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Abstract. In this paper we show a novel method for modelling be-
haviours of security protocols using networks of communicating automata
in order to verify them with SAT-based bounded model checking. These
automata correspond to executions of the participants as well as to their
knowledge about letters. Given a bounded number of sessions, we can
verify both correctness or incorrectness of a security protocol proving
either reachability or unreachability of an undesired state. We exemplify
all our notions on the Needham Schroeder Public Key Authentication
Protocol (NSPK) and show experimental results for checking authenti-
cation using the verification tool VerICS.
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1 Introduction

Security protocols define the rules of exchanging messages between the parties
in order to establish a secure communication channel between them. Similarly to
communicating protocols there are several approaches to verification of security
protocols. These protocols are usually verified using deductive methods (e.g.,
theorem proving) or algorithmic ones. Deductive methods have been exploited
in many verification systems like: Isabelle [2], Murφ [26], TAPS [9], PVS [13],
and NRL [25]. Algorithmic approaches include mainly methods based on model
checking, which have been an object of an intensive research for several years in
both academic and commercial institutions.

Intuitively, model checking of a security protocol consists in checking whether
a model of the protocol accepts an execution (or contains a reachable state) that
is representing an attack on the protocol. Comparing to standard model check-
ing methods for communicating protocols or for distributed systems, the main
difficulty is caused by the need to model both the intruder who is responsible
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for generating attacks as well as changes of knowledge (about keys, nonces, etc.)
of the participants. Typically, a model is constructed as a product of processes
representing the participants and the intruder.

Properties expressing correctness of security protocols are usually formulated
as reachability properties or in linear (branching) time temporal logic. Following
early achievements in model checking of cryptographic protocols by the teams
of E. Clarke [8], C. Meadows [25], G. Lowe [23], or D. Bolignano [4], over the
last five years the state-of-the-art verification system AVISPA [1] has been de-
signed and implemented as the result of the EU research project. AVISPA is
composed of the following four self-complementing modules: OFMC applying
symbolic verification on-the-fly via analysis of a transition system described in
the specification language IF, CL-AtSe using ’constrain solving’ and enables
discovering of type flaws, SATMC being a bounded model checker exploiting
a SAT-solver, and TA4SP applying a method based on regular tree languages
and therm rewriting.

On the other hand, verification systems for distributed and real time sys-
tems like SMV [24], Spin [14], KRONOS [29], UppAal [3], or Verics [11] en-
joy a much longer history and experience in use. It is clearly very interest-
ing to investigate methods of applying the above tools to verification of secu-
rity protocols [17,28,10,16,15]. In this paper we are interested in using tools
that accept inputs represented by networks of (timed) automata as these can
be then verified with most of the existing symbolic and non-symbolic model
checkers. Verification can be performed either indirectly by specifying a pro-
tocol in a higher order language and then translating it to automata or di-
rectly by modelling a protocol by a network of automata. In this paper1 we
offer a new syntax and semantics of security protocols, and an entirely novel
approach to their verification (to the best of our knowledge). Our main and
original idea about consists in using networks of automata for modelling sepa-
rately the participants and their knowledge about secrets. Thanks to that we
get a very distributed representation of the protocol executions, which is im-
portant for an efficient symbolic encoding and model checking. To this aim we
develop a novel semantics of security protocols, where the notion of a compu-
tational structure and an interpretation is based on the ideas that appeared
in [18,5]. Next, we give a method for representing the executions of a security
protocol (within a computational structure for a bounded number of sessions)
by the runs of the product automaton of a network of the above mentioned
automata and show how to look for attacks on authentication. To this aim we
use Bounded Model Checking (BMC), which consists in translating the prob-
lem of reachability in the product automaton to satisfiability of some propo-
sitional formula. Moreover, in addition to prove reachability of an undesired
state (in case there is an attack on the protocol), we can also prove unreach-
ability of such a state if there is no attack in the computational structure.
This seems to be as well a novel application of BMC to verification of security
protocols.

1 Some preliminary results [19] were presented at CS&P’06.
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Our model allows for specification and verification of untimed cryptographic
protocols which realise the well-known challenge-response idea. The Needham-
Schroeder public key protocol [6] is the best known example here, but there are
other more complicated protocols like NSPK-Lowe, Andrew, TMN, Otway-Rees,
and Yahalom [6,7] that fall into that class as well. In this paper, for simplicity of
a translation to automata, we assume that letters sent in the executions of the
protocols cannot include nested ciphers. We focus on the public key cryptogra-
phy, but it is easy to observe that this model is adequate in the case of symmetric
cryptography too. Our model of the Intruder’s behaviour follows the well known
Dolev-Yao model [12] in which the Intruder can intercept and modify all the
letters. However, in our experiments we are dealing with a limited model of the
Intruder in which he can only receive letters sent to him when playing the role of
himself or impersonating another participant. This limitation allows to look for
attacks in a more efficient way as the size of a state space is then much limited.

The rest of the paper is organised as follows. In Section 2 we introduce syntax
for dealing with untimed security protocols. A computational structure gener-
ating all the runs of the protocols considered is defined in Section 3. A method
for finding attacks by analysing computations of the protocol is shown in Sec-
tion 4. Section 5 defines network of automata for representing the participants
of a protocol and their knowledge about secrets. Then, experimental results are
given in Section 6 and some concluding remarks in Section 7.

2 Syntax of Security Protocols

In this section we introduce syntax for dealing with untimed security protocols.
To this aim, we give some notations used in the rest of the paper. Next, we define
the following basic syntactic notions of our model.

– TP = {P1,P2, . . . ,PnP } is a set of symbols representing the users of the
computer network,
TI = {IP1 , IP2 , . . . , IPnP

} is a set of symbols representing the identifiers of
the users,

– TK =
⋃nP

i=1{KPi ,K−1
Pi

} is a set of symbols representing the cryptographic
keys of users (public and private respectively),

– TN =
⋃nP

i=1{N 1
Pi

, . . . ,NnN

Pi
}2 is a set of symbols representing the users’

nonces,
– {”(”, ”)”, ”{”, ”}”, ”, ”} is a set of the auxiliary symbols.

Definition 1 (Letter Terms). By a set of letter terms T we mean the smallest
set satisfying the following conditions:

1. TP ∪ TI ∪ TK ∪ TN ⊆ T .
2. If X ∈ T and Y ∈ T , then the concatenation X · Y ∈ T ,

2 We assume that nP and nN are some fixed natural numbers.
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3. If X ∈ T and K ∈ TK, then 〈X〉K ∈ T 3.

Next, we define some useful relations over the set T .

Definition 2. Let ≺·T ⊆ T × T be the smallest relation (called (immediate)
subterm relation), which satisfies the following conditions:

1. If X, Y ∈ T , then X ≺·T X · Y and Y ≺·T X · Y ,
2. If X ∈ T and K ∈ TK, then X ≺·T 〈X〉K and K ≺·T 〈X〉K.

By �T we denote the transitive and reflexive closure of ≺·T . Next, for any X ⊆ T
we define a sequence of the sets (Xn)n∈N that are subsets of T :

– X 0 def
= X ,

– Xn+1 def
= Xn∪ {Z ∈ T | (∃X, Y ∈ Xn, K ∈ X∩TK) Z = X ·Y ∨Z = 〈X〉K}.

Intuitively, the set Xn+1 contains the, gradually built, letter terms from Xn

using the operations of composition and encryption. In what follows, for any set
Z by 2Z

fin we denote a set of all the finite subsets of Z.

For X ∈ 2Tfin the set Comp(X )
def
=

⋃
n∈N Xn is composed of all the letters

that can be constructed out of elements of X only4.
Now, we are ready to define the syntax for a protocol step and then for

a protocol itself. A notion of a step is clearly more complicated than in the
common language as it provides the information not only about the sender P ,
the receiver Q, and the letter L sent from P to Q, but also about letters necessary
to compose L as well as generated secrets necessary to compose L. The intended
aim of this extra information is to point out to additional actions of the sender
like generating new secrets or composing the letter L.

Definition 3. By a (protocol) step α we mean a five-tuple (P ,X ,G,Q,L) ∈
TP × 2Tfin × 2TK∪TN

fin × TP × T , with the following intuitive meaning:
P - the sender of the step,
X - the set of letters necessary to compose L,
G - the set of generated secrets necessary to compose L,
Q - the receiver of L, and
L - the letter sent from P to Q,

that satisfies the following conditions:

1. P �= Q (nobody can send letters to himself),
2. L ∈ Comp(X ) ∧ (∀Y ⊆ X )(L ∈ Comp(Y) ⇒ Y = X ),

(X is a minimal set from which L can be constructed)
3. G ⊆ X (the secrets of G are elements of X ).

By a protocol Σ we mean a finite sequence (α1, . . . , αn) of steps.
3 〈X〉K is a term that is interpreted as a ciphertext containing the letter X encrypted

with the key K.
4 Description is not allowed here.
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Example 1. We consider Needham Schroeder Public Key Authentication Proto-
col (NSPK) as a working example. Below, syntax of NSPK is defined.
TP = {A,B}, TI = {IA, IB}, TK = {KA,KB}, TN = {NA,NB}. The proto-
col NSPK is given by the following sequence of steps: (α1, α2, α3), where:

α1 = (A, {NA, IA,KB}, {NA},B, 〈NA, IA〉KB ),
α2 = (B, {NA,NB,KA}, {NB},A, 〈NA,NB〉KA),
α3 = (A, {NB,KB}, ∅,B, 〈NB〉KB). �

3 Computational Structure

In this section we define a computational structure generating all the compu-
tations (under the interpretations considered) of an authentication protocol in-
vestigated. Later, we aim at representing these computations by runs of some
network of automata. In general, we could deal with an infinite number of
sessions in a computational structure, but because we aim at verifying our pro-
tocols in an automatic way, we restrict ourselves to a bounded number of ses-
sions by limiting the number of nonces. We start with defining the following
sets:

• P = {p1, p2, . . . , pnp} - a set of the honest participants in the network,
• Pι = {ι, ι(p1), ι(p2), . . . , ι(pnp)} - a set of the dishonest participants con-

taining the Intruder and the Intruder impersonating the participant pi for
1 ≤ i ≤ np,

• I = {ip1 , . . . , ipnp
, iι} - a set of the identifiers of the participants in the

network,
• K =

⋃np

i=1{kpi , k
−1
pi

} ∪ {kι, k
−1
ι } - a set of the cryptographic keys of the

participants,
• N =

⋃np

i=1{n1
pi

, . . . , nkN
pi

} ∪ {n1
ι , . . . , n

kN
ι } - a set of the nonces5.

Definition 4. By a set of letters L we mean the smallest set satisfying the
following conditions:

1. P ∪ Pι ∪ I ∪ K ∪ S ⊆ L,
2. If x, y ∈ L, then the concatenation x · y ∈ L,
3. If x ∈ L and k ∈ K, then 〈x〉k ∈ L,

〈x〉k is a ciphertext consisting of the letter x encrypted with the key k.

Next, we define some auxiliary relations over the set L.

Definition 5. Let ≺· ⊆ L × L be the smallest relation (called (immediate) sub-
letter relation) satisfying the following conditions:

1. If x, y ∈ L, then x ≺· x · y and y ≺· x · y,
2. If x ∈ L and k ∈ K, then x ≺·〈x〉k and k ≺·〈x〉k.
5 As before, we assume that np and kN are some fixed natural numbers. For simplicity,

we take the same number of nonces for each user.
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By � we denote the transitive and reflexive closure of ≺·. Next, for any X ⊆ L
we define a sequence of the sets (Xn)n∈N that are also subsets o L, where

– X0 def
= X ,

– Xn+1 def
= Xn ∪ {z ∈ L | (∃x, y ∈ Xn, k ∈ X ∩ K) z = x · y ∨ z = 〈x〉k}.

The intuition behind this definition is the same as for the corresponding one
in Section 2, i.e., the set Xn+1 contains the, gradually built, letters from Xn

using the operations of composition and encryption. Next, define the set
Comp(X)

def
=

⋃
n∈N Xn which consists of all the letters that can be composed

out of elements of X only6 and the set Sublet(X)
def
= {l ∈ L | (∃x ∈ X) l � x}

which contains all the subletters of X .

Definition 6. Let X ⊆ L and K ⊆ K. Define the set ξK(X) ⊆ L as the smallest
set of letters satisfying the following conditions:

1. X ⊆ ξK(X),
2. if l · m ∈ ξK(X), then l ∈ ξK(X) and m ∈ ξK(X),
3. if 〈l〉k ∈ ξK(X) and k ∈ ξK(X) ∪ K, then l ∈ ξK(X).

The set ξK(X) contains all the letters which can be retrieved from X by de-
composing a concatenation or decrypting a letter using a key, which is either in
ξK(X) or in K. By ξ(X) we mean the set ξ∅(X).

Next, we define interpretations of the terms of T . Each interpretation deter-
mines one execution of the protocol (defined as a syntactical object).

Definition 7. By an interpretation of the set of the letter terms T we mean
any injection f : T → L satisfying the following conditions:

1. f(TP ) ⊆ P ∪ Pι, f(TI) ⊆ I, f(TK) ⊆ K, f(TN ) ⊆ N,
2. (∀X, Y ∈ T ) f(X · Y ) = f(X) · f(Y ) (homomorphism),
3. (∀X ∈ T )(∀K ∈ TK) f(〈X〉K) = 〈f(X)〉f(K) (homomorphism),
4. If f(P) = p for p ∈ P, then f(IP) = ip, f(NP) ∈ {n1

p, . . . , n
kS
p },

f(KP) = kp and f(K−1
P ) = k−1

p .
5. If f(P) = ι, then f(IP) = iι, f(KP) = kι and f(K−1

P ) = k−1
ι .

6. If f(P) = ι(p), then f(IP ) = ip, f(KP) = kp and f(K−1
P ) = k−1

p ,
7. f(TP ) \ Pι �= ∅

The condition 1 states that the atomic terms are mapped into corresponding
objects of the computational structure, i.e., symbols representing participants
are mapped into participants, etc. The condition 2 and 3 guarantee the homo-
morphical separation between the mapped symbols. The condition 4 says that
the symbols related to a given participant are mapped into corresponding ob-
jects (identifiers, keys, nonces) in the structure. The conditions 5-7 are related
to our model of the Intruder. The condition 5 determines that if the Intruder
6 Description is not allowed here.
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wants to play in an execution of the protocol the role of himself, then he uses
his own identifier and keys. There is no condition on the nonces used by the
Intruder, as we assume that he can use any nonce. The condition 6 states that if
the Intruder ι impersonates another participant p in some interpretation, then
in any execution under this interpretation p’s keys and p’s identifier need to be
used by ι. Then, due to the condition 1, no participant symbol is mapped to p in
this interpretation. The last condition says that at least one honest participant
takes part in each interpretation.

In order to define later an interpretation of a protocol step in which the
Intruder is the sender, we need the notion of a set of generators for a letter.

Definition 8. Let l ∈ L be a letter and X ⊆ L. The set X is said to be a set of
generators of l (denoted by X � l) if the following conditions are met:

1. X ⊆ Sublet({l}),
2. l ∈ Comp(X),
3. (∀m ∈ X)(m /∈ Comp(X \ {m}),
4. (∀m ∈ X)(l /∈ Comp(X \ {m}).

Intuitively, we have X � l if all the elements of X are subletters of l, l can be
composed out of the elements of X , and X is a minimal such a set.

Example 2. Consider the letter l = 〈ia, na〉kb
. Observe that the sets

X1 = {ia, na, kb} and X2 = {〈ia, na〉kb
} are sets of independent generators of l,

i.e., we have X1 � l and X2 � l.

Having defined a set of letter generators and an interpretation of T , we are now
ready to apply it to a protocol step and then to the whole protocol.

Definition 9. Consider a step α = (P ,X ,G,Q,L) of a given protocol Σ and an
interpretation f of T . By the f -interpretation of the step α (denoted by f(α))
we mean the following five-tuple:

– (f(P), f(X ), f(G), f(Q), f(L)7), if f(P) ∈ P,
– (f(P), {X | X � f(L)}, ∅, f(Q), f(L)), if f(P) ∈ Pι.

In the case when the Intruder is the sender, we assume that he can compose a
letter f(L) from any set which generates f(L). We also assume that the Intruder
has got a set of nonces at his disposal and he does not need to generate them.
The reason is that the Intruder can use the same nonce many times and in
different sessions.

By the execution of a protocol Σ = (α1, α2, . . . , αn) under an interpretation f
we mean the sequence f(Σ) = (f(α1), f(α2), . . . , f(αn)).

Example 3. Again, we exemplify the above notions on NSPK. P = {a, b},
Pι = {ι, ι(a), ι(b)}, I = {ia, ib, iι}, K = {ka, kb, kι}, N = {na, nb, nι}. Consider
the interpretation f1 defined as follows: f1(A) = a, f1(B) = b, f1(IA) = ia,
f1(IB) = ib, f1(NA) = na, f1(NB) = nb, f1(KA) = ka, f1(KB) = kb. We
have the following execution of NSPK: (f1(α1), f1(α2), f1(α3)), where:
7 We assume that any private key cannot be an element of the contents of f(L).
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– f1(α1) = (a, {na, ia, kb}, {na}, b, 〈na, ia〉kb
),

– f1(α2) = (b, {na, nb, ka}, {nb}, a, 〈na, nb〉ka),
– f1(α3) = (a, {nb, kb}, ∅, b, 〈nb〉kb

). �

In order to define knowledge of the participants and the Intruder we need to
introduce the following auxiliary notions. If f(αi) = (p, X, G, q, l), for some
p, q ∈ P ∪ Pι, X ∈ 2L

fin, G ∈ 2K∪N
fin , and l ∈ L, then we use the following

notations:
Sendf(αi) = p (the sender of f(αi)),
Lettf(αi) = l (the letter of f(αi)),
Genf(αi) = G (the set of generated new secrets in f(αi)),
Respf(αi) = q (the responder of f(αi)), and
Partf(αi) = {Sendf(αi), Respf(αi)}.

Additionally if Sendf(αi) ∈ P, then let Compf(αi) = X (the set of letters that
are sufficient to compose Lettf(αi)) and if Sendf(αi) ∈ Pι, then let
Compf(αi) =

⋃
X�Lettf(αi) X (the union of sets which generate Lettf(αi)).

For a set of interpretations F , we define the set Compp
F (Compι

F ) of the
letters, which the participant p ∈

⋃
f∈F f(TP ) \ Pι (the Intruder ι, resp.) needs

to compose all the letters sent in an execution under any interpretation f ∈ F .

Definition 10. The set Compp
F =

⋃
1≤i≤n

⋃
{f∈F|Sendf(αi)=p} Compf(αi) for

an honest user p is the union of all the sets Compf(αi) for all i ≤ n and f ∈ F ,
where Sendf(αi) = p.

The set Compι
F =

⋃
1≤i≤n

⋃
{f∈F|Sendf(αi)∈Pι} Compf(αi) is the union of

all the sets Compf(αi) for all i ≤ n and f ∈ F , where Sendf(αi) ∈ Pι.

Consider any finite sequence of interpretations of k protocol steps r = (f1(αi1),
f2(αi2), . . . , fk(αik

)). For every p ∈
⋃k

i=1 f i(TP ) we define a sequence of the
participant’s knowledge (κj

p)j=1,...,k at the steps of the protocol.

Definition 11. For an honest participant p ∈
⋃

f∈F f(TP ) \ Pι his knowledge
at the step j is given inductively as follows:

κ0
p = I ∪ {k−1

p } ∪ {kq | q ∈ P} ∪ {kι},

κj+1
p =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κj
p if p �∈ Partf

j+1(αij+1 ),

κj
p ∪ Genfj+1(αij+1 ) if p = Sendfj+1(αij+1 ),

Compp
F ∩ ξ{k−1

p }(κ
j
p ∪ {Lettf

j+1(αij+1 )}) if p = Respfj+1(αij+1 ).

The intuition behind the above definition is as follows. The knowledge of a par-
ticipant not participating in a protocol step is not changing. If a participant is
the initiator of a step, then his knowledge is extended with the set of the gen-
erated nonces. If a participant is the responder of a step, then his knowledge is
extended by all the letters, which can be retrieved from the former knowledge
and the letter actually received. But, for efficiency reasons it is restricted to
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a subset of Compp
F , i.e., to the letters which the participant needs in order to

compose any letter in any execution determined by F .
We define two models of the Intruder’s knowledge. The first one is the full

Dolev-Yao model the Intruder’s knowledge, whereas the second model restricts
the Intruder such that if he is not the responder of a letter, then his knowledge
does not change.

Definition 12. The Intruder’s knowledge at each step j of the protocol is com-
mon for all p ∈

⋃
f∈F f(TP ) ∩Pι and it is given inductively as follows:

κ0
ι = I ∪ {k−1

ι , kι} ∪ {kq | q ∈ P} ∪ {n1
ι , . . . , n

kN
ι },

For the D-Y model of the Intruder:
κj+1

ι = Compι
F ∩ ξ{k−1

ι }(κ
j
ι ∪ {Lettf

j+1(αij+1 )}).
For the restricted model of the Intruder:

κj+1
ι =

⎧
⎪⎨

⎪⎩

κj
ι if Respfj+1(αij+1 ) /∈ Pι,

Compι
F ∩ ξ{k−1

ι }(κ
j
ι ∪ {Lettf

j+1(αij+1 )}) if Respfj+1(αij+1 ) ∈ Pι.

Notice the Intruder is retrieving all the possible letters from his knowledge and
the letter he has interecepted (received), which is restricted to a subset of Compι

F
for efficiency reasons. For simplicity, we assume that the Intruder does not gen-
erate his nonces as he can use them several times in many executions. This does
not introduce any limitations.

In the following definition we formulate the conditions which guarantee that
a sequence of protocol step interpretations is a computation of the protocol.

Definition 13. By a computation of the protocol Σ we mean any injective finite
sequence of protocol step interpretations: r = (f1(αi1 ), f2(αi2), . . . , fk(αik

) )
which meets the following conditions:

1. (∀k ∈ N+)[ik > 1 ⇒ (∃j < k)( f j = fk ∧ ij = ik − 1)],
2. (∀k, j ∈ N+)[k �= j ⇒ Genfk(αik

) ∩ Genfj(αij
) = ∅],

3. (∀j ∈ N+)[Lettf
j(αij

) ∈ Comp(κj−1

Send
fj (αij

) ∪ Genfj(αij
))].

The first condition states that for each protocol step (except for the first one)
in interpretation f , there is a preceding step in the same interpretation. The
second one says that the sets of generated nonces are disjoint, whereas the third
one guarantees that the letter Lettf

j(αij
) can be sent by Sendfj(αij

) only if it
can be composed from the set of currently generated nonces and the knowledge
of the participant Sendfj(αij

) at the step j − 1.

4 Attacks Upon Protocols

Security protocols are used in order to establish a secure communication channel
between two parties involved in the communication. This is obtained by ensuring
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that each party is confident about several security properties: e.g., that the other
party is who they say they are (authentication), a confidential information is not
visible to non-authorised parties (secrecy), the information exchanged by two
parties cannot be altered by an intruder (integrity), and finally the parties taking
part in the transaction cannot deny it later (non-repudiation).

Below, we focus on checking authentication only. We say that a given protocol
is correct if the protocol cannot be executed in such a way that identifiers or keys
of one participant are used by someone else. Having this in mind, we give the
following definition.

Definition 14 (Attacking execution). By an attacking execution we mean
any execution under an interpretation f , where f(P) = ι(p), for some P ∈ TP

and p ∈ P .

Example 4. Consider the interpretation f2 defined as follows: f2(A) = ι(a),
f2(B) = b, f2(IA) = ia, f2(IB) = ib, f2(NA) = na, f2(NB) = nb,
f2(KA) = ka, f2(KB) = kb. We have the following execution of the NSPK
protocol: (f1(α1), f1(α2), f1(α3)), where:

f2(α1) = (ι(a), {X1, X2} , ∅, b, 〈na, ia〉kb
),

f2(α2) = (b, {na, nb, ka}, {nb}, ι(a), 〈na, nb〉ka),
f2(α3) = (ι(a), {X3, X4}, ∅, b, 〈nb〉kb

),
X1 = {na, ia, kb}, X2 = {〈na, ia〉kb

}, X3 = {nb, kb}, X4 = {〈nb〉kb
}. �

Definition 15 (Attack). By an attack upon a protocol we mean any of its
computations such that an attacking execution is its subsequence.

The following example shows an attack on NSPK.

Example 5. Consider the interpretation f2 of Example 4 and the interpretation
f3 defined below: f3(A) = a, f3(B) = ι, f3(IA) = ia, f3(IB) = iι,
f3(NA) = na, f3(NB) = nb, f3(KA) = ka, f3(KB) = kι.
For f3 we have the following execution of NSPK: (f3(α1), f3(α2), f3(α3)), where:

f3(α1) = (a, {na, ia, kι}, {na}, ι, 〈na, ia〉kι).
f3(α2) = (ι, {X5, X6}, ∅, a, 〈na, nb〉ka),
f3(α3) = (a, {nb, kι}, ∅, ι, 〈nb〉kι)
with X5 = {na, nb, ka} and X6 = {〈na, nb〉ka}.

Observe that the sequence r = (f3(α1), f2(α1), f2(α2), f3(α2), f3(α3), f2(α3)) is
a computation 8 which contains an attacking execution. Thus, r is an attack.

8 A simplified notation of this computation is the following:
a → ι : 〈na, ia〉kι ,

ι(a) → b : 〈na, ia〉kb
,

b → ι(a) : 〈na, nb〉ka ,
ι → a : 〈na, nb〉ka ,
a → ι : 〈nb〉kι ,

ι(a) → b : 〈nb〉kb
.



156 M. Kurkowski, W. Penczek, and A. Zbrzezny

5 Networks of Communicating Automata

In this section we represent the computations of a protocol by runs of a network
of communicating automata, where each automaton represents one component
of the protocol.

Definition 16 (Automaton). An automaton Ai is a 4-tuple (Σi, Li, s
0
i , Ti),

where

– Σi is a finite set of actions,
– Li is a finite set of locations,
– s0

i ∈ Li is the initial location,
– Ti ⊆ Li × Σi × Li is a transition relation.

A set of communicating automata can be composed into the global (product)
automaton by the standard multi-synchronisation approach: the transitions that
do not correspond to a shared action are interleaved, whereas the transitions
labelled with a shared action are synchronised. Assume a set of n communicating
automata {A1, . . . , An} and let Σ(a) = {1 ≤ i ≤ n | a ∈ Σi}.

Definition 17 (Product Automaton). The product automaton of the au-
tomata Ai is defined by A = (Σ, G, s0, T ), where:

– Σ =
⋃n

i=1 Σi is a finite set of actions,
– G = L1 × . . . × Ln is a finite set of global states,
– s0 = (s0

1, . . . , s
0
n) is the initial state,

– T is a transition relation, where ((l1, . . . , ln), a, (l′1, . . . , l
′
n)) ∈ T iff

∀i∈Σ(a) (li, a, l′i) ∈ Ti and ∀i∈{1,...,n}\Σ(a) li = l′i.

By a run of A on a word a1 · · ·an we mean a sequence of states (s0, . . . , sn) such
that s0, . . . , sn ∈ G, s0 = s0, and (si, ai, si+1) ∈ T for all 1 ≤ i ≤ n − 1. A state
s ∈ G is reachable if there is a run of A s.t. its final state is equal to s.

Now, we are going to use networks of automata for modelling executions of
the protocol as well as for modelling the knowledge of the participants.

5.1 Automata for Modelling Executions of the Participants

Assume we are dealing with a protocol Σ = (α1, . . . , αn).

Definition 18 (Automaton for execution). Consider the execution of the
protocol Σ under an interpretation f , i.e., (f(α1), f(α2), . . . , f(αn)). This exe-
cution is modelled by the automaton Af = (Σf , Qf , f(α0), δf ), where:

- Qf = {sf
0 , sf

1 , sf
2 , . . . , sf

n} is the set of states, where sf
0 is the initial state,

- Σf ={kf(αi) | 1 ≤ i ≤ n ∧ Sendf(αi) ∈ P} ∪
⋃n

i=1

⋃
X⊆L{kX

f(αi)
| Sendf(αi) ∈ Pι ∧ X � Lettf(αi) ∧ X �= {Lettf(αi)}},

- δf = {(sf
i−1, kf(αi), s

f
i ) | 1 ≤ i ≤ n ∧ kf(αi) ∈ Σf} ∪

{(sf
i−1, k

X
f(αi)

, sf
i ) | 1 ≤ i ≤ n ∧ kX

f(αi)
∈ Σf}.
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The intuition behind the above definition is as follows. Each state sf
i of the

automaton is reached after executing the step αi of the execution (under f) of
the protocol. If the sender of this step is honest, then there is only one possibility
to execute this step as the sender needs to have the required knowledge for
composing the letter sent in this step. However, if the sender of this step is the
Intruder, then there are many possibilities to execute this step determined by the
sets of generators of the letter to be sent. Each of these possibilities is labelled
with a different label kX

f(αi)
.

5.2 Automata for Modelling the Knowledge of the Participants

Consider a finite set of protocol interpretations F .

Definition 19 (Automaton for the knowledge of a honest participant)
For each honest participant p ∈ (

⋃
f∈F f(TP ) \ Pι) and each element

l ∈ Compp
F \ κ0

p, we define the following (knowledge) automaton
Ap

l = (Σp
l , Qp

l , q
p
l , δp

l ), where

– Σp
l

def
= {k ∈

⋃
f∈F Σf | Cond1(k) ∨ Cond2(k)} with

Cond1(k) := (∃f ∈ F)(∃i ≤ n)(sf
i−1, k, sf

i ) ∈ δf ∧
(i)

(
p = Sendf(αi) ∧ l ∈ Genf(αi)

)
∨

(ii) (p = Respf(αi) ∧ l ∈ ξ{k−1
p }({Lettf(αi)}) ∧

∧ (∀j ∈ {1, . . . , i − 1})((p = Respf(αj) ⇒ l /∈ ξ{k−1
p }(Lettf(αj))) ∧

∧ (p = Sendf(αj) ⇒ l /∈ Genf(αj)))
Cond2(k) := (∃f ∈ F)(∃i ≤ n)(sf

i−1, k, sf
i ) ∈ δf ) ∧

(iii) (p = Sendf(αi) ∧ l ∈ Compf(αi) \ Genf(αi))∨
(iv) (p = Respf(αi) ∧ l ∈ ξ{k−1

p }({Lettf(αi)}) ∧
∧ (∀j ∈ {1, . . . , i − 1})((p = Respf(αj) ⇒ l /∈ ξ{k−1

p }(Lettf(αj))) ∧
∧ (p = Sendf(αj) ⇒ l /∈ Genf(αj)))

– Qp
l = {qp

l , sp
l } is the set of states,

– qp
l is the initial state,

– δp
l is the transition relation given as follows

(qp
l , k, sp

l ) ∈ δp
l iff Cond1(k), (sp

l , k, sp
l ) ∈ δp

l iff Cond2(k).

If the automaton Ap
l is in the state qp

l , then this means that the participant p
does not know l. If the automaton Ap

l moves to the state sp
l , then this corresponds

to the fact that p learns about l and can use it. The condition (i) specifies that
l is generated by p at the step f(αi). The condition (ii) says that p learns about
l at the step f(αi). This is modelled only once in order to reduce the number
of the transitions. The condition (iii), which defines the loop, enables p to use l
while composing new letters. The condition (iv) enables to receive l in a different
execution that the one, which was used to define the condition (ii).

Example 6. The network of automata that model the execution and the knowl-
edge of the participants of Example 3 is shown in the figure below.
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We give two versions of the automata for the Intruder’s knowledge.

Definition 20 (Automaton for the knowledge of the Intruder). First,
we give the automaton corresponding to the full D-Y Intruder’s knowledge and
then we discuss the modifications for the restricted model.

The D-Y model of the Intruder: for each letter
- l ∈ Compι

F ∩ ξ{k−1
ι }(

⋃
f∈F

⋃
i≤n{Lettf(αi)}) \ κ0

ι ,
we define the knowledge automaton Aι

l = (Σι
l , Q

ι
l , q

ι
l , δ

ι
l ), where

– Σι
l

def
= {k ∈

⋃
f∈F Σf | Condι

1(k) ∨ Condι
2(k)} with

Condι
1(k) := (∃f ∈ F)(∃i ≤ n)(sf

i−1, k, sf
i ) ∈ δf ∧

(i) [(l ∈ ξ{k−1
ι }({Lettf(αi)}) ∧ (∀j ∈ {1, . . . , i − 1})(l /∈ ξ{k−1

ι }(Lettf(αj)))

Condι
2(k) := (∃f ∈ F)(∃i ≤ n)(sf

i−1, k, sf
i ) ∈ δf ∧

(ii) (Sendf(αi) ∈ Pι ∧ (∃X ⊆ L)(X � Lettf(αi) ∧ l ∈ X ∧ k = kX
f(αi)

)) ∨
(iii) (l ∈ ξ{k−1

ι }({Lettf(αi)}) ∧ (∀j ∈ {1, . . . , i − 1})(l /∈ ξ{k−1
ι }(Lettf(αj)))).

– Qι
l = {qι

l , s
ι
l} is the set of states,

– qι
l is the initial state,

– δι
l is the transition relation given as follows:

(qι
l , k, sι

l) ∈ δι
l iff Condι

1(k), (sι
l , k, sι

l) ∈ δι
l iff Condι

2(k).

The following changes to the above definition are made for the restricted model
of the Intruder’s knowledge:

- l ∈ Compι
F \ κ0

ι ,

(i) [(Respf(αi) ∈ Pι ∧ l ∈ ξ{k−1
ι }({Lettf(αi)}) ∧

∧ (∀j ∈ {1, . . . , i − 1})((Respf(αj) ∈ Pι ⇒ l /∈ ξ{k−1
ι }(Lettf(αj))),

(iii) (Respf(αi) ∈ Pι ∧ l ∈ ξ{k−1
ι }({Lettf(αi)}) ∧

∧ (∀j ∈ {1, . . . , i − 1})(Respf(αj) ∈ Pι ⇒ l /∈ ξ{k−1
ι }(Lettf(αj)))).

If the automaton Aι
l is in the state qι

l , then this means that the Intruder does
not know l. If the automaton Aι

l moves to the state sι
l , then this corresponds to

the fact that ι learns about l and can use it. The condition (i) says that ι learns
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about l at the step f(αi). This is modelled only once in order to reduce the
number of the transitions. The condition (ii) enables ι to use l while composing
new letters. The condition (iii) enables to receive l in a different execution that
the one, which was used to define the condition (i).

Recall that we are dealing with the protocol Σ and a set F of its interpreta-
tions. Let A = (N, Q, s0, δ) be the product automaton of the following set of
the automata {Af | f ∈ F} ∪ {Ap

l | p ∈
⋃

f∈F f(TP ) ∩ (P ∪ {ι}) ∧ l ∈ Compp
F}.

The following theorem says that for each computation in the computation
structure there is the corresponding run in the product automaton A built for
this structure and moreover each run of A corresponds to some computation.

Theorem 1. Let f i ∈ F for 1 ≤ i ≤ k. A sequence of protocol steps
r = ( f1(αi1), f2(αi2 ), . . . , fk(αik

) ) is a computation iff there is a run in the
product automaton A on a word (kf1(αi1 ), kf2(αi2 ), . . . , kfk(αik

)), where:

kfj(αij
) ∈

⎧
⎪⎨

⎪⎩

{kfj(αij
)} if Sendfj(αij

) ∈ P,

{kX
fj(αij

) | X � Lettf
j(αij

)} if Sendfj(αij
) ∈ Pι.

Proof. By induction on the length of a computation (run). Omitted because of
the lack of space (see [20] for a proof).

Thanks to the above theorem, we can reduce an analysis of a security protocol for
interpretations assumed to verification of the corresponding product automaton.
Specifically, there is an attack on the protocol iff there is a run in the product
automaton corresponding to some attacking execution.

6 Experimental Results

We start by describing a SAT-based method of testing reachability for a network
of automata, i.e., checking whether a state satisfying certain (usually undesired)
property is reachable in the product automaton. For this, assume that ϕ is
a property to be verified. Let αk(ϕ), for k ∈ N, be a propositional formula that
is satisfiable if and only if there exists a run π of length k such that the property
ϕ holds at some state of π. Moreover, let βk, for k ∈ N, be a propositional
formula that is satisfiable if and only if there exists a run of length k.

Algorithm 1 searches for the greatest natural number k0 such that every run
is of length less or equal to k0. Such a number k0 exists if the set of the reachable
states is finite and there are no loops in the set of the reachable states, and this
is the case for all the networks of automata considered in this paper. Notice that
that if there exists a run π on which ϕ is reachable, then the length of π has to
be less or equal to k0. Therefore, we can conclude that if the property ϕ is not
reachable on any run of length less or equal to k0, then it is unreachable.

In Algorithm 1 we use the procedure checkSat(γ) that for any given proposi-
tional formula γ returns one of the following three possible values: SAT , UNSAT ,
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or UNKNOWN . The meanings of the values SAT and UNSAT are self-evident.
The value UNKNOWN is returned in two cases: either the procedure checkSat
is not able to decide satisfiability of its argument within some timeout period9 or
it has to terminate due to exhaustion of the available memory.

The above method can be applied to all the networks of automata considered
in this paper in view of the fact that there are no loops, at least in the set of the
reachable states. We would like to stress that for such networks of automata the
method is complete. Another SAT-based method of testing reachability can be
found in [30].

Algorithm 1. Algorithm for deciding reachability problem
1: k ← 0
2: loop
3: result← checkSat(αk(ϕ))
4: if result = SAT then
5: return REACHABLE
6: else if result = UNKNOWN then
7: return UNKNOWN
8: end if

/* αk(ϕ) is not satisfiable */
9: k ← k + 1

10: result← checkSat(βk)
11: if result = UNSAT then
12: return UNREACHABLE
13: else if result = UNKNOWN then
14: return UNKNOWN
15: end if

/* βk is satisfiable */
16: end loop

We have tested the correctness (Definition 15) of the NSPK protocol defined
in Example 1. The computational structure (defined in Example 3) is given by
18 automata modelling executions of the principals and 20 knowledge automata
(for the restricted model of the Intruder’s knowledge). Some of them are shown
in Examples 7 and 8. According to Definition 14 there are 4 attacking executions.
The experiments consisted in checking reachability (in the product automaton)
of the final states of the automata representing these four executions. We have
verified that one of these states is reachable at a run of the length 6. This run
corresponds to the attack discovered by Lowe [21] (see Example 5).

We have also verified two other protocols:

- an improved version of NSPK, known as the protocol NSPK-Lowe [21],
- an untimed version of the Wide-Mouth Frog Protocol ([6]).

The NSPK-Lowe protocol is defined as: ΣNSPK−Lowe = (α1, α2, α3), where:

9 This is preset in advance.
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α1 = (A, {NA, IA,KB}, {NA},B, 〈NA, IA〉KB ),
α2 = (B, {NA,NB, IB,KA}, {NB},A, 〈NA,NB, IB〉KA),
α3 = (A, {NB,KB}, ∅,B, 〈NB〉KB).

For the same computational structure we have obtained 18 automata for the
executions of the participants and 24 knowledge automata. It turned out that the
length of the longest possible run is equal to 13. Additionally, it has been verified
that no final state of the automata corresponding to the attacking executions is
reachable at runs of length up to 13. According to Theorem 1 this proves that
in the computational structure considered there is no attack upon the protocol
NSPK-Lowe.

We have also investigated the untimed Wide-Mouth Frog Protocol10. For the
same computational structure we have obtained 15 automata for all the execu-
tions and 12 knowledge automata. It turned out that the length of the longest
possible run in the network for untimed WMF is equal to 6. Additionally, it has
been verified that no final state of the automata corresponding to the attacking
executions is reachable at runs of length up to 6. Thus, we conclude that there
is no attack in the computational structure considered.

The experimental results are shown in the tables below. The computer used to
performexperimentswasequippedwiththeprocessor IntelPentiumD(3000MHz),
2 GB main memory, the operating system Linux and the SAT-solver MiniSat.

Table 1. Experimental results for NSPK Protocol

Table 2. Experimental results for Lowe’s NSPK Protocol

Table 3. Experimental results for Untimed WMF Protocol

10 This protocol is defined as follows:
α1 = (A, {IA,NA, IB,K,KAS}, {NA,K},S ,< NA, IB,K >KAS ),
α2 = (S , {IA,NS ,K,KBS}, {NS},B, < NS , IA,K >KBS ).
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Table 4. Experimental results from VerICS and SATMC

Tool Protocol Time (s)
VerICS NSPK 0,09
SATMC NSPK 0,20
VerICS NSPK-Lowe 0,31
SATMC NSPK-Lowe 0,27

We have compared11 our results to these obtained from SATMC12 of AVISPA
([1]). The results are quite comparable (see the table below), but in our case
in addition to finding or not finding attacks, we can also automatically verify
with BMC that an attack does not exist at all in the computational structure
considered.

In case of verification of NSPK we have got a shorter time whereas for NSPK-
Lowe our result is slightly worse (for runs of length 7 as used by SATMC).
Clearly, much more experiments need to be made to fully compare our method
with AVISPA or other tools. But, these experiments should be conducted only af-
ter our implementation has been optimised in order to get an honest comparison.

7 Conclusions and Perspectives

In this paper we have considered attacks on authentication only, but we can
easily extend them to attacks on secrecy. In order to prove that an information
at is insecure, we have to prove that the state sι

l of Aι
l is reachable.

Our next step is to see what the limits of our method are in terms of the
number of sessions as well as in the number of participants for all the protocols
which satisfy our restrictions. Then, we are going to relax the assumption on non-
nesting ciphers and again conduct experiments with multi-session and multi-user
security protocols.
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Appendix

Example 7. A part of the network of automata that model the execution and
the knowledge of the participants of Example 4 is shown in the figure below.
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Example 8. The full network of automata that model both the executions f2

and f3 is shown in the figure below.
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