
The Quest for Efficient
Boolean Satisfiability Solvers

Sharad Malik
Princeton University

A Brief History of SAT Solvers

Sharad Malik
Princeton University

SAT in a Nutshell
Given a Boolean formula, find a variable assignment such that
the formula evaluates to 1, or prove that no such assignment
exists.

For n variables, there are 2n possible truth assignments to be
checked.

First established NP-Complete problem.
S. A. Cook, The complexity of theorem proving procedures,
Proceedings, Third Annual ACM Symp. on the Theory of
Computing,1971, 151-158

F = (a + b)(a’ + b’ + c)

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

Conjunctive Normal Form
F = (a + b)(a’ + b’ + c)
Simple representation (more efficient data structures)

Logic circuit representation
Circuits have structural and direction information

Circuit – CNF conversion is straightforward

Problem Representation

a
b

d
e

c

(a + b + d’)
(a’ + d)
(b’ + d)

d ≡ (a + b)
(c’ + d’ + e)
(d + e’)
(c + e’)

e ≡ (c ⋅ d)

Why Bother?
Core computational engine for major applications

AI
Knowledge base deduction
Automatic theorem proving

EDA
Testing and Verification
Logic synthesis
FPGA routing
Path delay analysis
And more…

The Timeline

1869: William Stanley Jevons: Logic Machine
[Gent & Walsh, SAT2000]

Pure Logic and other Minor Works –
Available at amazon.com!

The Timeline

1960: Davis Putnam
Resolution Based
≈10 variables

a + b + g + h’ + fa + b + g + h’

Resolution
Resolution of a pair of clauses with exactly ONE incompatible
variable

a + b + c’ + f g + h’ + c + f

(a + b) (a + b’) (a’ + c) (a’ + c’)

Davis Putnam Algorithm
M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of
ACM, Vol. 7, pp. 201-214, 1960 (335 citations in citeseer)
Iteratively select a variable for resolution till no more variables are left.
Can discard all original clauses after each iteration.

(a + b + c)(b + c’ + f’)(b’ + e)

(a + c + e)(c’ + e + f)

(a + e + f)

(a’ + c) (a’ + c’)

(c) (c’)

()SAT
UNSAT

(a)

Potential memory explosion problem!

The Timeline

1960
DP

≈10 var

1952
Quine

Iterated Consensus
≈10 var

The Timeline
1962

Davis Logemann Loveland
Depth First Search

≈ 10 var
1960
DP

≈ 10 var

1952
Quine

≈ 10 var

DLL Algorithm

Davis, Logemann and Loveland

M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem-Proving", Communications of ACM, Vol. 5, No. 7, pp. 394-397,
1962 (231 citations)
Basic framework for many modern SAT solvers
Also known as DPLL for historical reasons

Basic DLL Procedure - DFS

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

Basic DLL Procedure - DFS

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

a

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

⇐ Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0 ⇐ Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 ⇐ Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!Implication Graph

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=0

(a + c + d)
a=0

d=0
(a + c + d’)

Conflict!Implication Graph

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

⇐ Backtrack

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1 ⇐ Forced Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

⇐ Backtrack

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

1 ⇐ Forced Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=0

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1

c
0

1

⇐ Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0

1

⇐ Backtrack

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0

d=1

c=1

(a + c’ + d)
a=0

d=0
(a + c’ + d’)

Conflict!

1

c
0 1

1

⇐ Forced Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

⇐ Backtrack

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1 ⇐ Forced Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 ⇐ Decision

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0

c=1

b=0

(a’ + b + c)
a=1

c=0
(a’ + b + c’)

Conflict!

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0

⇐ Backtrack

Basic DLL Procedure - DFS
a

0
(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c)

⇐ Forced Decision

Basic DLL Procedure - DFS
a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

0

Basic DLL Procedure - DFS
a

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

b
0

c
0 1

c
0 1

1

1

b
0 1

a=1

b=1

c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

⇐ SAT

0

Satisfied Literal

Unsatisfied Literal

Unassigned Literal
(a +b’+ c)(b + c’)(a’ + c’)
a = T, b = T, c is unassigned

Implication
A variable is forced to be assigned to be True or False based on
previous assignments.

Unit clause rule (rule for elimination of one literal clauses)
An unsatisfied clause is a unit clause if it has exactly one unassigned
literal.

The unassigned literal is implied because of the unit clause.
Boolean Constraint Propagation (BCP)

Iteratively apply the unit clause rule until there is no unit clause available.
Workhorse of DLL based algorithms.

Implications and Boolean
Constraint Propagation

Features of DLL
Eliminates the exponential memory requirements of DP
Exponential time is still a problem
Limited practical applicability – largest use seen in automatic
theorem proving
Very limited size of problems are allowed

32K word memory
Problem size limited by total size of clauses (1300 clauses)

The Timeline

1962
DLL

≈ 10 var

1986
Binary Decision Diagrams (BDDs)

≈100 var

1960
DP

≈ 10 var

1952
Quine
≈ 10 var

Using BDDs to Solve SAT
R. Bryant. “Graph-based algorithms for Boolean function manipulation”.

IEEE Trans. on Computers, C-35, 8:677-691, 1986. (1189 citations)
Store the function in a Directed Acyclic Graph (DAG) representation.

Compacted form of the function decision tree.
Reduction rules guarantee canonicity under fixed variable order.
Provides for Boolean function manipulation.
Overkill for SAT.

The Timeline

1962
DLL

≈ 10 var

1988
BDDs

≈ 100 Var

1992
GSAT

Local Search
≈300 Var

1960
DP

≈ 10 var

1952
Quine
≈ 10 var

Local Search (GSAT, WSAT)
B. Selman, H. Levesque, and D. Mitchell. “A new method for solving hard
satisfiability problems”. Proc. AAAI, 1992. (354 citations)
Hill climbing algorithm for local search
Make short local moves
Probabilistically accept moves that worsen the cost function to enable exits
from local minima
Incomplete SAT solvers

Geared towards satisfiable instances, cannot prove unsatisfiability

Cost

Solution Space

Global
minimum

Local Minima

The Timeline

1988
SOCRATES
≈ 3k Var

1994
Hannibal
≈ 3k Var

1960
DP

≈10 var

1962
DLL

≈ 10 var

1952
Quine
≈ 10 var

1986
BDD

≈ 100 Var

1992
GSAT

≈ 300 Var

EDA Drivers (ATPG, Equivalence Checking)
start the push for practically useable algorithms!
Deemphasize random/synthetic benchmarks.

The Timeline

1992
GSAT

≈1000 Var

1996
Stålmarck’s Algorithm

≈1000 Var

1960
DP

≈ 10 var

1962
DLL

≈ 10 var

1952
Quine
≈ 10 var

1988
BDDs

≈ 100 Var

Stålmarck’s Algorithm
M. Sheeran and G. Stålmarck “A tutorial on Stålmarck’s proof procedure”,
Proc. FMCAD, 1998 (10 citations)
Algorithm:

Using triplets to represent formula
Closer to a circuit representation

Branch on variable relationships besides on variables
Ability to add new variables on the fly

Breadth first search over all possible trees in increasing depth

Stålmarck’s algorithm
Try both sides of a branch to find forced decisions (relationships
between variables)

(a + b) (a’ + c) (a’ + b) (a + d)

Stålmarck’s algorithm
Try both sides of a branch to find forced decisions

(a + b) (a’ + c) (a’ + b) (a + d)

a=0
b=1

d=1

a=0 ⇒b=1,d=1

Stålmarck’s algorithm
Try both side of a branch to find forced decisions

(a + b) (a’ + c) (a’ + b) (a + d)

a=1
c=1

b=1

a=0 ⇒b=1,d=1

a=1 ⇒b=1,c=1

Stålmarck’s algorithm
Try both sides of a branch to find forced decisions

Repeat for all variables
Repeat for all pairs, triples,… till either SAT or UNSAT is proved

(a + b) (a’ + c) (a’ + b) (a + d)

a=0 ⇒b=1,d=1

a=1 ⇒b=1,c=1
⇒ b=1

The Timeline
1996

GRASP
Conflict Driven Learning,

Non-chornological Backtracking
≈1k Var

1960
DP

≈10 var

1986
BDD

≈ 100 Var

1992
GSAT

≈ 300 Var

1996
Stålmarck
≈ 1k Var

1988
SOCRATES
≈ 3k Var

1994
Hannibal
≈ 3k Var

1962
DLL

≈ 10 var

1952
Quine
≈ 10 var

GRASP
Marques-Silva and Sakallah [SS96,SS99]
J. P. Marques-Silva and K. A. Sakallah, "GRASP -- A New Search
Algorithm for Satisfiability,“ Proc. ICCAD 1996. (49 citations)
J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm
for Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521,
1999. (19 citations)

Incorporates conflict driven learning and non-chronological
backtracking
Practical SAT instances can be solved in reasonable time
Bayardo and Schrag’s RelSAT also proposed conflict driven
learning [BS97]
R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back techniques to
solve real world SAT instances.” Proc. AAAI, pp. 203-208, 1997(124
citations)

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0

x1=0

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x4=1

x1=0

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1

x4=1

x3=1x1=0

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0

x4=1

x3=1

x8=0

x1=0

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0, x12=1

x4=1

x12=1

x3=1

x8=0

x1=0

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x4=1

x12=1

x3=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1x4=1

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7 x7=1, x9= 0, 1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

x3=1∧x7=1∧x8=0 → conflict

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

Add conflict clause: x3’+x7’+x8

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1 x3=1∧x7=1∧x8=0 → conflict

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

Conflict Driven Learning and
Non-chronological Backtracking

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3’+x7’+x8

Add conflict clause: x3’+x7’+x8

x3=1∧x7=1∧x8=0 → conflict

Conflict Driven Learning and
Non-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x8 + x7’

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

Backtrack to the decision level of x3=1
x7 = 0

x4=1

x12=1

x3=1

x8=0

x1=0

What’s the big deal?

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1’+x3+x5’

Significantly prune the search space –
learned clause is useful forever!

Useful in generating future conflict
clauses.

Restart
Abandon the
current search
tree and
reconstruct a
new one
The clauses
learned prior to
the restart are
still there after
the restart and
can help pruning
the search space
Adds to
robustness in the
solver

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1’+x3+x5’

x2

x1

x3

x5

SAT becomes practical!
Conflict driven learning greatly increases the capacity of SAT
solvers (several thousand variables) for structured problems
Realistic applications become feasible

Usually thousands and even millions of variables
Typical EDA applications that can make use of SAT

circuit verification
FPGA routing
many other applications…

Research direction changes towards more efficient implementations

The Timeline
2001
Chaff

Efficient BCP and decision making
≈10k var

1996
GRASP
≈1k Var

1986
BDD

≈ 100 Var

1992
GSAT

≈ 300 Var

1996
Stålmarck
≈ 1k Var

1962
DLL

≈ 10 var

1952
Quine
≈ 10 var

1960
DP

≈10 var

1988
SOCRATES
≈ 3k Var

1994
Hannibal
≈ 3k Var

Large Example: Tough
Industrial Processor Verification

Bounded Model Checking, 14 cycle behavior
Statistics

1 million variables
10 million literals initially

200 million literals including added clauses
30 million literals finally

4 million clauses (initially)
200K clauses added

1.5 million decisions
3 hours run time

Chaff
One to two orders of magnitude faster than
other solvers…

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik,“Chaff:
Engineering an Efficient SAT Solver” Proc. DAC 2001. (18
citations)

Widely Used:
BlackBox – AI Planning

Henry Kautz (UW)
NuSMV – Symbolic Verification toolset
A. Cimatti, et. al. “NuSMV 2: An Open Source Tool for Symbolic Model
Checking” Proc. CAV 2002.
GrAnDe – Automatic theorem prover
Several industrial licenses

Chaff Philosophy
Make the core operations fast

profiling driven, most time-consuming parts:
Boolean Constraint Propagation (BCP) and Decision

Emphasis on coding efficiency and elegance
Emphasis on optimizing data cache behavior
As always, good search space pruning (i.e. conflict resolution
and learning) is important

Motivating Metrics: Decisions,
Instructions, Cache Performance and
Run Time

10045
3725

776
1dlx_c_mc_ex_bp_f

Num Clauses
Num Literals

Num Variables

416M / 153M188M / 79M24M / 1.7M# L1/L2
accesses

1415.9M630.4M86.6M# Instructions

11.784.410.22# Seconds

32.9% / 50.3%36.8% / 9.7%4.8% / 4.6%% L1/L2
misses

179537713166# Decisions
GRASPSATOZ-Chaff

BCP Algorithm (1/8)
What “causes” an implication? When can it occur?

All literals in a clause but one are assigned to F
(v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (v1 + 0 + 0)

For an N-literal clause, this can only occur after N-1 of the literals have
been assigned to F
So, (theoretically) we could completely ignore the first N-2 assignments
to this clause
In reality, we pick two literals in each clause to “watch” and thus can
ignore any assignments to the other literals in the clause.

Example: (v1 + v2 + v3 + v4 + v5)
(v1=X + v2=X + v3=? {i.e. X or 0 or 1} + v4=? + v5=?)

BCP Algorithm (1.1/8)
Big Invariants

Each clause has two watched literals.
If a clause can become newly implied via any sequence of assignments,
then this sequence will include an assignment of one of the watched
literals to F.

Example again: (v1 + v2 + v3 + v4 + v5)
(v1=X + v2=X + v3=? + v4=? + v5=?)

BCP consists of identifying implied clauses (and the associated
implications) while maintaining the “Big Invariants”

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v1’

BCP Algorithm (2/8)
Let’s illustrate this with an example:

BCP Algorithm (2.1/8)
Let’s illustrate this with an example:

watched
literals

One literal clause breaks invariants: handled
as a special case (ignored hereafter)

Initially, we identify any two literals in each clause as the watched ones
Clauses of size one are a special case

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v1’

BCP Algorithm (3/8)
We begin by processing the assignment v1 = F (which is implied by
the size one clause)

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

BCP Algorithm (3.1/8)
We begin by processing the assignment v1 = F (which is implied by
the size one clause)

To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

BCP Algorithm (3.2/8)
We begin by processing the assignment v1 = F (which is implied by
the size one clause)

To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.
We need not process clauses where a watched literal has been set to T,
because the clause is now satisfied and so can not become implied.

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

BCP Algorithm (3.3/8)
We begin by processing the assignment v1 = F (which is implied by
the size one clause)

To maintain our invariants, we must examine each clause where the
assignment being processed has set a watched literal to F.
We need not process clauses where a watched literal has been set to T,
because the clause is now satisfied and so can not become implied.
We certainly need not process any clauses where neither watched literal
changes state (in this example, where v1 is not watched).

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

BCP Algorithm (4/8)
Now let’s actually process the second and third clauses:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

State:(v1=F)

Pending:

BCP Algorithm (4.1/8)
Now let’s actually process the second and third clauses:

For the second clause, we replace v1 with v3’ as a new watched literal.
Since v3’ is not assigned to F, this maintains our invariants.

State:(v1=F)

Pending:

State:(v1=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

BCP Algorithm (4.2/8)
Now let’s actually process the second and third clauses:

For the second clause, we replace v1 with v3’ as a new watched literal.
Since v3’ is not assigned to F, this maintains our invariants.
The third clause is implied. We record the new implication of v2’, and add it
to the queue of assignments to process. Since the clause cannot again
become newly implied, our invariants are maintained.

State:(v1=F)

Pending:

State:(v1=F)

Pending:(v2=F)

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

BCP Algorithm (5/8)
Next, we process v2’. We only examine the first 2 clauses.

For the first clause, we replace v2 with v4 as a new watched literal. Since v4
is not assigned to F, this maintains our invariants.
The second clause is implied. We record the new implication of v3’, and add
it to the queue of assignments to process. Since the clause cannot again
become newly implied, our invariants are maintained.

State:(v1=F, v2=F)

Pending:

State:(v1=F, v2=F)

Pending:(v3=F)

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

BCP Algorithm (6/8)
Next, we process v3’. We only examine the first clause.

For the first clause, we replace v3 with v5 as a new watched literal. Since v5
is not assigned to F, this maintains our invariants.
Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Both v4 and v5 are unassigned. Let’s say we
decide to assign v4=T and proceed.

State:(v1=F, v2=F, v3=F)

Pending:

State:(v1=F, v2=F, v3=F)

Pending:

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

BCP Algorithm (7/8)
Next, we process v4. We do nothing at all.

Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. Only v5 is unassigned. Let’s say we decide to
assign v5=F and proceed.

State:(v1=F, v2=F, v3=F,
v4=T)

State:(v1=F, v2=F, v3=F,
v4=T)

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

BCP Algorithm (8/8)
Next, we process v5=F. We examine the first clause.

The first clause is implied. However, the implication is v4=T, which is a
duplicate (since v4=T already) so we ignore it.
Since there are no pending assignments, and no conflict, BCP terminates
and we make a decision. No variables are unassigned, so the problem is sat,
and we are done.

State:(v1=F, v2=F, v3=F,
v4=T, v5=F)

State:(v1=F, v2=F, v3=F,
v4=T, v5=F)

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

v2 + v3 + v1 + v4 + v5

v1 + v2 + v3’

v1 + v2’

v1’+ v4

The Timeline

1986
BDD

≈ 100 Var

1992
GSAT

≈ 300 Var

1996
Stålmarck
≈ 1000 Var

1996
GRASP
≈1k Var

1960
DP

≈10 var

1988
SOCRATES
≈ 3k Var

1994
Hannibal
≈ 3k Var

1962
DLL

≈ 10 var

1952
Quine
≈ 10 var

1996
SATO

Head/tail pointers
≈1k var

2001
Chaff

≈10k var

SATO
H. Zhang, M. Stickel, “An efficient algorithm for unit-propagation” Proc.
of the Fourth International Symposium on Artificial Intelligence and
Mathematics, 1996. (7 citations)
H. Zhang, “SATO: An Efficient Propositional Prover” Proc. of
International Conference on Automated Deduction, 1997. (40 citations)

The Invariants
Each clause has a head pointer and a tail pointer.
All literals in a clause before the head pointer and after the tail pointer
have been assigned false.
If a clause can become newly implied via any sequence of assignments,
then this sequence will include an assignment to one of the literals
pointed to by the head/tail pointer.

Chaff vs. SATO: A Comparison of BCP

Chaff:

SATO:

v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

Chaff vs. SATO: A Comparison of BCP

Chaff:

SATO: v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

Chaff vs. SATO: A Comparison of BCP

Chaff:

SATO:

v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

Chaff vs. SATO: A Comparison of BCP

Chaff:

SATO: v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

Chaff vs. SATO: A Comparison of BCP

Chaff:

SATO: v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

Implication

Chaff vs. SATO: A Comparison of BCP

Chaff:

SATO: v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

Chaff vs. SATO: A Comparison of BCP

Chaff:

SATO: v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

v1 + v2’ + v4 + v5 + v8’ + v10 + v12 + v15

Backtrack

BCP Algorithm Summary
During forward progress: Decisions and Implications

Only need to examine clauses where watched literal is set to F
Can ignore any assignments of literals to T
Can ignore any assignments to non-watched literals

During backtrack: Unwind Assignment Stack
Any sequence of chronological unassignments will maintain our
invariants

So no action is required at all to unassign variables.
Overall

Minimize clause access

Decision Heuristics –
Conventional Wisdom

DLIS is a relatively simple dynamic decision heuristic
Simple and intuitive: At each decision simply choose the assignment
that satisfies the most unsatisfied clauses.
However, considerable work is required to maintain the statistics
necessary for this heuristic – for one implementation:

Must touch *every* clause that contains a literal that has been set to true.
Often restricted to initial (not learned) clauses.
Maintain “sat” counters for each clause
When counters transition 0 1, update rankings.
Need to reverse the process for unassignment.

The total effort required for this and similar decision heuristics is *much
more* than for our BCP algorithm.

Look ahead algorithms even more compute intensive
C. Li, Anbulagan, “Look-ahead versus look-back for satisfiability
problems” Proc. of CP, 1997. (7 citations)

Chaff Decision Heuristic -
VSIDS

Variable State Independent Decaying Sum
Rank variables by literal count in the initial clause database
Only increment counts as new clauses are added.
Periodically, divide all counts by a constant.

Quasi-static:
Static because it doesn’t depend on var state
Not static because it gradually changes as new clauses are added

Decay causes bias toward *recent* conflicts.

Use heap to find unassigned var with the highest ranking
Even single linear pass though variables on each decision would dominate
run-time!

Seems to work fairly well in terms of # decisions
hard to compare with other heuristics because they have too much overhead

Interplay of BCP and Decision
This is only an intuitive description …

Reality depends heavily on specific instance
Take some variable ranking (from the decision engine)

Assume several decisions are made
Say v2=T, v7=F, v9=T, v1=T (and any implications thereof)

Then a conflict is encountered that forces v2=F
The next decisions may still be v7=F, v9=T, v1=T !
But the BCP engine has recently processed these assignments … so these
variables are unlikely to still be watched.
Thus, the BCP engine *inherently does a differential update.*

And the Decision heuristic makes differential changes more likely to
occur in practice.

In a more general sense, the more “active” a variable is, the more
likely it is to *not* be watched.

The Timeline
2002

BerkMin
Emphasize clause activity

≈10k var

2001
Chaff

≈10k var

1986
BDD

≈ 100 Var

1992
GSAT

≈ 300 Var

1996
Stålmarck
≈ 1000 Var

1996
GRASP
≈1k Var

1960
DP

≈10 var

1988
SOCRATES
≈ 3k Var

1994
Hannibal
≈ 3k Var

1962
DLL

≈ 10 var

1952
Quine
≈ 10 var

1996
SATO
≈1k Var

Post Chaff Improvements —
BerkMin
E. Goldberg, and Y. Novikov, “BerkMin: A Fast and Robust Sat-Solver”, Proc.

DATE 2002, pp. 142-149.
Decision strategy

Make decisions on literals that are more recently active
Measure a literal’s activity based on its appearance in both conflict
clauses and the antecedent clauses of conflict clauses

Clause deletion strategy
More aggressive than that in Chaff
Delete clauses not only based on their length but also on their
involvement in resolving conflicts

BerkMin
Emphasize active clauses in deciding variables

Conflict Clause:

V1’+V4’+V5

V1’+V5 +V2’

V1’+V4’ +V2

Implied
variables

Decision
Variables

Previous
Assignments

v5=0

v1=1

v4=1

v2=0

v2=1

BerkMin
Emphasize active clauses in deciding variables

Conflict Clause:
V1’+V4’+V5

Chaff measures a literal’s activity only by its appearances in conflict clauses

Clauses taken to be active
in Chaff:

V1’+V4’+V5

V1’+V5 +V2’

V1’+V4’ +V2

Implied
variables

Decision
Variables

Previous
Assignments

v5=0

v1=1

v4=1

v2=0

v2=1

BerkMin
Emphasize active clauses in deciding variables

Conflict Clause:

V1’+V4’+V5

BerkMin measures a literal’s activity by its appearances
in clauses involved in conflicts

Clauses taken to be active
in BerkMin:

V1’+V4’+V5

V1’+V5+V2’

V1’+V4’+V2

V1’+V5 +V2’

V1’+V4’ +V2

Implied
variables

Decision
Variables

Previous
Assignments

v5=0

v1=1

v4=1

v2=0

v2=1

Utility of a Learned Clause

Utility Metric is the number of times a clause is
involved in generating a new useful (conflict
generating) clause.
Most clauses have zero utility metric.

They are not useful for proving unsatisfiability!
They shouldn’t be kept in database!

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1

Utility MetricC
um

ul
at

iv
e

co
un

t p
er

ce
nt

ile

0 2 4 6 8 10 12
x 104

0

0.2

0.4

0.6

0.8

1

Utility MetricC
um

ul
at

iv
e

co
un

t p
er

ce
nt

ile

Utility of a Learned Clause

0 2 4 6 8 10 12
x 104

0

0.2

0.4

0.6

0.8

1

The number of decisions between the generation of a clause and
its use in generating a new useful conflict clause

Num. of Decisions

C
um

ul
at

iv
e

C
ou

nt
 P

er
ce

nt
ile

If a clause is useful, it will usually be used soon.

The Timeline

2002
BerkMin
≈10k var

2002
2CLS+EQ
≈1k var

2001
Chaff

≈10k var

1986
BDD

≈ 100 Var

1992
GSAT

≈ 300 Var

1996
Stålmarck
≈ 1000 Var

1996
GRASP
≈1k Var

1960
DP

≈10 var

1988
SOCRATES
≈ 3k Var

1994
Hannibal
≈ 3k Var

1962
DLL

≈ 10 var

1952
Quine
≈ 10 var

1996
SATO
≈1k Var

Post Chaff Improvements —
2CLS+EQ

F. Bacchus “Exploring the Computational Tradeoff of more
Reasoning and Less Searching”, Proc. 5th Int. Symp. Theory and
Applications of Satisfiability Testing, pp. 7-16, 2002.
Extensive Reasoning at each node of the search tree

Hyper-resolution
x1+x2+ ••• +xn, x1+y, x2+y, •••, xn-1+y resolved as xn+y
Hyper resolution detects the same set of forced literals as iteratively doing
the failed literal tests

Equality reduction
If formula F contains a’+b and a+b’, then replace every occurrence of a(b)
with b(a) and simplify F

Demonstrate that deduction techniques other than UP (Unit Propagation)
can pay off in terms of run time.
Scalability with increasing problem size?

Summary
Rich history of emphasis on practical efficiency.
Presence of drivers results in maximum progress.
Need to account for computation cost in search space pruning.
Need to match algorithms with underlying processing system architectures.
Specific problem classes can benefit from specialized algorithms

Identification of problem classes?
Dynamically adapting heuristics?

We barely understand the tip of the iceberg here – much room to learn and
improve.

Acknowledgements

Princeton University SAT group:
Daijue Tang
Yinlei Yu
Lintao Zhang

Chaff authors:
Matthew Moskewicz
Conor Madigan

