5o T (true) (see [19]).

In order to obtain fixed-point characterisations of the modal operators, we
identify each CTL,K formula « with the set (a)m of the states in M at which

this formula is true, formally (a)p = {s € G | M, s | a}. If M is clear from the
context we omit the subscript M. Furthermore, we define functions AX, AY,K;
from 2¢ to 2 as follows:

- AX(Z)={9€G|Vy €Gif (g,¢') € T, then s’ € Z},
- AY(Z)={9eG|Vy €Gif (¢',9) €T, then s’ € Z},
- Ki(Z2)={geG|Vg €eGif (¢° ¢) €T and g ~ ¢, then ¢’ € Z},

Observe that (Oa) = O({a)), for O € {AX, AY,K;}. Then, the following tem-
poral and epistemic operators may be characterised as the least or the greatest
fixed point of an appropriate monotonic ([}-continuous or | J-continuous) pred-
icate transformer (see [4,2]): (AGa) = vZ.(a) N AX(Z), (A(aUp)) = uZ.(5) U
({a) NAX(Z)), (AHa) = vZ.{a) N AY(Z).

Unbounded Model Checking on CTL K. Given a model M, we encode
its states like for BMC in Sec. 3.1. Now, our aim is to translate CTL,K for-
mulas into propositional formulas. Specifically, for a given CTL,K formula 3
we compute a corresponding propositional formula [3](w), which encodes those
states of the system that satisfy the formula. Operationally, we work outwards
from the most nested subformulas, i.e., the atoms. In other words, to compute
[Oa](w), where O is a modality, we work under the assumption of already having
computed [a](w). To calculate the actual translations we use either the fixed-
point or the QBF characterisation of CTL,K formulas. For example, the formula
[AXa](w) is equivalent to the QBF formula Yv.(T'(w,v) = [a](v)). We can use
similar equivalences for formulas AY «, K; . More specifically, we use three basic
algorithms: The first one, implemented by the procedure forall [13], is used for
formulas O« such that O € {AX, AY,K;}. This procedure eliminates the univer-
sal quantifier from a QBF formula representing a CTL,K formula, and returns
the result in a conjunctive normal form. The second algorithm [8], implemented
by the procedure gfpo, is applied to formulas O« such that O € {AG, AH}. This
procedure computes the greatest fixed point. For formulas of the form A(aUpg)
we use the third procedure, called Ifpay, which computes the least fixed point.
In so doing, given a formula 8 we obtain a propositional formula [5](w) such
that (3 is valid in the model M iff the propositional formula [3](w) A Iy (w) is
satisfiable.

4 Implementation

The architecture of Verics is shown in Fig. 1. The system consists of:

— Estelle to Intermediate Language (IL) translator, which enables to
handle specifications written in a subset of Estelle [7] (the standardised lan-
guage for specifying communicating protocols and distributed systems);

— IL to timed automata translator, which, given an IL specification, gen-
erates the corresponding network of timed automata or the global timed
automaton;

UMC —= answer

extended

timed
local TA automata

I e
Translator| Epecification MTranslator|

7 global TA

BMC |_I. answer

Splitter —=— answer

@
INPUT

Fig. 1. Architecture of VeriCs

— BMC module, which implements BMC-based verification for the classes of
properties shown in the figure. The SAT-solver used is MiniSat [14] or RSat
[17]; the system can be configured to work with other solvers;

— UMC module, which provides preliminary implementations of UMC ver-
ification methods for properties described above. The module is integrated
with a modified version of the SAT-solver ZChaff [25];

— Splitter module, which performs reachability verification on abstract mod-
els generated for timed automata.

Verics has been implemented in C++; its internal functionalities are available
via a interface written in Java. The current distribution (binaries of a stan-
dalone program to be run under Linux, or a client version which can work un-
der an arbitrary Java-supporting operating system) can be downloaded from
http://verics.ipipan.waw.pl.

5 Experimental Results

One of the important elements taken into account while rating a model checker is
the efficiency of its behaviour. In this section we present some examples of multi-
agent and real-time systems we tested, and provide the experimental results
obtained. All the examples are standard (scalable) benchmarks, used typically
to test efficiency of low-level verification modules. The results we obtain for them
allow to compare the effectiveness of Verics with the other tools available.

The examples we tested were:

— Dining Cryptographers - a system consisting of n agents - cryptographers
having dinner in a restaurant, who want to know who paid for their meal:
one of them or the agency. To reach that while keeping the payer anonymous,
each agent flips the coin and states aloud whether the outcomes obtained
by him and by the neighbour on his right are equal or different, saying the
opposite to what he sees if he has paid. An odd number of differences uttered

indicates that a cryptographer was the payer; an even number means that
the one who has paid was the agency.

In order to show the correctness of the above protocol, we prove that the
formulas specifying its desired properties hold, while these expressing the
undesired ones are false. In our tests we deal with the following formulas:

©h == AG(odd N —paid; = Ki(\/ paid;)),

1=2,...,n

©%, = AG(odd A —paid; = \/ K (paid;)),

1=2,...,n

@3 = AG(—paid; = K (\/ paid;)).
i=2,...,n

The formula ¢}, expresses that always when the number of statements “dif-
ferent” is odd and the first cryptographer has not paid for the dinner, then
he knows that another cryptographer paid. The formula is proven to hold in
the system. The next formula ¢%, which violates the requirements towards
the protocol, says that always when the number of the statements “differ-
ent” is odd and the first cryptographer has not paid for dinner, then he
knows the cryptographer who has paid. The formula is obviously false, since
the above information should be secret - none of the cryptographers should
know the payer, and an odd number of differences means only that the one
who has paid was not the agency. The third formula specifies the property
which means that always when the first cryptographer has not paid for din-
ner, then he knows that some other cryptographer has paid. This, again, is
a false property, as the agency can be the payer as well.

The results for the above formulas are presented in Fig. 2. Analysing the
results one can notice that the verification techniques applied can be seen
as complementary: the UMC method gives better results for the formulas
ok and ¢%, while for ¢% bounded model checking is far more efficient. In
the latter case verifying such a big system (up to 1000 cryptographers!) is
possible due to the fact that a counterexample can be found on a path which
is relatively short. For the first two formulas the length of the path should be
incremented up to the model’s diameter. In addition to that, the formulas
have to be tested on several symbolic paths, which influences the size of the
model we are able to test this way.

|formu1a|| n | BMC (s/mB) | SAT [s/mB] || n |UMC [s/MB]|
©b 4 | 0.8/92 |81224 /« [|17] 367.0 / x
0D 4 [15.97 / 25.8(9359.24 / || 9| 392.0 / %
% |[1000[329 / 1885.0] 29.67 / [|15] 421.0 / x

Fig. 2. Experimental results (the star denotes that no data are available)

BMC MiniSat
k S |MB| S | MB |satisﬁable
0 0.2 (4.6 0.0 2.9 no
2 1.0 85| 0.8 9.8 no
5 2.0 |13.8|| 27.7 | 37.3 no
8 3.2 |19.2{{1270.8| 521.1 no
11 || 4.3 [24.6{|2408.3| 852.1 no
14 || 5.6 [29.9(|4267.4|1527.7 no
17 || 7.0 [35.3|| 590.8 | 419.4| YES

| Total][23.3[35.3][8565.8]1527.7] |

Fig. 3. Experimental results for the Fischer protocol with the parameters which make
the mutual exclusion violated (A = 2, § = 1). The number of processes involved is 80

— Fischer’s Mutual Exclusion Protocol - a system consisting of n pro-
cesses trying to enter their critical sections, and a process which coordinates
their access. The behaviour of the system depends on the values § and A
(6 < A makes it incorrect - the mutual exclusion does not hold). The prop-
erty we have tested is expressed by the formula

onm = EF(\/ (crit; A crity)),
i,7=1,...,n;i#£]

which states that two different processes can be in their critical sections at
the same time (i.e., the mutual exclusion is violated).

The tables in Figures 3 and 4 show the results for verifying the above protocol
using the bounded model checking method. In Fig. 3, a counterexample
proving that the mutual exclusion does not hold, is found on the path of the
length 17. The table in Fig. 4 presents the process of testing unreachability
of the property in a system which satisfies the requirements. To this aim, it
is checked alternately whether in the system there exists a free path [23] of
a given length, and whether the property holds on a path of such a length
which starts at the initial state of the system. Then, if necessary, the length
of the path is incremented. In the case considered in the table it occurred
that no free path of length 53 can be found, whereas on all the shorter paths
the property tested does not hold. This implies that the property does not
hold for the system at all.

Fig. 5 compares the results obtained using the UMC method provided by
Verics with these obtained using some other model checkers available. The
table shows that in most the cases Verics occurred to be more efficient.

— Timed Alternating Bit Protocol - a system consisting of two agents: a
sender and a receiver, which exchange messages over two unreliable commu-
nication channels, choosing the channel to be used on the basis of the round
trip time of a control bit. The properties we have tested were “for each ex-
ecution of the protocol, if the receiver got an acknowledgement in the time
not exceeding t; and the value of the bit sent was 0 then the receiver knows

BMC MiniSat
free path| S |MB| S | MB |satisﬁable
- 0.0 2.8 0.0 1.7 no
+ 0.0]3.2 0.0 2.0 yes
- 0.0]3.2 0.0 2.1 no

NN Of =’

20 + 0.2]6.8 1.6 5.6 yes
20 - 0.2]6.8 5.9 8.8 no

50 + 0.6 {12.6|| 2670.9 |206.1 yes
50 - 0.5 [12.6|| 148.1 | 71.6 no
53 + 0.6 |13.2|| 3992.1 |233.1f NO

| Total [10.4[13.2][10037.9[233.1] |

Fig. 4. Experimental results for the Fischer protocol with the parameters for which
the mutual exclusion holds (A =1, § = 2). The number of processes involved is 10

Parameters Time [s]
UppAal|RED]|Verics UMC
N=10,A=1,6=2] 37 | 53 34
N=11,A=1,06=2| 121 [141 46
N=12, A=1,6=2| 580 [304 59
N=13, A=1,6=2| - 657 88
N=15 A=1,06=2| - - 154
N=18, A=1,0=2| - - 376
N=20,A=1,6=2| - - 491
N=10,A=3,0=4] 33 |53 50
N=11,A=3,0=4| 125 [133 71
N=10,A=20=1] 7 |49] 97

Fig. 5. A comparison of the results for the Fischer protocol, obtained using Verics’
UMC and the tools UppAal and RED

the value of this bit” and “for each execution of the protocol if the receiver
got an acknowledgement in the time not exceeding ¢; and the value of the
bit sent was 0 then the sender knows that the receiver knows the value of
this bit”, which are expressed, respectively, by the following two formulas:

¢u = AGjg 4,1 ((recack A bit0) = Kg(bit0)),

©% = AGjg 1) ((recack A bit0) = KsKpg(bit0)).

The results of searching for counterexamples for these properties, obtained
using the BMC module of Verics aimed at TECTLK verification, are pre-
sented in Fig. 6. In contrast to other benchmarks tested we provide no com-
parison with other tools, as, to our knowledge, there are no other model
checkers which enable TECTLK verification.

T 7
~PA YA

BMC MiniSat BMC MiniSat

S |MB S |MB|satisﬁable| S |MB S |MB|satisﬁable

0.0 1.4 (0.0] 3.6 no 0.0]1.4(0.0| 3.6 no

0.0 1.8 |0.0{ 3.9 no 0.0 | 1.8 |0.0] 4.0 no
0.0 2.3 |0.0{ 4.4 no 0.1]2.3]0.0/4.4 no

N =] Ol =

9 1/0.9/10.1|0.3(11.2 no 5.6 (10.3]|0.2(11.0 no
10 |1.2{12.7|0.3|13.1 no 8.6 (12.7]0.4(13.3 no
11 |{1.6{14.8|1.6|15.4 yes 13.0/14.8|1.4(15.4 yes

| Total][5.6]14.8]2.6[15.4] [|35.0]14.8[2.4]15.4]

Fig. 6. Experimental results for the timed alternating bit protocol

6 Final Remarks

In the paper, we presented an overview of the model checker Verics, focusing on
its new features (comparing with the version presented in [3]), i.e., SAT-based
verification of multi-agent systems and some extensions and improvements to
real-time systems’ verification. Verics offers several capabilities which, to our
knowledge, are available in no other tools. It is the only model checker which
verifies MAS directly applying SAT-based methods, and the only one handling
formulas which combine knowledge and real time. In addition, Verics is also
able to verify RTS. The results for BMC, as well as preliminary results for UMC
(obtained using our modification of the SAT-solver ZChaff), seem to be quite
promising, taking into account that the systems tested are not optimised w.r.t.
the properties to be verified.

References

1. R. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model checking
multi-agent programs with CASP. In Proc. of the Int. Conf. on Computer Aided
Verification (CAV’03), vol. 2725 of LNCS, pp. 110-113. Springer-Verlag, 2003.

2. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

3. P. Dembinski, A. Janowska, P. Janowski, W. Penczek, A. Pétrola, M. Szreter,
B. Wozna, and A. Zbrzezny. VerICS: A tool for verifying timed automata and
Estelle specifications. In Proc. of the 9th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’03), vol. 2619 of LNCS, pp.
278-283. Springer-Verlag, 2003.

4. E. Emerson and E. Clarke. Characterizing correctness properties of parallel pro-
grams using fixpoints. In Proc. of the 7th Int. Colloq. on Automata, Languages and
Programming (ICALP’80), vol. 85 of LNCS, pp. 169-181. Springer-Verlag, 1980.

5. R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

6. P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge.
In Proc. of the 16th Int. Conf. on Computer Aided Verification (CAV’04), vol. 3114
of LNCS, pp. 479-483. Springer-Verlag, 2004.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

ISO/IEC 9074(E), Estelle - a formal description technique based on an extended
state-transition model. International Standards Organization, 1997.

M. Kacprzak, A. Lomuscio, T. Lasica, W. Penczek, and M. Szreter. Verifying
multiagent systems via unbounded model checking. In Proc. of the 3rd NASA
Workshop on Formal Approaches to Agent-Based Systems (FAABS III), vol. 3228
of LNCS, pp. 189-212. Springer-Verlag, 2005.

M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi, and
M. Szreter.Comparing BDD and SAT based techniques for model checking Chaum’s
dining cryptographers protocol. Fundam. Informaticae, 72(1-2):215-234, 2006.
M. Kacprzak, A. Lomuscio, and W. Penczek. From bounded to unbounded model
checking for temporal epistemic logic. Fundam. Informaticae, 63(2-3):221-240,
2004.

A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems.
In Proc. of the 12th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’06), vol. 3920 of LNCS, pp. 450-454. Springer-Verlag,
2006.

A. Lomuscio, B. Wozna, and A. Zbrzezny. Bounded model checking real-time multi-
agent systems with clock differences: Theory and implementation. In Post-proc. of
the 4th Int. Workshop on Model Checking and Artificial Intelligence (MoChArt’06),
vol. 4428 of LNAI, pp. 96-112. Springer-Verlag, 2007.

K. L. McMillan. App.lying SAT methods in unbounded symbolic model checking.
In Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’02), vol. 2404
of LNCS, pp. 250-264. Springer-Verlag, 2002.

MiniSat. http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat, 2006.
W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. In Proc. of the 2nd Int. Conf. on Autonomous Agents
and Multi-Agent Systems (AAMAS’03), pp. 209-216. ACM, 2003.

W. Penczek and A. Pétrola. Advances in Verification of Time Petri Nets and
Timed Automata: A Temporal Logic Approach, vol. 20 of Studies in Computational
Intelligence. Springer-Verlag, 2006.

RSat. http://reasoning.cs.ucla.edu/rsat, 2006.

M. Szreter. SAT-Based Model Checking of Distributed Systems. PhD thesis, ICS
PAS, January 2007.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

M. Wooldridge, M. Fisher, M. P. Huget, and S. Parsons. Model checking multiagent
systems with MABLE. In Proc. of the 1st Int. Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS’02), vol. 11, pp. 952-959. ACM, 2002.

B. Wozna, A. Lomuscio, and W. Penczek. Bounded model checking for deontic
interpreted systems. In Proc. of the 2nd Int. Workshop on Logic and Commu-
nication in Multi-Agent Systems (LCMAS’04), vol. 126 of ENTCS, pp. 93-114.
Elsevier, 2005.

B. WozZna, A. Lomuscio, and W. Penczek. Bounded model checking for knowledge
and real time. In Proc. of the 4th Int. Conf. on Autonomous Agents and Multi-
Agent Systems (AAMAS’05), pp. 165-172. ACM, 2005.

A. Zbrzezny. Improvements in SAT-based reachability analysis for timed automata.
Fundam. Informaticae, 60(1-4):417-434, 2004.

A. Zbrzezny. SAT-based reachability checking for timed automata with diagonal
constraints. Fundam. Informaticae, 67(1-3):303-322, 2005.

L. Zhang. Zchaff. http://www.ee.princeton.edu/~chaff/zchaff.php, 2001.

