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Chapter 1

Introduction

Every book tells a story – even if the story sometimes meanders, and the book
is full of mathematical symbols. So, let the story begin.

1.1 Agents in Action

Recent years saw a new discipline emerging within the broad field of Artificial In-
telligence.Multi-agent systems(Weiss, 1999; Wooldridge, 2002) are a philosophical
metaphor that induces a specific way of seeing the world, and makes us use agent-
oriented vocabulary when describing the phenomena we are interested in – rather than
offering a ready-to-use collection of tools and implementation guidelines. Thus, while
some researchers present multi-agent systems as a new paradigm for computation or
design, we believe that primarily multi-agent systems forma new paradigm forthink-
ing andtalking about the world, and assigning it a specific conceptual structure. They
offer a bunch of intuitions that can be useful when the reality around seems to include
multiple autonomous entities. Obviously, such intuitionsmay be useful when studying
computational systems and societies of artificial agents, too. We can see components
of such systems as being autonomous, perhaps intelligent, definitely active or even
pro-active... having some goals and beliefs... et cetera.

A multi-agent system is an environment, inhabited by multiple agents. What is an
agentthen? Despite numerous attempts to answer this question, weare not quite sure
if it is well-formed, since it asks in fact for a precise definition of the term “agent”. The
metaphor of a multi-agent system seems to build on the intuition thatweare agents –
we, humans – and that other entities we study can be just like us to some extent. The
usual properties of agents, like autonomy, pro-activenessetc., seem to be secondary:
they are results of an introspection rather than primary assumptions we start with. Thus,
there seems to be no conclusive definition of an agent – indeed, can we ever come up
with such a definition? It is hard todefineourselves.

We are not going to define agents nor multi-agent systems in this thesis. We would
rather like to look for a vocabulary and a conceptual structure that approximate our
intuitions about agents and their communities in a good way.

The focus of this thesis is on agents’ decision-making. Thisis the theme that links

15



16 CHAPTER 1. INTRODUCTION

the whole “story” together, through all its unexpected changes of direction, and side-
line digressions. Agentsact in their environments, and somehow they should be able
to choose the best actions. Or reasonably good actions at least. Plans, strategies, de-
cisions, choices: these are synonyms that refer to an agent (or a group of agents) ex-
ecuting some action. We would like to exploit the insight they can provide. How can
they be represented? In what way can they depend on the agent’s current view of the
world? Because, in order to consider some plan best (or reasonably good), the agent
must have some (implicit or explicit) representation of hisenvironment of action.

The title of the thesis has a double meaning. There are many different models that
we can use to represent the same reality, and some of them are presented and studied
in the first part of the thesis. Moreover, having multiple competing models at hand,
agents may be better off combining them in some way, instead of sticking to one of
the models and disregarding the others – and this is what the second part of the thesis
proposes.

1.2 Models for Agents in Multi-Agent Environments

An agent must have a model of reality in order to make his decisions. The same en-
vironments and situations can be modeled using many different methodologies and
conceptual apparata. In particular, the models can beadaptive– changing their con-
tents, structure, or the way they influence the agent’s choices over time – ornormative
– based on some fixed assumptions about the nature of the reality, and the right ways
to proceed.1 The first kind of models is usually obtained through some sortof machine
learning, statistical analysis etc.; if the agent can buildup accurate knowledge about
the environment, he can certainly benefit from adapting his actions to it. Normative
models usually assume the worst possible response from the rest of the world. In con-
sequence, they refer to the lower bound of the agent’s abilities, and provide the agent
with means to playsaferather than brilliant.

Each kind of models proposes a set of notions that can be used to explore the reality
and reason about it. This thesis is concerned with logic-based (normative) models of
multi-agent systems, and the way these models can be combined with adaptive solu-
tions, so the agents can be more flexible in their actions, while still being relatively
secure. In consequence, the thesis includes two main tracks. The first track is focused
on qualitative models of multi-agent systems, that draw inspiration from modal logics
of processes as well as classical game theory. The second track deals with a concept of
multi-level modeling of reality, where various models of the same environment can be
combined to improve decision making.

1We use the term “normative” in the sense that the models we talk about here (e.g. game theory models)
impose somea priori assumptions about the behavior of the environment in an authoritative way, and pre-
scribe fixed rules of “best behavior” for the agent. We do not mean, however, that the rules and assumptions
refer in any way to moral norms, social norms or any other deontic concept.
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1.2.1 Modal Logics and Multi-Agent Systems

Logic-based approaches to Artificial Intelligence seem to be presently undervalued by
most AI practitioners. This owes much to the fact that logic was believed to deliver
the ultimate solution for all basic AI problems for a long time, and the disappoint-
ment which came after that. Indeed, it is hard to claim now that we can use logic-based
tools (rule-based systems, for instance) to obtain agents that behave in a satisfying way.
Despite recent development of logic-based tools for multi-agent systems, their appli-
cations restrict mainly to artificial “toy worlds”, as opposed to the real world which is
usually fuzzy, noisy and, most of all, hard to characterize with a simple mathematical
model. However, we believe that mathematical logic – while probably not the best tool
for engineering – should still be important in AI research for at least two reasons.

First, it provides us with a vocabulary fortalking about systems, and gives the
vocabulary precise meaning via models and semantic rules. More importantly, mathe-
matical models provide a conceptual apparatus forthinkingabout systems, that can be
as well used outside mathematical logic. The second reason is that creating a formal
model of a problem makes one realize many (otherwise implicit) assumptions under-
lying his or her approach to this problem. The assumptions are often given a simplistic
treatment in the model (otherwise the models get too complexto be dealt with), yet
their implications are usually worth investigating even inthis form. Moreover, having
made them explicit, one can strive to relax some of them and still use a part of the
formal and conceptual machinery – instead of designing solutions completely ad hoc.

Part I of the thesis investigates such oversimplistic, hardto use, and yet highly in-
teresting models of multi-agent systems. We focus on modal logics with their clear and
intuitively appealing conceptual machinery ofpossible world semantics(akaKripke
semantics). The logics we investigate draw from the long tradition of philosophical
studies on human behavior and the behavior of the world in general, that yielded epis-
temic logic, deontic logic, temporal logic etc. In particular, we investigate Alternating-
time Temporal Logic and its extensions, with their conceptual apparatus originating
from the classical game theory. As game theory emerged in an attempt to give precise
meaning to common-sense notions like choices, strategies,rationality – and to provide
formal models of interaction between autonomous entities,it seems a perfect starting
point for modeling and reasoning about multi-agent systems.

It should be pointed out that the modal logics for multi-agent systems (and their
models) can be used in at least two ways. First, we may strive to represent an objec-
tive observer’s view to a multi-agent system with the instruments they provide. This
is the viewpoint we usually adopt while talking about “specification”, “design”, “veri-
fication” etc. The observer (e.g., the designer or the administrator of the system) may
collect all relevant aspects of the system in a Kripke model,and then derive or verify
certain properties of this model. Or, the designer can specify some desirable properties
of a system, and then try to engineer a model in which those properties hold.

On the other hand, the models can be also used to express asubjectiveview of an
agent to the reality he is acting in. In such a case, the agent can represent his knowledge
about the world with a model, and ask about properties of the world via the properties of
the model, or, more importantly, look for a strategy that makes some desirable property
true in the model.
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1.2.2 Relaxing the Assumptions to Obtain Adaptivity

Logic-based models (or, more generally, mathematical models) are widely used, and
their importance goes well beyond mathematical theories ofcomputing. Decision trees,
control flow charts, data flow charts, Q-models, Bayesian nets and classifiers, statisti-
cal models, fuzzy sets and fuzzy measures (including possibility and probability mea-
sures), and even neural networks to some extent – they all belong to this class. It is
probably the inflexibility of decision-making procedures,provided by “pure” math-
ematical methods, that seems to yield severe limitations for the applicability of the
methods to real-life problems. The machine learning approach emphasizes the impor-
tance of flexibility and robustness of agents, through an attempt to obtain an accurate
and up-to-date model of the world. Models areadaptivenot because of their inherent
structure, but because of the way they are built up and maintained.

An agent can learn to exploit weaknesses of his adversary, toconverge with a dy-
namic, possibly indifferent environment, or to learn trustand cooperation with other
agents. In most cases the representation of the environmentis quantitative, not qualita-
tive – hence the goal of the agent is to maximize his numericalreward (payoff, utility)
in the long run. The popular decision making criterion of expected payoff maximiza-
tion (with respect to the agent’s current knowledge about the environment) shows yet
another influence of the mathematical methods from game theory and decision theory.
However, no learning algorithm can guarantee an accurate model of the environment,
and that is why game theory solutions are still attractive when a wrong decision can
bring disastrous results. So, we try to relax the game theoryassumptions in Part II of
the thesis, in a way that does not give up the security offeredby game theory-inspired
solutions completely.

1.3 Structure of the Thesis

The thesis is divided into two parts. Part I presents severalmodal logics that can be used
to model and describe agents and their communities. We show the similarities between
various languages that have been already proposed, and study how the conceptual ma-
chinery they provide matches our intuitive understanding of the notion of agency. As
agents are, most of all, supposed to act, we use the “planningas model checking”
paradigm to obtain a planning algorithm that can be used within these frameworks.

Part II presents an idea of hierarchical modeling of the reality, and multilevel deci-
sion making. In the presentation, we focus on the way the ideacan be used to combine
the adaptivity of machine learning approaches with the security offered by normative
solutions similar to the ones presented in Part I.

1.3.1 Part I: Around Alternating-time Temporal Logic

We use Chapters 2 and 3 to draw parallels between several logics that have been re-
cently proposed to reason about agents and their abilities.These are: coalition game
logics CL and ECL introduced by Pauly in 2000, alternating-time temporal logic ATL
developed by Alur, Henzinger and Kupferman between 1997 and2002, and alternating-



1.3. STRUCTURE OF THE THESIS 19

time temporal epistemic logic ATEL by van der Hoek and Wooldridge (2002), as well
as the modal logic of beliefs, desires and intentions (BDI),proposed by Rao and
Georgeff in mid-90s. The focus in this part of the thesis is onmodels: alternating
transition systems, multi-player game models (alias concurrent game structures) and
coalition effectivity models turn out to be intimately related, while alternating epis-
temic transition systems and BDI models share much of their philosophical and formal
apparatus. Our approach is constructive: we present ways totransform between differ-
ent types of models and languages.

First, Alternating-time Temporal Logic and Coalition Logic are introduced and dis-
cussed in Chapter 2. We present the syntax and semantics of these logics, and show that
both their languages and models have very much in common. In the conceptual sense,
both CL and ATL build upon branching-time temporal logics like CTL; they both in-
corporate the game-theoretic notion of strategy, and both ask about what properties can
be infallibly enforcedby which agents or teams. In the formal sense, important sub-
classes of ATL and CL models can be proved isomorphic, and we can prove that the
expressive power of CL is covered by ATL. The chapter is concluded with a simple
adaptation of the ATL model checking algorithm so that it canbe used for decision
making in environments inhabited by multiple agents.

Then, in Chapter 3, Alternating-time Temporal Epistemic Logic is discussed. This
logic enriches ATL with an epistemic component to enable modeling (and reasoning
about) agents’ beliefs under uncertainty. We present a few formal results, relating the
conceptual and formal apparatus of ATEL to to these of ATL andthe BDI framework,
and allowing to use the planning algorithm from Chapter 2 forATEL and BDI agents as
well. Unfortunately, ATEL semantics turns out to be counterintuitive in some respects.
In Chapter 4 we show that the notion of allowable strategy under uncertainty should be
defined with some caution, and we point out the difference between an agent knowing
that he has a suitable strategy and knowing the strategy itself. We also suggest that
the agents should be assumed to have similar epistemic capabilities in the semantics of
both strategic and epistemic operators. Trying to implement these ideas, we propose
two different modifications of ATEL. The first one, dubbed Alternating-time Temporal
Observational Logic (ATOL), is a logic for agents with bounded recall of the past. The
second, ATEL-R*, is a framework to reason about both perfectand imperfect recall.

The generic framework of ATL can be extended along various dimensions. Another
extension of ATL – this time with the notion of agents’ obligations – is proposed and
discussed in Chapter 5. The way both frameworks are combinedis straightforward:
we add deontic accessibility relations to ATL models, and deontic operators to the lan-
guage of ATL (an additional operatorUP is proposed for “unconditionally permitted”
properties, similar to the “all I know” operator from epistemic logic). Some formal
results are presented; however, we rather focus on demonstrating how obligations of
agents can be confronted with their abilities.

1.3.2 Part II: Security vs. Adaptivity, Multilevel Decision Making

Chapter 6 opens the less logically-oriented part of the thesis. It is suggested that an
agent does not have to stick to a single model of the reality; instead he can possess a set
of complementary beliefs, both learned and assumed, and usethem proportionally to
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the confidence he has in them. A hierarchy of beliefs for an agent is proposed here, to-
gether with a decision making scheme. Chapter 7 reports the research on a confidence
measure that suits the decision making based on hierarchiesof models. We conjecture
that there are roughly two sources of doubt that should decrease the agent’s confidence
in his own beliefs about the world. First, the agent may have too little data. This shows
the need for a confidence measure in an obvious way: when a software agent starts
interaction with a completely new user, for instance, his knowledge about the user is
virtually none – yet it is utilized in the same way by most algorithms regardless of the
number of learning steps that have been taken so far. Next, the environment might have
changed considerably, so the data do not reflect its current shape. The agent can cer-
tainly benefit from detecting conspicuous changes of pattern in the user’s behavior, and
acting more cautiously in such situations. In order to capture these phenomena, confi-
dence measures based on aggregate variance of the estimatorprovided by the learning
process, and on the self-information loss function are proposed and investigated, with
various degree of success.

Chapter 8 presents some experimental results to support theidea. The experiments
consisted of the agent’s interactions with simulated 0-, 1-and 2-level agents, acting as
customers of an imaginary Internet banking service. This isalso where both tracks of
the thesis come to a joint epilogue: ATL models and planning can be used within the
hierarchy of models to induce safer play in a more sophisticated environment. Finally,
some concluding remarks are proposed in Chapter 9.

1.3.3 Publications

The thesis builds on a number of papers, and the material fromthese papers was par-
tially used to form the contents of the thesis. The papers, and the chapters they were
used in, are indicated below:

• Chapter 2 uses a part of (Goranko and Jamroga, 2004), and mostof (Jamroga,
2004); also, some remarks from (Jamroga, 2003d) and (Jamroga and van der
Hoek, 2003) are elaborated there;

• Chapter 3 builds upon another part of (Goranko and Jamroga, 2004).

• Chapter 4 uses most of (Jamroga and van der Hoek, 2004);

• Chapter 5 is based on (Jamroga et al., 2004);

• Chapter 6 builds upon (Jamroga, 2002b) and (Jamroga, 2001b);

• Chapter 7 presents the research already reported in (Jamroga, 2003a), (Jamroga,
2002a) and (Jamroga, 2003b);

• Chapter 8 uses the results from (Jamroga, 2003c) to some extent.
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Chapter 2

Models and Logics of Strategic
Ability

SYNOPSIS. As stated in Chapter 1, we are going to study agents and their
environments within this thesis. The agents’ choices, abilities, beliefs, obliga-
tions. Ways of modeling the reality around, planning, decision making. Using
a popular term: we are going to study agents that act inmulti-agent systems.

But – what is a multi-agent system? This question can be answered either
in a formal, or an informal way. We investigate severalformal models of
multi-agent systems in this chapter, hoping that this can induce some informal
understanding of the phenomenon as well.

2.1 Introduction

In this chapter we offer a comparative analysis of several recent logical enterprises that
aim at modeling multi-agent systems. Most of all, thecoalition game logicCL and
its extended version ECL (Pauly, 2002, 2001b,a), and theAlternating-time Temporal
LogicATL (Alur et al., 1997, 1998a, 2002) are studied. These turn out to be intimately
related, which is not surprising since all of them deal with essentially the same type of
scenarios, viz. aset of agents(players, system components) taking actions, simultane-
ously or in turns, on a common set of states – and thus effecting transitions between
these states. The game-theoretic aspect is very prominent in both approaches; further-
more, in both frameworks the agents pursue certain goals with their actions and in that
pursuit they can formcoalitions. In both enterprises the objective is to develop formal
tools for reasoning about such coalitions of agents and their ability to achieve specified
outcomes in these action games.

The study of Alternating-time Temporal Logic and coalitionlogic, presented in
this chapter, forms a basis for the first part of the thesis. The logics have clear possible
worlds semantics, are axiomatizable, and have some interesting computational prop-
erties. Even these features alone may make them attractive for a logician. However,
our motivation goes much beyond that. The logics are underpinned by a clear and in-
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tuitively appealing conceptual machinery for talking andthinkingabout systems that
involve multiple autonomous agents. The basic notions, used here, originate from clas-
sical game theory, which emerged in an attempt to give precise meaning to common-
sense notions like choices, strategies, or rationality – and to provide formal models of
interaction between autonomous entities, that could be used in further study. Thus, the
notions and models were meant to describe real-life phenomena that occur in commu-
nities of individual and collective agents (e.g., companies). In fact, game theory have
always been considered as much a part of mathematics as it is apart of economics
(recall the title of the book by von Neumann and Morgenstern,that gave birth to the
whole discipline: “Games inEconomicBehavior”).

Of course, the treatment of interaction, given by von Neumann, Morgenstern and
Nash,is oversimplistic, and its fundamental philosophical merit has also been ques-
tioned.1 One may even argue whether modeling of intelligent agents and their inter-
action can be done with the tools of mathematics and formal logic at all (Winograd
and Flores, 1986; Pfeifer and Scheier, 1999). However, having a formal model of a
problem makes one realize many (otherwise implicit) assumptions underlying his or
her approach to this problem. Then – we can study implications of the assumptions,
and accept them or revise them (the way we do in Chapter 4); we can extend the mod-
els with additional notions (like the notions of knowledge and obligation in Chapters 3
and 5), or we can strive to relax some of the assumptions in a systematic way (cf.
Chapters 6, 7 and 8, where a combination of game theory-basedand adaptive decision
making is studied). Modal logics that embody basic game theory notions – and at the
same time build upon (and extend) branching-time temporal logics, well known and
studied in the context of computational systems – seem a goodstarting point for this.

The chapter is organized as follows: first, a brief summary ofthe basic concepts
from game theory and computation tree logic is offered; thenwe introduce the main
“actors” of this study – logics and structures that have beenrecently proposed for mod-
eling multi-agent systems in a temporal perspective, including all relevant definitions
from (Pauly, 2002, 2001a; Alur et al., 1998a, 2002).2 In Section 2.7, the relationships
between these logics and structures are investigated in a formal way. The main results
are the following:

• we show that specific classes of multi-player game models (MGMs in short) are
equivalent to some types of alternating transition systems(ATSs);

• we show that ATL subsumes CL as well as ECL;

• we show that the three alternative semantics for Alternating-time Temporal Logic
and Coalition Logics (based on multi-player game models, alternating transition
systems and coalition effectivity models) are equivalent.

Obviously, each of the three alternative semantics for ECL and ATL, investigated here,
has its own drawbacks and offers different advantages for practical use. A few remarks
on this issue can be found in Section 2.7.4.

1Consider this quote from (Shubik, 1998): “Rational Behavior [is]: greed, modified by sloth, constrained
by formless fear and justifiedex postby rationalization.”

2We make small notational changes here and there to make the differences and common features between
the models and languages clearer and easier to see.
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The models (and languages) of ATL and CL can be used in at leasttwo ways.
First, they may represent an objective observer’s view to a multi-agent system. This is
the viewpoint we usually adopt while talking about “specification”, “design”, “verifi-
cation” etc. The observer (e.g., the designer or the administrator of the system) may
collect all relevant aspects of the system in an MGM, and thenderive or verify certain
properties on this MGM (via model checking, for instance). Or, the designer can spec-
ify some desirable properties of a system, and then try to engineer an MGM in which
those properties hold (this procedure corresponds to the satisfiability problem).

On the other hand, the models can be also used to express asubjectiveview of
an agent to the reality he is acting in. In such a case, the agent can represent his
knowledge about the world with an MGM or ATS, and ask about properties of the world
via model checking of respective ATL formulae. In particular, agents who use multi-
player game models or alternating transition systems can benefit from the “planning as
model checking” idea. We show how the ATL model checking algorithm from (Alur
et al., 2002) can be adapted to support planning in Section 2.8.

The results from this chapter prepare the ground for subsequent chapters. Since
ATL has strictly more expressive power than CL and ECL, we canstick to ATL as our
device for reasoning about agents without any loss of generality. As the three alterna-
tive semantics of ATL turn out to be equivalent, we can use them (and the semantic
structures behind them) interchangeably without paying much attention to the actual
choice. This proves very convenient while defining extendedlanguages like ATEL,
ATOL or DATL, as well as semantic structures capable to represent agents’ beliefs,
obligations, and strategic abilities under uncertainty. The subsequent chapters propose
also how model checking for ATEL and DATL can be reduced to ATLmodel checking,
yielding an efficient planning procedure for epistemic and deontic goals, too.

This chapter builds upon a number of papers: most notably (Goranko and Jamroga,
2004), a paper co-written with Valentin Goranko from the Rand Afrikaans Univer-
sity, and (Jamroga, 2004). Also, (Jamroga, 2003d) and (Jamroga and van der Hoek,
2003) were used here to some extent. It should be pointed out that the main equiva-
lence/subsumption results from Sections 2.5 and 2.7 were already published by Goranko
in (Goranko, 2001). A similar proof of the equivalence between the ATL semantics
based on alternating transition systems and concurrent game structures was proposed
independently in (Jamroga and van der Hoek, 2003).

2.2 Basic Influences: Logic Meets Game Theory

ATL and CL have clearly been inspired by some fundamental concepts – coming from
both game theory and modal logics of computation – that enable to model and reason
about situations in which no uncertainty is taken into account. We try to sketch the
concepts in this section.

2.2.1 Classical Game Theory

Logics of agents and action build upon several important concepts from game the-
ory, most of them going back to the 40s and the seminal book (von Neumann and
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Figure 2.1: Extensive and strategic form of the matching pennies game: the perfect
information case.

Morgenstern, 1944). We start with an informal survey of these concepts, following
mostly Hart (1992). An interested reader is referred to (Aumann and Hart, 1992; Os-
borne and Rubinstein, 1994) for a more extensive introduction to game theory.

In game theory, a game is usually presented in its extensive and/or strategic form.
Theextensive formdefines the game via a tree of possible positions in the game (states),
game moves (choices) available to players, and the outcome (utility or payoff) that
players gain at each of the final states. These games are usually turn-based, i.e. every
state is assigned a player who controls the choice of the nextmove, so the players are
taking turns. Astrategyfor playera specifiesa’s choices at the states controlled bya.

Thestrategic formconsists of a matrix that presents the payoffs for all combinations
of players’ strategies. It presents the whole game in a “snapshot” as if it was played in
one single move, while the extensive form emphasizes control and information flow in
the game.

Example 2.1 Consider a variant of thematching penniesgame. There are two players,
each with a coin: firsta1 chooses to show the heads (actionh) or tails (t), thena2 does.
If both coins are heads up or both coins are tails up, thena1 wins (and gets score of1)
anda2 loses (score0). If the coins show different sides, thena2 is the winner.

The extensive and strategic forms for this game are shown in Figure 2.1. The strate-
gies define agent’s choices at all “his” nodes, and are labeled appropriately:q1tq2h
denotes, for instance, a strategy fora2 in which the player chooses to show heads
whenever the current state of the game isq1, and tails atq2. Note that – using this
strategy –a2 wins regardless of the first move froma1. �

Section 3.2 shows how the concepts of strategic and extensive game forms can be
extended to tackle games that involve players’ uncertaintyas well.

A general remark is in order here. The concept of coalitionalgame, traditionally
considered in game theory, where every possible coalition is assigned a real number
(its worth), differs somewhat from the one considered here. In this study we are rather
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Figure 2.2: Transitions of the variable controller/clientsystem, together with the tree
of possible computations.

concerned withqualitativeaspects ofgame structuresrather than withquantitative
analysis of specificgames.

2.2.2 Computational Tree Logic

Apart from game theory, the concepts investigated in this chapter are strongly in-
fluenced by modal logics of computations, such as thecomputation tree logicCTL.
CTL (Emerson, 1990; Huth and Ryan, 2000) involves several operators for temporal
properties of computations in transition systems:A (for all paths), E (there is a path),
g (nexttime), 3 (sometime), 2 (always) and U (until). “Paths” refer to alternative

courses of events that may happen in the future; nodes on a path denote states of the
system in subsequent moments of time along this particular course. Typically, paths
are interpreted as sequences of successive states of computations.

Example 2.2 As an illustration, consider a system with a binary variablex. In every
step, the variable can retain or change its value. The statesand possible transitions are
shown in Figure 2.2. There are two propositions available toobserve the value ofx:
“x=0” and “x=1” (note: these are just atomic propositions,= is not the equality symbol
here). Then, for example,E3x=1 is satisfied in every state of the system: there is a
path such thatx will have the value of1 at some moment. However, the above is not
true foreverypossible course of action:¬A3x=1. �

It is important to distinguish between thecomputational structure, defined explic-
itly in the model, and thebehavioral structure, i.e. the model of how the system is
supposed to behave in time (Schnoebelen, 2003). In many temporal models the com-
putational structure is finite, while the implied behavioral structure is infinite. The
computational structure can be seen as a way of defining the tree of possible (infinite)
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computations that may occur in the system. The way the computational structure un-
ravels into a behavioral structure (computation tree) is shown in Figure 2.2, too.

2.2.3 Other Logics of Action and Agency

The logics studied here have a few things in common. They are intended for reasoning
about various aspects of multi-agent systems and multi-player games, they are multi-
modal logics, they have been obviously inspired by game theory, and they are based on
the temporal logic approach. A number of other proposals, such as the dynamic logic-
basedintention logic(Cohen and Levesque, 1990), the KARO framework (van Linder
et al., 1998) or thedynamic epistemic logic(van Benthem, 2001), will not be discussed
here. A broader survey of logic-based approaches to multi-agent systems can be found
in (Fagin et al., 1995) and (van der Hoek and Wooldridge, 2003c).

One related body of work, however, should be briefly mentioned: namely, the “stit”
logic – the logic ofseeing to it that(Belnap and Perloff, 1988; Belnap, 1991). Such log-
ics contain anagentivemodality, which attempts to capture the idea of an agentcausing
some state of affairs. This modality, typically written[i stit ϕ], is read as “agenti sees
to it thatϕ”. The semantics of stit modalities are typically given as[i stit ϕ] iff imakes
a choicec, andϕ is a necessary consequence of choicec (i.e.,ϕ holds in all futures
that could arise throughi making choicec). A distinction is sometimes made between
the “generic” stit modality and thedeliberatestit modality “dstit” (Horty and Belnap,
1995); the idea is thati deliberately sees to it thatϕ if [i stit ϕ] and there is at least one
future in whichϕ does not hold (the intuition being thati is then making adeliberate
choicefor ϕ, asϕ would not necessarily hold ifi did not make choicec). The logics
of ATL and CL, which we study in the following sections, embody somewhat similar
concerns. However, they are underlain by fundamentally different semantic constructs.
Moreover, stit formulae assert that an agentmakesa particular choice, whereas we have
no direct way of expressing this in ATL nor CL.

2.3 Coalition Logics and Multi-Player Game Models

Coalition logic (CL), introduced in (Pauly, 2001b, 2002), formalizes reasoning about
powers of coalitions in strategic games. It extends classical propositional logic with a
family of (non-normal) modalities[A], A ⊆ Agt, whereAgt is a fixed set of players.
Intuitively, [A]ϕ means that coalitionA canenforcean outcome state satisfyingϕ.

2.3.1 Multi-Player Strategic Game Models

Game frames(Pauly, 2002), represent multi-player strategic games where sets of play-
ers can form coalitions in attempts to achieve desirable outcomes. Game frames are
based on the notion of astrategic game form– a tuple〈Agt, {Σa | a ∈ Agt}, Q, o〉
consisting of:

• a non-empty finite set ofagents(or players) Agt,
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Figure 2.3: Transitions of the variable controller/clientsystem.

• a family of (non-empty) sets ofactions(choices, strategies) Σa for each player
a ∈ Agt,

• a non-empty set ofstatesQ,

• anoutcome functiono :
∏

a∈Agt Σa → Q which associates an outcome state in
Q to every combination of choices from all the players. By acollective choice
σA, we denote a tuple of choices〈σa〉a∈A (one for each player fromA ⊆ Agt),
and we writeo(σA, σAgt\A) with the presumed meaning.

Remark 2.1 Elements of setΣa were originally calledstrategiesin (Pauly, 2001b,
2002). Note that this notion of a “strategy” is local, wrapped into one-step actions. It
differs from the notion of a “strategy” in an extensive game form (used in the semantics
of ATL ) which represents a global, conditional plan of action. To avoid confusion, we
refer to the local strategies asactionsor choices, and use the termcollective choice
instead ofstrategy profilefrom (Pauly, 2002) to denote a combination of simultaneous
choices from several players.

Remark 2.2 A strategic game form defines the choices and transitions available at a
particular state of the game. If the identity of the state does not follow from the context
in an obvious way, we use indices to indicate which state theyrefer to.

The set of all strategic game forms for playersAgt over statesQ is denoted byΓAgt
Q .

A multi-player game framefor a set of playersAgt is a pair〈Q, γ〉whereγ : Q→ ΓAgt
Q

is a mapping associating a strategic game form with each state inQ. A multi-player
game model(MGM) for a set of playersAgt over a set of propositionsΠ is a triple
M = 〈Q, γ, π〉 where〈Q, γ〉 is a multi-player game frame, andπ : Q → P(Π) is a
valuationlabeling each state fromQ with the set of propositions that are true at that
state.

Example 2.3 Consider a variation of the system with binary variablex from Exam-
ple 2.2. There are two processes: the controller (or server)s can enforce the variable
to retain its value in the next step, or let the client change the value. The clientc can
request the value ofx to be0 or 1. The players proceed with their choices simulta-
neously. The multi-player game model for this system consists of two game forms,
defining choices and transitions for statesq0 andq1 respectively; the states and tran-
sitions of the system as a whole are shown in Figure 2.3. Again, we should make the
distinction between computational and behavioral structures. The multi-player game
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Figure 2.4: The tree of possible computations (assuming that q0 is the initial state).

model unravels into a computation tree in a way analogous to CTL models (Figure 2.4).
�

2.3.2 Coalition Logic

Formulae of CL are defined recursively as:

ϕ := p | ¬ϕ | ϕ ∨ ψ | [A]ϕ.

wherep ∈ Π is a proposition, andA ⊆ Agt is a group of agents. Every proposition
can be true in some states of the system, and false in the others; the exact truth val-
ues for a particular multi-player game modelM are given by functionπ. Coalitional
modalities[A] are the novelty here: the informal meaning behind[A]ϕ is that agentsA
can cooperate to ensure that the outcome of the (one-step) game satisfiesϕ.

Formally, the semantics of CL can be given via the clauses:

M, q |= p iff p ∈ π(q) for atomic propositionsp;

M, q |= ¬ϕ iff M, q 2 ϕ;

M, q |= ϕ ∨ ψ iff M, q |= ϕ orM, q |= ψ;

M, q |= [A]ϕ iff there is a collective choiceσA such that for every collective
choiceσAgt\A, we haveM, oq(σA, σAgt\A) |= ϕ.

Example 2.4 Consider the variable client/server system from Example 2.3. The fol-
lowing CL formulae are valid in this model (i.e. true in everystate of it):

1. (x=0 → [s]x=0) ∧ (x=1 → [s]x=1) : the server can enforce the value ofx to
remain the same in the next step;

2. x=0→ ¬[c]x=1 : c cannot change the value from0 to 1 on his own;

3. x=0→ ¬[s]x=1 : s cannot change the value on his own either;
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4. x=0→ [s, c]x=1 : s andc can cooperate to change the value.

�

2.3.3 Logics for Local and Global Effectivity of Coalitions

In CL, operators[A] can be seen as expressinglocal effectivityof coalitions, i.e. their
powers to force outcomes in a single game. In this sense, CL can be thought of as
reasoning aboutstrategic game forms. Pauly extends CL to theExtended Coalition
Logic ECL in (Pauly, 2001b), with operators for iterativeglobal effectivityof agents.
[A∗]ϕ says that coalitionA has a collective strategy to maintain the truth ofϕ in a
collection of gamesplayed repeatedly ad infinitum. Alternatively, we can see operators
[A] as a formalization of reasoning about a single move in a (possibly more complex)
game, and[A∗] as referring to an analysis of the entire game. In this case, both CL and
ECL formalize reasoning about different aspects ofextensive game forms, representing
sequences of moves, collectively effected by the players’ actions.

Since ECL can be embedded as a fragment of ATL (as presented inSection 2.5),
we will not discuss it separately here.

2.4 Alternating-Time Temporal Logic and Its Models

Game-theoretic scenarios can occur in various situations,one of them beingopen com-
puter systemssuch as computer networks, where the different components can act as
relatively autonomous agents, and computations in such systems are effected by their
combined actions. TheAlternating-time Temporal LogicsATL and ATL*, introduced
in (Alur et al., 1997), and later refined in (Alur et al., 1998a, 2002), are intended to
formalize reasoning about computations in such open systems which can be enforced
by coalitions of agents, in a way generalizing the logics CTLand CTL*.

2.4.1 The Full Logic of ATL*

In ATL* a class ofcooperation modalities〈〈A〉〉 replaces the path quantifiersE andA.
The common-sense reading of〈〈A〉〉Φ is:

“The group of agents A have a collective strategy to enforce Φ re-
gardless of what all the other agents do”.

Φ can be any temporal formula that refers to properties of a path (so calledpath for-
mula). A dual operator[[A]] can be defined in the usual way as[[A]]Φ ≡ ¬〈〈A〉〉¬Φ,
meaning thatA cannot avoidΦ on their own. The original CTL* operatorsE andA

can be expressed in ATL* with〈〈Agt〉〉 and〈〈∅〉〉 respectively, but between both ex-
tremes one can express much more about the abilities of particular agents and groups
of agents. ATL* inherits all the temporal operators from CTL*: g (nexttime), 3

(sometime), 2 (always) and U (until).
The full, unrestricted version of Alternating-time Temporal Logic ATL* consists

of state formulae and path formulae. A state formula is one ofthe following:
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• p, wherep is an atomic proposition;

• ¬ϕ orϕ ∨ ψ, whereϕ, ψ are ATL* state formulae;

• 〈〈A〉〉Φ, whereA ⊆ Agt is a set of agents, andΦ is an ATL* path formula.

A path formula is one of the following:

• an ATL* state formula;

• ¬ϕ orϕ ∨ ψ, whereϕ, ψ are ATL* path formulae;

• gϕ orϕUψ, whereϕ, ψ are ATL* path formulae.

The temporal operators “sometime” (3) and “always” (2) can be defined as:

3ϕ ≡ ⊤Uϕ, and

2ϕ ≡ ¬3¬ϕ.

2.4.2 “Vanilla” ATL

In “vanilla” ATL (i.e. ATL without *) it is required that every occurrence of a temporal
operator is preceded by exactly one occurrence of a cooperation modality (that is, ATL
is the fragment of ATL* subjected to the same syntactic restrictions which define CTL
as a fragment of CTL*). In consequence, only state formulae can be found in ATL:
p, ¬ϕ, ϕ ∨ ψ, 〈〈A〉〉 gϕ, 〈〈A〉〉2ϕ, and〈〈A〉〉ϕUψ, wherep is an atomic proposition,
ϕ, ψ are ATL formulae, andA is a coalition of agents. Since model-checking for
ATL* requires 2EXPTIME, but it is linear for ATL, ATL is more useful for practical
applications, and we will rather focus on ATL here. Formally, the recursive definition
of ATL formulae is:

ϕ := p | ¬ϕ | ϕ ∨ ψ | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕUψ

The “sometime” operator3 can be defined in the usual way as:

〈〈A〉〉3ϕ ≡ 〈〈A〉〉⊤Uϕ.

Examples of interesting properties that can be expressed with ATL include:

1. 〈〈A〉〉3ϕ

2. 〈〈A〉〉2ϕ

3. ¬〈〈A〉〉 gϕ ∧ ¬〈〈B〉〉 gϕ ∧ 〈〈A ∪B〉〉 gϕ

4. 〈〈A ∪ {a}〉〉 gϕ→ 〈〈{a}〉〉 gϕ

The first of these expresses a kind ofcooperative livenessproperty: coalitionA can
assure that eventually some ATL-formulaϕwill hold. The second item then expresses a
cooperative safetyproperty:A can ensure thatϕ is an invariant of the system. The third
item is an example of what coalitions can achieve by forming bigger ones; although
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coalitionA andB both cannot achieve that in the next stateϕ will be true, if they
joined their forces, they would have a strategy to enforceϕ in the next state. Finally,
the last property expresses thata does not need any partner fromA to achieve thatϕ
will hold in the next state: read as a scheme, it says that whateverA together witha
can achieve next, can be achieved bya on his own.

It should be noted that at least three different versions of semantic structures for
ATL have been proposed by Alur and colleagues in the last 7 years. The earliest ver-
sion (Alur et al., 1997), includes definitions of synchronous turn-based structures and
asynchronous structures in which every transition is controlled by a single agent. The
next paper (Alur et al., 1998a) defines general structures, calledalternating transition
systems, where agents’ choices are identified with the sets of possible outcomes. In
concurrent game structuresfrom (Alur et al., 2002), labels for choices are introduced
and the transition function is simplified; moreover, an arbitrary finite set of agentsAgt
is replaced with set{1, ..., k}.

The above papers share the same title and they are often citedincorrectly in the
literature as well as citation indices, which may lead to some confusion.

Remark 2.3 The version ofATL from (Alur et al., 1997) is somewhat preliminary:
there is no concurrency possible in the models, as they are limited to the turn-based
case only (every transition is governed by a single agent). The version has distinctly
less expressive power than the other two – many examples of games that are not turn-
based and can be modeled with the later versions ofATL can be found, for instance,
in (Alur et al., 2002). Therefore we will discuss only the later versions (Alur et al.,
1998a, 2002) through the rest of the chapter.

Remark 2.4 The complexity results forATL model checking look very attractive at
the first glance: given modelM , the set of all statesq such thatM, q |= ϕ can be
computed in timeO(ml), wherem is the number of transitions inM , and l is the
length of formulaϕ (Alur et al., 2002). It should be pointed out, however – and has
been pointed out in (Alur et al., 2002), too – that while the problem is linearin the
size of the structure, the structure itself can be very large. In fact, in the simplest case
when we identify the states in the model with the combinations of values ofn Boolean
variables, the model has2n states. In other words, the model can be exponentially
large in the number of dimensions of the problem.

Consider the rocket example from Section 2.8.3, and the model presented in Fig-
ure 2.13. There are only three (binary) dimensions to this problem: the rocket can be
either in London or in Paris, its tank can be either full or empty, and the cargo can be
in or out. A multi-player game model that describes this domain is exponentially large:
it has23 = 8 states and300 transitions. Unfortunately, the explosion is unavoidable
in the general case, although there is some ongoing researchon a more compact rep-
resentation forATL domains, that does not suffer from the exponential explosion of
states in some situations (Kacprzak and Penczek, 2004).

2.4.3 Alternating Transition Systems

Alternating transition systems – building on the concept ofalternationdeveloped in
(Chandra et al., 1981) – formalize systems of transitions effected by collective actions
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of all agents involved. In the particular case of one agent (the system), alternating
transition systems are reduced to ordinary transition systems, and ATL reduces to CTL.

An alternating transition system(ATS) is a tupleT = 〈Agt, Q,Π, π, δ〉 where:

• Agt = {a1, ..., ak} is a non-empty, finite set ofagents,

• Q is a non-empty set ofstates,

• Π is a set of (atomic)propositions,

• π : Q→ P(Π) is avaluationof propositions, and

• δ : Q×Agt→ P(P(Q)) is atransition functionmapping a pair〈state, agent〉
to a non-empty family of choices of possible next states. Theidea is thatδ(q, a) =
{Q1, ..., Qn} (Q1, ..., Qn ⊆ Q) defines the possible outcomes of agenta’s de-
cisions at stateq, and the decisions are identified with the outcome sets. When
a chooses a setQa ∈ δ(q, a) at stateq, he forces the outcome state to be from
Qa. The resulting transition leads to a state which is in the intersection of all
Qa for a ∈ Agt and so it reflects the mutual will of all agents. Since the sys-
tem is required to be deterministic (given the state and the agents’ decisions),
Qa1
∩ ... ∩Qak

must always be a singleton.

Example 2.5 An ATS for the variable client/server system is shown in Figure 2.5.
Note that the transition system includes more states and transitions than the multi-
player game model from Example 2.3. Now, the states encode the value ofx and the
last action made:q0 refers to “x=0 bys’s force”, q′0 to “x=0 by c’s request” etc. In
fact, no ATS with only2 states exists for this problem – we will prove this formally in
Section 2.7.4 (see Proposition 2.20). �

Remark 2.5 It seems worth pointing out that the way agents’ choices are represented
(and the way they imply system transitions) is somewhat similar to the concept ofre-
fusalsand ready setsfrom (Hoare, 1985). There, ready sets of a processP include
events that can be executed byP , and the parallel composition of processesP1 and
P2 yields ready sets that are intersections ofP1’s andP2’s ready sets – although no
assumption about determinism is being made.

Remark 2.6 Note also that – despite the singleton requirement – determinism is not
a crucial issue with alternating transition systems, as it can be easily modeled by in-
troducing a new, fictitious agent (we may call the agent “nature” or “environment”).
Then we can attribute our uncertainty about the outcome of collective choices from all
the “real” players to the decisions of this additional player.

Definition 2.1 A stateq2 ∈ Q is a successorof q1 if, whenever the system is inq1,
the agents can cooperate so that the next state isq2, i.e. there are choice setsQa ∈
δ(q1, a), for eacha ∈ Agt such that

⋂

a∈AgtQa = {q2}. The set of successors ofq is
denoted byQsucq .

Definition 2.2 A computationin T is an infinite sequence of statesq0q1... such that
qi+1 is a successor ofqi for everyi ≥ 0. A q-computationis a computation starting
from q.
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(A) (B)

Agt = {s, c}
Q = {q0, q′0, q1, q

′
1}

Π = {x=0, x=1}
π(q0) = π(q′0) = {x=0}
π(q1) = π(q′1) = {x=1}

δ(q0, s) = δ(q′0, s) = {{q0}, {q′0, q
′
1}}

δ(q1, s) = δ(q′1, s) = {{q1}, {q′0, q
′
1}}

δ(q0, c) = δ(q′0, c) = {{q0, q′0}, {q0, q
′
1}}

δ(q1, c) = δ(q′1, c) = {{q1, q′0}, {q1, q
′
1}}

q0

q0

q1

'' q1

x=0

x=0

x=1

x=1

Figure 2.5: An ATS for the controller/client problem: (A) algebraic definition; (B)
temporal structure of the system: states, transitions, andvaluation of propositions.

2.4.4 Semantics of ATL Based on Alternating Transition Systems

Definition 2.3 A strategyfor agenta is a mappingfa : Q+ → P(Q) which assigns to
every non-empty sequence of statesq0, ..., qn a choice setfa(q0...qn) ∈ δ(qn, a). The
function specifiesa’s decisions for every possible (finite) history of system states. A
collective strategyfor a set of agentsA ⊆ Agt is just a tuple of strategies (one per
agent from A):FA = 〈fa〉a∈A.

Now, out(q, FA) denotes the set of all possible (infinite) computations, starting
from stateq and consistent withFA, i.e. the set of all q-computations in which group
A has been usingFA. More formally, computationΛ = q0q1... is consistent with a
(collective) strategyFA = 〈fa〉a∈A if, for everyi = 0, 1, ..., there exists a tuple of
agents’ decisionsQiaj

∈ δ(qi, aj) for j = 1, ..., k, such thatQia1
∩ ... ∩ Qiak

= qi+1

andQia = fa(q0...qi) for eacha ∈ A.

Let Λ[i] denote theith position in computationΛ. The definition of truth of an ATL
formula at stateq of an ATST = 〈Π,Agt, Q, π, δ〉 follows through the clauses given
below.

T, q |= p iff p ∈ π(q), for an atomic propositionp;

T, q |= ¬ϕ iff T, q 2 ϕ;

T, q |= ϕ ∨ ψ iff T, q |= ϕ or T, q |= ψ;
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T, q |= 〈〈A〉〉 gϕ iff there exists a collective strategyFA such that for every
computationΛ ∈ out(q, FA) we haveT,Λ[1] |= ϕ;

T, q |= 〈〈A〉〉2ϕ iff there exists a collective strategyFA such that for everyΛ ∈
out(q, FA) we haveT,Λ[i] |= ϕ for everyi ≥ 0;

T, q |= 〈〈A〉〉ϕUψ iff there exists a collective strategyFA such that for everyΛ ∈
out(q, FA) there isi ≥ 0 such thatT,Λ[i] |= ψ and for all
j such that0 ≤ j < i we haveT,Λ[j] |= ϕ.

Remark 2.7 This notion of strategy can be specified as “perfect recall strategy”, where
the whole history of the game is considered when the choice ofthe next move is made
by the agents. The other extreme alternative is a “memoryless strategy” where only
the current state is taken in consideration; further variations on “limited memory span
strategies” are possible. While the choice of one or anothernotion of strategy affects
the semantics of the fullATL* , it is not difficult to see that perfect recall strategies
and memoryless strategies eventually yield equivalent semantics for ATL – cf. also
(Schobbens, 2003).

Remark 2.8 Note also that a strategy represents what is called aconditionalor univer-
salplan in planning literature, because it does not propose a fixed sequence of actions,
but rather describes what the agent should do in every possible situation.

Example 2.6 The following ATL formulae are valid in the ATS from Figure 2.5:

1. (x=0→ 〈〈s〉〉 gx=0)∧ (x=1→ 〈〈s〉〉 gx=1) : the server can enforce the value of
x to remain the same in the next step;

2. x=0→ (¬〈〈c〉〉3 x=1 ∧ ¬〈〈s〉〉3 x=1) : neitherc nors can change the value from
0 to 1, even in multiple steps;

3. x=0→ 〈〈s, c〉〉3 x=1 : s andc can cooperate to change the value.

�

2.4.5 Semantics of ATL Based on Concurrent Game Structures
and multi-player game models

Alur et al. (2002) redefines ATL models asconcurrent game structures:

M = 〈k,Q,Π, π, d, o〉,

where:

• k is a natural number defining the amount of players (so the players are identified
with numbers1, ..., k and the set of playersAgt can be taken to be{1, ..., k}),

• Q is a finite set of (global) states of the system,

• Π is the set of atomic propositions, andπ : Q → P(Π) is a mapping that
specifies which propositions are true in which states.
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• The decisions available to playera at stateq are labeled with consecutive nat-
ural numbers, and functiond : Agt × Q → N specifies how many options are
available for a particular agent at a particular state. Thus, agenta at stateq can
choose his decision from set{1, ..., da(q)}. Finally, a complete tuple of deci-
sions〈α1, ..., αk〉 at stateq implies a deterministic transition according to the
transition functiono(q, α1, ..., αk).

In a concurrent game structure, the type of a strategy function slightly differs from
the one in an ATS, since choices are abstract entities indexed by natural numbers now,
and a strategy is a mappingfa : Q+ → N such thatfa(λq) ≤ da(q). The rest of the
semantics looks exactly the same as for alternating transition systems.

Remark 2.9 Clearly, concurrent game structures are equivalent to Pauly’s multi-player
game models; they differ from each other only in notation.3 Thus, theATL semantics
can be as well based on MGMs, and the truth definitions look exactly the same as for
alternating transition systems (see Section 2.4.4). We leave rewriting the definitions of
a strategy, collective strategy and outcome set in terms of multi-player game models to
the reader. The next section shows how this shared semanticscan be used to show that
ATL subsumes coalition logics.

2.4.6 Semantics of ATL*

Semantics of the full language ATL* can be defined in a similarway:

T, q |= 〈〈A〉〉ϕ iff there exists a collective strategyFA such thatT,Λ |= ϕ for all
computationsΛ ∈ out(q, FA).

In other words, no matter what the rest of the agents decides to do, the agents from
A have a way of enforcingΦ along the resulting course of events. The rest of the
semantics is the same as in CTL*. LetΛi denote theith suffix ofΛ, i.e.Λi = qiqi+1 . . .
for Λ = q0q1 . . .. Then:

T,Λ |= ϕ iff T,Λ[0] |= ϕ, for ϕ being a state formula;

T,Λ |= gϕ iff T,Λ1 |= ϕ;

T,Λ |= ϕUψ iff there existsi ≥ 0 such thatT,Λi |= ψ and for allj such that
0 ≤ j < i we haveT,Λj |= ϕ.

2.5 Embedding CL and ECL into ATL

It turns out that both CL and ECL are strictly subsumed by ATL in terms of the shared
semantics based on multi-player game models. Indeed, thereis a translation of the
formulae of ECL into ATL, which becomes obvious once the ATL semantic clause for
〈〈A〉〉 gϕ is rephrased as:

3The only real difference is that the set of statesQ and the sets representing agents’ choices are explicitly
required to be finite in the concurrent game structures, while MGMs and ATSs are not constrained this way.
However, these requirements are not essential and can be easily omitted if necessary.
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T, q |= 〈〈A〉〉 gϕ iff there exists a collective strategyFA = 〈fa〉a∈A such that for
every collective strategyFAgt\A = 〈fa〉a∈Agt\A, we have
T, s |= ϕ, where{s} =

⋂

a∈A fa(q) ∩
⋂

a∈Agt\A fa(q),

which is equivalent to the truth-condition for[A]ϕ in the coalition logic CL.
Thus, CL embeds in a straightforward way as a simple fragmentof ATL by trans-

lating [A]ϕ into 〈〈A〉〉 gϕ. Accordingly,[A∗]ϕ translates into ATL as〈〈A〉〉2ϕ, which
follows from the fact that each of[A∗]ϕ and〈〈A〉〉2ϕ, is the greatest fixpoint of the
same operator over[A]ϕ and〈〈A〉〉 gϕ respectively (see Section 2.6). In consequence,
ATL subsumes ECL as the fragment ATLXG involving only 〈〈A〉〉 gϕ and〈〈A〉〉2ϕ.

We will focus on ATL, and will simply regard CL and ECL as its fragments through-
out the rest of the thesis.

Remark 2.10 Note that the coalition logic-related notions of choice andcollective
choice can be readily expressed in terms of alternating transition systems, which im-
mediately leads to a semantics forCL based on ATS, too. Thus,ATL and the coalition
logics share the semantics based on alternating transitionsystems as well.

2.6 Effectivity Functions as Alternative Semantics for
ATL

As mentioned earlier, game theory usually measures the powers of coalitionsquan-
titatively, and characterizes the possible outcomes in terms ofpayoff profiles. That
approach can be easily transformed into aqualitativeone, where the payoff profiles are
encoded in the outcome states themselves and each coalitionis assigned apreference
orderon these outcome states. Then, the power of a coalition can bemeasured in terms
of sets of statesin which it can force the actual outcome of the game (i.e. setsfor which
it is effective), thus defining another semantics for ATL, based on so calledcoalition
effectivity models(introduced by Pauly for the coalition logics CL and ECL). This se-
mantics is essentially a monotone neighborhood semantics for non-normal multi-modal
logics, and therefore it enables the results, methods and techniques already developed
for modal logics to be applied here as well.

Definition 2.4 (Pauly, 2002)A (local) effectivity function is a mapping of type
e : P(Agt)→ P(P(Q)).

The idea is that we associate with each set of players the family of outcome sets
for which their coalition is effective. However, the notionof effectivity function as de-
fined above is abstract and not every effectivity function corresponds to a real strategic
game form. Those which do can be characterized with the following conditions (Pauly,
2002):

1. Liveness: for everyA ⊆ Agt, ∅ /∈ e(A).

2. Termination: for everyA ⊆ Agt,Q ∈ e(A).
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∅ {s} {c} {s, c}
{{q0, q1}} {{q0}, {q0, q1}} {{q0}, {q0, q1}} {{q0}, {q1}, {q0, q1}}

Figure 2.6: A coalition effectivity function for the variable client/server system.

3. Agt-maximality: if X /∈ e(Agt) thenQ \X ∈ e(∅) (if X cannot be effected by
the grand coalition of players, thenQ \X is inevitable).

4. Outcome-monotonicity:if X ⊆ Y andX ∈ e(A) thenY ∈ e(A).

5. Super-additivity: for all A1, A2 ⊆ Agt andX1, X2 ⊆ Q, if A1 ∩ A2 = ∅,
X1 ∈ e(A1), andX2 ∈ e(A2), thenX1 ∩X2 ∈ e(A1 ∪A2).

We note that super-additivity and liveness implyconsistency of the powers: for any
A ⊆ Agt, if X ∈ e(A) thenQ \X 6∈ e(Agt \A).

Definition 2.5 (Pauly, 2002)An effectivity functione is calledplayableif conditions
(1)–(5) hold fore.

Definition 2.6 (Pauly, 2002)An effectivity functione is the effectivity function of a
strategic game formγ if it associates with each set of playersA from γ the family
of outcome sets{Q1, Q2, ...}, such that for everyQi the coalitionA has a collective
choice to ensure that the next state will be inQi.

Theorem 2.11 (Pauly, 2002)An effectivity function is playable iff it is the effectivity
function of some strategic game form.

Example 2.7 Figure 2.6 presents a playable effectivity function that describes powers
of all the possible coalitions for the variable server/client system from Example 2.3,
and stateq0. �

Definition 2.7 (Pauly, 2002)A coalition effectivity frameis a tripleF = 〈Agt, Q,E〉
whereAgt is a set of players,Q is a non-empty set of states andE : Q→ (P(Agt)→
P(P(Q))) is a mapping which associates an effectivity function with each state. We
shall writeEq(A) instead ofE(q)(A). A coalition effectivity model(CEM) is a tu-
ple E = 〈Agt, Q,E, π〉 where〈Agt, Q,E〉 is a coalition effectivity frame andπ is a
valuation of the atomic propositions overQ.

Definition 2.8 A coalition effectivity frame (resp. coalition effectivity model) isstan-
dardif it contains only playable effectivity functions.

Definition 2.9 A multi-player game modelM implementsa coalition effectivity model
E if E consists of effectivity functions of the game frames fromM .

Corollary 2.12 A coalition effectivity model is standard iff it is implemented by some
strategic game model.
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Thus, coalition effectivity models provide semantics of CLby means of the follow-
ing truth definition (Pauly, 2002):

E , q |= [A]ϕ iff {s ∈ E | E , s |= ϕ} ∈ Eq(A).

This semantics can be accordingly extended to semantics forECL (Pauly, 2001a)
and ATL (Goranko, 2001) by defining effectivity functions for the global effectivity
operators in extensive game forms, where they indicate the outcome sets for which the
coalitions have long-termstrategiesto effect. This extension can be done using charac-
terizations of〈〈A〉〉2ϕ and〈〈A〉〉ϕUψ with the greatest fixpoint operatorν and the least
fixpoint operatorµ respectively. First, let us observe that the following equivalences
are valid (i.e. true in every state of every coalition effectivity model):

〈〈A〉〉2ϕ ↔ ϕ ∧ 〈〈A〉〉 g〈〈A〉〉2ϕ,

〈〈A〉〉ϕUψ ↔ ψ ∨ (ϕ ∧ 〈〈A〉〉 g〈〈A〉〉ϕUψ).

Let stE(ϕ) denote the set of states in which formulaϕ holds (in coalition effectivity
modelE). From the observation above we obtain the following fixpoint characteriza-
tions of〈〈A〉〉2ϕ and〈〈A〉〉ϕUψ:

stE(〈〈A〉〉2ϕ) = νZ. (stE(ϕ) ∩ stE(〈〈A〉〉 gZ)) ,

stE(〈〈A〉〉ϕUψ) = µZ. (stE(ψ) ∪ (stE(ϕ) ∩ stE(〈〈A〉〉 gZ))) .

Note thatstE(〈〈A〉〉 gZ) corresponds exactly to the setpreE(A,Z), used within the
presentation of the ATL model checking algorithm in (Alur etal., 2002). Functionpre
is employed there to go “one step back”: it takes as input a coalition A and a set of
statesZ ⊆ Q and returns as output the setZ′ of all states such that, when the system is
in one of the states fromZ′, the agentsA can cooperate and force the next state to be
one ofZ. We can use the function to obtain a clearer presentation of the semantics of
ATL based on coalition effectivity models. Thus, let us finally define the semantics via
the following clauses:

preE(A,Z) = {q ∈ E | Z ∈ Eq(A)},

stE(〈〈A〉〉 gϕ) = preE(A, stE(ϕ)),

stE(〈〈A〉〉2ϕ) = νZ. (stE(ϕ) ∩ preE(A,Z)) ,

stE(〈〈A〉〉ϕUψ) = µZ. (stE(ψ) ∪ (stE(ϕ) ∩ preE(A,Z)))

E , q |= ϕ iff q ∈ stE(ϕ).

2.7 Equivalence of the Different Semantics for ATL

In this section we compare the semantics for Alternating-time Temporal Logic, based
on alternating transition systems and multi-player game models – and show their equiv-
alence (in the sense that we can transform the models both ways while preserving sat-
isfiability of ATL formulae). Further, we show that these semantics are both equivalent
to the semantics based on coalition effectivity models.
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The transformation from alternating transition systems tomulti-player game mod-
els is easy: in fact, for every ATS, an equivalent MGM can be constructed via re-
labeling transitions (see Section 2.7.1). Construction the other way round is more
sophisticated: first, we observe that all multi-player gamemodels obtained from alter-
nating transition systems satisfy a special condition we call convexity(Section 2.7.1);
then we show that for every convex MGM, an equivalent ATS can be obtained (Sec-
tion 2.7.2). Finally, we demonstrate that for every arbitrary multi-player game model
a convex MGM can be constructed that satisfies the same formulae of ATL (Sec-
tion 2.7.3).

More analysis, showing how various structural properties of MGMs transfer to
ATSs obtained through the transformations we propose (and vice versa), can be found
in (Goranko and Jamroga, 2004).

2.7.1 From Alternating Transition Systems to MGMs

First, for every ATST = 〈Π,Agt, Q, π, δ〉 over a set of agentsAgt = {a1, ..., ak}
there is an equivalent MGMMT = 〈Q, γT , π〉 where, for eachq ∈ Q, the strategic
game formγT (q) = 〈Agt, {Σqa | a ∈ Agt}, oq, Q〉 is defined in a very simple way:

• Σqa = δ(q, a),

• oq(Qa1
, ..., Qak

) = s where
⋂

ai∈AgtQai
= {s}.

Example 2.8 Let us apply the transformation to the alternating transition system from
Example 2.5. The resulting MGM is shown in Figure 2.7. The following proposition
states that it satisfies the same ATL formulae as the originalsystem. Note that – as
T andMT include the same set of statesQ – the construction preserves validity of
formulae (in the model), too. �

It is easy to observe that the transformation does not changethe temporal nor strate-
gic structure of the model – it only re-labels agents’ choices. In this sense,MT is
isomorphic toT . The fact has an important consequence: the MGM we obtain through
this transformation is equivalent to the original ATS in thecontext of ATL formulae.

Proposition 2.13 For every alternating transition systemT , a stateq in it, and anATL
formulaϕ: T, q |= ϕ iff MT , q |= ϕ.

The modelsMT obtained as above share a specific property we callconvexity, and
define below. First, we need an auxiliary technical notion: afusionof agents’ choices.

Definition 2.10 A fusion of n-tuples (α1, ..., αn) and (β1, ..., βn) is any n-tuple
(γ1, ..., γn) whereγi ∈ {αi, βi}, i = 1, ..., n.

Definition 2.11 A strategic game form〈Agt, {Σa | a ∈ Agt}, Q, o〉 is convexif:

o(σa1
, ..., σak

) = o(τa1
, ..., τak

) = s implieso(ςa1
, ..., ςak

) = s for every fusion
(ςa1

, ..., ςak
) of (σa1

, ..., σak
) and(τa1

, ..., τak
).

A multi-player game modelM = (Q, γ, π) is convex ifγ(q) is convex for everyq ∈ Q.
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Figure 2.7: From ATS to a convex game structure:MT for the system from Figure 2.5.

Proposition 2.14 For every ATST , the game modelMT is convex.

Proof: Let MT be defined as above. Ifoq(Q1
a1
, ..., Q1

ak
) = oq(Q

2
a1
, ..., Q2

ak
) = s

thens ∈ Qja for eachj = 1, 2 anda ∈ Agt, therefore
⋂

a∈AgtQ
ja
a = {s} for any

fusion(Qj1a1
, ..., Qjkak

) of (Q1
a1
, ..., Q1

ak
) and(Q2

a1
, ..., Q2

ak
). �

There is an important subclass of convex game models, with a very simple charac-
teristics:

Definition 2.12 A strategic game form isinjectiveif o is injective, i.e. assigns different
outcome states to different tuples of choices. An MGM is injective if it contains only
injective game forms.

Proposition 2.15 Every injective game model is convex.

Note that the MGM from Figure 2.7 is convex, although it is notinjective, so the
reverse implication does not hold.

2.7.2 From Convex Multi-Player Game Models to Alternating Tran-
sition Systems

As it turns out, convexity is a sufficient condition if we wantto re-label transitions from
a multi-player game model back to an alternating transitionsystem. LetM = 〈Q, γ, π〉
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be a convex MGM over a set of propositionsΠ, whereAgt = {a1, ..., ak}, and let
γ(q) = 〈Agt, {Σqa | a ∈ Agt}, Q, oq〉 for eachq ∈ Q. We transform it to an ATS
TM = 〈Π,Agt, Q, π, δM 〉 with the transition functionδM defined by

δM (q, a) = {Qσa
| σa ∈ Σqa},

Qσa
= {oq(σa, σAgt\{a}) | σAgt\{a} = 〈σb1 , ..., σbk−1

〉, bi 6= a, σbi
∈ Σqbi

}.

Thus,Qσa
is the set of states to which a transition may be effected fromq while agenta

has chosen to executeσa. Moreover,δM (q, a) simply collects all such sets. For purely
technical reasons we regard theseδM (q, a) as indexed familiesi.e. even if someQσ1

andQσ2
are set-theoretically equal, they are considered different as long asσ1 6= σ2.

By convexity ofγ(q) it is easy to verify that
⋂

a∈AgtQσa
= {oq(σa1

, ..., σak
)} for

every tuple(Qσa1
, ..., Qσak

) ∈ δM (q, a1)×...×δ
M(q, ak). Furthermore, the following

proposition holds.

Proposition 2.16 For every convex MGMM , a stateq in it, and anATL formulaϕ,
M, q |= ϕ iff TM , q |= ϕ.

Note that the above construction transforms the multi-player game model from
Figure 2.7 exactly back to the ATS from Figure 2.5.

2.7.3 Equivalence between the Semantics for ATL Based on ATS
and MGM

So far we have shown how to transform alternating transitionsystems to convex multi-
player game models, and vice versa. Unfortunately, not every MGM is convex. How-
ever, for every MGM we can construct a convex multi-player game model that satisfies
the same formulae of ATL. This can be done by creating distinct copies of the original
states for different incoming transitions, and thus “storing” the knowledge of the previ-
ous state and the most recent choices from the agents in the new states. Since the actual
choices are present in the label of the resulting state, the new transition function is ob-
viously injective. It is also easy to observe that the construction given below preserves
not only satisfiability, but also validity of formulae (in the model).

Proposition 2.17 For every MGMM = 〈Q, γ, π〉 there is an injective (and hence
convex) MGMM ′ = 〈Q′, γ′, π′〉 which satisfies the same formulae ofATL .

Proof: For everyγ(q) = 〈Agt, {Σqa | a ∈ Agt}, Q, oq〉 we defineQq = {q} ×
∏

a∈Agt Σqa and letQ′ = Q ∪
⋃

q∈QQq. Now we defineγ′ as follows:

• for q ∈ Q, we define γ′(q) = 〈Agt, {Σqa | a ∈ Agt}, Oq, Q′〉, and
Oq(σa1

, ..., σak
) = 〈q, σa1

, ..., σak
〉;

• for σ = 〈q, σa1
, ..., σak

〉 ∈ Qq, ands = oq(σa1
, ..., σak

), we defineγ′(σ) =
γ′(s);

• finally, π′(q) = π(q) for q ∈ Q, andπ′(〈q, σa1
, ..., σak

〉) = π(oq(σa1
, ..., σak

))
for 〈q, σa1

, ..., σak
〉 ∈ Qq.
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Figure 2.8: Construction of a convex multi-player game model equivalent to the MGM
from Figure 2.3.

The modelM ′ is injective and it can be proved by a straightforward induction that for
every ATL formulaϕ:

• M ′, q |= ϕ iff M, q |= ϕ for q ∈ Q, and

• M ′, 〈σa1
, ..., σak

〉 |= ϕ iff M, oq(σa1
, ..., σak

) |= ϕ for 〈σa1
, ..., σak

〉 ∈ Qq.

�

Thus, the restriction of the semantics of ATL to the class of injective (and hence to
convex, as well) MGMs does not introduce new validities – andwe obtain the following
result.

Corollary 2.18 For everyATL formulaϕ the following statements are equivalent:

1. ϕ is valid in all alternating transition systems.

2. ϕ is valid in all multi-player game models.

Remark 2.19 The above construction preserves validity and satisfiability of ATL*
formulae, too (Jamroga and van der Hoek, 2003).
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δ q0, q0r0, q0r1, q0a0, q1a0 q1, q1r0, q1r1, q1a1, q0a1

s {{q0r0, q0r1}, {q0a0, q0a1}} {{q1r0, q1r1}, {q1a0, q1a1}}

c {{q0r0, q0a0}, {q0r1, q0a1}} {{q1r0, q1a0}, {q1r1, q1a1}}

Figure 2.9: ATS-style transition function for the convex game model from Figure 2.8.

Example 2.9 We can apply the construction to the controller from Example2.3, and
obtain a convex MGM equivalent to the original one in the context of ATL. The result
is displayed in Figure 2.8. The labels for the transitions can be easily deduced from
their target states. Re-writing the game model into an isomorphic ATS, according to
the construction from Section 2.7.2 (see Figure 2.9), completes the transformation from
an arbitrary multi-player game model to an alternating transition system for which the
same ATL formulae hold. �

2.7.4 ATS or MGM?

Alur stated that the authors of ATL switched from alternating transition systems to
concurrent game structures mostly to improve understandability of the logic and clar-
ity of the presentation.4 Indeed, identifying actions with their outcomes may make
things somewhat artificial and unnecessarily complicated.In particular, we find the
convexity condition which ATSs impose too strong and unjustified in many situations.
For instance, consider the following variation of the ‘Chicken’ game: two cars run-
ning against each other on a country road and each of the drivers, seeing the other car,
can take any of the actions:“drive straight” , “swerve to the left”and“swerve to the
right” . Each of the combined actions for the two drivers:〈drive straight, swerve to the
left〉 and〈swerve to the right, drive straight〉 leads to a non-collision outcome, while
each of their fusions〈drive straight, drive straight〉 and〈swerve to the left, swerve to
the right〉 leads to a collision. Likewise, in the “Coordinated Attack”scenario (Fagin
et al., 1995) any non-coordinated one-sided attack leads todefeat, while the coordi-
nated attack of both armies, which is a fusion of these, leadsto a victory. Thus, the
definition of outcome function in coalition games is more general and flexible in our
opinion.

Let us consider the system from Example 2.3 again. The multi-player game model
(or concurrent game structure) from Figure 2.3 looks natural and intuitive. Unfortu-
nately, it can’t be used in the version of ATL based on Alternating Transitions Systems.
Speaking more formally, there is no isomorphic ATS for the multi-player game model
from Figure 2.3 which fits the system description (or: in which the same properties
hold as in the MGM). In consequence, an ATS modeling the same situation must be
larger.

Proposition 2.20 There exists no ATS with exactly two states, in which the sameATL
formulae are valid as in the MGM from Example 2.3.

4Private communication.
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Proof: Suppose that such an ATS exists. Let us have a look atδ(q0, s) first. Sup-
pose that{q0} /∈ δ(q0, s). In consequence,{q0, q1} must be inδ(q0, s), otherwise no
transition fromq0 to q1 is possible. Let’s consider possiblec’s choices atq0: either
{q0, q1} ∈ δ(q0, c) (but: {q0, q1} ∩ {q0, q1} isn’t a singleton, so such a transition func-
tion isn’t valid) or{q1} ∈ δ(q0, c) (but then:q0 |= 〈〈c〉〉 gx=1 which doesn’t fit the
informal description of the system) or{q0} ∈ δ(q0, c) (but then:q0 |= ¬〈〈s, c〉〉 gx=1
which doesn’t fit either). Thus,{q0} ∈ δ(q0, s) (intuitively: the server should have a
choice to “enforce no change” with deterministic outcome of{q0}).

Now, for allQ′ ∈ δ(q0, c), q0 must be inQ′ because{q0} ∩ Q′ cannot be empty.
Thus{q1} /∈ δ(q0, c), and if we want to make the transition fromq0 to q1 possible
at all then{q0, q1} ∈ δ(q0, c). Now {q0, q1} /∈ δ(q0, s) because{q0, q1} ∩ {q0, q1}
isn’t a singleton, so{q1} ∈ δ(q0, s) – otherwise the system still never proceeds from
q0 to q1. In consequence,{q0} /∈ δ(q0, c), because{q1} ∩ {q0} isn’t a singleton either.
The resulting transition function forq0 is: δ(q0, s) = {{q0}, {q1}}, andδ(q0, c) =
{{q0, q1}}. Unfortunately, it is easy to show thatq0 |= 〈〈s〉〉 gx=1 for this model, and
this is obviously wrong with respect to the original description of the system. �

This does not necessarily mean that no ATS can be made up for this problem,
having added some extra states and transitions. In fact, forthe alternating transition
system from Figure 2.5, we have that:

• q0 |= ¬〈〈s〉〉 © x=1,

• q0 |= 〈〈s〉〉 © x=0, and so on.

The states reflect the value ofx and the last choices made by the agents:q0 is for
“x=0 by s’s force”, q′0 for “x=0 by c’s request” etc. This kind of construction has been
generalized in Section 2.7 to prove equivalence of both semantics. The above examples,
however, show that correct alternating transition systemsare more difficult to come
up with directly than multi-player game models, and usuallythey are more complex,
too. This should be especially evident when we consider modeling and verifying open
systems. Suppose we need to add another client process to theATS from Example 2.5.
It would be hard to extend the existing transition function in a straightforward way so
that it still satisfies the formal requirements (i.e. so thatall the intersections of choices
are singletons). Designing a completely new ATS is probablyan easier solution.

Another interesting issue is extendibility of the formalisms. Game models incorpo-
rate explicit labels for agents’ choices – therefore the labels can be used, for instance,
to restrict the set of valid strategies under uncertainty (cf. Chapter 4).

2.7.5 Coalition Effectivity Models as Equivalent Alternative Se-
mantics for ATL

Effectivity functions and coalition effectivity models were introduced in Section 2.6,
including a characterization of these effectivity functions which describe abilities of
agents and their coalitions in actual strategic game forms (playable effectivity func-
tions, Theorem 2.11). We are going to extend the result to correspondence between
multi-player game models and standard coalition effectivity models (i.e. the coalition
effectivity models that contain only playable effectivityfunctions).
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Figure 2.10: Coalition effectivity model for the variable client/server system

Every MGM M = 〈Q, γ, π〉 for the set of playersAgt corresponds to a CEM
EM = 〈Agt, Q,EM , π〉, where for everyq ∈ Q,X ⊆ Q andA ⊆ Agt, we have

X ∈ EMq (A) iff ∃σA ∀σAgt\A ∃s ∈ X o(σA, σAgt\A) = s.

The choices refer to the strategic game formγ(q). Conversely, by Theorem 2.11, for
every standard coalition effectivity modelE there is a multi-player game modelM
such thatE is equivalent toEM . Again, by a straightforward induction on formulae,
we obtain:

Proposition 2.21 For every MGMM , a stateq in it, and anATL formulaϕ, we have
M, q |= ϕ iff EM , q |= ϕ.

Example 2.10 Let M be the multi-player game model from Example 2.3 (variable
client/server system). Coalition effectivity modelEM is presented in Figure 2.10.�

By Proposition 2.21, Corollary 2.18 and Corollary 2.12, we eventually obtain:

Theorem 2.22 For everyATL formulaϕ the following are equivalent:

1. ϕ is valid in all alternating transition systems,

2. ϕ is valid in all multi-player game models,

3. ϕ is valid in all standard coalition effectivity models.

Thus, the semantics of ATL based on alternating transition systems, multi-player
game models, and standard coalition effectivity models areequivalent. We note that,
while the former two semantics are more concrete and natural, they are mathematically
less elegant and suitable for formal reasoning about ATL, while the semantics based
on coalition effectivity models is essentially a monotone neighborhood semantics for
multi-modal logics. The combination of these semantics wasused in (Goranko and van
Drimmelen, 2003) to establish a complete axiomatization ofATL.
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2.7.6 Relevance of the Results

We have presented a comparative study of several variants ofATL and CL, and demon-
strated their relationship. One obvious conclusion from the study is that – while refer-
ring to coalitional games with no uncertainty – ATL can be used instead of CL without
any loss of generality. Moreover, one can choose the semantics (multi-player game
models, alternative transition systems, coalition effectivity models) he or she finds most
suitable for the intended application.

Still, it is worth pointing out that ATL and CL differ in theirmotivations and agen-
das, and hence they can benefit from many ideas and results, both technical and concep-
tual, borrowing them from each other. Indeed, ATL has already benefited from being
related to coalitional games, as concurrent game structures provide a more general (and
natural) semantics than alternating transition systems. Moreover, coalition effectivity
models are mathematically simpler and more elegant, and provide technically handier
semantics, essentially based on neighborhood semantics for non-normal modal log-
ics (Parikh, 1985; Pauly, 2000). Furthermore, the pure game-theoretical perspective of
coalition logics can offer new ideas to the framework of openmulti-agent systems and
computations formalized by ATL. For instance, fundamentalconcepts in game theory,
such aspreference relations between outcomes,andNash equilibriahave their counter-
parts in concurrent game structures (and, more importantly, in alternating-time logics)
which are unexplored yet.

On the other hand, the language and framework of ATL has widened the perspective
on coalitional games and logics, providing a richer and moreflexible vocabulary to talk
about abilities of agents and their coalitions. Thealternating refinement relations(Alur
et al., 1998b) offer an appropriate notion of bisimulation between ATSs and thus can
suggest an answer to the question “When are two coalition games equivalent?”.5 Also,
a number of technical results on expressiveness and complexity, as well as realizability
and model-checking methods from (Alur et al., 2002, 1998b) can be transferred to
coalition games and logics. And there are some specific aspects of computations in
open systems, such ascontrollability and fairness constraints, which have not been
explored in the light of coalition games.

There were a few attempts to generalize ATL by including imperfect information in
its framework: ATLwith incomplete informationin (Alur et al., 2002), ATEL, ATOL,
ATEL-R* etc. It can be interesting to see how these attempts carry over to the frame-
work of CL. Also, stronger languages like ATL* and alternating-timeµ-calculus can
provide more expressive tools for reasoning about coalition games.

2.8 Multi-Agent Planning with ATL

Planning in an environment inhabited by multiple agents poses a number of important
problems. First of all, the relationship between the agents’ goals must be determined
in order to evaluate plans. There are roughly 3 possibilities (Sen and Weiss, 1999; Bui
and Jamroga, 2003):

5Cf. the paper “When are two games the same” in (van Benthem, 2000).
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1. collaborative agents who have exactly the same goals and can collaborate to
bring about them,

2. adversarial agents: the goal of the other agents isnot to let“our” agent fulfill his
goals,

3. indifferent agents (or rather agents with independent policies) that cover all the
middle ground between both extremes.

As ATL strategies are in fact conditional plans, one may imagine using ATL for the
purpose of planning as long as we are able to automaticallyfind a strategy that brings
about a specified task. For example, a plan for agenta to eventually enforce a winning
position (i.e. a state in which propositionwin holds) can be found in the form of a
strategyfa that makes formula〈〈a〉〉3win true in the specified model.

Planning with ATL covers only cases (1) and (2). The collaborative situation arises
when we put the agents in question in the same teamA, and ask whether they achieve
goalΦ via the formula〈〈A〉〉Φ. Note, however, that the agents within a team are as-
sumed tofully cooperate – as if they were one (collective) player. Therefore one must
be careful to define the model so that it indeed represents theintended problem do-
main. For example, if we want the agents to negotiate their strategies by following a
negotiation protocol, represented explicitly in the model, we should rule out all agents’
choices that are inconsistent with the requirement.

The assumed interaction between the team and the rest of agents fromAgt, on the
other hand, is clearly adversarial. This reflects a bias of classical game theory: we want
our agent to play safe; we want him to be protected against theworst line of events.
Note that if there is no infallible plan forA to achieveΦ, then no plan will be generated
for 〈〈A〉〉Φ at all. Since a situation when no plan is generated is not acceptable from
the planning agent’s perspective, it seems one of the most serious drawbacks of the
approach to planning we propose and investigate here.

A number of simplifying assumptions underlies the “planning with ATL approach”:

• the agents have complete knowledge of the situation (no uncertainty, no proba-
bilistic beliefs),

• the agents have complete knowledge of the outcomes of every combination of
actions from all the agents (i.e. every complete tuple of choices),

• the outcome of every such tuple is deterministic (there are no probabilistic ac-
tions or actions with uncertain outcome),

• the time is discrete, and the agents act synchronously,

• the goals of every agent are public. Note that the goals themselves are specified
by the input ATL formula we are processing.

2.8.1 Strategic Planning as Model Checking

Model checkingis an interesting idea that emerged from the research on logic in com-
puter science. The model checking problem asks whether a particular formulaϕ holds
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in a particular modelM , which is often more interesting thansatisfiability checking
(i.e. looking for a modelM in whichϕ holds) ortheorem proving(i.e. proving that
ϕ follows from some set of axioms). In many cases the designer can come up with
a precise model of the system behavior (e.g. a graph with all the actions that may be
effected), only the model is too large to check on the fly whether it fulfills the design
objectives. Model checking seems especially useful in the case of dynamic or temporal
logics, whose models can be interpreted as game models, transition systems, control
flow charts, data flow charts etc. Moreover, model checking turns out to be relatively
cheap in computational terms, while satisfiability checking is often intractable or even
undecidable.

It has been already proposed that the model checking of computation tree logic
(CTL) formulae can be used for generating plans in deterministic as well as non-
deterministic domains (Giunchiglia and Traverso, 1999; Pistore and Traverso, 2001).
Alternating-time temporal logic ATL is an extension of CTL that includes notions of
agents, their abilities and strategies (conditional plans) explicitly in its models. Thus,
ATL seems even better suited for planning, especially in multi-agent systems, which
was already suggested in (van der Hoek and Wooldridge, 2002). In this section, we
introduce a simple adaptation of the ATL model checking algorithm from (Alur et al.,
2002) that – besides checking if a goal can be achieved – returns also an appropriate
strategy to achieve it. We point out that this algorithm generalizes the well-known
search algorithm of minimaxing, and that ATL models generalize turn-based transition
trees from game theory. The section ends with some suggestions that the contribution
can be bilateral, and that more game theory concepts can contribute to modal logic-
based models and algorithms for multi-agent systems.

2.8.2 Planning Algorithm

In this section, a simple modification of the ATL model checking algorithm (Alur et al.,
2002) is proposed, as shown in Figure 2.11. Functionpre is defined as a special kind
of the “weakest precondition” operator, and is used here to go “one step back” while
constructing a plan for some coalition of agents. More precisely,pre(A,Q1) takes as
input a coalitionA and a set of statesQ1 ⊆ Q and returns as output the setQ2 of all
statesq such that agentsA can cooperate inq and force the next state to be one ofQ1.
Moreover, for every such a state,pre(A,Q1) returns also a collective choice forA that
can be executed to enforce a transition toQ1.

Functionstates(P ) returns all the states for which planP is defined.P1 ⊕ P2

refers to augmenting planP1 with all new subplans that can be found inP2; finally
P |Q1

denotes planP restricted to the states fromQ1 only. More formally:

• pre(A,Q1) = {〈q, σA〉 | ∀σΣ\Aδ(q, σA, σΣ\A) ∈ Q1};

• states(P ) = {q ∈ Q | ∃σ〈q, σ〉 ∈ P};

• P1 ⊕ P2 = P1 ∪ {〈q, σ〉 ∈ P2 | q /∈ states(P1)};

• P |Q1
= {〈q, σ〉 ∈ P | q ∈ Q1}.
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function plan(ϕ).
Returns a subset ofQ for which formulaϕ holds, together with a (conditional)
plan to achieveϕ. The plan is sought within the context of concurrent
game structureS = 〈Agt, Q,Π, π, o〉.

caseϕ ∈ Π : return{〈q,−〉 | ϕ ∈ π(q)}
caseϕ = ¬ψ : P1 := plan(ψ);

return{〈q,−〉 | q /∈ states(P1)}
caseϕ = ψ1 ∨ ψ2 :
P1 := plan(ψ1); P2 := plan(ψ2);
return{〈q,−〉 | q ∈ states(P1) ∪ states(P2)}

caseϕ = 〈〈A〉〉 gψ : returnpre(A, states(plan(ψ)))
caseϕ = 〈〈A〉〉2ψ :
P1 := plan(⊤); P2 := plan(ψ); Q3 := states(P2);
while states(P1) 6⊆ states(P2)
do P1 := P2|states(P1); P2 := pre(A, states(P1))|Q3

od;
returnP2|states(P1)

caseϕ = 〈〈A〉〉ψ1 Uψ2 :
P1 := ∅; Q3 := states(plan(ψ1)); P2 := plan(⊤)|states(plan(ψ2));
while states(P2) 6⊆ states(P1)
do P1 := P1 ⊕ P2; P2 := pre(A, states(P1))|Q3

od;
returnP1

end case

Figure 2.11: Adapted model checking algorithm for ATL formulae. Cases forψ1 ∨ ψ2

and〈〈A〉〉3ψ are omitted, because the first can be re-written as¬(¬ψ1 ∨¬ψ2), and the
latter as〈〈A〉〉⊤Uψ.

Proposition 2.23 The algorithm terminates in timeO(ml), wherem is the number of
transitions in the concurrent game structureS, andl is the length of formulaϕ.

Proof: The proposition follows directly from the complexity proofs for ATL model
checking (Alur et al., 2002). �

Remark 2.24 Note that the algorithm returns a (non-empty) plan only if the outmost
operator of the checked formula is a cooperation modality (i.e. it specifies explicitly
who is to execute the plan andwhatis the objective). In consequence, our approach to
negation isnot constructive: for¬〈〈A〉〉Φ, the algorithm will not return a strategy for
the rest of agents to actually avoidΦ. Why? Because¬〈〈A〉〉Φ does not imply that such
a strategy exists.

Similar remark applies to alternative, conjunction, and nesting of strategic for-
mulae. This approach is more natural than it seems at the firstglance – even if the
subformulae refer to the same set of agents for whom plans areneeded. Consider, for
instance, the transition system from Figure 2.12, and suppose that there is only one
agenta in the system, who executes the transitions. Formula〈〈a〉〉2start ∧ 〈〈a〉〉3halt
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q0 q1

q3 q2
win

halt

start

Figure 2.12: Example transition system for a single agent

is obviously true inq0; however, it is hard to see what plan should be generated in
this case. True,a has a plan to remain inq0 for ever, and he has a plan to halt the
system eventually, but these aredifferent plans and cannot be combined. Similarly,
〈〈a〉〉2〈〈a〉〉3win holds inq0, but it does not mean thata has a plan to win infinitely
many times. He can always see a way to win; however, if he chooses that way, he will
be unable to win again.

2.8.3 Rocket Example

As an example, consider a modified version of the Simple Rocket Domain from (Blum
and Furst, 1997). The task is to ensure that a cargo eventually arrives in Paris (proposi-
tion atCP); there are three agents with different capabilities who can be involved, and
a single rocket that can be used to accomplish the task. Initially, the cargo may be in
Paris, at the London airport (atCL) or it may lie inside the rocket (inCR). Accordingly,
the rocket can be moved between London (atRL) and Paris (atRP).

There are three agents:x who can load the cargo, unload it, or move the rocket;y
who can unload the cargo or move the rocket, andz who can load the cargo or supply
the rocket with fuel (actionfuel). Every agent can also decide to do nothing at a par-
ticular moment (thenop – “no-operation” action). The agents act simultaneously. The
“moving” action has the highest priority (so, if one agent tries to move the rocket and
another one wants to, say, load the cargo, then only the moving is executed). “Loading”
is effected when the rocket does not move and more agents try to load than to unload.
“Unloading” works in a similar way (in a sense, the agents “vote” whether the cargo
should be loaded or unloaded). If the number of agents tryingto load and unload is
the same, then the cargo remains where it was. Finally, “fueling” can be accomplished
alone or in parallel with loading or unloading. The rocket can move only if it has
some fuel (fuelOK), and the fuel must be refilled after each flight. We assume that all
the agents move with the rocket when it flies to another place.The concurrent game
structure for the domain is shown in Figure 2.13.

plan(〈〈x〉〉3atCP) = { 〈9,−〉, 〈10,−〉, 〈11,−〉, 〈12,−〉 } (2.1)

plan(〈〈x, y〉〉3atCP) = { 〈2, x : load·y :nop〉, 〈6, x :move·y :nop〉, (2.2)
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Figure 2.13: A version of the Simple Rocket Domain. States ofthe system are labeled
with natural numbers. All the transitions for state1 (the cargo and the rocket are in
London, no fuel in the rocket) are labeled. Output of agents’choices for other states is
analogous.

〈7, x :unload·y :unload〉, 〈8, x :unload·y :unload〉,

〈9,−〉, 〈10,−〉, 〈11,−〉, 〈12,−〉 }

plan(〈〈x, z〉〉3atCP) = { 〈1, x : load·z : load〉, 〈2, x : load·z : load〉, (2.3)

〈3, x :nop·z :fuel〉, 〈4, x :move·z :nop〉,

〈5, x : load·z :fuel〉, 〈6, x :move·z :nop〉,

〈7, x :unload·z :nop〉, 〈8, x :unload·z :nop〉,

〈9,−〉, 〈10,−〉, 〈11,−〉, 〈12,−〉 }

Plans to eventually achieveatCP – forx alone,x with y, andx with z, respectively
– are shown above. In the first case,x cannot guarantee to deliver the cargo to Paris
(unless the cargo alreadyis there), becausey andz may prevent him from unloading the
goods (clause 2.1). The coalition ofx andy is more competent: they can, for instance,
deliver the cargo from London if only there is fuel in the rocket (clause 2.2). However,
they have no infallible plan for the most natural case when1 is the initial state. Finally,
{x, z} have an effective plan for any initial situation (clause 2.3).

2.8.4 Minimaxing as Model Checking

It is easy to see that the algorithm from Figure 2.11 can be used for emulating the
well known search algorithm of minimaxing. To find the best plan for coalitionA,
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Figure 2.14: Multi-player game model for the matching pennies game

we should label the final positions with the payoff valuespay-1, pay-2, ..., then check
which plan(〈〈A〉〉3pay-i) returns a decision for the initial state, and pick the one for
maximalpay-i. The resulting procedure is still linear in the number of states, transitions
and different payoff values. Note that the algorithm proposed here is more general than
the original minimaxing: the latter can be applied only to finite turn-based game trees
(i.e. systems in which the number of states is finite, there are no cycles, and players
cannot act simultaneously), while the model checking-based approach deals also with
models in which players act in parallel, and with infinite trees that can be generated by
a finite transition system.

Example 2.11 Consider the perfect information variant of thematching penniesgame
from Example 2.1. Figure 2.14 shows a model representing this game. Now, mini-
maxing for playera1 is equivalent to the execution ofplan(〈〈a1〉〉3pay-1). We can
also executeplan(〈〈a1〉〉3pay-0) to make sure that the agent is going to getanypayoff
along every course of action. �

Let us also observe that the planning algorithm, proposed inthis section, looks for
a plan that must be successful against every line of events – hence the algorithm gen-
eralizes minimaxing in zero-sum (i.e. strictly competitive) games. It can be interesting
to model the non-competitive case within the scope of ATL as well: while checking
〈〈A〉〉ϕ, the opponentsAgt \ A may be assumed different goals than just to preventA
from achievingϕ. Then, assuming optimal play fromAgt \ A, we can ask whetherA
have a strategy to enforceϕ provided thatAgt \A intend (or desire) to bring aboutψ.

2.8.5 Further Research: Exploiting the Parallel between Model
Checking and Minimaxing

We have proposed a simple adaptation of ATL model checking from (Alur et al., 2002).
The algorithm looks for infallible conditional plans to achieve objectives that can be
defined via ATL formulae. The algorithm generalizes minimaxing in zero-sum games,
extending its scope to (possibly infinite) games in which theagents can act in parallel.
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It seems that the link between model checking and minimaxingcan be exploited
to enrich the framework of ATL, too. First (as already mentioned in the previous sec-
tion), ATL might be extended so that it can be used to model non-competitive games.
Next, efficient pruning techniques exist for classical minimaxing – it may be interest-
ing to transfer them to ATL model checking. Moreover, game theory has developed
more sophisticated frameworks, like games with incompleteinformation and games
with probabilistic outcomes, including the discussion on best defense criteria for such
games (Frank, 1996; Frank and Basin, 1998; Jamroga, 2001a).Investigation of sim-
ilar concepts in the context of ATL can prove worthwhile, andlead to new research
questions, concerning phenomena like non-locality (Frankand Basin, 1998), and de-
sign of efficient suboptimal algorithms (Frank et al., 1998)in the scope of logics for
multi-agent systems.
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Chapter 3

Agents with Incomplete
Information

SYNOPSIS. So far, so good. Alternating-time Temporal Logic and Coalition
Logic have been introduced, investigated and proven some properties. They
even turned out to have a practical dimension, since one can use them for
automatic planning in multi-agent systems. It seems a high time to introduce
some uncertainty. Enter Alternating-time TemporalEpistemicLogic.

Now we can express what we know when we do not know everything.But –
do we really know what hides behind this attractive surface?Are we really
certain? So far... yes. It seems so.

3.1 Introduction

Two important modal logics for multi-agent systems were studied in the previous chap-
ter. Those logics, Alternating-time Temporal Logic by Aluret al. and Coalition Logic
by Pauly, are appealing in many ways. Theoretically, they are decidable and axiomati-
zable, and they enjoy linear complexity of the model checking problem. Conceptually,
they build upon a very intuitive body of notions. On one hand,they refer to moments
in time and alternative courses of events and situations (where changes of situations
result from simultaneous actions of all the involved agents). On the other hand, they
build upon notions of agents, their teams, actions and strategies. From the practical
standpoint, models of ATL and CL generalize labeled transition systems, control flow
charts, game trees etc. – that have been used for a long time toobtain a formal descrip-
tion of computational systems as well as communities and organizations of human
agents. Thus, linear model checking enables efficient verification of some interesting
properties of concrete systems. Moreover, the “planning asmodel checking” paradigm,
applied here, yields an algorithm that finds infallible plans for goals specified with for-
mulae of ATL. As CL turned out to be subsumed by ATL, it is sufficient to focus on
the latter, and regard CL as a sublanguage of ATL.

Mathematical logic seems to be rather out of fashion now, especially in the fields

57



58 CHAPTER 3. AGENTS WITH INCOMPLETE INFORMATION

related to Artificial Intelligence and Cognitive Science. We believe – and have argued
so in Section 2.1 – that formal approaches to multi-agents systems are still important.
However, besides the inherent deficiencies of the formal logic-based approach to mod-
eling and reasoning about the reality, the logics studied inChapter 2 are unrealistic in
one more respect: neither ATL nor CL refer in any way to agents’ knowledge or beliefs
about the actual situation. In particular, the agents’ uncertainty about the real state of
affairs cannot be expressed. An extension of ATL, calledAlternating-time Temporal
Epistemic Logic(ATEL), was introduced in (van der Hoek and Wooldridge, 2002) in
order to enable reasoning about knowledge possessed by agents. Although the seman-
tics for ATEL is still under debate (cf. Chapter 4), the original version of that logic is
certainly worth investigating.

ATEL adds to ATL operators from epistemic logic: most notably, the individual
knowledge operatorKaϕ (“agenta knows thatϕ”), but also operatorsEA,CA andDA

that refer to collective knowledge of teams. We begin with presenting the main ideas
behind this extension. Next, we present three alternative semantics for ATEL, and point
out that they are equivalent. Finally, we present an interpretation of ATEL into the more
basic language of ATL. It turns out that, while extending ATL, ATEL can be embedded
into the former in the sense that there is a translation of models and formulae of ATEL
into ATL that preserves the satisfiability of formulae. Thisdoes not imply that logics
like ATEL are redundant, of course – in fact, the way of expressing epistemic facts in
ATL is technical, and the resulting formulae look rather unnatural. On the other hand,
the interpretation we propose in Section 3.4 is not a purely technical exercise in formal
logic. First, it presents knowledge as a special kind of strategic ability of agents. This
perspective to knowledge was proposed in (van Otterloo et al., 2003), and we find it
a powerful and insightful metaphor. Second, as the interpretation can be used for an
efficient reduction of model checking from ATEL to ATL, it enables using the ATL-
based planning algorithm from Section 2.8 for goals specified with ATEL formulae,
too.

The epistemic and temporal layers of ATEL display much similarity to the well
known BDI logic of Beliefs, Desires and Intentions, proposed in (Rao and Georgeff,
1991) and subsequent papers. We explore this issue in Section 3.5, and show that a
similar interpretation in ATL (and even in CTL) can be definedfor a propositional
variant of BDI as well.

There is one more thing that may need some explanation – namely, the title of this
chapter. Why“Agents with Incomplete Information”, and not “Agents with Knowl-
edge” or “Agents with Beliefs”, for instance? We would like to stress that epistemic
properties become trivial when every agent hascompleteinformation about the current
situation. Formally speaking, in such a case we have thatϕ ↔ Kaϕ (to be even more
precise: formulaϕ ↔ Kaϕ is valid, i.e. it holds in every possible model and every
state in it). Thus, the notion of knowledge does not introduce any interesting properties
when all the agents have perfect and complete information about their environment of
action. Talking about knowledge or beliefs – in our opinion –makes sense only if there
is at least one entity who mightnot know everything.

Some of material presented in this chapter has already been published in (Goranko
and Jamroga, 2004), a paper co-written with Valentin Goranko from the Rand Afrikaans
University.
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Figure 3.1: Extensive and strategic form of the matching pennies game:a1 does not
show his coin before the end of the game.

3.2 Logic Meets Game Theory Continued

We have already presented (in Section 2.2) the concepts of strategic and extensive game
forms, that can be used to model games with perfect information. The information
available to agents is incomplete in many games, though. Classical game theory han-
dles this kind of uncertainty through partitioning every player’s nodes into so called
information sets. Aninformation setfor playera is a set of states that are indistin-
guishable fora. Traditionally, information sets are defined only for the states in which
a chooses the next step.1 Now a strategy assigns choices to information sets rather
than separate states, because players are supposed to choose the same move for all the
situations they cannot distinguish.

Example 3.1 Let us go to the matching pennies game from Example 2.1 – but this
time we will assume thata1 does not show his coin toa2 before the end of the game.
In consequence, nodesq1 andq2 belong to the same information set ofa2, as shown in
Figure 3.1. No player has a strategy that guarantees his win any more. �

Epistemic logicoffers the notion of anepistemic accessibility relationthat gen-
eralizes information sets, and introduces operators for talking about individual and
collective knowledge. Section 3.3 describes them in more detail; a reader interested
in a comprehensive exposition on epistemic logic can be alsoreferred to the seminal
book by Fagin, Halpern, Moses and Vardi (Fagin et al., 1995),or to (van der Hoek and
Verbrugge, 2002) for a survey.

1A recent proposal (Bonnano, 2004) investigates also the case when information sets partition thewhole
game space for every agent.
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3.3 ATEL: Adding Knowledge to Strategies and Time

Alternating-time Temporal Epistemic LogicATEL (van der Hoek and Wooldridge,
2002, 2003a,b) enriches the picture with epistemic component. ATEL (ATEL*) adds
to ATL (ATL*, respectively) operators for representing knowledge of agents and their
teams:

• Kaϕ, wherea is an agent andϕ is a formula of ATEL (ATEL* state formula,
respectively);

• CAϕ, EAϕ andDAϕ, whereA is a set of agents andϕ is a formula of ATEL
(ATEL* state formula, respectively).

Kaϕ reads as “agenta knows thatϕ”. Collective knowledge operatorsEAϕ,CAϕ,
andDAϕ refer to“everybody knows”, common knowledge, anddistributed knowledge
among the agents fromA. Thus,EAϕmeans that every agent inA knows thatϕ holds.
CAϕ implies much more: the agents fromA not only know thatϕ, but they alsoknow
that they knowthis, know that they know that they know, and so on. Distributed knowl-
edgeDAϕ denotes a situation in which, if the agents could combine their individual
knowledge together, they would be able to infer thatϕ holds.

The time complexity of model checking for ATEL (but not ATEL*) is still polyno-
mial (van der Hoek and Wooldridge, 2002, 2003a).

Intuitively, ATEL should enable expressing various epistemic properties of agents
under uncertainty:

1. 〈〈a〉〉3ϕ→ Kaψ

2. Kb(c = s)→ 〈〈b〉〉(〈〈b〉〉 go)U¬(c = s)

3. d→ 〈〈a〉〉3(Kad ∧
∧

a6=b ¬Kbd)

The first two items are examples of so-calledknowledge pre-conditions. The first
of them intuitively says that agenta must knowψ in order to be able to bring about
ϕ. The second expresses that if Bob (b) knows that the combination of the safe iss,
then he is able to open it (o), as long as the combination remains unchanged. The
third example refers toKnowledge Games, investigated in (van Ditmarsch, 2000) as
a particular way of learning in multiagent systems. The aim of each player is to find
out the actual distribution of cards (d) in a simple card game. The example specifies
what it means for playera to have a winning strategy: it says thata can establish that
eventually he will know the distribution, and all the other player will not know it.

3.3.1 AETS and Semantics of Epistemic Formulae

Models for ATEL are calledalternating epistemic transition systems(AETS). They
extend alternating transition systems with epistemic accessibility relations∼1, ...,∼k⊆
Q×Q for modeling agents’ uncertainty:

T = 〈Agt, Q,Π, π,∼a1
, ...,∼ak

, δ〉.
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These are assumed to be equivalence relations. Agenta’s epistemic relation is meant to
encodea’s inability to distinguish between the (global) system states: q ∼a q′ means
that, while the system is in stateq, agenta cannot really determine whether it is inq or
q′. Then:

T , q |= Kaϕ iff for all q′ such thatq ∼a q′ we haveT , q′ |= ϕ

Remark 3.1 Since the epistemic relations are required to be equivalences, the epis-
temic layer ofATEL refers indeed to agents’knowledgerather thanbeliefsin general.
We suggest that this requirement can be relieved to allowATEL for other kinds of
beliefs as well. In particular, the interpretation ofATEL into ATL we propose in Sec-
tion 3.4 does not assume any specific properties of the accessibility relations.

Relations∼EA, ∼CA and∼DA , used to model group epistemics, are derived from the
individual accessibility relations of agents fromA:

• first,∼EA is the union of the relations, i.e.q ∼EA q′ iff q ∼a q′ for somea ∈ A. In
other words, if everybody knowsϕ, then no agent may be unsure about the truth
of it, and henceϕ should be true in all the states that cannot be distinguished
from the current state by even one member of the group.

• Next,∼CA is defined as the reflexive and transitive closure of∼EA.

• Finally, ∼DA is the intersection of all the∼a, a ∈ A: if any agent fromA can
distinguishq from q′, then the whole group can distinguish the states, having
combined their individual knowledge together.

The semantics of group knowledge can be defined as below:

T , q |= EAϕ iff for all q′ such thatq ∼EA q′ we haveT , q′ |= ϕ

T , q |= CAϕ iff for all q′ such thatq ∼CA q′ we haveT , q′ |= ϕ

T , q |= DAϕ iff for all q′ such thatq ∼DA q′ we haveT , q′ |= ϕ

Remark 3.2 Epistemic relation∼CA is usually defined as only the transitive closure of
∼EA (van der Hoek and Verbrugge, 2002; van der Hoek and Wooldridge, 2002). The
reflexivity of the closure changes nothing here, since all∼a are defined to be reflexive
themselves — except forA = ∅. And that is exactly why we add it: now∼C∅ can be
used to describe having complete information.

Example 3.2 Let us consider another variation of the variable/controller example: the
client can try to add1 or 2 to the current value ofx now (the addition is modulo
3 in this case). Thus the operations available toc are: “x := x + 1 mod 3” and
“x := x+2 mod 3”. The server can still accept or reject the request fromc (Figure 3.2).
We depict the epistemic accessibility relations with dotted lines in the graph. In this
case, the dotted lines show thatc cannot distinguish being in stateq0 from being in
stateq1, while s is not able to discriminateq0 from q2. Some formulae that are valid
for this AETS (i.e. true in every state of the model) are shownbelow:
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(A) (B)

Agt = {s, c} Q = {q0, q1, q2}
Π = {x=0, x=1, x=2} π(q0) = {x=0}
π(q1) = {x=1} π(q2) = {x=2}
δ(q0, s) = {{q0}, {q1, q2}}
δ(q1, s) = {{q1}, {q0, q2}}
δ(q2, s) = {{q2}, {q0, q1}}
δ(q0, c) = {{q0, q1}, {q0, q2}}
δ(q1, c) = {{q1, q0}, {q1, q2}}
δ(q2, c) = {{q2, q0}, {q2, q1}}
q0 ∼s q0 q0 ∼s q2 q1 ∼s q1
q2 ∼s q0 q2 ∼s q2
q0 ∼c q0 q0 ∼c q1 q1 ∼c q0
q1 ∼c q1 q2 ∼c q2

q0

q2 q1

x=2

x=0

x=1

s c

Figure 3.2: (A) An AETS for the modified controller/client problem. (B) The temporal
and epistemic structure of the system: dotted lines displaythe epistemic accessibility
relations fors andc.

1. x=1 → Ksx=1. In q1 (which is the only state that satisfiesx=1), players must
consider only one possibility – namely,q1 itself. Thus,s knows thatx=1 must
hold now;

2. x=2 → Es,c¬x=1 ∧ ¬Cs,c¬x=1: in q2, both players can rule out the possibility
thatx=1. On the other hand, they do not have common knowledge about it. The
server knows that the current state is eitherq2 or q0, but it knows also that ifq0
is the case, then the client must considerq1 possible. Thus,s cannot rule out a
situation in whichc believes thatx=1. In consequence,s andc know that¬x=1,
buts does not know thatc knows it, and common knowledge is not obtained;

3. x=0 → 〈〈s〉〉 gx=0 ∧ ¬Ks〈〈s〉〉 gx=0. In q0, the server can enforce that the
system will be inq0 in the next step (by choosing to reject the client’s request).
However,s does not know that he is able to do so, because he must considerq2
as a possible state of affairs as well, and inq2 such a strategy fors does not exist;

4. x=2 → 〈〈s, c〉〉 g(x=0 ∧ ¬Es,cx=0): both players can cooperate to enforceq0
as the next state, but they cannot impose on themselves the epistemic ability to
recognize the state;

5. x=0 → Ds,cx=0. In q0, the server can rule out the possibility thatq1 is the case,
and the client can rule outq2. Thus, they know that the current state is exactlyq0
if they are allowed to combine their knowledge.

�
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Figure 3.3: A multi-player epistemic game model for the modified controller/client
problem

3.3.2 Extending Multi-Player Game Models and Coalition Effec-
tivity Models to Include Knowledge

Multi-player game models and coalition effectivity modelscan be augmented with
epistemic accessibility relations in a similar way, givingway to multi-player epistemic
game modelsM = 〈Q, γ, π,∼a1

, ...,∼ak
〉 and epistemic coalition effectivity models

E = 〈Agt, Q,E, π,∼a1
, ...,∼ak

〉 for a set of agentsAgt = {a1, ..., ak} over a set
of propositionsΠ. Semantic rules for epistemic formulae remain the same as inSec-
tion 3.3.1 for both kinds of structures. The equivalence results from Section 2.7 can be
extended to ATEL and its models.

Corollary 3.3 For everyATEL formulaϕ the following are equivalent:

1. ϕ is valid in all alternating epistemic transition systems,

2. ϕ is valid in all multi-player epistemic game models,

3. ϕ is valid in all standard epistemic coalition effectivity models.

Example 3.3 A multi-player epistemic game model for the modified controller/client
system from Example 3.2 is shown in Figure 3.3. The same formulae are valid. �

We will use multi-player epistemic game models throughout the rest of this chapter
for the convenience of presentation they offer.

3.3.3 Problems with ATEL

One of the main challenges in ATEL is the question how, given an explicit way to
represent agents’ knowledge, this should interfere with the agents’ available strategies.
What does it mean that an agent has a strategy to enforceϕ, if it involves making
different choices in states that are epistemically indistinguishable for the agent, for
instance? Moreover, agents are assumed some epistemic capabilities when making de-
cisions, and other for epistemic properties likeKaϕ. The interpretation of knowledge
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operators refers to the agents’ capability to distinguish onestatefrom another; the se-
mantics of〈〈A〉〉 allows the agents to base their decisions uponsequencesof states.
These relations between complete vs. incomplete information on one hand, and perfect
vs. imperfect recall on the other, are studied in Chapter 4 inmore detail. It is also ar-
gued that, when reasoning about what an agent canenforce, it seems more appropriate
to require the agent to know his winning strategy rather thanto know only that such
a strategy exists. Two variations of ATEL are proposed as solutions: Alternating-time
Temporal Observational Logic ATOL (Section 4.4) for agentswith bounded memory
and syntax restricted in a way similar to CTL, and full Alternating-time Temporal Epis-
temic Logic with Recall ATEL-R* (Section 4.5), where agentsare able to memorize
the whole game. We believe that analogous results to those presented here about ATEL
can be obtained for logics like ATOL and ATEL-R* and their models.

3.4 Interpretations of ATEL into ATL

ATL is trivially embedded into ATEL since all ATL formulae are also ATEL formulae.
Moreover, every multi-player game model can be extended to amulti-player epistemic
game model by defining all epistemic accessibility relations to be the equality, i.e. all
agents have no uncertainty about the current state of the system – thus embedding the
semantics of ATL in the one for ATEL, and rendering the formera reduct of the latter.

Finding an interpretation the other way is more involved. Wewill first construct
a satisfiability preserving interpretation of the fragmentof ATEL without distributed
knowledge (we will call it ATELCE), and then we will show how it can be extended to
the whole ATEL, though at the expense of some blow-up of the models. The interpre-
tation we propose has been inspired by (Schild, 2000). We should also mention (van
Otterloo et al., 2003), as it deals with virtually the same issue. Related work is dis-
cussed in more detail at the end of the section.

3.4.1 Idea of the Interpretation

ATEL consists of two orthogonal layers. The first one, inherited from ATL, refers to
what agents can achieve in temporal perspective, and is underpinned by the structure
defined via transition functiono. The other layer is the epistemic component, reflected
by epistemic accessibility relations. Our idea of the translation is to leave the original
temporal structure intact, while extending it with additional transitions to “simulate”
epistemic accessibility links. The “simulation” – like theone in (van Otterloo et al.,
2003) – is achieved through adding new “epistemic” agents, who can enforce transi-
tions to epistemically accessible states. Unlike in that paper, though, the “moves” of
epistemic agents are orthogonal to the original temporal transitions (“action” transi-
tions): they lead to special “epistemic” copies of the original states rather than to the
“action” states themselves, and no new states are introduced into the course of action.
The “action” and “epistemic” states form separate strata inthe resulting model, and are
labeled accordingly to distinguish transitions that implement different modalities.

The interpretation consists of two independent parts: a transformation of models
and a translation of formulae. First, we propose a construction that transforms every
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e1

act

Figure 3.4: New model: “action” vs. “epistemic” states, and“action” vs. “epistemic”
transitions. Note that the game frames for “epistemic” states areexactcopies of their
“action” originals: the “action” transitions from the epistemic layer lead back to the
“action” states.

multi-player epistemic game modelM for a set of agents{a1, ..., ak}, into a (pure)
multi-player game modelMATL over a set of agents{a1, ..., ak, e1, ..., ek}. Agents
a1, ..., ak are the original agents fromM (we will call them “real agents”). Agents
e1, ..., ek are “epistemic doubles” of the real agents: the role ofei is to “point out”
the states that were epistemically indistinguishable fromthe current state for agenta1

inM. Intuitively,Kai
ϕ could be then replaced with a formula like¬〈〈ei〉〉 g¬ϕ that

rephrases the semantic definition ofKa operator from Section 3.3.1. AsMATL inher-
its the temporal structure fromM, temporal formulae might be left intact. However, it
is not as simple as that.

Note that agents make their choices simultaneously in multi-player game models,
and the resulting transition is a result of all these choices. In consequence, it is not
possible that an epistemic agentei can enforce an “epistemic” transition to stateq, and
at the same time a group of real agentsA is capable of executing an “action” transition
to q′. Thus, in order to distinguish transitions referring to different modalities, we
introduce additional states in modelMATL . Statesqei

1 , ..., q
ei
n are exact copies of the

original statesq1, ..., qn from Q except for one thing: they satisfy a new proposition
ei, added to enable identifying moves of epistemic agentei. Original statesq1, ..., qn
are still inMATL to represent targets of “action” moves of the real agentsa1, ..., ak.
We will use a new propositionact to label these states. The type of a transition can be
recognized by the label of its target state (cf. Figure 3.4).

Now, we must only arrange the interplay between agents’ choices, so that the results
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can be interpreted in a direct way. To achieve this, every epistemic agent can choose
to be “passive” and let the others decide upon the next move, or may select one of
the states indistinguishable fromq for an agentai (to be more precise, the epistemic
agents do select the epistemic copies of states fromQei rather than the original action
states fromQ). The resulting transition leads to the state selected by the first non-
passive epistemic agent. If all the epistemic agents decided to be passive, the “action”
transition chosen by the real agents follows.

For such a construction ofMATL , we can finally show how to translate formulae
from ATEL to ATL:

• Kai
ϕ can be rephrased as¬〈〈{e1, ..., ei}〉〉 g(ei ∧ ¬ϕ): the epistemic moves to

agentei’s epistemic states do not lead to a state whereϕ fails. Note that player
ei can select a state of his if, and only if, playerse1, ..., ei−1 are passive (hence
their presence in the cooperation modality). Note also thatKai

ϕ can be as well
translated as¬〈〈{e1, ..., ek}〉〉 g(ei ∧ ¬ϕ) or ¬〈〈{a1, ..., ak, e1, ..., ek}〉〉 g(ei ∧
¬ϕ): whenei decides to be active, choices froma1, ..., ak andei+1, ..., ek are
irrelevant.

• 〈〈A〉〉 gϕ becomes〈〈A ∪ {e1, ..., ek}〉〉 g(act ∧ ϕ) in a similar way.

• To translate other temporal formulae, we must require that the relevant part of
a path runs only through “action” states (labeled withact proposition). Thus,
〈〈A〉〉2ϕ can be rephrased asϕ ∧ 〈〈A ∪ Agte〉〉 g〈〈A ∪Agte〉〉2(act ∧ ϕ). Note
that a simpler translation with〈〈A ∪ Agte〉〉2(act ∧ ϕ) is incorrect: the initial
state of a path does not have to be an action state, since〈〈A〉〉2ϕ can be em-
bedded in an epistemic formula. A similar method applies to the translation of
〈〈A〉〉ϕUψ.

• Translation of common knowledge refers to the definition of relation∼CA as the
transitive closure of relations∼ai

: CAϕ means that all the (finite) sequences of
appropriate epistemic transitions must end up in a state whereϕ is true.

The only operator that does not seem to lend itself to a translation according to
the above scheme is the distributed knowledge operatorD, for which we seem to need
more “auxiliary” agents. Thus, we will begin with presenting details of our interpreta-
tion for ATELCE – a reduced version of ATEL that includes only common knowledge
and “everybody knows” operators for group epistemics. Section 3.4.4 shows how to
modify the translation to include distributed knowledge aswell.

Since the interpretation yields a polynomial model checking algorithm for ATEL,
it can be used for multi-agent planning that involves epistemic goals, using the “plan-
ning as model checking” idea discussed already in Section 2.8. A few examples of
such “planning for epistemic goals” are shown in Section 3.4.5. One must be cautious,
however, while reading〈〈A〉〉Φ as “teamA has aplan to enforceΦ” in the context
of ATEL and the incomplete information assumption. ATEL semantics implies unex-
pected properties for many models, which is especially evident when we understand
“having a strategy” as “being in control to execute a plan”. We investigate the issue
extensively in Chapter 4.
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The interpretation we propose in Sections 3.4.3 and 3.4.4 can be extended to handle
the more general language of ATEL*, as shown in Section 3.4.6. Finally, we can also
modify the interpretation to show how to translate formulaeof the propositional version
of BDI logic from (Schild, 2000) into ATL (and even to CTL) in Section 3.5.1.

3.4.2 Related Work

The interpretation presented in this section has been inspired by (Schild, 2000) in which
a propositional variant of the BDI logic (Rao and Georgeff, 1991) was proved to be sub-
sumed by propositionalµ-calculus. We use a similar method here to show a translation
from ATEL models and formulae to models and formulae of ATL that preserves satisfi-
ability. ATL (just like µ-calculus) is a multi-modal logic, where modalities are indexed
by agents (programs in the case ofµ-calculus). It is therefore possible to “simulate”
the epistemic layer of ATEL by adding new agents (and hence new cooperation modal-
ities) to the scope. Thus, the general idea of the interpretation is to translate modalities
of one kind to additional modalities of another kind.

Similar translations are well known within modal logics community, including
translation of epistemic logic into Propositional DynamicLogic, translation of dy-
namic epistemic logic without common knowledge into epistemic logic (Gerbrandy,
1999) etc. A work particularly close to ours is included in (van Otterloo et al., 2003).
In that paper, a reduction of ATEL model checking to model checking of ATL formu-
lae is presented, and the epistemic accessibility relations are handled in a similar way
to our approach, i.e. with use of additional “epistemic” agents. We believe, however,
that our translation is more general, and provides more flexible framework in many
respects:

1. The algorithm from (van Otterloo et al., 2003) is intendedonly for turn-based
acyclic transition systems, which is an essential limitation of itsapplicability.
Moreover, the set of states is assumed to be finite (hence onlyfinite trees are
considered). There is no restriction like this in our method.

2. The language of ATL/ATEL is distinctly reduced in (van Otterloo et al., 2003):
it includes only “sometime” (3) and “always” (2) operators in the temporal part
(neither “next” nor “until” are treated), and the individual knowledge operator
Ka (the group knowledge operatorsC,E,D are absent).

3. The translation of a model in (van Otterloo et al., 2003) depends heavily on
the formula one wants to model-check, while in the algorithmpresented here,
formulae and models are translated independently (except for the sole case of
efficient translation of distributed knowledge).

4. Our intuition is that our interpretation is also more general in the sense that it
can work in contexts other than model checking. We plan to apply the same
translation scheme to reduce the logic of ATEL itself, i.e. to reduce ATEL to
ATL. Given decidability and a complete axiomatization of ATL (Goranko and
van Drimmelen, 2003), such a reduction would carry the results over to ATEL.
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3.4.3 Interpreting Models and Formulae of ATELCE into ATL

Given a multi-player epistemic game modelM = 〈Q, γ, π,∼a1
, ...,∼ ak〉 for a set

of agentsAgt = {a1, ..., ak} over a set of propositionsΠ, we construct a new game
modelMATL = 〈Q′, γ′, π′〉 over a set of agentsAgt′ = Agt ∪Agte, where:

• Agte = {e1, ..., ek} is the set of epistemic agents;

• Q′ = Q ∪ Qe1 ∪ ... ∪ Qek , whereQei = {qei | q ∈ Q}. We assume that
Q,Qe1 , ..., Qek are pairwise disjoint. Further we will be using the more general
notationSei = {qei | q ∈ S} for anyS ⊆ Q.

• Π′ = Π∪ {act, e1, ..., ek}, andπ′(p) = π(p)∪
⋃

i=1,...,k π(p)ei for every propo-
sitionp ∈ Π. Moreover,π′(act) = Q andπ′(ei) = Qei .

We assume that all the epistemic agents fromAgte, states fromStatese1 ∪ ... ∪ Qek ,
and propositions from{act, e1, ..., ek}, arenewand have been absent in the original
modelM.

For every stateq inM, we translate the frameγ(q) = 〈Agt, {Σqa | a ∈ Agt}, Q, o〉
to γ′(q) = 〈Agt′, {Σq′a | a ∈ Agt′}, Q′, o′〉:

• Σq′a = Σqa for a ∈ Agt: choices of the “real” agents do not change;

• Σq′ei
= {pass} ∪ img(q,∼ai

)ei for i = 1, ..., k, whereimg(q,R) = {q′ | qRq′}
is the image ofq with respect to relationR.

• the new transition function is defined as follows:

o′q(σa1
, ..., σak

, σe1 , ..., σek
) =







oq(σa1
, ..., σak

) if σe1 = ... = σek
= pass

σei

if ei is the first active
epistemic agent.

The game frames for the new states are exactly the same:γ′(qei) = γ′(q) for all
i = 1, ..., k, q ∈ Q.

Example 3.4 A part of the resulting structure for the epistemic game model from
Figure 3.3 is shown in Figure 3.5. All the new states, plus thetransitions going
out of q2 are presented. The wildcard “*” stands for any action of the respective
agent. For instance,〈reject, ∗, pass, pass〉 represents〈reject, set0, pass, pass〉 and
〈reject, set1, pass, pass〉. �

Now, we define a translation of formulae from ATELCE to ATL corresponding to
the above described interpretation of ATEL models into ATL models:

tr(p) = p, for p ∈ Π

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

tr(〈〈A〉〉 gϕ) = 〈〈A ∪Agte〉〉 g(act ∧ tr(ϕ))
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Figure 3.5: Construction for the multi-player epistemic game model from Figure 3.3.

tr(〈〈A〉〉2ϕ) = tr(ϕ) ∧ 〈〈A ∪ Agte〉〉 g〈〈A ∪Agte〉〉2(act ∧ tr(ϕ))

tr(〈〈A〉〉ϕUψ) = tr(ψ) ∨ (tr(ϕ) ∧ 〈〈A ∪ Agte〉〉 g〈〈A ∪ Agte〉〉

(act ∧ tr(ϕ))U(act ∧ tr(ψ)))

tr(Kai
ϕ) = ¬〈〈{e1, ..., ei}〉〉 g(ei ∧ ¬tr(ϕ))

tr(EAϕ) = ¬〈〈Agte〉〉 g(
∨

ai∈A

ei ∧ ¬tr(ϕ))

tr(CAϕ) = ¬〈〈Agte〉〉 g〈〈Agte〉〉(
∨

ai∈A

ei)U(
∨

ai∈A

ei ∧ ¬tr(ϕ))

Lemma 3.4 For everyATELCE formulaϕ, modelM, and “action” stateq ∈ Q, we
haveMATL , q |= tr(ϕ) iffMATL , qei |= tr(ϕ) for everyi = 1, ..., k.

Proof sketch (structural induction onϕ): It suffices to note thattr(ϕ) cannot contain
propositionsact, e1, ..., ek outside of the scope of〈〈A〉〉 gfor someA ⊆ Agt′. Besides,
the propositions fromϕ are true inq iff they are true inqe1 , ..., qek and the game frames
for q, qe1 , ..., qek are the same. �

Lemma 3.5 For everyATELCE formulaϕ, modelM, and “action” stateq ∈ Q, we
haveM, q |= ϕ iffMATL , q |= tr(ϕ).

Proof: The proof follows by structural induction onϕ. We will show that the con-
struction preserves the truth value ofϕ for three cases:ϕ ≡ 〈〈A〉〉 gψ, ϕ ≡ 〈〈A〉〉2ψ
andϕ ≡ CAψ. An interested reader can tackle the other cases in an analogous way.

caseϕ ≡ 〈〈A〉〉 gψ, ATEL CE ⇒ ATL. LetM, q |= 〈〈A〉〉 gψ, then there isσA such
that for everyσAgt\A we haveoq(σA, σAgt\A) |= ψ. By induction hypothesis,
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MATL , oq(σA, σAgt\A) |= tr(ψ); also,MATL , oq(σA, σAgt\A) |= act. Thus,

MATL , o′q(σA, σAgt\A, passAgte) = oq(σA, σAgt\A) |= act ∧ tr(ψ), where
passC denotes the strategy where every agent fromC ⊆ Agte decides to be
passive. In consequence,MATL , q |= 〈〈A ∪ Agte〉〉 gtr(ψ).

caseϕ ≡ 〈〈A〉〉 gψ, ATL ⇒ ATEL CE . MATL , q |= 〈〈A ∪ Agte〉〉 g(act ∧ tr(ψ)),
so there isσA∪Agte such that for everyσAgt′\(A∪Agte) = σAgt\A we have that

MATL , o′q(σA∪Agte , σAgt\A) |= act ∧ tr(ψ). Note also thatact is true inMATL

ando′q(σA∪Agte , σAgt\A) only whenσA∪Agte = 〈σA, passAgte〉, otherwise the
transition would lead to an epistemic state. In consequence, we have that
o′q(σA∪Agte , σAgt\A) = oq(σA, σAgt\A), and henceMATL , oq(σA, σAgt\A) |=
tr(ψ). By the induction hypothesis,M, oq(σA, σAgt\A) |= ψ and finallyM, q |=
〈〈A〉〉 gψ.

caseϕ ≡ 〈〈A〉〉2ψ, ATEL CE ⇒ ATL. LetM, q |= 〈〈A〉〉2ψ, thenA have a collec-
tive strategyFA such that for everyΛ ∈ outM(q, FA) and i ≥ 0 we have
M,Λ[i] |= ψ (*). Consider a strategyF ′

A∪Agte in the new modelMATL , such
thatF ′

A∪Agte(a)(λ) = FA(a)(λ) for all a ∈ A andλ ∈ Q+, andF ′
A∪Agte(a)(λ) =

pass for all a ∈ Agte. In other words,F ′
A∪Agte is a strategy according to which

the agents fromA do exactly the same as in the original strategyFA for all
the histories of “action” states fromQ (and do anything for all the other his-
tories), while the epistemic agents remain passive all the time. Since all the
epistemic agents pass, everyΛ ∈ out

MATL (q, F ′
A∪Agte) includes only “ac-

tion” states fromQ (**). As the agents fromA make the same choices as in
FA, we obtain thatout

MATL (q, F ′
A∪Agte) = outM(q, FA). By (*) and the in-

duction hypothesis: for everyΛ ∈ out
MATL (q, F ′

A∪Agte) andi ≥ 0 we have

M,Λ[i] |= tr(ψ). By (**), also MATL ,Λ[i] |= act for all suchΛ and i.
In consequence,MATL , q |= 〈〈A ∪ Agte〉〉2(tr(ψ) ∧ act), which implies that
MATL , q |= tr(ψ) ∧ 〈〈A ∪ Agte〉〉 g〈〈A ∪ Agte〉〉2(tr(ψ) ∧ act).2

caseϕ ≡ 〈〈A〉〉2ψ, ATL ⇒ ATEL CE . LetMATL and an “action” stateq ∈ Q satisfy
tr(ψ) ∧ 〈〈A ∪Agte〉〉 g〈〈A ∪ Agte〉〉2(tr(ψ) ∧ act). Note thatMATL , q |= act,
soMATL , q |= (tr(ψ) ∧ act) ∧ 〈〈A ∪ Agte〉〉 g〈〈A ∪Agte〉〉2(tr(ψ) ∧ act),
which is equivalent toMATL , q |= 〈〈A ∪Agte〉〉2(tr(ψ)∧act). Thus,A∪Agte

have a collective strategyFA∪Agte such that for everyΛ ∈ out
MATL (q, FA∪Agte)

andi ≥ 0 we haveMATL ,Λ[i] |= act∧tr(ψ). In consequence,MATL ,Λ[i] |=

act (*) andMATL ,Λ[i] |= tr(ψ) (**). By (*), Λ includes only “action” states
from Q, and henceΛ is a path inM as well. Moreover, (*) implies also that
FA∪Agte(a)(λ) = pass for everya ∈ Agte andλ being any finite prefix of

2The proof suggests a simpler translation of〈〈A〉〉2ψ: namely,〈〈A ∪ A gte〉〉2(tr(ψ) ∧ act) instead of
tr(ψ)∧〈〈A ∪ A gte〉〉 e〈〈A ∪ A gte〉〉2(tr(ψ)∧ act) (cf. also Remark 3.9). Indeed, no part of the proof of
Lemma 3.5directly rules out the simpler scheme. Note, however, that the proof of Lemma 3.5 uses the result
from Lemma 3.4 in several places, and the proof of Lemma 3.5doesdepend on the fact that propositionact
occurs only in the scope of〈〈Γ〉〉 e.
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a computation fromout
MATL (q, FA∪Agte). Thus, the actual sequence of “ac-

tion” states in computationΛ entirely depends on choices of the “real” agents
from Agt.

LetF ′
A, such thatF ′

A(a)(λ) = FA∪Agte(a)(λ) for everya ∈ A andλ ∈ Q+, be a
collective strategy forA inM. Then,outM(q, F ′

A) = out
MATL (q, FA∪Agte).

By (**) and the induction hypothesis,M,Λ[i] |= ψ for everyΛ ∈ outM(q, FA)
andi ≥ 0. In consequence,M, q |= 〈〈A〉〉2ψ.

caseϕ ≡ CAψ, ATEL CE ⇒ ATL. We haveM, q |= CAψ, so for every sequence
of statesq0 = q, q1, ..., qn, qi ∼aji

qi+1, aji ∈ A for i = 0, ..., n − 1, it

is true thatM, qn |= ψ. Consider the sameq in MATL . The shape of the
construction implies that for every sequenceq′0 = q, q′1, ..., q

′
n in which every

qi+1 is a successor ofqi and everyqi+1 ∈ Q
eji , eji ∈ A

e, we haveMATL , q′n |=

tr(ψ) (by induction and Lemma 3.4). Moreover,MATL , q′i |= eji for i ≥ 1,

henceMATL , q′i |=
∨

aj∈A
ej. Note that the above refers to all the sequences

that can be enforced by the agents fromAgte, and have
∨

aj∈A
ej true along the

way (fromq′1 on). Thus,Agte have no strategy fromq such that
∨

aj∈A
ej holds

from the next state on, andtr(ψ) is eventually false:
MATL , q 2ATL 〈〈Agte〉〉 g〈〈Agte〉〉(

∨

aj∈A
ej)U(

∨

aj∈A
ej ∧ ¬tr(ψ)),

which proves the case.

caseϕ ≡ CAψ, ATL ⇒ ATEL CE . We have
MATL , q |= ¬〈〈Agte〉〉 g〈〈Agte〉〉(

∨

aj∈A
ej)U(

∨

aj∈A
ej ∧ ¬tr(ψ)), so for ev-

ery σAgte there isσAgt′\Agte = σAgt such thato′q(σAgte , σAgt) = q′ ∈ Q′ and

MATL , q′ |= ¬〈〈Agte〉〉(
∨

aj∈A
ej)U(

∨

aj∈A
ej ∧ ¬tr(ψ)). In particular, this

implies that the above holds for all epistemic statesq′ that are successors ofq in
MATL , also the ones that refer to agents fromA (*).

Suppose thatM, q 2 CAψ (**). Let us now take the action counterpartq′act ∈ Q
of q′. By (*), (**) and properties of the construction,q′act occurs also inM, and
there must be a pathq0 = q, q1 = q′act, ..., qn, qi ∈ Q, such thatqi ∼aji

qi+1 and

M, qn 2ATEL ψ. Then,MATL , qn 2ATL tr(ψ) (by induction). This means

also that we have a sequenceq0 = q, q′1 = q′, ..., q′n inMATL , in which every
q′i ∈ Q

eji , aji ∈ A, is an epistemic counterpart ofqi. Thus, for everyi = 1, ..., n:

MATL , q′i |= eji , soMATL , q′i |=
∨

aj∈A
ej. Moreover,MATL , qn 2ATL

tr(ψ) implies thatMATL , q′n 2ATL tr(ψ) (by Lemma 3.4), soMATL , q′n |=

¬tr(ψ). Thus,MATL , q′ |= 〈〈Agte〉〉(
∨

aj∈A
ej)U(

∨

aj∈A
ej ∧ ¬tr(ψ)), which

contradicts (*).

�

As an immediate corollary of the last two lemmata we obtain:

Theorem 3.6 For everyATELCE formula ϕ and modelM, ϕ is satisfiable (resp.
valid) inM iff tr(ϕ) is satisfiable (resp. valid) inMATL .
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Note that the construction used above to interpret ATELCE in ATL has several nice
complexity properties:

• The vocabulary (set of propositionsΠ) only increases linearly (and certainly
remains finite).

• The set of states in an ATEL-model grows linearly, too: if modelM includesn
states andk agents, thenMATL hasn′ = (k + 1)n = O(kn) states.

• Letm be the number of transitions inM. We have(k + 1)m action transitions
inMATL . Since the size of every setimg(q,∼a) can be at mostn, there may
be no more thankn epistemic transitions per state inMATL , hence at most
(k + 1)nkn in total. Becausem ≤ n2, we havem′ = O(k2n2).

• Only the length of formulae may suffer an exponential blow-up, because the
translation of〈〈A〉〉2ϕ involves two occurrences oftr(ϕ), and the translation
of 〈〈A〉〉ϕUψ involves two occurrences of bothtr(ϕ) andtr(ψ). Thus, every
nesting of〈〈A〉〉2ϕ and 〈〈A〉〉ϕUψ roughly doubles the size of the translated
formula in the technical sense. However, the number ofdifferent subformulaein
the formula only increases linearly. Note that the automata-based methods for
model checking (Alur et al., 2002) or satisfiability checking (van Drimmelen,
2003) for ATL are based on an automaton associated with the given formula, built
from its “subformulae closure” – and their complexity depends on the number of
different subformulae in the formula rather than number of symbols.

In fact, we can avoid the exponential growth of formulae in the context of satisfi-
ability checking by introducing a new propositional variable p and requiring that
it is universally equivalent totr(ϕ), i.e. adding conjunct〈〈∅〉〉2(p ↔ tr(ϕ))
to the whole translated formula. Then〈〈A〉〉2ϕ can be simply translated as
p ∧ 〈〈A ∪Agte〉〉 g〈〈A ∪ Agte〉〉2(act ∧ p). “Until” formulae 〈〈A〉〉ϕUψ are
treated analogously. A similar method can be proposed for model checking. To
translate〈〈A〉〉2ϕ, we first use the algorithm from (Alur et al., 2002) and model-
checktr(ϕ) to find the statesq ∈ Q in which tr(ϕ) holds. Then we update
the model, adding a new propositionp that holds exactly in these states, and we
model-check(p ∧ 〈〈A ∪ Agte〉〉 g〈〈A ∪ Agte〉〉2(act ∧ p)) as the translation of
〈〈A〉〉2ϕ in the new model. We tackletr(〈〈A〉〉ϕUψ) likewise.

Since the complexity of transformingM toMATL is no worse thanO(n2), and
the complexity of ATL model checking algorithm from (Alur etal., 2002) isO(ml),
the interpretation defined above can be used, for instance, for an efficient reduction of
model checking of ATELCE formulae to model checking in ATL.

3.4.4 Interpreting Models and Formulae of Full ATEL

Now, in order to interpret the full ATEL we modify the construction by introducing
new epistemic agents (and states) indexed not only with individual agents, but with all
possible non-empty coalitions:
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Agte = {eA | A ⊆ Agt, A 6= ∅}
Q′ = Q ∪

⋃

A⊆Agt,A 6=∅
QeA ,

whereQ and allQeA are pairwise disjoint. Accordingly, we extend the language
with new propositions{eA | A ⊆ Agt}. The choices for complex epistemic agents
refer to the (epistemic copies of) states accessible via distributed knowledge relations:
Σ′
eA

= {pass} ∪ img(q,∼DA)eA . Then we modify the transition function (putting the
strategies from epistemic agents in any predefined order):

o′q(σa1
, ..., σak

, ..., σeA
, ...) =







oq(σa1
, ..., σak

) if all σeA
= pass

σeA

if eA is the first active
epistemic agent

Again, the game frames for all epistemic copies of the actionstates are the same.
The translation for all operators remain the same as well (just usinge{i} instead ofei)
and the translation ofDA is:

tr(DAϕ) = ¬〈〈Agte〉〉 g(eA ∧ ¬tr(ϕ)).

The following result can now be proved similarly to Theorem 3.6.

Theorem 3.7 For everyATEL formulaϕ and modelM, ϕ is satisfiable (resp. valid)
inM iff tr(ϕ) is satisfiable (resp. valid) inMATL .

This interpretation requires (in general) an exponential blow-up of the original
ATEL model (in the number of agentsk). We suspect that this may be inevitable –
if so, this tells something about the inherent complexity ofthe epistemic operators.
For a specific ATEL formulaϕ, however, we do not have to include all the epistemic
agentseA in the model – only those for whichDA occurs inϕ. Also, we need epistemic
states only for these coalitions. Note that the number of such coalitions is never greater
than the length ofϕ. Let l be the length of formulaϕ, and letm be the cardinality of
the “densest” modal accessibility relation – either strategic or epistemic – inM. In
other words,m = max(m,m∼1

, ...,m∼k
), wherem is the number of transitions in

M, andm∼1
, ...,m∼k

are cardinalities of the respective epistemic relations. Then, the
“optimized” transformation gives us a model withm′ = O(l · m) transitions, while
the new formulatr(ϕ) is again only linearly longer thanϕ (in the sense explained in
Section 4.4.2). In consequence, we can still use the ATL model checking algorithm for
model checking of ATEL formulae that is linear in the size of the original structure:
the complexity of such process isO(m l2).

3.4.5 Planning for Epistemic Goals

If an agent models reality in terms of alternating epistemictransition systems, multi-
player epistemic game models or epistemic coalition effectivity models, he can use the
above interpretation to reduce ATELplanningto ATL planning as well. Thus – via
the reduction – we obtain an efficient planning algorithm forgoals that may include
epistemic properties: an ATEL goalϕ and the model of the realityM are translated to
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tr(ϕ) andMATL , and we can execute the procedureplan(tr(ϕ)) from Section 2.8 on
modelMATL . In this section we show a few examples of such planning.

It should be mentioned, however, that ATEL formulae of shape〈〈A〉〉Φ (where
Φ ≡ gϕ, 2ϕ or ϕUψ). should rathernot be read as “teamA has a plan to enforce
Φ” ATEL semantics implies unexpected properties for many models, which is espe-
cially evident when we understand “having a strategy” as “being in control to execute a
plan”. The issue is analyzed extensively in Chapter 4, and wepropose two new variants
of “ATL with incomplete information” (dubbed ATOL and ATEL-R) that seem to be
in a better agreement with the common-sense understanding of strategies as (feasible
and executable) plans. Unfortunately, model checking for both ATOL and ATEL-R is
NP-hard (cf. Proposition 4.2 for ATOL, and the discussion ofATEL-R complexity in
Section 4.5.5), so it cannot be solved in polynomial time (unless P=NP, of course) –

This is where ATEL may prove useful. Let us observe that ATEL formula〈〈A〉〉Φ
is a necessary condition forA having an executable plan to enforceΦ, in the sense
defined in (Lin, 2000; Doherty et al., 2001).3 If A have such a plan, then〈〈A〉〉Φ must
hold; thus¬〈〈A〉〉Φ implies that such a plan does not exist (this observation is given
a more formal treatment in Proposition 4.6-4, and Proposition 4.10-3 for ATOL and
ATEL-R, respectively). In that sense, ATEL formulae can be used to specify an upper
approximation of the agents’real abilities.

Remark 3.8 We pointed out in Section 2.8.4 that model checking of strategic formulae
from ATL (and hence fromATEL as well) comes very close to the algorithm of min-
imaxing in zero-sum games. In the same sense, the approximate evaluation ofATOL
formulae through theirATEL necessary condition counterparts, that we suggest above,
strongly resembles the technique ofMonte Carlo Sampling) (Corlett and Todd, 1985;
Ginsberg, 1996, 1999). Monte Carlo minimaxing was successfully used as a basis for
GIB, the first Bridge playing program that could seriously compete with human play-
ers (Ginsberg, 1999, 2001).

Example 3.5 Consider the server/client system from Example 3.3. Suppose we want
to check whether in any state there is common knowledge amongthe agents about some
situation beingnot the current situation. In other words: can they rule out somestate as
impossible to be the case at this moment, and know that the others can rule it out, and
know that they know... etc. The ATEL formula to be checked is then:C{s,c}¬x=0 ∨
C{s,c}¬x=1∨C{s,c}¬x=2. We use the construction from Section 3.4.3 to transform the
multi-player epistemic game modelM from Figure 3.3 to obtain the corresponding
modelMATL without epistemic relations (cf. Figure 3.5). The translation gives the
following ATL formula:

Φ ≡ ¬〈〈es, ec〉〉 g〈〈es, ec〉〉(es ∨ ec)U((es ∨ ec) ∧ ¬¬x=0)

∨ ¬〈〈es, ec〉〉 g〈〈es, ec〉〉(es ∨ ec)U((es ∨ ec) ∧ ¬¬x=1)

∨ ¬〈〈es, ec〉〉 g〈〈es, ec〉〉(es ∨ ec)U((es ∨ ec) ∧ ¬¬x=2).

Executingplan(Φ) in the context of modelMATL returns the empty set. Thus,
C{s,c}¬x=0 ∨ C{s,c}¬x=1 ∨ C{s,c}¬x=2 is true in no state ofM . �

3We conjecture that it might be the strongest necessary condition for the property of having a feasible
plan under incomplete information.
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Remark 3.9 Note that, while looking for a plan that brings about someϕ, we are
usually interested in getting the result for the original states fromM only, as the
epistemic states fromMATL play only an auxiliary role in the procedure. In such
a case, the formula we must use to ask whether propertyϕ can be maintained for-
ever, can be simplified to〈〈A ∪ Agte〉〉2(act ∧ ϕ), instead of the complicatedϕ ∧
〈〈A ∪ Agte〉〉 g〈〈A ∪ Agte〉〉2(act ∧ ϕ). A similar remark applies to〈〈A〉〉ϕUψ.

Putting it in a more formal way, we observe that the followingclauses allow some
simplification of the translatedATL formulae serving as the planning procedure input:

1. for everyq ∈ Q:
MATL , q |= ϕ ∧ 〈〈A ∪ Agte〉〉 g〈〈A ∪ Agte〉〉2(act ∧ ϕ)

iff MATL , q |= 〈〈A ∪ Agte〉〉2(act ∧ ϕ);

2. for everyq ∈ Q:
MATL , q |= ψ ∨ (ϕ ∧ 〈〈A ∪Agte〉〉 g〈〈A ∪ Agte〉〉(act ∧ ϕ)U(act ∧ ψ))

iff MATL , q |= 〈〈A ∪ Agte〉〉(act ∧ ϕ)U(act ∧ ψ).

Note that the above equivalences hold only for the “action” states from the original set
Q, so they cannot be used to simplify the whole translation.

Example 3.6 Let us go back to the agents from Example 3.5. Common knowledge
about a situation beingnot the case now does not hold in any state, so it cannot be
established in the future as well. We may ask, however, if there is a way to ensure at
least thatall the agentscan rule out such a situation (although they probably will not
know that they can):〈〈s, c〉〉3

(

E{s,c}¬x=0 ∨ E{s,c}¬x=1 ∨ E{s,c}¬x=2
)

. Suppose we
are particularly interested in ruling out the case wherex=2 to simplify the example.
Now, formula〈〈s, c〉〉3E{s,c}¬x=2 is in fact a shorthand for〈〈s, c〉〉⊤UE{s,c}¬x=2,
which can be translated to ATL as:

Φ ≡ 〈〈s, c, es, ec〉〉actU
(

act ∧ ¬〈〈es, ec〉〉 g((es ∨ ec) ∧ x=2)
)

.

Procedureplan(Φ) in the context of modelMATL returns:

{〈q0, 〈accept, add1, pass, pass〉〉, 〈q1,−〉, 〈q2, 〈accept, add1, pass, pass〉〉}.

Thus, agentss andc can execute collective strategy

{〈q0, 〈accept, add1〉〉, 〈q1,−〉, 〈q2, 〈accept, add1〉〉}

to eventually achieveE{s,c}¬x=2. �

3.4.6 Interpretation of ATEL* into ATL*

Although the computational complexity makes ATEL* model checking rather uninter-
esting from the practical standpoint, we find it worth pointing out that the translation
from Section 3.4.4 is in fact a special case of a more general interpretation that enables
translating ATEL* formulae into ATL*. We briefly sketch the latter interpretation here.
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First, models are translated in exactly the same way as in Section 3.4.4. Second, the
translation of formulae is given below:

tr(p) = p, for p ∈ Π

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

tr(〈〈A〉〉ϕ) = 〈〈A ∪ Agte〉〉tr(ϕ)

tr( gϕ) = g(act ∧ tr(ϕ))

tr(ϕUψ) = tr(ψ) ∨ (tr(ϕ) ∧ g(act ∧ tr(ϕ))U(act ∧ tr(ψ)))

tr(Kai
ϕ) = ¬〈〈{e1, ..., ei}〉〉 g(ei ∧ ¬tr(ϕ))

tr(EAϕ) = ¬〈〈Agte〉〉 g(
∨

ai∈A

ei ∧ ¬tr(ϕ))

tr(CAϕ) = ¬〈〈Agte〉〉 g
(

(
∨

ai∈A

ei)U(
∨

ai∈A

ei ∧ ¬tr(ϕ))
)

tr(DAϕ) = ¬〈〈Agte〉〉 g(eA ∧ ¬tr(ϕ)).

3.5 BDI and Its Interpretation in ATL

One of the best known frameworks for reasoning about rational agents, inspired by
the philosophical debate on the nature of agency and building upon the repository of
various modal logics, is the BDI logic proposed in (Rao and Georgeff, 1991, 1995)
and later investigated in (Wooldridge, 2000). BDI enables expressing claims about an
agent’sbeliefs, desiresand intentions, wrapped around the language of computation
tree logic. The original language of BDI is very ornate, including first-order version
of full CTL*, plus elements of dynamic logic, quantificationover agents and actions
etc. The main “specialty” of the logic, however, lies in its models: the possible worlds
arenot instantaneous states of the system, but rathercomputational treesthemselves
(emphasizing the fact that in every situation we may see different possible lines of
future), and the accessibility relations areternary rather than binary (showing which
possible worlds are indistinguishableat a particular time point).4 In this section we
will discuss BDICTL, a propositional variant of BDI, the way it was defined in (Schild,
2000). We will also follow that paper in our presentation of the logic’s semantics,
defining the models as more conventional structures, in which the successor relation
and the accessibility relations must satisfy certain conditions.

Formulae of BDICTL are:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | E gϕ | E2ϕ | Eϕ1 Uϕ2 | Belaϕ | Desaϕ | Intaϕ

The semantics of BDICTL can be based onsituation structures:

S = 〈Ω,Agt,R,Ba1
, ...,Bak

,Da1
, ...,Dak

, Ia1
, ..., Iak

, π〉,

4It is worth noting that this sort of structures resembles to some extent the representation proposed inde-
pendently in (Frank et al., 1998) to investigate search algorithms for games with incomplete information.
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Figure 3.6: A fragment of a BDI model for the card game:a is the actual player in
our game;opt is the “optimistic player”, or at least this agent represents playera’s idea
about a “real optimist”.

where:

• Ω = W ×T is a set ofsituations. A situation〈w, t〉 is a pair of apossible world
w ∈W and atime pointt ∈ T in w;

• Agt = {a1, ..., ak} is a set of agents;

• relationR defines transitions between situations. It is required thatthe situations
belong to the same possible world: if〈w, t〉R〈w′, t′〉 thenw = w′;

• relationsBa show which situations are considered possible by an agenta from
the current situation. The situations must share the time point: if 〈w, t〉Ba〈w′, t′〉
thent = t′. Ba is assumed serial, transitive and Euclidean;

• relationsDa (Ia) show which situations are considered desirable (intended) by
a. Again, if 〈w, t〉Da〈w′, t′〉 (〈w, t〉Ia〈w′, t′〉, respectively) thent = t′. Da and
Ia are only assumed to be serial;

• π : Ω→ P(Π) is a valuation of propositions fromΠ.

Example 3.7 Consider a very simple card game, that will serve us as a working exam-
ple in Chapter 4 (cf. Example 4.2). Agenta plays against the environmentenv, and the
deck consists of Ace, King and Queen (A,K,Q). We assume thatA beatsK,K beats
Q, butQ beatsA.5 First env gives a card toa, and assigns one card to itself. Then

5Note that this scheme closely resembles the game ofRoShamBoor “Rock-Paper-Scissors”: paper covers
rock, scissors cut paper, but rock crushes scissors.
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a can exchange his card for the one remaining in the deck, or he can keep the current
one. The player with the better card wins the game. The game isplayed repeatedly
ad infinitum. Figure 3.6 presents a fragment of a (possible) BDI structure for player
a; we assume thata has just been givenA, env holdsK, anda can keep the Ace or
exchange it for the remaining card in the next move. Thus, thesituation is〈w2, AK1〉
now. PropositionhasA can be used to identify the situations in which playera has the
Ace, and propositionswin labels the winning positions fora in the game. Here are
some things that can be said about the game and the player in situation〈w2, AK1〉:

1. hasA ∧ BelahasA : agenta has the Ace, and he is aware of it;

2. BelaE
gwin : he believes there is a way to win in the next step;

3. DesaA
gwin : he desires that every path leads to a victory, so he does not have

to worry about his decisions. However, he does not believe itis possible, so his
desires are rather unrealistic:¬BelaA

gwin;

4. moreover, he believes that a real optimist would believe that the victory is in-
evitable:BelaBeloptA

gwin.

�

BDICTL was shown to be subsumed by the propositionalµ-calculus, one of the
standard logics of concurrency (Schild, 2000). We will use asimilar technique to
reduce the model checking problem BDICTL to ATL and CTL. We conjecture that
the interpretation might yield analogous subsumption result, i.e. that BDICTL can be
reduced to ATL or even CTL. At this moment, however, no definitive results have been
obtained in this respect.

3.5.1 An Interpretation of BDI CTL into ATL and CTL

Using a construction similar to the one in Section 3.4.3, we will interpret BDICTL into
ATL.

Given a situation structureS = 〈Ω,R,Ba1
, ...,Bak

,Da1
, ...,Dak

, Ia1
, ..., Iak

, π〉
for a set of agentsAgt = {a1, ..., ak} over a set of propositionsΠ, we construct a game
modelMATL = 〈Q′, γ′, π′〉 as follows:

• Agt′ = {env} ∪ Agtbel ∪ Agtdes ∪ Agtint. As BDI is not really about what
outcomes can be effected by which agents, the dynamic structure of the system
can be attributed to one agent (the “environment”) without any loss of general-
ity. However, we need additional agentsAgtbel = {bel1, ..., belk}, Agtdes =
{des1, ..., desk} andAgtint = {int1, ..., intk} to translate BDI formulae refer-
ring to agents’ beliefs, desires and intentions;

• Q′ = Ω ∪
⋃

(Ωbeli ∪ Ωdesi ∪ Ωinti), whereSbeli = {qbeli | q ∈ S}, S ⊆ Ω etc.
Additional statesΩbeli , Ωdesi andΩinti are copies of the original ones, and will be
used to simulate theBai

,Dai
andIai

accessibility relations;
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• Π′ = Π ∪ {act, bel1, ..., belk, des1, ..., desk, int1, ..., intk}. π′(p) = π(p) ∪
⋃

i=1,...,k(π(p)beli ∪π(p)desi∪π(p)inti) for everyp ∈ Π; π′(act) = Ω, π′(beli) =

Ωbeli , π′(desi) = Ωdesi andπ′(inti) = Ωinti .

For every situationq in S, we translate the relationsR, B,D andI into a game frame
γ′(q) = 〈Agt′, {Σ′

a | a ∈ Agt′}, o′, Q′〉:

• Σ′
env = img(q,R);

• Σ′
beli

= {pass} ∪ img(q,Bai
)beli , Σ′

desi
= {pass} ∪ img(q,Dai

)desi , and
Σ′
inti

= {pass} ∪ img(q, Iai
)inti for i = 1, ..., k;

• again, the new transition function is defined as follows: if all the “dummy” agents
decide to be passive, then a “real” transition is executed; otherwise, the choice
of the first non-passive “dummy” agent is accepted:

o′q(σenv , σbel1 , ..., σintk) =







σenv if σbel1 = ... = σintk = pass

sei
if ei is the first active agent
out ofbel1, ..., intk, ands = σei

The game frames for the new states are exactly the same:γ′(qbeli) = γ′(qdesi) =
γ′(qinti) = γ′(q), fori = 1, ..., k, q ∈ Ω.

Now, we define a translation of the BDICTL formulae into ATL. The translation is
very similar to the one for ATEL formulae, once we recall thatA can be expressed with
〈〈∅〉〉 in ATL:

tr(p) = p

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

tr(E gϕ) = 〈〈{env} ∪ Agtbel ∪ Agtdes ∪Agtint〉〉 g(act ∧ tr(ϕ))

tr(E2ϕ) = tr(ϕ) ∧ 〈〈{env} ∪ Agtbel ∪ Agtdes ∪ Agtint〉〉 g

〈〈{env} ∪ Agtbel ∪ Agtdes ∪Agtint〉〉2(act ∧ tr(ϕ))

tr(EϕUψ) = tr(ψ) ∨ tr(ϕ) ∧ 〈〈{env} ∪ Agtbel ∪Agtdes ∪ Agtint〉〉 g

〈〈{env} ∪ Agtbel ∪ Agtdes ∪Agtint〉〉(act ∧ tr(ϕ))U(act ∧ tr(ψ))

tr(Belai
ϕ) = ¬〈〈{bel1, ..., beli}〉〉 g(beli ∧ ¬tr(ϕ))

tr(Desai
ϕ) = ¬〈〈Agtbel ∪ {des1, ..., desi}〉〉 g(desi ∧ ¬tr(ϕ))

tr(Intai
ϕ) = ¬〈〈Agtbel ∪ Agtdes ∪ {int1, ..., inti}〉〉 g(inti ∧ ¬tr(ϕ))

Theorem 3.10 For everyBDICTL formula φ and modelM, φ is satisfiable (resp.
valid) inM iff tr(φ) is satisfiable (resp. valid) inMATL .

The proof is analogous to Theorem 3.6.
Note thattr(Belai

ϕ) may be as well rephrased as

¬〈〈Agt ∪ Agtbel ∪ Agtdes ∪ Agtint〉〉 g(beli ∧ ¬tr(ϕ))
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since it does not matter what the agents fromAgt∪Agtdes∪Agtint∪{beli+1, ..., belk}
decide to do at all. Note also that〈〈Agt ∪ Agtbel ∪ Agtdes ∪ Agtint〉〉 is equivalent to
the existential path quantifierE from CTL. Similar remarks apply to the rest of above
clauses. After re-writing the clauses, we obtain an equivalent translation:

tr(p) = p

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

tr(A gϕ) = E g(act ∧ tr(ϕ))

tr(A2ϕ) = tr(ϕ) ∧ E gE2(act ∧ tr(ϕ))

tr(AϕUψ) = tr(ψ) ∨ tr(ϕ) ∧ E gE(act ∧ tr(ϕ))U(act ∧ tr(ψ))

tr(Belai
ϕ) = ¬E g(beli ∧ ¬tr(ϕ))

tr(Desai
ϕ) = ¬E g(desi ∧ ¬tr(ϕ))

tr(Intai
ϕ) = ¬E g(inti ∧ ¬tr(ϕ))

Now, we can “flatten” the modelMATL , leaving only the bare temporal structure (i.e.
states and unlabeled transitions only) – and finally we end upwith an interpretation of
BDICTL into CTL itself.

3.6 Final Remarks

The satisfiability preserving interpretations of ATEL and BDICTL models and formu-
lae into ATL models and formulae constitute the main resultsof this chapter in the
technical sense. It was already pointed out in (van Otterlooet al., 2003) that such
an interpretation portrays knowledge as a strategic ability of a special kind – which
seems a nice and potent metaphor. Moreover, it allows to use existing model check-
ing tools like MOCHA (Alur et al., 2000) for an efficient modelchecking of ATEL
and BDICTL. The aim of this study goes beyond the formal claims being presented,
though. We wanted to show the logics of ATEL and BDI as parts ofa bigger picture,
so that one can compare them, appreciate their similaritiesand differences, and choose
the system most suitable for the intended application.

The picture suggests that BDI and ATL/ATEL can contribute toeach other, too:

• The BDI notions ofdesireand intentioncan enrich ATEL directly, both on the
syntactical an semantic level.

• ATL and coalition games can provide BDI models with a finer-grained structure
of action (simultaneous choices). Furthermore, the cooperation modalities can be
“imported” into the BDI framework to enable modeling, specifying and verifying
agents’ strategic abilities in the context of their beliefs, desires and intentions.

• The treatment of group epistemics from ATEL can be used in theBDI logics too.



Chapter 4

Agents that Know how to Play

SYNOPSIS. We have been looking for a good formal language to model
and reason about agents for the last two chapters. We settledfor the logics
of “strategic ability”: most notably, Alternating-time Temporal Logic. Then
came Alternating-time Temporal Epistemic Logic (ATEL) that endowed our
agents with the ability to be uncertain. And to have some knowledge. Plus,
endowed us with the ability to model and reason about agents’knowledge and
uncertainty. A seemingly perfect framework for talking about what agents can
and cannot achieve under incomplete information.

We already hinted that interpreting strategic ability ofATEL agents as “being
in control to execute a plan” can be misleading. Now the time has come to
look at this issue more carefully. The tension grows. AreATEL models and
formulae what they seem?

4.1 Introduction

The logics of ATL and CL, investigated in Chapter 2, offer an intuitively appealing
perspective to systems inhabited by autonomous entities. However, they refer only
to agents who have perfect and complete information about the world they live in,
which is somewhat unrealistic. We strongly believe that Alternating-time Epistemic
Logic, introduced in (van der Hoek and Wooldridge, 2002) anddiscussed at length
in Chapter 3, is a move in the right direction. ATEL adds to ATLthe vocabulary
of epistemic logic, with its long tradition of talking aboutagents’ knowledge under
incomplete information. Still, in ATEL the strategic and epistemic layers are combined
as if they were independent. They are – if we do not ask whetherthe agents in question
are able to identify and execute their strategies. They are not if we want to interpret
strategies asfeasible plansthat guarantee achieving the goal. This issue is going to be
discussed in this chapter.

One of the main challenges in ATEL, not really addressed in (van der Hoek and
Wooldridge, 2002) but already hinted upon in (Jamroga, 2003d), is the question how,
given an explicit way to represent the agent’s knowledge, this should interfere with the

81
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agents’ available strategies. What does it mean that an agent has a way to enforceϕ,
if he should therefore make different choices in epistemically indistinguishable states,
for instance? In Section 4.3, we argue that in order to add an epistemic component to
ATL, one should give an account of the tension betweenincomplete informationthat
is imposed on the agents on one hand, andperfect recallthat is assumed about them
when they are to make their decisions, on the other hand. We also argue that, when
reasoning about what an agent canenforce, it seems more appropriate to require the
agent knows his winning strategy rather than he knows only that such a strategy exists.

Then, in Section 4.4 we will loosen the assumption of perfectrecall to agents hav-
ing no, or only limited memory. The epistemic component in Alternating-time Tem-
poral Observational Logic (ATOL) is entirely based on the notion of observation: the
agents can recall no history of the game except of the information “stored” in their
local states. We give several examples of what agents can achieve if they are allowed
to make specific observations. Then, in Section 4.5, full Alternating-time Temporal
Epistemic Logic with Recall (ATEL-R*) is considered; here,agents are again allowed
to memorize the whole game. We propose a semantics for ATEL-R*, and we use
past-time operators to relate the several epistemic modalities; finally, expressivity and
complexity of ATEL-R* is briefly investigated.

This chapter presents research from (Jamroga and van der Hoek, 2004), a paper
co-written with Wiebe van der Hoek from the University of Liverpool.

4.2 Prelude: Unraveling AETS and a Look at Strate-
gies

Going from the model to the behavioral structure behind it, there are at least two ways
of unraveling the alternating epistemic transition systeminto a computation tree with
epistemic relations. If agents have no recall of the past, except for the information en-
capsulated in the current state (modulo relation∼), then only the last state in a sequence
matters for the epistemic accessibility links; if the agents can remember the history of
previous states, then the whole sequence matters: the agents cannot discriminate two
situations if they cannot distinguish any corresponding parts from the alternative histo-
ries.

Example 4.1 Let us consider the variable client/server alternating epistemic transi-
tion system from Example 3.2 (cf. Figure 3.2). Both ways of unraveling the AETS are
presented in Figure 4.1 (A and B).

These two approaches reflect in fact two different “common-sense” interpretations
of the computational structure with an epistemic component. In (A), a state (together
with relation∼a) is meant to constitute the whole description of an agents’ position,
while in (B) states (and∼a) are more about what agents can perceive or observe at that
point. More precisely, since agentc cannot distinguishq0 from q0q0 in Figure 4.1A, he
is not aware of any transition being happened that stays inq0. In Figure 4.1B however,
indistinguishable situations occur always on the same level of the tree, denoting that
here the agents at least know how many transitions have been made.
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Figure 4.1: Unraveling: the computation trees with an epistemic relation for the client
process. (A) indistinguishability relation based completely on∼c — the agent does
not remember the history of the game; (B) the client has perfect recall. The resulting
indistinguishability relation should be read as the reflexive and transitive closure of the
dotted arcs.
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Note that ATEL agents are assumed to have perfect recall within the semantics of
cooperation modalities: the knowledge available to agenta when he is choosing his
action is determined by the type of strategy functionfa (which allowsa to remember
the whole history of previous states). Thus the epistemic abilities of agents with re-
spect to their decision making should be the ones shown in Figure 4.1B. On the other
hand, the knowledge modalityKa refers to indistinguishability ofstates— therefore
its characteristics is rather displayed in Figure 4.1A.

Let us go back to the AETS from Figure 3.2. It is easy to observethat ¬x =
2 → 〈〈c〉〉 gx = 2 is valid in the system (becauseq0 � 〈〈c〉〉 gx = 2 and q1 �

〈〈c〉〉 gx = 2), which is counterintuitive:c cannot really choose a good strategy to
enforce gx = 2 since he can never be sure whether the system is inq0 or q1. Asking
aboutc’s knowledge does not make things better: it can be proved that Kc(¬x = 2→
〈〈c〉〉 gx = 2), too. As it turns out, not every function of typefa : Q+ → 2Q represents
a feasible strategy under incomplete information. We will study the problem in more
detail throughout the next section.

4.3 Knowledge and Action under Uncertainty

ATEL and ATEL* are interesting languages to describe and verify properties of au-
tonomous processes in situations of incomplete information. However, their semantics
— the way it is defined in (van der Hoek and Wooldridge, 2002) — is not entirely con-
sistent with the assumption that agents have incomplete information about the current
state. Something seems to be lacking in the definition of a valid strategy for an agent in
AETS. When defining a strategy, the agent can make his choicesfor every state inde-
pendently. This is not feasible in a situation of incompleteinformation if the strategy
is supposed to be deterministic: ifa cannot recognize whether he is in situations1 or
s2, he cannot plan to proceed with one action ins1, and another ins2. Going back to
Example 3.2, since the client cannot epistemically distinguishq0 from q1, and in both
he should apply a different strategy to ensure thatx will have the value of 2 in the next
state, it is not realistic to say that the client has a strategy to enforce g(x = 2) in q0. It
is very much like with the information sets from von Neumann and Morgenstern (von
Neumann and Morgenstern, 1944): for every state in an information set the same action
must be chosen within a strategy. Such strategies are sometimes calleduniform in the
field of logic and games (van Benthem, 2001, 2002).

Example 4.2 Consider the following example: agenta plays a very simple card game
against the environmentenv. The deck consisting of Ace, King and Queen (A,K,Q);
it is assumed thatA beatsK, K beatsQ, butQ beatsA. First env gives a card toa,
and assigns one card to itself. Thena can trade his card for the one remaining in the
deck, or he can keep the current one. The player with the better card wins the game.
A turn-based synchronous AETS for the game is shown in Figure4.2. Right after the
cards are given,a does not know what is the hand of the other player; for the restof the
game he has complete information about the state. Atomic propositionwin enables
to recognize the states in whicha is the winner. Statesq7, ..., q18 are the final states
for the this game; however, the transition functionmustspecify at least one outgoing
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Agt = {a, env}
δ(q0, a) = {{q1, ..., q6}}
δ(q1, a) = {{q7}, {q8}} etc.
δ(q0, env) = {{q1}, ..., {q6}}
δ(q1, env) = {{q7, q8}} etc.
δ(q7, a) = δ(q7, env) = {{q7}} etc.

q0 ∼a q0
q1 ∼a q1, q1 ∼a q2, q2 ∼a q2
q3 ∼a q3, q3 ∼a q4, q4 ∼a q4 etc.
q7 ∼a q7, q8 ∼a q8, q9 ∼a q9 etc.
q0 ∼env q0, q1 ∼env q1, q2 ∼env q2 etc.

Figure 4.2: Epistemic transition system for the card game. For every state, the players’
hands are described. The dotted lines showa’s epistemic accessibility relation∼a. The
thick arrows indicatea’s winning strategy.

transition for each state. A reflexive arrow at every final state shows that – once the
game is over – the system remains in that state forever.

Note thatq0 � 〈〈a〉〉3win, although it should definitely be false for this game. Of
course,a mayhappento win, but he does not have thepower to bring about winning
because he has no way of recognizing the right decision untilit is too late. Even if we
ask about whether the player canknowthat he has a winning strategy, it does not help:
Ka〈〈a〉〉3win is satisfied inq0, too, because for allq ∈ Q such thatq0 ∼a q we have
q � 〈〈a〉〉3win. �

This calls for a constraint like the one from (von Neumann andMorgenstern, 1944):
if two situationss1 ands2 are indistinguishable, then a strategyfa must specify the
same action for boths1 ands2. In order to accomplish this, some relation of “subjective
unrecognizability” over the agents’ choices can be useful —to tell which decisions will
be considered the same in which states. Probably the easiestway to accomplish this is
to provide the decisions with explicit labels — the way it hasbeen done in concurrent
game structures — and assume that the choices with the same label represent the same
action from the agent’s subjective point of view. This kind of solution fits also well
in the tradition of game theory. Note that it is harder to specify this requirement if
we identify agents’ actions with their outcomes completely, because the same action
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started in two different states seldom generates the same result. If a trades his Ace in
q1, the system moves toq8 anda loses the game; if he trades the card inq2, the system
moves toq10 and he wins. Stilla cannot discriminate trading the Ace in both situations.

4.3.1 Towards a Solution

The first attempt to solve the problem sketched above has beenpresented in (Jamroga,
2003d). The idea was to define ATEL models as concurrent game structures extended
with epistemic accessibility relations:

S = 〈k,Q,Π, π,∼1, ...,∼k, d, o〉

where agents had the same choices available in indistinguishable states, i.e. for every
q, q′ such thatq ∼a q′ it was required thatda(q) = da(q

′) (otherwisea could distin-
guishq from q′ by the decisions he could make).1 An incomplete information strategy
– we will follow (van Benthem, 2001, 2002) and call it auniformstrategy in this thesis
– was a functionfa : Q+ → N for which the following constraints held:

• fa(λ) ≤ da(q), whereq was the last state in sequenceλ;

• if two histories are indistinguishableλ ≈a λ′ thena could not specify different
choices forλ andλ′ within one strategyf , i.e. fa(λ) = fa(λ

′).

Two histories are indistinguishable fora if he cannot distinguish their corresponding
states. Recall that theith position ofλ is denoted byλ[i]. Thenλ ≈a λ′ iff λ[i] ∼a
λ′[i] for everyi. Alternatively, decisions can be specified for sequences oflocal states
instead of global ones –fa : Q+

a → N, where local states are defined as the equivalence
classes of relation∼a, i.e. Qa = {[q]∼a

| q ∈ Q}. This kind of presentation has been
employed in (Schobbens, 2003), for example.

Example 4.3 A new model for the card game is shown in Figure 4.3. Now, usingonly
uniform strategies,a is unable to bring about winning on his own:q0 � ¬〈〈a〉〉3win.
Like in the real game, he can win only with some “help” from theenvironment:q0 �

〈〈a, env〉〉3win. �

Unfortunately, the new constraint proves insufficient for ruling out strategies that
are not feasible under incomplete information. Consider the last game structure and
stateq1. It is easy to show thatq1 � 〈〈a〉〉3win. Moreover,q0 � 〈〈〉〉 g〈〈a〉〉3win,
although stillq0 2 〈〈a〉〉3win. In other words, no conditional plan is possible fora
at q0, and at the same time he is bound to have one in the next step! The paradoxical
results lead in fact to one fundamental question:what does it mean for an agent to have
a plan?

1The authors of ATEL suggested a similar requirement in (van der Hoek and Wooldridge, 2003b). They
also considered whether some further constraint on the possible runs of the system should be added, but they
dismissed the idea.
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Figure 4.3: New model for the game. The transitions are labeled with decisions from
the player who takes turn.

4.3.2 Having a Strategy:de re vs. de dicto

The consecutive attempts to ATEL semantics seem to refer to various levels of “strate-
gic” nondeterminism:

1. the first semantics proposed in (van der Hoek and Wooldridge, 2002) allows for
subjectively non-deterministic strategiesin a sense: the agent is allowed to guess
which choice is the right one, and if there is any way for him toguess correctly,
we are satisfied with this. Therefore the notion of a strategyfrom (van der Hoek
and Wooldridge, 2002) makes formula〈〈A〉〉Φ describe what coalitionA may
happento bring about against the most efficient enemies (i.e. when the enemies
know the current state and evenA’s collective strategy beforehand), whereas the
original idea from ATL was rather aboutA being able toenforceΦ;

2. in the updated semantics from (Jamroga, 2003d), presented in the previous sec-
tion, every strategy is deterministic (i.e. uniform), but the agent can choose
non-deterministically between them (guess which one is right). This is because
〈〈a〉〉Φ (in the updated version) is true if there is a consistent way of enforcingΦ,
but the agent may be unaware of it, and unable to obtain it in consequence;

3. we can strengthen the condition by requiring thatKa〈〈a〉〉Φ: still, this is not
enough as the examples showed. For everyq indistinguishable from the current
state,a must have a strategy to achieveΦ from q – but these can be different
strategies for differentq’s. Thus,Ka〈〈a〉〉Φ (in the updated version) is true ifa
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knows there is a consistent way of enforcingΦ – unfortunately he is not required
to know the way itself;

4. for planning purposes, the agent should be rather interested in having a strategy
andknowing it(i.e. not only knowing that he hassomestrategy).

The above hierarchy reminds the distinction between beliefs de reand beliefsde
dicto. The issue is well known in the philosophy of language (Quine, 1956), as well as
research on the interaction between knowledge and action (Moore, 1985; Morgenstern,
1991; Wooldridge, 2000). Suppose we have dynamic logic-like modalities, parame-
terized with strategies:[FA]Φ meaning “A can use strategyFA to bring aboutΦ” (or:
“every execution ofFA guaranteesΦ”). Suppose also that strategies are required to be
uniform. Cases (2), (3) and (4) above can be then described asfollows:

• ∃Fa
[Fa]Φ is (possibly unaware) having a uniform strategy to achieveΦ (2);

• Ka∃Fa
[Fa]Φ is having a strategyde dicto(3);

• ∃Fa
Ka[Fa]Φ is having a strategyde re(4).

This would be a flexible way to express such subtleties. However – having ex-
tended ATEL this way – we would enable explicit quantification over strategies in the
object language, and the resulting logic would be propositional no more. Instead, we
can change the range of computations that are taken into account by the player when
analyzing a strategy —out∗ must include all the (infinite) paths that are possible from
the agent’s subjective perspective. Since strategies in ATEL are perfect recall strate-
gies, the player must be able to use the information from the past during his analysis
of possible future courses of action. Thus, the past historyis relevant for determining
the set of potential outcome paths for a strategy, and it plays an important role in the
definition ofout∗. Section 4.3.3 offers a more detailed discussion of this issue.

We need some terminology. Letλ be a variable over finite sequences of states, and
let Λ denote an infinite sequence. Moreover, for any sequenceξ = q0q1 . . . (be it either
finite or infinite):

• ξ[i] = qi is theith position inξ,

• ξ|i = q0q1 . . . qi denotes the firsti+ 1 positions ofξ,

• ξi = qiqi+1 . . . is theith suffix of ξ.

If i is greater than the length ofξ + 1, these notions are undefined. The lengthℓ(λ) of
a finite sequenceλ is defined in a straightforward way.

Definition 4.1 Let λ be a finite non-empty sequence of states, andfa a strategy for
agenta. We say thatΛ is a feasiblecomputation run given finite historyλ and agent
a’s strategyfa, if the following holds:

• Λ starts with a sequence indistinguishable fromλ, i.e. Λ|n ≈a λ, wheren =
ℓ(λ)− 1,
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• Λ is consistent withfa. In fact, only the future part ofΛ must be consistent with
fa since the past-oriented part of the strategy is irrelevant:no agent can plan
the past.

Then, we defineout∗(λ, fa) = {Λ| Λ is feasible, givenλ andfa}

If cooperation modalities are to reflect the property of having a strategyde re, then
out∗(λ, fa) should replace the original set of objectively possible computations in the
semantics of〈〈a〉〉, so that〈〈a〉〉Φ holds for a historyλ iff there is an incomplete infor-
mation strategyfa such thatΦ is true for every computationΛ ∈ out∗(λ, fa). Then
the new semantics of the cooperation modality can be given as:

λ � 〈〈a〉〉K(a)Φ iff a has a uniform strategyfa such that for everyΛ ∈
out∗(λ, fa) we have thatΦ holds inΛ.

We use notation〈〈a〉〉K(a) to emphasize that these cooperation modalities differ
from the original ones (Alur et al., 2002; van der Hoek and Wooldridge, 2002): agent
a must have a uniform strategy and be able to identify it himself.

Example 4.4 Let us consider the card game example from Figure 4.3 again. Suppose
q0 has been the initial state and the system has moved toq1 now, so the history is
λ = q0q1. For every strategyfa:

out∗(q0q1, fa) = {Λ | Λ starts withλ′ ≈a q0q1 andΛ is consistent withfa}

= {Λ | Λ starts withq0q, q ∼a q1 andΛ is consistent withfa}

= {Λ | Λ starts withq0q1 or q0q2 andΛ is consistent withfa}.

Note thatfa must be a uniform strategy - in particular,fa(q0q1) = fa(q0q2). There are
two possible combinations of decisions for these histories:

(1) f1(q0q1) = f1(q0q2) = keep,
(2) f2(q0q1) = f2(q0q2) = trade.

Suppose there existsf such that for everyλ ∈ out∗(q0q1, f) we have3win. We can
check both cases:

case (1):out∗(q0q1, f1) = {q0q1q7q7..., q0q2q9q9...},
case (2):out∗(q0q1, f2) = {q0q1q8q8..., q0q2q1q1...}.

Now, 3win does not hold forq0q2q9q9... nor q0q1q8q8..., soq0q1 2 〈〈a〉〉K(a)3win.
�

Note also that functionout∗ has a different type than the old functionout, and that
we interpreted formula〈〈a〉〉K(a)3win over a (finite) path and not a state in the above
example. This shows another very important issue: epistemic properties of alternating-
time systems with perfect recall are properties ofsequences of statesrather than single
states.
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4.3.3 Knowledge as Past-Related Phenomenon

Throughout the preceding sections the term “situation” wasused in many places in-
stead of “state”. This was deliberate. The implicit assumption that states characterize
epistemic properties of agents (expressed via the semantics of knowledge operators
Ka, CA etc. in the original version of ATEL) is probably one of the confusion sources
about the logic. In concurrent game structures astate is not a complete description
of a situation when the agent can remember the whole history of the game (as the
type of agents’ strategies suggest). Note that in the classical game theory models (von
Neumann and Morgenstern, 1944) situations do correspond tostates — but these are
computation trees that are used there, so every state in the tree uniquely identifies a
path in it as well. At the same time a concurrent game structure or an alternating tran-
sition system is based on a finite automaton that indirectly imposes a tree of possible
computations. A node in the tree corresponds to asequence of statesin the automaton
(a history).

Within original ATEL, different epistemic capabilities ofagents are assumed in
the context of cooperation modalities and in the context of epistemic operators. The
interpretation of epistemic operators refers to the agents’ capability to distinguish one
statefrom another; the semantics of〈〈A〉〉 allows the agents to base their decisions upon
sequencesof states. This dichotomy reflects the way a concurrent epistemic game
structure can be unraveled (Figure 4.1 in section 4.2). We believe that the dilemma
whether to assign agents with the ability to remember the whole history should be made
explicit in the meta-language. Therefore we will assume that relation∼a expresses
what agenta can “see” (or observe) directly from his current state (i.e.having no
recall of the past except for the information that is actually “stored” in the agent’s local
state), and we will call it anobservational accessibility relationto avoid confusion.
The (perfect) recall accessibility relationfor agents that do not forget can be derived
from∼a in the form of relation≈a over histories.

As the past is important when it comes to epistemic state of agents with perfect
recall, knowledge operators should be given semantics in which the past is included.
Thus, formulae likeKaϕ should be interpreted over paths rather than states of the
system. The new semantics we propose for ATEL* in section 4.5(meant as a logic
for agents with finite set of states and perfect recall) drawsmuch inspiration from
branching-time logics that incorporate past in their scope(Laroussinie and Schnoebe-
len, 1995). The simpler case — agents with bounded memory — isalso interesting.
We will discuss it in section 4.4, proposing a logic aimed at observational properties of
agents.

4.3.4 Feasible Strategies for Groups of Agents

The dichotomy between having a strategyde re andde dictowas discussed in sec-
tion 4.3.2. The first notion is arguably more important if we want to express what
agents with incomplete information can reallyenforce. In order to restrict the semantics
of the cooperation modalities to feasible plans only, we suggest to rule out strategies
with choices that cannot be deterministically executed by the players (via redefinition
of the set of strategies available to agents) and to require that a player is able to identify
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a winning strategy (via redefinition of functionout: all the computations must be con-
sidered that are possible from the agent’s perspective — andnot only the objectively
possible ones).

This looks relatively straightforward for a single agent:〈〈a〉〉K(a)Φ should mean:
“a has a uniform strategy to enforceΦ and he knows that if he executes the strategy
then he will bring aboutΦ” (cf. Definition 4.1 and Example 4.4). In such a case, there
is nothing that can preventa from executing it. The situation is not so simple for a
coalition of agents. The coalition should be able to identify a winning strategy — but
in what way? Suppose we require that this is common knowledgeamong the agents
thatFA is a winning strategy — would that be enough? Unfortunately,the answer is
no.

Example 4.5 Consider the following variant of thematching penniesgame. There
are two agents – both with a coin – and each can choose to show heads or tails. If
they choose the same, they win, otherwise they loose. There are two obvious col-
lective strategies that result in victory for the coalition, even when we consider com-
mon knowledgede re; hence∃F{1,2}

C{1,2}[F{1,2}]win. However, both agents have to
choosethe samewinning strategy, so it is still hard for them to win this game! In fact,
they cannot play it successfully with no additional communication between them. �

Thus, even common knowledge amongA of a winning strategyFA for them does
not imply that the agents fromA can automatically applyFA as long as there are other
winning strategies commonly identified byA. It means that the coalition must have a
strategy selection criterion upon which all agents fromA agree. How have they come
to this agreement? Through some additional communication “outside the model”? But
why should not distributed knowledge be used instead then – if the agents are allowed
to communicate outside the model at all, perhaps they can share their private knowledge
too? Other settings make sense as well: there can be a leader within the team that can
assign the rest of the team with their strategies (then it is sufficient that the strategy
is identified by the leader). Or, the leader may even stay out of the group (then he
is not a member of the coalition that executes the plan). In order to capture the above
intuitions in a general way, we propose to extend the simple cooperation modality〈〈A〉〉
to a family of operators:〈〈A〉〉K(Γ)Φ with the intended meaning that coalitionA has a
(uniform) strategy to enforceΦ, and the strategy can be identified by agentsΓ ⊆ Agt
in epistemic modeK (whereK can be any of the epistemic operatorsK,C,E,D):

λ � 〈〈A〉〉K(Γ)Φ iff A have a collective uniform strategyFA such that for every
Λ ∈ out∗K(Γ)(λ, FA) we have thatΦ holds inΛ.

These operators generalize Jonker’s cooperation modalities with indices:〈〈A〉〉C , 〈〈A〉〉E
and〈〈A〉〉Ki

, introduced in (Jonker, 2003).
We will use the generic notation≈K

Γ to denote the (path) indistinguishability rela-
tion for agentsΓ in epistemic modeK:

λ ≈K
Γ λ′ iff λ[i] ∼K

Γ λ′[i] for everyi.

Functionout∗K(Γ)(λ, FA) returns the computations that are possible from the viewpoint
of groupΓ (with respect to knowledge operatorK) after historyλ took place:
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out∗K(Γ)(λ, FA) = {Λ | Λ starts withλ′ such thatλ′ ≈K
Γ λ, and the rest ofΛ is

consistent withFA}

Examples include:

• 〈〈A〉〉C(A)Φ : the agents fromA have a collective strategy to enforceΦ and the
strategy is common knowledge inA. This requires the least amount of addi-
tional communication. It is in fact sufficient that the agents fromA agree upon
some total order over their group strategies at the beginning of the game (the lex-
icographical order, for instance) and that they will alwayschoose the maximal
winning strategy with respect to this order;

• 〈〈A〉〉E(A)Φ : coalitionA has a collective strategy to enforceΦ and everybody in
A knows that the strategy is winning;

• 〈〈A〉〉D(A)Φ : the agents fromA have a strategy to enforceΦ and if they share
their knowledge at the current state, they can identify the strategy as winning;

• 〈〈A〉〉K(a)Φ : the agents fromA have a strategy to enforceΦ, anda can identify
the strategy and give them orders how to achieve the goal;

• 〈〈A〉〉D(Γ)Φ : groupΓ acts as a kind of “headquarters committee”: they can fully
cooperate withinΓ (at the current state) to find a strategy to achieveΦ. The
strategy is aimed forA, so it must be uniform for agents fromA.

Note also that〈〈A〉〉C(∅)Φ means thatA have a uniform strategy to achieveΦ (but they
may be unaware of it, and of the strategy itself), because∼C

∅
is the accessibility relation

when complete information is available. In consequence,KA〈〈A〉〉C(∅)Φ captures the
notion of having a strategyde dictofrom section 4.3.2. Since the original ATL meaning
of 〈〈A〉〉Φ (there is acomplete informationstrategy to accomplishΦ) does not seem to
be expressible with the new modalities, we suggest to leave the operator in the language
as well.

Example 4.6 Let us consider the modified variable client/server system from Fig-
ure 3.3 once more to show how the new modalities work:

• x = 1 → 〈〈s〉〉K(s)
gx = 1, because every times is in q1, he can choose to

reject the client’s request (and he knows it, because he can distinguishq1 from
the other states);

• ¬x = 2 → ¬〈〈s, c〉〉K(c)
gx = 2, because – for every history(qq′q′′...q1) – c

cannot distinguish it from(qq′q′′...q0) and vice versa, so he cannot effectively
identify a uniform strategy;

• x = 2 → ¬〈〈s〉〉K(s)
gx = 2 ∧ ¬〈〈c〉〉K(c)

gx = 2, becausec has no action to
request no change, ands is unable to identify the current state;

• however,x = 2→ 〈〈s〉〉K(c)
gx = 2. The client can “indicate” the right strategy

to the server;
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• x = 0→ ¬〈〈s〉〉K(s)
gx = 0∧¬〈〈s〉〉K(c)

gx = 0∧〈〈s〉〉D({s,c})
gx = 2 : only

if s andc join their pieces of knowledge, they can identify a feasiblestrategy for
s;

• x = 1→ 〈〈s, c〉〉E({c,s})
g¬x = 0 ∧ ¬〈〈c, s〉〉C({s,c})

g¬x = 0 : both processes
can identify a collective strategy to changex from 1 to 0, but they are not sure if
the other party can identify it too.

�

The next two sections follow with a formalization of the intuitions described so far.

4.4 ATOL: a Logic of Observations

Assigning an agent the ability to remember everything that has happened in the past
seems unrealistic in many cases. Both humans and software agents have obviously lim-
ited memory capabilities. On the other hand, we usually cannot know precisely what
the agents in question will actually remember from their history – in such situations
perfect recall can be attractive as the upper bound approximation of the agents’ poten-
tial. Some agents may also enhance their capacity (install new memory chips when
more storage space is needed, for instance). In this case thememory of the agents is
finite, but not bounded, and they cannot be appropriately modeled with bounded recall
apparatus.

We believe that both settings are interesting and worth further investigation. In
this section, we start with introducing the simpler case of imperfect recall in the form
of Alternating-time Temporal Observational Logic (ATOL).As the original ATL and
ATEL operators〈〈A〉〉 were defined to describe agents with perfect recall, it seems
best to leave them with this meaning. Instead, we will use a new modality 〈〈A〉〉• to
express that the agents fromA can enforce a property while their ability to remember
is bounded. When uniform strategies are to be considered, the operator will be used
with an appropriate subscript in the way proposed in Sections 4.3.2 and 4.3.4.

If agents are assumed to remember no more thann most recent positions in a finite
automaton, a new automaton can be proposed in which the lastn positions are included
in the states and the epistemic links define what the agents actually remember in every
situation. Thus, for every model in which the agents can remember a limited number of
past events, an equivalent model can be constructed in whichthey can recall no past at
all (cf. Example 4.8). ATOL is a logic for agents with no recall – it refers to the features
that agents canobserveon the spot. Note, however, that these are observations in the
broadest sense, including perceptions of the external world, and the internal (local)
state of the agent.

4.4.1 Syntax

An ATOL formula is one of the following:

• p, wherep is an atomic proposition;
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• ¬ϕ orϕ ∨ ψ, whereϕ, ψ are ATOL formulae;

• Obsaϕ, wherea is an agent andϕ is a formula of ATOL;

• CO
A
ϕ, EO

A
ϕ andDO

A
ϕ, whereA is a set of agents andϕ is a formula of

ATOL;

• 〈〈A〉〉•Obs(γ)
gϕ, 〈〈A〉〉•Obs(γ)2ϕ, or 〈〈A〉〉•Obs(γ)ϕUψ, whereϕ, ψ are ATOL for-

mulae andA is a set of agents, andγ an agent (not necessarily a member of
A).

• 〈〈A〉〉•Θ(Γ)
gϕ, 〈〈A〉〉•Θ(Γ)2ϕ, 〈〈A〉〉•Θ(Γ)ϕUψ, whereϕ, ψ are ATOL formulae and

A andΓ are sets of agents andΘ(Γ) ∈ {CO(Γ), DO(Γ), EO(Γ)}.

FormulaObsaϕ reads: “agenta observes thatϕ”. OperatorsCOA, EOA and
DOA refer to “common observation”, “everybody sees” and “distributed observation”
modalities. The informal meaning of〈〈A〉〉•Obs(γ)Φ is:

“group A has a strategy to enforce Φ, and agent γ can see the
strategy.”

The common sense reading of〈〈A〉〉•CO(Γ)Φ is that coalitionA has a collective strategy
to enforceΦ, and the strategy itself is a common observation for groupΓ. The meaning
of 〈〈A〉〉•EO(Γ)Φ and〈〈A〉〉•DO(Γ)Φ is analogous. Since the agents are assumed to have
no recall in ATOL, the choices they make within their strategies must be based on the
current state only. As we want them to specify deterministicplans under incomplete
information, the plans should be uniform strategies as well.

Note that ATOL contains only formulae for which the past is irrelevant and no
specific future branch is referred to, so it is sufficient to evaluate them over single
states of the system.

4.4.2 Semantics

Formulae of Alternating-time Temporal Observational Logic are interpreted inconcur-
rent observational game structures:

S = 〈k,Q,Π, π,∼1, ...,∼k, d, o〉

in which agents have the same choices in indistinguishable states: for everyq, q′ such
thatq ∼a q′ it is required thatda(q) = da(q

′). To specify plans, they can use uniform
strategies with no recall.

Definition 4.2 A uniform strategy with no recallis a functionva : Q→ N for which:

• va(q) ≤ da(q) (the strategy specifies valid decisions),

• if two states are indistinguishableq ∼a q′ thenva(q) = va(q
′).
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As usual, a collective strategyVA assigns every agenta ∈ A with one strategyva.
The group observational accessibility relations can also be defined in the standard way:

∼DOA =
⋂

a∈A

∼a;

∼EOA =
⋃

a∈A

∼a;

∼COA is the reflexive and transitive closure of∼EOA .

The set of computations that are possible from agentγ’s point of view, consistent
with strategyVA and starting from stateq, can be defined as:

outObs(γ)(q, VA) = {Λ| Λ is consistent withVA andΛ[0] ∼γ q}.

Definition 4.3 More generally, forΓ ⊆ Agt, andΘ being any of the collective obser-
vation modesCO, EO,DO:

outΘ(Γ)(q, VA) = {Λ| Λ is consistent withVA andΛ[0] ∼Θ
Γ q},

Definition 4.4 We define the semantics ofATOL with the following rules:

q � p iff p ∈ π(q)

q � ¬ϕ iff q 2 ϕ

q � ϕ ∨ ψ iff q � ϕ or q � ψ

q � Obsa ϕ iff for every q′ ∼a q we haveq′ � ϕ

q � 〈〈A〉〉•Obs(γ)
gϕ iff there is a strategyVA such that for everyΛ ∈

outObs(γ)(q, VA) we haveΛ[1] � ϕ

q � 〈〈A〉〉•Obs(γ)2ϕ iff there is a strategyVA such that for everyΛ ∈
outObs(γ)(q, VA) we haveΛ[i] � ϕ for all i = 0, 1, . . .

q � 〈〈A〉〉•Obs(γ)ϕUψ iff there is a strategyVA such that for everyΛ ∈
outObs(γ)(q, VA) there is ak ≥ 0 such thatΛ[k] � ψ
andΛ[i] � ϕ for all 0 ≤ i ≤ k

q � ΘA ϕ iff for every q′ ∼Θ
A q we haveq′ � ϕ

q � 〈〈A〉〉•Θ(Γ)
gϕ iff there is a strategyVA such that for everyΛ ∈

outΘ(Γ)(q, VA) we haveΛ[1] � ϕ

q � 〈〈A〉〉•Θ(Γ)2ϕ iff there is a strategyVA such that for everyΛ ∈
outΘ(Γ)(q, VA) we haveΛ[i] � ϕ for all i = 0, 1, . . .

q � 〈〈A〉〉•Θ(Γ)ϕUψ iff there is a strategyVA such that for everyΛ ∈
outΘ(Γ)(q, VA) there is ak ≥ 0 such thatΛ[k] � ψ
andΛ[i] � ϕ for all 0 ≤ i ≤ k

Remark 4.1 Note that operatorsObsa and〈〈A〉〉•Obs(γ) are in fact redundant:
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• Obsaϕ ≡ CO{a}ϕ;

• 〈〈A〉〉•Obs(γ)
gϕ ≡ 〈〈A〉〉•CO({γ})

gϕ, 〈〈A〉〉•Obs(γ)2ϕ ≡ 〈〈A〉〉
•
CO({γ})2ϕ,

and〈〈A〉〉•Obs(γ)ϕUψ ≡ 〈〈A〉〉
•
CO({γ})ϕUψ.

ATOL generalizes ATLir from (Schobbens, 2003). Also,〈〈A〉〉• gϕ, 〈〈A〉〉•2ϕ
and〈〈A〉〉•ϕUψ can be added to ATOL for complete information (i.e. possiblynon-
uniform) strategies with no recall – corresponding to the ATLIr logic (Schobbens,
2003).

Proposition 4.2 Model checkingATOL is NP-complete.

Proof:

1. ATOL model checking is NP-easy: the only difference between ATOL and the
preliminary version of ATEL from (van der Hoek and Wooldridge, 2002) are
the type of a strategy and the set of feasible computationsout(q, FA) in the
semantics of cooperation modalities. Note that for every〈〈A〉〉Θ(Γ) the number
of available strategies with no recall is finite, so the agents can guess the strategy
nondeterministically. The algorithm produces then the setof statesQ1 ⊆ Q for
whichA have a uniform strategy to achieveΦ (being possibly unable to identify
the strategy). We can now obtainQ2 for which 〈〈A〉〉•Θ(Γ)Φ by guessing a subset
of Q1 where all the statesΘ(Γ)-accessible fromQ2 are inQ1.

2. ATOL model checking is NP-hard: ATOL subsumes ATLir from (Schobbens,
2003), for which the problem is already NP-complete.

�

Thus, ATOL model checking is intractable (unless P=NP). We already pointed out
that model checking of ATOL formulae can be approximated viachecking their ATEL
counterparts in all the indistinguishable states (cf. Section 3.4.5 and especially Re-
mark 3.8); the idea resembles closely the algorithm of MonteCarlo minimaxing (Cor-
lett and Todd, 1985; Ginsberg, 1999). Using it, we often get suboptimal results, but the
process has polynomial complexity again.

Remark 4.3 ATOL (syntactically) subsumes most ofCTL. Although none of〈〈Agt〉〉•Θ(Γ)

is equivalent to theCTL’s E, yet still the universal path quantifierA can be expressed
with 〈〈∅〉〉•CO(∅). Thus also most of “there is a path” formulae can also be redefined:

E gϕ ≡ ¬〈〈∅〉〉•CO(∅)
g¬ϕ,

E2ϕ ≡ ¬〈〈∅〉〉•CO(∅)3¬ϕ,

E3ϕ ≡ ¬〈〈∅〉〉•CO(∅)2¬ϕ.

Remark 4.4 ATOL (without the perfect information modalities〈〈A〉〉•) doesnotcover
the expressive power of fullCTL. Unlike inATL (and evenATL Ir), EϕUψ cannot be
translated to〈〈Agt〉〉•CO(∅)ϕUψ. Moreover,EϕUψ cannot be expressed as a combi-
nation ofAϕUψ, E3ϕ, E2ϕ, A2ϕ, E gϕ, andA gϕ (cf. (Laroussinie, 1995)).
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Figure 4.4: The controller/client problem again

Remark 4.5 Note thatATL Ir is equivalent toATL (Schobbens, 2003), soATOL be-
gins to cover the expressive power ofCTL as soon as we add the perfect information
modalities toATOL.

4.4.3 Examples

Let us consider a few examples to see how properties of agentsand their coalitions
can be expressed with ATOL. We believe that especially Example 4.9 demonstrates the
potential of ATEL in reasoning about limitations of agents,and the ways they can be
overcome.

Example 4.7 First, we can have a look at the variable client/server system from Ex-
ample 3.3 again, this time in the form of a concurrent observational game structure
(see Figure 4.4). Note how the observational relation is defined: if we think ofx in
binary representationx1x2, we have thatc can observex1, whereass observersx2.
The following formulae are valid in the system:

• Obssx = 1 ∨ Obss¬x = 1 : the server can recognize whether the value ofx is
1 or not;

• 〈〈s, c〉〉•CO(s,c)
g¬x = 2 : the agents have a strategyde reto avoidx = 2 in the

next step. For instance, the client can always executeadd1, and the server rejects
the request inq1 and accepts otherwise;

• x = 2 → ¬〈〈s〉〉•Obs(s)
g(x = 2) ∧ 〈〈s〉〉•Obs(c)

g(x = 2): The servers must be
hinted a strategy byc if he wants the variable to retain the value of2. To see why
this is true, suppose thatx = 2. We have to find a strategyvs such that for every
Λ ∈ outObs(c)(q2, vs), we haveΛ[1] |= g(x = 2). Let vs be the strategy that
picksrej in all states. Then, obviously,vs is an incomplete information strategy.
All the computation paths consistent with this strategy areq0q0 . . ., q1q1 . . . and
q2q2 . . .. The runs from those that are inoutObs(c)(q2, vs) are those that start
in q2, so the only element we retain isΛ = q2q2 . . .. Obviously, for thisΛ, we
haveΛ[1] |= (x = 2). To further see that inq2 we have¬〈〈s〉〉•Obs(s)

g(x = 2),
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Figure 4.5: Agents with some memory of the past. Propositionrej holds in the states
immediately after a request has been rejected.

assume that there is some strategyvs such that for everyΛ ∈ outObs(c)(q2, vs)
we haveΛ[1] |= (x = 2). The only strategyvs that works here choosesrej in q2.
Sincevs has to be an incomplete information strategy,vs prescribesrej in q2 as
well. But the runs generated by thisvs in outObs(c)(q2, vs) areΛ = q2q2 . . . and
Λ′ = q0q0 . . .. Obviously, we do not haveΛ′[1] |= x = 2;

• 〈〈s, c〉〉•CO(s,c)3(Obssx = 0∨Obssx = 1∨Obssx = 2)∧〈〈s, c〉〉•CO(s,c)3(Obscx =

0∨Obscx = 1∨Obscx = 2)∧¬〈〈s, c〉〉•CO(s,c)3(EO{s,c}x = 0∨EO{s,c}x =

1∨EO{s,c}x = 2): the agents have a way to make the value ofx observable for
any of them, but they have no strategy to make it observable toboth of them at
the same moment.

�

Example 4.8 Let us go back to the first variable/controller system with only two states
(Example 2.3). The system can be modified to include bounded memory of the players:
for instance, we may assume that each agent remembers the last decision he made. The
resulting concurrent observational game structure is shown in Figure 4.5. For this
structure, we may for instance demonstrate that:
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• s can always reject the claim:A2〈〈s〉〉•Obs(s)
grej, whereA ≡ 〈〈∅〉〉•CO(∅) (cf.

Remark 4.3);

• if s rejects the claims then the value ofx will not change – ands can see it:
Obss[(x = 0→ A g(rej → x = 0)) ∧ (x = 1→ A g(rej → x = 1)) ∧ (x =
2→ A g(rej → x = 2))]. Note that this kind of formulae can be used in ATOL
to specify results of particular strategies in the object language (in this case: the
“always reject” strategy).

�

Example 4.9 Let us consider a train controller example similar to the onefrom (Alur
et al., 2000; van der Hoek and Wooldridge, 2002). There are two trainstr1, tr2, and
a controllerc that can let them into the tunnel. The algorithm of traintri is sketched
in Figure 4.6. Each train can opt to stay out of the tunnel (action s) for some time
– its local state is “away” (ai) then. When the train wants to enter the tunnel (e), it
must wait (statewi) until the controller lights a green light for it (actionleti from
the controller). In the tunnel (ti), the train can again decide to stay for some time
(s) or to exit (e). There is enough vocabulary to talk about the position of each train
(propositionsa1,w1, t1, a2,w2 andt2).

The set of possible situations (global states) is
Q = {a1a2, a1w2, a1t2, w1a2, w1w2, w1t2, t1a2, t1w2, t1t2}.

The transition function for the whole system, and the accessibility relations are depicted
in Figure 4.7. Every train can observe only its own position.The controller is not very
capable observationally: it can see which train is away – butnothing more. When one
of the trains is away and the other is not,c has to light the green light for the latter.2

The trains crash if they are in the tunnel at the same moment (crash ≡ t1∧ t2), so the
controller should not let a train into the tunnel if the othertrain is inside. Unfortunately:

• c is not able to do so:¬〈〈c〉〉•Obs(c)2¬crash, because it has to choose the same
option inw1t2 andw2t1. Note that the controller would be able to keep the
trains from crashing if it had perfect information:¬〈〈c〉〉•2¬crash, which shows
exactly that insufficient epistemic capability ofc is the source of this failure;

• on the other hand, a train (say,tr1) can hint the right strategy (pass a signal) to
the controller every time it is in the tunnel, so that there isno crash in the next
moment:A2(t1→ 〈〈c〉〉•Obs(tr1)

g¬crash);

• whentr1 is out of the tunnel, thenc can choose the strategy of lettingtr2 in if
tr2 is not away (and choosinglet1 else) to succeed in the next step:A2(¬t1 →
〈〈c〉〉•Obs(c)

g¬crash);

• two last properties imply also thatA2〈〈c〉〉•DO(c,tr1)
g¬crash : the controller

can avoid the crash when he has enough communication fromtr1;

2This is meant to impose fair access of the trains to the tunnel: note that whentri wants to enter the
tunnel, it must be eventually allowed if only the other traindoes not stay in the tunnel for ever. Adding
explicit fairness conditions, like in Fair ATL (Alur et al.,2002), would probably be a more elegant solution,
but it goes far beyond the scope of the example and the chapter.
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Figure 4.6: Train template:tri for the train controller problem

s, s, let1 s, s, let2 s, e, let1 s, e, let2 e, s, let1 e, s, let2 e, e, let1 e, e, let2

a1a2 a1a2 a1a2 a1w2 a1w2 w1a2 w1a2 w1w2 w1w2

a1w2 – – – a1t2 – – – w1t2

w1a2 – – – – t1a2 – t1w2 –
w1w2 – – – – – – t1w2 w1t2

a1t2 – a1t2 – a1a2 – w1t2 – w1a2

t1a2 t1a2 – t1w2 – a1a2 – a1w2 –
w1t2 – – – – t1t2 w1t2 t1a2 w1a2

t1w2 – – t1w2 t1t2 – – a1w2 a1t2

t1t2 t1t2 t1t2 t1t2 t1t2 t1t2 t1t2 t1t2 t1t2

q1q2 ∼tr1 q′1q
′
2 iff q1 = q′1

q1q2 ∼tr2 q′1q
′
2 iff q2 = q′2

∼c a1a2 a1w2 w1a2 w1w2 a1t2 t1a2 w1t2 t1w2 t1t2

a1a2 +
a1w2 + +
w1a2 + +
w1w2 + + + +
a1t2 + +
t1a2 + +
w1t2 + + + +
t1w2 + + + +
t1t2 + + + +

Figure 4.7: Transitions and observational accessibility for the system with two trains
and a controller
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q1 q2

q3 q4 q5 q6
win win

nop, x:=s nop, x:=t

y:=s, nop
y:=t, nop

y:=t, nop y:=s, nop

q0

Figure 4.8: A model for anIF game:S[∀x∃y/x x 6= y]. To help the reader, the nodes
in which Falsifier makes a move are marked with grey circles; it is Verifier’s turn at all
the other nodes.

• however,¬〈〈c〉〉•DO(c,tr1)2¬crash, so a one-time communication is not enough;

• finally, c is not a very good controller for one more reason – it cannot detect a
crash even if it occurs:crash→ ¬Obsc crash.

�

Example 4.10 The last example refers toIF games, introduced by Hintikka and Sandu
in (Hintikka and Sandu, 1997), and investigated further in (van Benthem, 2002) from
a game-theoretic perspective. The metaphor of mathematical proof as a game between
Verifier V (who wants to show that the formula in question is true) and Falsifier F
(who wants to demonstrate the opposite) is the starting point here. One agent takes
turn at each quantifier: at∃x, Verifier is free to assignx with any domain object he
likes, while at∀x the value is chosen by Falsifier.IF games generalize the idea with
their “slash notation”:∃x/y means thatV can choose a value forx, but at the same
time he must forget everything he knew about the value ofy (for ever). (van Benthem,
2002) suggests that such logic games can be given a proper game-theoretical treatment
too, and uses dynamic-epistemic logic to reason about the players’ knowledge, their
powers etc. Obviously, ATOL can be used for the same purpose.

Let us consider twoIF games from (van Benthem, 2002): one for∀x∃y/x x 6= y,
the other for∀x∃z∃y/x x 6= y. The game trees for both games are shown in Figures 4.8
and 4.9. The arcs are labeled withjV , jF wherejV is the action of Verifier andjF is the
Falsifier’s decision;nop stands for “no-operation” or “do-nothing” action. Dotted lines
displayV ’s observational accessibility links.F has perfect information in both games.
It is assumed that the domain contains two objects:s andt. Atom win indicates the
states in which the Verifier wins, i.e. the states in which he has been able to prove the
formula in question.

We will use the trees as concurrent observational game structures to demonstrate
interesting properties of the players with ATOL formulae.
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Figure 4.9: AnotherIF game:S[∀x∃z∃y/x x 6= y].

• S[∀x∃y/x x 6= y], q0 |= ¬〈〈V 〉〉•Obs(V )3win : Verifier has no uniform strategy
to win this game;

• note thatS[∀x∃y/x x 6= y], q0 |= ¬〈〈F 〉〉
•
Obs(F )2¬win: Falsifier has no power

to preventV from winning as well in the first game – in other words, the gameis
non-determined. Thus, the reason forV ’s failure lies in his insufficient epistemic
abilities – in the second move, to be more specific:S[∀x∃y/x x 6= y], q0 |=
〈〈V 〉〉•Obs(V )

g〈〈V 〉〉•CO(∅)3win;

• the vacuous quantifier in (B) does matter a lot:V can use it to store the actual
value ofx, soS[∀x∃z∃y/x x 6= y], q0 |= 〈〈V 〉〉•Obs(V )3win.

• Verifier has a strategy that guarantees win (see above), but he will never be able
to observe that he has actually won:

S[∀x∃z∃y/x x 6= y], q0 |= ¬〈〈V 〉〉•Obs(V )3ObsVwin.

�

Giving a complete axiomatization for ATOL is beyond the scope of this chapter.
We only mention a few tautologies below.

Proposition 4.6 The following are validATOL properties:

1. 〈〈A〉〉•Obs(γ)Φ → Obsγ〈〈A〉〉•Obs(γ)Φ: if γ is able to identifyA’s strategy to bring
aboutΦ, then he observes thatA have such a strategy, too;
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2. more generally:〈〈A〉〉•Θ(Γ)Φ→ ΘΓ〈〈A〉〉•Θ(Γ)Φ;

3. 〈〈A〉〉•Θ(Γ)Φ → ΘΓ〈〈A〉〉•CO(∅)Φ: if A have a strategyde rein any sense, then
they have also a strategyde dictoin the same sense;

4. having a uniform strategy implies having a complete information strategy:
〈〈A〉〉•CO(∅)Φ→ 〈〈A〉〉

•Φ.

4.5 ATEL-R*: Knowledge and Time with no Restraint

Real agents have finite memory and unless they can extend their capacity when neces-
sary (hence making the memory finite, but unbounded), modelswith no recall can be
used for them. However, even if we know that an agent has limited memory capabili-
ties, we seldom know which observations he will actually decide to remember. Models
with no recall exist for many problems, but they are often extremely large and must be
constructed on the fly for every particular setting. Assigning agents with perfect recall
can be a neat way to get rid of these inconveniences, althoughat the expense of making
the agents remember (and accomplish) too much. Our languageto talk about agents
with recall – Alternating-time Temporal Epistemic Logic with Recall (ATEL-R*) –
includes the following formulae:

• p, wherep is an atomic proposition;

• ¬ϕ orϕ ∨ ψ, whereϕ, ψ are ATEL-R* formulae;

• gϕ orϕUψ, whereϕ, ψ are ATEL-R* formulae.

• KA ϕ, whereK is any of the collective knowledge operators:C, E, D, A is a
set of agents, andϕ is an ATEL-R* formula;

• 〈〈A〉〉K(Γ) ϕ, whereA,Γ are sets of agents,K = C,E,D, andϕ is an ATEL-R*
formula.

We would like to embed the observational logic ATOL, and modalities for strategies
with complete information into ATEL-R* in a general way. Past time operators can be
also useful in the context of perfect recall, so the following formulae are meant to be a
part of ATEL-R* as well (Θ = CO,EO,DO andK = C,E,D):

• ΘA ϕ;

• 〈〈A〉〉•Θ(Γ)ϕ, 〈〈A〉〉•K(Γ)ϕ, 〈〈A〉〉Θ(Γ)ϕ;

• 〈〈A〉〉•ϕ, 〈〈A〉〉ϕ;

• g−1ϕ (“previouslyϕ”) andϕS ψ (“ϕ sinceψ”) .

Several derived operators can be defined:

• ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ) etc.;
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• Kaϕ ≡ C{a}ϕ and〈〈A〉〉K(γ)Φ ≡ 〈〈A〉〉C({γ})ϕ;

• Obsaϕ ≡ CO{a}ϕ and〈〈A〉〉•Obs(γ)Φ ≡ 〈〈A〉〉
•
CO({γ})Φ;

• 3ϕ ≡ trueUϕ and2ϕ ≡ ¬3¬ϕ;

• 3
−1ϕ ≡ trueS ϕ and2

−1ϕ ≡ ¬3−1¬ϕ;

• Aϕ ≡ 〈〈∅〉〉C(∅)ϕ andEϕ ≡ ¬〈〈∅〉〉C(∅)¬ϕ.

4.5.1 Semantics for ATEL-R*

A few semantics have been proposed for CTL* with past time (Hafer and Thomas,
1987; Laroussinie and Schnoebelen, 1995). The semantics weuse for ATEL-R* is
based on (Laroussinie and Schnoebelen, 1995), where cumulative linear past is as-
sumed: the history of the current situation increases with time and is never forgotten.
In a similar way, we do not make the usual (unnecessary) distinction between state and
path formulae here.

The knowledge accessibility relation for agenta is defined as before:λ ≈K
A λ′

iff λ[i] ∼K
A λ′[i] for all i. Again, ξ[i], ξ|i, andξi denote theith position, firsti + 1

positions, and theith suffix of ξ respectively. The semantics for ATEL-R*, proposed
below, exploits also functionout∗K(Γ)(λ, FA) which returns the set of computations
that are possible from the viewpoint of groupΓ (with respect to knowledge operator
K) in situationλ (i.e. after historyλ took place):

out∗K(Γ)(λ, FA) = {Λ | Λ|n ≈
K
Γ λ andΛn is consistent withFA, wheren is the

length ofλ}.

Definition 4.5 The semantics ofATEL-R* is defined with the following rules:

Λ, n � p iff p ∈ π(Λ[n])

Λ, n � ¬ϕ iff Λ, n 2 ϕ

Λ, n � ϕ ∨ ψ iff Λ, n � ϕ or Λ, n � ψ

Λ, n � gϕ iff Λ, n+ 1 � ϕ

Λ, n � ϕUψ iff there is ak ≥ n such thatΛ, k � ψ andΛ, i � ϕ for all
n ≤ i < k

Λ, n � KA ϕ iff for every Λ′ such thatΛ′
|n ≈

K
A Λ|n we haveΛ′, n � ϕ

(whereK can be any of the collective knowledge opera-
tors:C, E,D)

Λ, n � 〈〈A〉〉K(Γ) ϕ iff there exists a collective uniform strategyFA such that for
everyΛ′ ∈ out∗K(Γ)(Λ|n, FA) we haveΛ′, n � ϕ.

We believe that adding past time operators to ATEL-R* does not change its expres-
sive power – the same way as CTL*+Past has been proven equivalent to CTL* (Hafer
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and Thomas, 1987; Laroussinie and Schnoebelen, 1995). However, explicit past tense
constructs in the language enable expressing history-oriented properties in a natural
and easy way.

Definition 4.6 Semantics of past tense operators can be defined as follows:

Λ, n � g−1ϕ iff n > 0 andΛ, n− 1 � ϕ

Λ, n � ϕS ψ iff there is ak ≤ n such thatΛ, k � ψ and Λ, i � ϕ for all
k < i ≤ n.

Example 4.11 Consider the trains and controller from Example 4.9. The trains can
never enter the tunnel at the same moment, soA2(crash → g−1(t1 ∨ t2)), i.e.
if there is a crash, then a train must have already been in the tunnel in the previous
moment. The formula is equivalent toA2¬(¬(t1 ∨ t2) ∧ gcrash) when we consider
both formulae from the perspective of the initial point of the computation: it cannot
happen that no train is in the tunnel and in the next state the trains crash.3 �

Example 4.12 Another useful past time formula is¬ g−1true, that specifies the start-
ing point in computation. For instance, we may want to require that no train is in the
tunnel at the beginning:¬ g−1true → ¬t1 ∧ ¬t2, which is initially equivalent to
¬t1∧¬t2, but states the fact explicitly and holds for all points in all computations. Also,
tautologyA23

−1¬ g−1true makes it clear that we deal with finite past in ATEL-R*.
�

4.5.2 Knowledge vs. Observations

It can be interesting to reason about observations in ATEL-R*, too. We can embed
ATOL in ATEL-R* in the following way:

Definition 4.7 For all Θ = CO,EO or DO:

Λ, n � ΘA ϕ iff for every Λ′, n′ such thatΛ′[n′] ∼Θ
A Λ[n] we haveΛ′, n′

�

ϕ

Λ, n � 〈〈A〉〉•Θ(Γ)ϕ iff there is a uniform strategy with no recallVA such that for
everyΛ′, n′, for whichΛ′[n′] ∼Θ

Γ Λ[n] andΛ′ is consistent
with VA, we haveΛ′, n′

� ϕ.

Operators for memoryless strategies, identified by agents with recall (〈〈A〉〉•K(Γ), K =

C,E,D) and vice versa (〈〈A〉〉Θ(Γ), Θ = CO,EO,DO) can also be added in a
straightforward way.

3For a precise definition and more detailed discussion ofinitial equivalence, consult for in-
stance (Laroussinie and Schnoebelen, 1995).
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The explicit distinction between knowledge and observations can help to clarify a
few things. The first one is more philosophical: an agent knows what he can seeplus
what he can remember to have seen. Or – more precisely – knowledge is what we
can deduce from our present and past observations, providedwe are given sufficient
observational abilities (in the ontological sense, i.e. wecan name what we see).

Proposition 4.7 Suppose our language is rich enough to identify separate states, i.e.
the set of propositionsΠ includes a propositionαq for every stateq ∈ Q, such thatαq
is true only inq (since the set of states is always finite, we can always add such propo-
sitions toΠ for each particular model). Then for every formulaϕ there exist formulae
ϕ′

1, ϕ
′′
1 , . . . , ϕ

′
n, ϕ

′′
n, such thatϕ′

1, . . . , ϕ
′
n contain no epistemic operators with recall

(K,C,E,D), andϕ′
i ∧ ϕ

′′
i → ϕ for everyi, and:

∨

i=1..n

Kaϕ ≡ (Obsaϕ
′
i ∧

g−1Ka
gϕ′′

i ) ∨ (¬ g−1true ∧Obsaϕ).

This implies that, in every situation,Kaϕ can be rewritten to some formulaObsaϕ′
i ∧

g−1Ka
gϕ′′

i unless we are at the beginning of a run – then it should be rewritten to
Obsaϕ.

Proof: Consider formulaeϕ′
i ≡ ¬Obsa¬αqi

andϕ′′
i ≡ ¬Obsa¬αqi

→ ϕ, one pair
for each stateqi ∈ Q. Let Λ, n be a computation and a position in it, andΛ[n] = qj
current state of the computation. Suppose thatΛ, n |= Kaϕ; then for everyΛ′ such
that Λ′

|n ≈a Λ|n, we have thatΛ′, n |= ϕ. Note that¬Obsa¬αqj
is true exactly

in the states belief-accessible fora from qj , so Λ, n |= Obsa(¬Obsa¬αqj
). Now,

Λ′
|n−1 ≈a Λ|n−1 andΛ′, n |= ¬Obsa¬αqj

imply thatΛ′
|n ≈a Λ|n, soΛ′, n − 1 |=

g(¬Obsa¬αqj
→ ϕ) and henceΛ, n |= g−1Ka

g(¬Obsa¬αqj
→ ϕ). Finally,

¬Obsa¬αqi
and¬Obsa¬αqi

→ ϕ obviously implyϕ.
Λ, n |= g−1Ka

g(¬Obsa¬αqj
→ ϕ) andΛ, n |= Obsa(¬Obsa¬αqj

) imply
Λ, n |= Kaϕ in an analogous way. �

Example 4.13 The above proposition can be illustrated with the systems inFigure 4.10.
Consider pathq2q6 for example. The agent must have known inq2 that he was inq1 or
q2 and therefore in the next step he can be in eitherq5 or q6. Now, inq6 he can observe
that the current state isq6 or q7, so it must beq6 in whichp holds. Note that the agent’s
ontology is too poor in system (A): he cannot express with theavailable language the
differences he can actually see. Sufficient vocabulary is provided in Figure 4.10(B):
for instance, whenq6 is the current state,Ka p can be always rewritten as

Obsa¬Obsa¬q6 ∧ g−1Ka
g(¬Obsa¬q6→ p)

and of course¬Obsa¬q6 ∧ (¬Obsa¬q6→ p)→ p. �

4.5.3 Complete Information vs. Uniform Strategies

Let 〈〈A〉〉Φ denote thatA have a complete information strategy to enforceΦ - like in
ATL and original ATEL*. Relationship analogous to Proposition 4.7 can be shown
between the incomplete and complete information cooperation modalities. This one is
not past-, but future-oriented, however.
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q1 q2

q5 q6

(A)

q3 q4

q7 q8

p p

q1 q2

q5 q6

(B)

q3 q4

q7 q8

q6,p

q5

q1 q2 q3 q4

q8,p

q7

Figure 4.10: Knowledge vs. observations: with and without the vocabulary

Proposition 4.8 〈〈A〉〉Φ ≡ 〈〈A〉〉C(∅)
g〈〈A〉〉 g−1Φ. In other words, having a com-

plete information strategy is equivalent to having a uniform strategy that can be hinted
at every step by an omniscient observer.

A similar property can be shown for agents with no recall:

Proposition 4.9 〈〈A〉〉•Φ ≡ 〈〈A〉〉•CO(∅)
g〈〈A〉〉• g−1Φ.

4.5.4 More Examples

Several further examples for ATEL-R* are presented below.

Example 4.14 For the variable client/server system from Examples 3.3 and4.7, recall
of the past adds nothing to the agents’ powers:

• 〈〈s〉〉K(s)ϕ→ 〈〈s〉〉
•
Obs(s)ϕ,

• 〈〈c〉〉K(c)ϕ→ 〈〈c〉〉
•
Obs(c)ϕ,

• Ksϕ→ Obssϕ etc.

This is because each state can be reached from all the other ones in a single step. Thus,
knowledge of the previous positions in the game does not allow for any elimination of
possible alternatives. Obviously, in a realistic setting,the agents would remember not
only their local states from the past, but also the decisionsthey made – and that would
improve the client’s epistemic capacity. �
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Example 4.15 Consider a model for the variable client and server, extended in a sim-
ilar way as in Example 4.8 (in which every player remembers his last decision). For
this system, the client starts to have complete knowledge ofthe situation as soon asx
is assigned the value of2:

• A2(x = 2→ A2(Kc(x = 0) ∨Kc(x = 1) ∨Kc(x = 2)));

• note that stillA2(¬Obsc(x = 0) ∧ ¬Obsc(x = 1)).

On the other hand, the server gains only some knowledge of thepast. If he has been
rejecting the claims all the time, for instance, he knows that at the beginning the value
of x must have been the same as now:

• 2
−1rej → Ks(x = 0→ 2

−1(¬ g−1true→ x = 0)) etc.

�

Example 4.16 Some properties of the train controller from Example 4.9 canbe ana-
lyzed through formulae of ATEL-R*:

• ti → Kc
g−1¬ai : every time a train is in the tunnel,c knows at least that in the

previous moment it was not away;

• the controller is still unable to accomplish its mission:¬〈〈c〉〉K(c)2¬crash, but...

• a1 ∧ a2 → 〈〈c〉〉K(c)(2¬(a1 ∧ a2 ∧ g(w1 ∧ w2)) → 2¬crash). Suppose the
trains never enter “the waiting zone” simultaneously and both are initially away
– thenc can finally keep them from crashing. The strategy is to immediately
grant the green light to the first train that enters the zone, and keep it until the
train is away again – then switch it to the other one if it has already entered the
zone, and so on;

• also, if c is allowed to remember his last decision (i.e. the model is modified
in the same way as in previous examples), thenc knows who is in the tunnel:
A2(Kcti ∨Kc¬ti) in the new model. In consequence,c can keep the other train
waiting and avoid crash as well.

�

Example 4.17 ConsiderIF games again (see Example 4.10). An interesting variation
on the theme can be to allow that a game is played repeatedly a (possibly infinite)
number of times. For instance, we can have formulaΥ1 defined as a fixed point:
Υ1 ≡ ∀x∃y/x (x 6= y ∨Υ1), which means that the game of∀x∃y/x x 6= y should be
played until Verifier wins. The structure of this game is presented in Figure 4.11.

• Verifier still cannot be guaranteed that he eventually wins:S[Υ1], q0 . . . , 0 |=
¬〈〈V 〉〉K(V )3win;

• this time around, however,V ’s success is much more likely: for each strategy
of his, he fails on one path out of infinitely many possible (and Falsifier has to
make up his mindbeforeV ). Intuitively, the probability of eventually bringing
aboutwin is 1, yet we do not see how this issue can be expressed in ATEL-R* or
ATOL at present;
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q6q3

q1 q2

q4 q5
win win

nop, x:=s nop, x:=t

y:=s, nop y:=t, nop
y:=t, nop y:=s, nop

nop, x:=s nop, x:=t

nop, x:=t

nop, x:=s

q0

Figure 4.11: Game structureS[Υ1] for gameΥ1 ≡ ∀x∃y/x (x 6= y ∨Υ1)

• note that in an analogous model for∀x∀z∃y/x x 6= y we haveS[∀x∀z∃y/x x 6=
y], q0 . . . , 0 |= 〈〈V 〉〉K(V )3win, yet this is only because the semantics of ATEL-
R* does not treat∼V as the epistemic accessibility relation, but rather as a basis
from which the relation is generated. Hence, it allowsV to remember the value
of x anyway – which shows thatS[∀x∀z∃y/x x 6= y] is not a suitable ATEL-R*
model for the formula (although it is still an appropriate ATOL model);

• in order to encode the new game in ATEL-R*, we should split Verifier into two
separate playersV1 andV2. V1 makes the move at the first and second steps
and has a complete information about the state of the environment; V2 does
not see the Falsifier’s choice forx at all. What we should ask about then is:
〈〈V1〉〉K(V1)

g g〈〈V2〉〉K(V2)3win, which naturally does not hold;

• the above shows that ATOL is much closer to the spirit ofIF games than ATEL-
R*. Why should we care about ATEL-R* for modelingIF games at all? Well,
consider game∀xΥ2, whereΥ2 ≡ ∃y/x (x 6= y∨Υ2); the structure of the game
is shown in Figure 4.12. In ATEL-R*, Verifier has a simple winning strategy:
first try y := s, and the next timey := t, and he is bound to hit the appropriate
value – hence,S[Υ2], q0 . . . , 0 |= 〈〈V 〉〉K(V )3win. At the same time,V has no
memoryless strategy:S[Υ1], q0 . . . , 0 |= ¬〈〈V 〉〉•Obs(V )3win, because he loses
the knowledge what he did withy last time every time he usesy again. In a
sense,〈〈V 〉〉K(V ) is closer to the way variables are treated in mathematical logic
than〈〈V 〉〉•Obs(V ): in ∃y∃y ϕ both quantifiers refer todifferentvariables that have
the same name only incidentally.

�

Proposition 4.10 Finally, the following formulae are examples ofATEL-R* tautolo-
gies:
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q1 q2

q4 q5
win win

nop, x:=s nop, x:=t

y:=s, nop y:=t, nop

y:=t, nop y:=s, nop

q0

Figure 4.12: Game structureS[∀xΥ2]

1. 〈〈A〉〉K(Γ)Φ → KΓ〈〈A〉〉K(Γ)Φ : if Γ are able to identifyA’s strategy to bring
aboutΦ, then they also know thatA have such a strategy;

2. 〈〈A〉〉K(Γ)Φ → KΓ〈〈A〉〉CO(∅)Φ : if A have a strategyde re, then they have a
strategyde dicto;

3. having a uniform strategy implies having a complete information strategy:
〈〈A〉〉CO(∅)Φ→ 〈〈A〉〉Φ;

4. 〈〈A〉〉•K(Γ)Φ→ 〈〈A〉〉K(Γ)Φ : memoryless strategies are special cases of strategies
with recall.

4.5.5 Expressivity and Complexity of ATEL-R* and its Subsets

ATEL-R* logic, as defined here, subsumes ATL* and the original ATEL*, as well
as Schobbens’s ATLir*, ATL iR* and ATLIr* logics from (Schobbens, 2003). One
interesting issue about ATL*, ATLir*, ATL iR* and ATLIr* is that they do not seem to
be expressible by each other on the language level.4 This is why we decided to include
separate operators for each relevant perspective to epistemic and strategic abilities of
agents.

The complexity results for “vanilla” ATEL-R are rather discouraging. Even parts of
it are already intractable: ATLir is NP-complete (Schobbens, 2003), and ATLiR (based
on cooperation modalities for incomplete information and perfect recall) is generally
believed to be undecidable, although no proof for it exists yet. We would like to stim-
ulate a systematic investigation of the issue by extending the notation from (Emerson
and Halpern, 1986). LetB (P1, P2, . . . | T1, T2, . . . | M1, M2, . . .) be the branching time
logic with path quantifiersP1, P2, . . ., temporal operatorsT1, T2, . . . and other modali-
tiesM1,M2, . . .. Every temporal operator must have a path quantifier as its immediate
predecessor (like in CTL). Then:

1. B (E | f, 2, U | −) is CTL;

4Except for ATL and ATLIr – but without the star – which are equivalent
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2. B (〈〈A〉〉 | f, 2, U | −) is ATL;

3. B (〈〈A〉〉 | f, 2, U | COA, EOA, DOA) is the original version of ATEL from
(van der Hoek and Wooldridge, 2002);

4. B (〈〈A〉〉CO(?) | f, 2, U | COA, EOA, DOA) is the ATEL version from (Jamroga,
2003d);

5. B (〈〈A〉〉•Θ(Γ) |
f, 2, U | COA, EOA, DOA) is ATOL (Section 4.4);

6. B (〈〈A〉〉K(Γ), 〈〈A〉〉•K(Γ), 〈〈A〉〉, 〈〈A〉〉• | f, 2, U , f−1, 2−1, S | CA, EA, DA, COA,

EOA, DOA) is “vanilla” ATEL-R.

The model checking problem can be solved in polynomial time for (3). On the
other hand, the same problem for (5) is NP-complete (Proposition 4.2). Note that
allowing for perfect recall strategies (but with memoryless strategy identification) does
not make things worse: model checking forB (〈〈A〉〉Θ(Γ) | f, 2, U | COA, EOA, DOA)

is NP-complete in the same way (hint: use the model checking algorithm for (3) and
guess the right set of states from whichA can uniformly get to the current “good” states
every time functionpre is invoked). It turns out that the authors of the original ATEL
proposed the largest tractable member of the family to date.Whether anything relevant
can be added to it seems an important question.

4.6 Final Remarks

In this chapter, we have tried to point out that – when one wants to reason about knowl-
edge of agents defined via alternating transitions systems or concurrent game structures
(aka multi-player game models) – it is important to distinguish the computational struc-
ture from the behavioral structure of the system, and to decide in what way the first one
unravels into the latter. We argue that the initial approachto Alternating-time Temporal
Epistemic Logic (van der Hoek and Wooldridge, 2002) offeredtoo weak a notion of
a strategy. In order to say that agenta can enforce a propertyϕ, it was required that
there existed a sequence ofa’s actions at the end of whichϕ held – whether he had
knowledge to recognize the sequence was not taken into account. Moreover, even the
requirement that the agent’s strategy must be uniform proved too weak: it would still
enable plans in which the agent was allowed to “guess” the opening action. We sug-
gest that it is not enough that the agent knows that some strategy will help him out; it
is more appropriate to require that the agent can identify the winning strategy itself. In
other words, the agent should be required to have a strategyde rerather thande dicto.
Under such a constraint, the agent “knows how to play”.

This is still not enough to give the meaning of a cooperation modality for coali-
tional planning under uncertainty. Even if a group of agentscan collectively identify a
winning strategy, they are prone to fail in case there are other competing strategies as
well. Thus, we propose several different operators insteadof one to distinguish subtle
cases here.
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The assumption that agents can use the complete history to make their subsequent
decisions is also investigated in this chapter. Two paradigms are studied here in con-
sequence. First, agents can be assumed to have no (or only limited) memory. In this
case, they make their decisions only on the basis of what theycanobserve(albeit in
the broadest possible sense of the word); a language for ATL +Observations, dubbed
ATOL, is proposed for specification of such agents. The otherparadigm is formalized
via a richer system, called Alternating-time Temporal Epistemic Logic with Recall
(ATEL-R*). We believe that both approaches can be equally interesting and useful.

The research, reported here, offers only a step towards clarifying epistemic issues
in ATL, and it leaves many questions open. For instance, although only recently a
complete axiomatization for ATL has been given (Goranko andvan Drimmelen, 2003),
this is still unexplored area for ATEL and ATOL. Also, more non-trivial examples of
game-like scenarios should be looked for, in which a logic ofknowledge and time may
help to reveal interesting properties, and which are good cases for automated planning
via model checking.



Chapter 5

Obligations vs. Abilities of
Agents

SYNOPSIS. The story unveils step by step. In a surprisingly logical way. First,
a number of languages and semantic structures came up to enable reasoning
and modeling agents and their environments of action. We traced the origins
and basic concepts behind these logics, classified them, related them to each
other – and did away with most of them before Chapter 2 was over. Then, in
an ingenious move that made our story more dramatic and more sophisticated
at the same time, we brought to the fore Alternating-time Temporal Epistemic
Logic – only to show in the next chapter thatATEL is not completely what it
had seemed. Of course, it allowed us to investigate the nature of the problem,
and propose ways of improvement. The focus of the thesis has thus shifted
from investigating proposals of other researchers to more presentation of our
own ideas; however, even the original ideas of ours arose through an attempt
to improve an existing logical system. It seems a good time now to propose
a new combination of modal logics, so that new, young researcherscan too
detect incongruities, propose remedies, and do their PhDs in consequence.

Through a wealth of uplifting episodes, and a few sudden twists of action,
we have finally come to the point where we are not afraid of discussing the
ruthless notion of obligation. And we even try to confront itwith abilities.
Only one thing troubles our conscience: the story has been lacking agents so
far. Real, full-bodied agents, that is. But wait –theultimate Agent 007, James
Bond comes to the scene in this chapter.

5.1 Introduction

Alternating-time Temporal Logic has been playing a major role in the material pre-
sented so far. ATL and its models present itself as quite a general means of talking
and thinking about autonomous agents, their actions, interactions, and strategic abili-
ties. Chapter 3 shows how the language can be extended with the epistemic notions

113
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of individual and collective knowledge. Chapter 4, on the other hand, demonstrates
that such extensions are not always as easy and straightforward as they seem at the
first glance. Alternating-time Temporal Epistemic Logic was defined as consisting of
two orthogonal layers: the strategic layer (inherited fromATL), and the epistemic layer
(taken directly from epistemic logic). Unfortunately, it turns out that the two layers are
in factnot independent in reality: the strategic abilities of an agent, acting under uncer-
tainty, heavilydepend on his actual knowledge. However, the core idea of extending
ATL with other modalities, referring to other aspects of agents and their communities,
seems generic and potent.

In this chapter, we propose a concept of “deontic ATL” (or DATL in short). As
deontic logic focuses on obligatory behaviors of systems and agents, and Alternating-
time Temporal Logic enables reasoning about abilities of agents and teams, we believe
it interesting and potentially useful to combine these formal tools in order to confront
system requirements (i.e., obligations) with possible ways of satisfying them by actors
of the game (i.e., abilities). This work is not intended as a definite statement on how
logics of obligation and strategic ability should be combined. Rather, we intend it to
stimulate discussion about such kinds of reasoning, and themodels that can underlie it.

We begin by presenting the main concepts from deontic logic.Then, in Section 5.3,
a combination of ATL and deontic logic is defined and discussed. Three different
approaches to modeling obligations in a temporal context are discussed: global re-
quirements on states of the system (i.e., requirements thatdeem some states “correct”
and some “incorrect”), local requirements on states (“correctness” may depend on the
current state), and temporal obligations, which refer to paths rather than states. We
investigate (in an informal way) the perspectives offered by each of these approaches,
and present several interesting properties of agents and systems that can be expressed
within their scope. Some preliminary formal results are given in Section 5.4. In partic-
ular, we present a reduction of DATL model checking to model checking of pure ATL
formulae, yielding a DATL model checking algorithm that is linear in the size of the
input model (and quadratic in the complexity of the input formula). Combining it with
the planning algorithm from Section 2.8 enables efficient planning for deontic goals as
well.

The chapter builds on (Jamroga et al., 2004), a paper co-written with Wiebe van
der Hoek and Michael Wooldridge from the University of Liverpool.

5.2 Deontic Logic: The Logic of Obligations

Deontic logic is the modal logic of obligations. It was originally proposed by Mally
in 1926 – but his logic turned out to introduce nothing reallynew in the formal sense.
The contemporary deontic logic dates back to 1950s and the works of von Wright (von
Wright, 1951). A survey on deontic logic can be found in (Meyer and Wieringa,
1993b), and especially (Meyer and Wieringa, 1993a). The basic concepts:obligation,
permissionandprohibition, are expressed with modal operators:

• Oϕ: “it ought to be thatϕ” or “it is obligatory thatϕ”,

• Pϕ: “it is permitted thatϕ”, and
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Figure 5.1: (A) Critical section example: the trains and thetunnel. Dotted lines dis-
play the deontic accessibility relation. (B) The trains revisited: temporal and strategic
structure

• Fϕ: “it is forbidden thatϕ”.

It is usually accepted that the concept of obligation is primitive, and the other two are
defined upon it:

• Fϕ ≡ O¬ϕ,

• Pϕ ≡ ¬Fϕ ≡ ¬O¬ϕ,

although in some approaches obligations and permissions are treated independently (Al-
chourron, 1993; Fiadeiro and Maibaum, 1991).

5.2.1 Models and Semantics

In the traditional, von Wright’s version of deontic logic, models are defined as Kripke
structures with accessibility relation (or relations)R for modeling obligations (von
Wright, 1951). A stateq′ such thatqRq′ is called a “perfect alternative” of stateq;
we can also say thatq′ is acceptableor correct from the perspective ofq. As with the
conventional semantics of modal operators, we define:

M, q |= Oϕ iff for all q′ such thatqRq′ we haveM, q′ |= ϕ.

Let us illustrate the idea with a simplified version of the “trains and tunnel” example
(cf. Example 4.9).

Example 5.1 There are two trains:a andb; each can be inside a tunnel (propositions
a-in andb-in, respectively) or outside of it. The specification requiresthat the trains
should not be allowed to be in the tunnel at the same time, because they will crash (so
the tunnel can be seen as a kind of critical section):F(a-in ∧ b-in) or, equivalently,
O¬(a-in ∧ b-in). A model for the whole system is displayed in Figure 5.1A. �
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The main idea behind this chapter is that, if we combine ATL and deontic logic, it
may, among other things, allow us to express obligations about what coalitions should
or should not achieve – without specifyinghowthey achieve it (or refrain from it).

Example 5.2 Let us consider the tunnel example from a temporal (and strategic) per-
spective; a concurrent game structure for the trains and thetunnel is shown in Fig-
ure 5.1B. Using ATL, we have that〈〈Agt〉〉3(a-in ∧ b-in), so the system is physically
able to display undesirable behavior. On the other hand,〈〈a〉〉2¬(a-in∧ b-in), i.e., train
a can protect the system from violating the requirements. �

In this chapter, we propose to extend ATL with deontic operatorO in order to inves-
tigate the interplay between agents’ abilities and requirements they should meet. The
resulting language, dubbed “Deontic ATL”, or DATL in short,is defined in Section 5.3.

Substance of Obligations: Actions vs. States

Originally, obligations were given standard modal logic treatment, being modeled with
accessibility relations that referred tostatesin the model – in the way we have just
presented (von Wright, 1951, 1964; Anderson, 1958). Some recent approaches to
deontic logic still use this perspective (Lomuscio and Sergot, 2003a,b). Meanwhile,
actions have also been recognized as entities that can be obligatory, forbidden or per-
mitted (Meyer, 1988; Alchourron, 1993), and this approach seems dominant in the
current literature. It seems reasonable that the notions ofmoral (or legal) obligation,
permission and prohibition should be in most cases related to actions one ought to (is
allowed to, is forbidden to) execute, rather than to obligatory (acceptable, forbidden)
states of the system. We believe, however, that the former stance still makes sense,
especially when we treat deontic statements as referring topreservation (or violation)
of some constraints one would like to impose on a system or some of its components
(like integrity constraints in a database). In this sense, deontic modalities may refer to
requirements: specification requirements, design requirements, security requirements
etc. – an approach that has been already suggested in (Wieringa et al., 1989; Wieringa
and Meyer, 1993; Broersen, 2003), albeit in different contexts. Thus, we will interpret
Oϕ as “ϕ is required” rather than “ϕ ought to be” throughout the rest of the chap-
ter. This approach allows to put allphysicallypossible states of the system in the
scope of the model, and to distinguish the states that are “correct” with respect to some
criteria, thus enabling reasoning about possible faults and fault tolerance of the sys-
tem (Wieringa and Meyer, 1993).

Locality and Individuality of Obligations

Let us go back to the trains and the tunnel from Example 5.1. Note that the set of perfect
alternatives is the same for each stateq in Figure 5.1A. In other words, the acceptabil-
ity of situations isglobaland does not depend on the current state. Thus, the semantic
representation can in fact be much simpler: it is sufficient to mark the states thatvi-
olate the requirements with a special “violation” atomV (Anderson, 1958; Meyer,
1988). Or, equivalently, mark the forbidden states with “red”, and the acceptable states
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with “green” (Lomuscio and Sergot, 2003a). Then the accessibility relationR can be
defined as:

qRq′ iff q′ 2 V .

Alternatively, we can use the following semantic rule:

M, q |= Oϕ iff for all q′ such thatq′ 2 V we haveM, q′ |= ϕ – or:
M, q |= Oϕ iff for all q′ we haveM, q′ |= ¬V → ϕ.

Using a more elaborate accessibility relation machinery makes it possible, in gen-
eral, to model requirements that arelocal with respect to the current state. Is it neces-
sary? In many application areas perhaps not. We argue in Section 5.3.3, however, that
local obligations can provide a means for specifying requirements that evolve in time.
Also, they can be used to specify exception handling in situations when full recovery
of the system is impossible.

Another dimension of classifying obligations is theirindividuality. The accessibil-
ity relation can define the requirements for the whole system, or there can be many
relations, specifying different requirements for each process or agent (Lomuscio and
Sergot, 2003a). The requirements in Example 5.1, for instance, are universal rather
than individual: they apply to the whole system. However, itmay make sense to spec-
ify that the trainb is required to avoid the tunnel at all (because, for instance, the tunnel
is too narrow for it):Ob¬b-in.

Paradoxes

Many paradoxes have been listed for various instances of deontic logic – cf. (Meyer
and Wieringa, 1993a), for instance. We believe that (at least some of) the paradoxes
are due to confusing various kinds of obligations, prohibitions etc. that are uttered
with the same words in natural language, but their inherent meaning is in fact different.
For example, one may confuse dynamic vs. static properties that ought to be satisfied
(i.e. actionsthat ought to be executed vs.statesthe system should be in), ending up
with Ross’s Paradox, Penitent’s Paradox, the paradox ofno contradictory obligations
etc. One may also confuse properties that ought to hold all the time vs. the ones that
must hold at some future moment etc. as long as the temporal perspective is implicit
(Good Samaritan Paradox). Defining permission as the dual of obligation (i.e. as a
mere statement thatϕ mightbe morally acceptable, while e.g. reading “permission” as
authorization suggests thatϕ is proclaimedto be acceptable) leads to much confusion
too (no free choice permissionparadox). There have been some attempts to clarify
these issues. Alchourron (1993), for instance, makes an explicit distinction between
positive permission (i.e. things that have been explicitlypermitted) and negative per-
mission (i.e. things that are merely not forbidden), and analyzes the formal relationship
between these two concepts. Moreover, it is sometimes suggested that the use of de-
ontic modalities should be restricted only to actions (action terms) and not to static
properties.

We are not going do dig deep into these issues in this thesis. To avoid confusion,
we will interpret deontic sentences as referring tosystem requirements(specification re-
quirements, design requirements, security requirements etc.) that express which states
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of the system are consideredcorrect in a given situation. Moreover, the only notion
of permission, discussed in this chapter, is represented bytheUP operator for “uncon-
ditionally permitted” situations (defined in Section 5.3.1). Thus, we leave the issue of
permissions in general – and a discussion of theP operator – out of the scope of the
thesis.

5.2.2 Combining Deontic Perspective with Other Modalities

The combination of deontic logic with temporal and dynamic logics has been investi-
gated at length in the literature. A well-known reduction ofdeontic operators to dy-
namic logic was proposed in (Meyer, 1988):

• Fα ≡ [α]V ,

• Pα ≡ ¬Fα ≡ 〈α〉¬V ,

• Oα ≡ F(−α) ≡ [−α]V , where “−α” stands for “not-doingα”.

It turned out that embedding deontic concepts in dynamic logic not only enabled to ex-
press and investigate the interplay between obligations and time and actions, but it also
cuts off some of the paradoxes. Another body of work proposeshow deontic specifica-
tions can be reduced to temporal specifications (van Eck, 1982; Fiadeiro and Maibaum,
1991), while in (Maibaum, 1993) a reduction of deontic specifications to temporal ones
via a kind of dynamic logic (“deontic action logic”) is suggested. Finally, Dignum and
Kuiper (1997) add temporal operators to dynamic deontic logic which serves as a basis.
“Artificial social systems” and “social laws” for multiple agents acting in time (Moses
and Tennenholz, 1990; Shoham and Tennenholz, 1992, 1997; Moses and Tennenholz,
1995) also contribute to the field in a broad sense.

In addition, combinations of deontic and epistemic logics have been investigated,
too. Bieber and Cuppens (1993) proposed such a combination for the purpose of se-
curity analysis, and Moses and Tennenholz (1995) included epistemic operators and
accessibility relations in their logical system for reasoning about artificial social sys-
tems. A generic concept of deontic interpreted systems was investigated in (Lomuscio
and Sergot, 2002, 2003a,b). Related work concerns also extending the BDI framework
(beliefs, desires and intentions) with obligations (Broersen et al., 2001a,b).

Finally, a recent proposal (van der Hoek et al., 2004) combines the deontic and
strategic perspectives, applying the concept of social laws to ATL: behavioral con-
straints (specific model updates) are defined for ATL models,so that some objective
can be satisfied in the updated model. Since that paper deals with similar territory as
the ideas presented here, we discuss their relationship in more detail in Section 5.3.5.

5.3 Deontic ATL

In this section, we extend ATL with deontic operators. We follow the definition with an
informal discussion on how the resulting logic (and its models) can help to investigate
the interplay between agents’ abilities and requirements that the system (or individual
agents) should meet.
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5.3.1 Syntax and Semantics

The combination of deontic logic and ATL proposed here is technically straightfor-
ward: the new language consists of both deontic and strategic formulae, and models
include the temporal transition function and deontic accessibility relation as two inde-
pendent layers. Thus, the recursive definition of DATL formulae is:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | OAϕ | UPAϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕ1 Uϕ2

whereA ⊆ Agt is a set of agents.
Models for DATL can be calleddeontic game structures, and defined as tuples

M = 〈Agt, Q,Π, π, Act, d, δ,R〉, where:

• Agt is a (finite) set of allagents, andQ is a non-empty set ofstates,

• Π is a set of (atomic)propositions, andπ : Q→ P(Π) is theirvaluation;

• Act is a set of actions, andd : Q× Agt→ P(Act) is a function that returns the
decisions available to playera at stateq;

• a complete tuple of decisions〈α1, ..., αk〉 ⊆ dq(a1) × ... × dq(ak) from all
the agents in stateq implies a deterministic transition according to the transition
functionδ(q, α1, ..., αk);

• finally, R : P(Agt)→ P(Q×Q) is a mapping that returns a deontic accessibil-
ity relationRA for every group of agentsA.

The semantic rules forp,¬ϕ,ϕ ∨ ψ, 〈〈A〉〉 gϕ, 〈〈A〉〉2ϕ, 〈〈A〉〉ϕUψ are inherited
from the semantics of ATL (cf. Chapter 2), and the truth ofOAϕ is defined in a similar
way as in the version of dynamic logic presented in Section 5.2.1. We also propose a
new deontic operator:UPϕ, meaning that “ϕ is unconditionally permitted”, i.e., when-
everϕ holds, we are on the correct side of the picture. This new modality closely
resembles the “knowing at most” notion from epistemic logic(Levesque, 1990).

M, q � p iff p ∈ π(q), for an atomic propositionp;

M, q � ¬ϕ iff M, q 2 ϕ;

M, q � ϕ ∨ ψ iff M, q � ϕ orM, q � ψ;

M, q � 〈〈A〉〉 gϕ iff there exists a collective strategyFA such that for every
computationΛ ∈ out(q, FA) we haveM,Λ[1] � ϕ;

M, q � 〈〈A〉〉2ϕ iff there exists a collective strategyFA such that for everyΛ ∈
out(q, FA) we haveM,Λ[i] � ϕ for everyi ≥ 0;

M, q � 〈〈A〉〉ϕUψ iff there exists a collective strategyFA such that for everyΛ ∈
out(q, FA) there isi ≥ 0 such thatM,Λ[i] � ψ and for all
j such that0 ≤ j < i we haveM,Λ[j] � ϕ;
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M, q |= OAϕ iff for every q′ such thatqRAq′ we haveM, q′ |= ϕ;

M, q |= UPAϕ iff for every q′ such thatM, q′ |= ϕ we haveqRAq′.

OperatorUPA – among other things – helps to characterize theexactset of “cor-
rect” states, especially in the case of local requirements,where the property of a state
being “correct” depends on the current state of the system, and therefore cannot be
characterized with an additional single proposition.

In principle, it should be possible that the requirements ona group of agents (or
processes) are independent from the requirements for the individual members of the
group (or its subgroups). Thus, we will not assume any specific relationship between
relationsRA andRA′ , even ifA′ ⊆ A. We propose only that a system can be identified
with the complete group of its processes, and therefore the requirements on a system
as a whole can be defined as:Oϕ ≡ OAgtϕ. In a similar way:UPϕ ≡ UPAgtϕ.

5.3.2 Dealing with Global Requirements

Let us first consider the simplest case, i.e., when the distinction between “good” and
“bad” states is global and does not depend on the current state. Deontic game structures
can in this case be reduced to concurrent game structures with “violation” atomV that
holds in the states that violate requirements. Then:

M, q |= Oϕ iff for all q′ such thatq′ 2 V we haveM, q′ |= ϕ.

As we have both requirements and abilities in one framework,we can look at the for-
mer and then ask about the latter. Consider the trains and tunnel example from Fig-
ure 5.1B, augmented with the requirements from Figure 5.1A.Let us also assume that
these requirements apply to all the agents and their groups,i.e.,RA = RA′ for all
A,A′ ⊆ Agt; we will continue to assume so throughout the rest of the chapter, unless
explicitly stated. As already proposed, the trains are required not to be in the tunnel
at the same moment, because it would result in a crash:O(¬(a-in ∧ b-in)). Thus, it
is natural to ask whether some agent or team can prevent the trains from violating the
requirement:〈〈A〉〉2¬(a-in∧b-in)? Indeed, it turns out that both trains have this ability:
〈〈a〉〉2¬(a-in ∧ b-in) ∧ 〈〈b〉〉2¬(a-in ∧ b-in). On the other hand, if the goal of a train
implies that it passes through the tunnel, the train is unable to “safeguard” the system
requirements any more:¬〈〈a〉〉¬(a-in ∧ b-in)U(a-in ∧ ¬b-in).

In many cases, it may be interesting to consider questions like: does an agent have
a strategy to always/eventually fulfill the requirements? Or, more generally: does the
agent have a strategy to achieve his goal in the way that does not violate the require-
ments (or so that he can recover from the violation of requirements eventually)? We
try to list several relevant properties of systems and agents below:

1. the system isstable(with respect to modelM and stateq) if M, q |= 〈〈∅〉〉2¬V ,
i.e., no agent (process) can make it crash;

2. the system issemi-stable(with respect to modelM and stateq) if it will inevitably
recover from any future situation:M, q |= 〈〈∅〉〉2〈〈∅〉〉3¬V ;
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3. agentsA form a (collective)guardianin modelM at stateq if they can protect the
system from any violation of the requirements:M, q |= 〈〈A〉〉2¬V ;

4. A canrepair the systemin modelM at stateq if M, q |= 〈〈A〉〉3¬V ;

5. A is a (collective)repairman in modelM at stateq if A can always repair the
system:M, q |= 〈〈∅〉〉2〈〈A〉〉3¬V ;

6. finally, another (perhaps the most interesting) property isagents’ ability to eventu-
ally achieve their goal (ϕ) without violating the requirements. We say that agents
A canproperly enforceϕ in M, q if M, q |= 〈〈A〉〉(¬V )U(¬V ∧ ϕ).

We will illustrate the properties with the following example. The world is in danger,
and only the Prime Minister (p) can save it through giving a speech at the United Na-
tions session and revealing the dangerous plot that threatens the world’s future. How-
ever, there is a killer (k) somewhere around who tries to murder him before he presents
his speech. The Prime Minister can be hidden in a bunker (propositionpbunk), moving
through the city (pcity), presenting the speech (pspeaks ≡ saved), or. . . well. . . dead
after being murdered (pdead). Fortunately, the Minister is assisted by James Bond (b)
who can search the killer out and destroy him (we are very sorry – we would prefer
Bond to arrest the killer rather than do away with him, but Bond hardly works this
way. . . ). The deontic game structure for this problem is shown in Figure 5.2. The
Prime Minister’s actions have self-explanatory labels (enter, exit, speakandnop for
“no operation” or “do nothing”). James Bond can defend the Minister (actiondefend),
look for the killer (search) or stay idle (nop); the killer can either shoot at the Minis-
ter (shoot) or wait (nop). The Minister is completely safe in the bunker (he remains
alive regardless of other agents’ choices). He is more vulnerable in the city (can be
killed unless Bond is defending him at the very moment), and highly vulnerable while
speaking at the UN (the killer can shoot him to death even if Bond is defending him).
James Bond can search out and destroy the killer in a while (atany moment). It is
required that the world is saveable (O〈〈Agt〉〉3saved) and this is the only requirement
(UP〈〈Agt〉〉3saved). Note also that the world can be saved if, and only if, the Prime
Minister is alive (because〈〈Agt〉〉3saved is equivalent¬pdead), and the two states that
violate this requirement are marked accordingly (V , which is of course equivalent to
pdead).

The system is neither stable nor semi-stable (the Minister can go to the UN build-
ing and get killed, after which the system has no way of recovering). Likewise, no
agent can repair the system in statesq7, q8, and hence there is no repairman. The Prime
Minister is a guardian as long as he stays in the bunker:pbunk → 〈〈p〉〉2¬pdead,
because he can stay in the bunker forever. However, if he doesso, he cannot save
the world: ¬〈〈p〉〉(¬pdead)U(¬pdead ∧ saved). On the other hand, he can coop-
erate with Bond to properly save the world as long as he is initially out of the UN
building: (pbunk ∨ pcity) → 〈〈p, b〉〉(¬pdead)U(¬pdead ∧ saved) – he can get to
the bunker, defended by Bond, and then wait there until Bond finds the killer; then
he can go out to present his speech. Incidentally, there is one more guardian in the
system – namely, the killer:(¬pdead) → 〈〈k〉〉2¬pdead, and also(¬pdead) →
〈〈p, k〉〉(¬pdead)U(¬pdead ∧ saved), so the Minister can alternatively pay the killer
instead of employing Bond.
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Figure 5.2: James Bond saves the world. The arrows show possible transitions of the
system; some of the labels are omitted to improve readability. The states that violate
the requirements are marked grey.

Remark 5.1 Note that formulaOϕ∧ UPϕ characterizes the exact set of correct states
in the sense thatM, q |= Oϕ ∧ UPϕ iff ϕ ≡ ¬V . Thus,Oϕ ∧ UPϕ can be seen as the
deontic counterpart of the “only knowing” alias “all I know”operator from epistemic
logic (Levesque, 1990).

5.3.3 Local Requirements with Deontic ATL

A more sophisticated deontic accessibility relation may beconvenient for modeling
dynamics of obligations, for instance when the actors of thegame can negotiate the
requirements (e.g., deadlines for a conference submission). Alternatively, “localized”
requirements can give a way of specifyingexception handlingin situations when a full
recovery is impossible.

Example 5.3 Consider the modified “James Bond” example from Figure 5.3. The
Prime Minister is alive initially, and it is required that heshould be protected from
being shot: q3 |= ¬pdead and q3 |= O¬pdead. On the other hand, nobody ex-
cept the killer can prevent the murder:q3 |= 〈〈k〉〉2¬pdead ∧ ¬〈〈p, b〉〉2¬pdead;
moreover, when the president is dead, there is no way for him to become alive again
(pdead → 〈〈∅〉〉2pdead). Now, when the Minister is shot, a new requirement is im-
plemented, namely it is required that either the Minister isresurrected or the killer is
eliminated:q7 |= O(¬pdead ∨ kdead). Fortunately, Bond can bring about the latter:
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saved pdead pdead
kdead
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< >nop,search,nop< >nop,nop,nop

Figure 5.3: “James Bond saves the world” revisited: local requirements. Dotted lines
define the deontic accessibility relation. Solid lines showpossible transitions of the
system.

q7 |= 〈〈b〉〉3kdead. Note thatq8 is unacceptable when the Minister is alive (q3), but it
becomes the only option when he has already been shot (q7). �

Remark 5.2 In a way, we are making the deontic accessibility relation serial in a very
special sense, i.e., every state has at least onereachableperfect alternative now. We
suggest to call this semantic propertyeffective seriality. It is a well known fact that
seriality of a modal accessibility relation corresponds tothe D axiom, stating (in the
case of obligations) that¬OA⊥ or, equivalently,OAϕ → ¬OA¬ϕ (van der Hoek and
Verbrugge, 2002). We conjecture that the effective seriality may correspond to the
following axiom scheme:

DEFF: OAϕ→ (¬OA¬ϕ ∧ 〈〈Agt〉〉3ϕ)

or, equivalently:

DEFF: (OAϕ ∧ UPAϕ)→ 〈〈Agt〉〉3ϕ.

Similar properties of agents and systems to the ones from theprevious section can
be specified:

1. the system isstableinM, q if, givenM, q |= Oϕ∧UPϕ, we haveM, q |= 〈〈∅〉〉2ϕ;

2. the system issemi-stableinM, q if, given thatM, q |= Oϕ∧UPϕ, we haveM, q |=
〈〈∅〉〉2(ϕ→ 〈〈∅〉〉3ϕ);

3. A form aguardianinM, q if, givenM, q |= Oϕ∧UPϕ, we haveM, q |= 〈〈A〉〉2ϕ;

4. A canrepair the system inM, q if, given thatM, q |= Oϕ∧UPϕ, we haveM, q |=
〈〈A〉〉3ϕ;

5. groupA is a repairman in M, q if, given thatM, q |= Oϕ ∧ UPϕ, we have
M, q |= 〈〈∅〉〉2〈〈A〉〉3ϕ;

6a. A canproperly enforceψ in M, q if, given thatM, q |= OAϕ ∧ UPAϕ, we have
M, q |= 〈〈A〉〉ϕU(ϕ ∧ ψ). Note that this requirement is individualized now;
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6b. A canproperly (incrementally) enforceψ in M, q if, given thatM, q |= OAϕ ∧
UPAϕ, we haveM, q |= ϕ ∧ ψ, orM, q |= ϕ andA have a collective strategyFA
such that for everyλ ∈ out(q, FA) they can properly (incrementally) enforceψ
in M,λ[1].

The definitions show that many interesting properties, combining deontic and strate-
gic aspects of systems, can be defined using semantic notions. At present, however, we
do not see how they can be specified entirely in the object language.

5.3.4 Temporal Requirements

Many requirements have a temporal flavor, and the full language of ATL∗ allows to
express properties of temporal paths as well. Hence, it makes sense to look at DATL∗,
where one may specify deontic temporal properties in terms of correct computations
(rather than single states). In its simplest version, we obtain DTATL by only allowing
requirements over temporal (path) subformulae that can occur within formulae of ATL:

ϕ := p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕ1 Uϕ2 | OA gϕ | OA2ϕ |
OAϕ1 Uϕ2 | UPA gϕ | UPA2ϕ | UPAϕ1 Uϕ2.

Below we list several properties that can be expressed in this framework:

1. O3〈〈A〉〉2ϕ: it is required that sometime in the future, coalitionA gets the op-
portunity to guaranteeϕ forever,

2. O3(〈〈A〉〉3ϕ ∧ 〈〈A〉〉3¬ϕ): it is a requirement that eventually coalitionA can
determineϕ;

3. the latter can be strengthened toO2(〈〈A〉〉3ϕ ∧ 〈〈A〉〉3¬ϕ), saying that it is an
obligation of the system that there must always be opportunities forA to toggle
ϕ as it wants.

Note that the definition of DTATL straightforwardly allows to express stability
properties like

OTψ → 〈〈A〉〉Tψ

saying thatA can bring about the temporal requirementTψ.
Semantically, rather than being a relation between states,relationRA is now one

between states and computations (sequences of states). Thus, for any computation
λ, qRAλ means thatλ is an ideal computation, givenq. The semantics of temporal
obligations and unconditional permissions can be defined as:
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M, q |= OA gϕ iff for every λ such thatqRAλ, we haveM,λ[1] |= ϕ;

M, q |= OA2ϕ iff for every λ such thatqRAλ, we haveM,λ[i] |= ϕ for all
i ≥ 0;

M, q |= OAϕUψ iff for every λ such thatqRAλ, there is i ≥ 0 such that
M,λ[i] |= ψ and for all0 ≤ j < i we haveM,λ[j] |= ϕ.

M, q |= UPA gϕ iff for every λ such thatM,λ[1] |= ϕ, we haveqRAλ;

M, q |= UPA2ϕ iff for every λ such thatM,λ[i] |= ϕ for all i ≥ 0, we have
qRAλ;

M, q |= UPAϕUψ iff for every λ, such thatM,λ[i] |= ψ for somei ≥ 0 and
M,λ[j] |= ϕ for all 0 ≤ j < i, we haveqRAλ.

One of the most appealing temporal constraints is that of a deadline: teamA should
achieve propertyϕ within a number (sayn) of steps. This could be just expressed by
OA gnϕ: only these courses of action are acceptable, in which the deadline is met.1

Note that the DATL obligationO(〈〈A〉〉 g)nϕ expresses a different property: here,A
must beableto meet the deadline.

Fairness-like properties are also a very natural area to reason about deontic con-
straints. Suppose we have a resourcep that can only be used by one agent at the time
(and as long asa is using it,pa is true). The constraint that every agent should even-
tually be able to use the resource is expressed by

∧

a∈ΣO2〈〈a〉〉3pa – or, if this is an
obligation of a particular schedulers, we could writeOs rather thanO. Finally, let us
recall the ATL operator[[A]]Φ ≡ ¬〈〈A〉〉¬Φ (coalitionA cannot preventϕ from being
the case). FormulaO2(〈〈A〉〉3ϕ → [[A]]2(ϕ → 〈〈A′〉〉3¬ϕ)) says that only these
courses of action are acceptable in which, might coalitionA ever have a way to enforce
ϕ, then it must “pass the token” toA′ and give the other agents the ability to reverse
this again.

Note also that DTATL formulaeUPψ express a kind of “the end justifies means”
properties. For instance,UP3kdead means thateverycourse of action, which yields
the killer dead, is acceptable.

5.3.5 Deontic ATL and Social Laws

We mentioned the two main streams in deontic logic, having either states of affairs
or actions as their object of constraints. In Deontic ATL, one can express deontic
requirements aboutwho is responsibleto achieve something, without specifying how it
should be achieved. The requirementO¬〈〈{a, b}〉〉3safe-open, for example, states that
it should be impossible fora andb to bring about the disclosure of a safe in a bank.
However, withc being a third employee, we might haveO(¬〈〈{a, b}〉〉3safe-open ∧
〈〈{a, b, c}〉〉2safe-open): as a team of three, theymustbe able to do so. We can also
express delegation, as inOa〈〈b〉〉2ϕ: authoritya has the obligation thatb can always
bring aboutϕ.

1O enϕ is not a DTATL formula, but the logic can be easily extended toinclude it.
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A recent paper (van der Hoek et al., 2004) also addresses the issue of prescribed
behavior in the context of ATL: behavioral constraints (specific model updates) are de-
fined for ATL models, so that some objective can be satisfied inthe updated model.
The emphasis in (van der Hoek et al., 2004) is on how the effectiveness, feasibility and
synthesis problems in the area of social laws (Moses and Tennenholz, 1990; Shoham
and Tennenholz, 1992) can be posed as ATL model checking problems. One of the
main questions addressed is: given a concurrent game structureM and a social law
with objectiveϕ (which we can loosely translate asOϕ), can we modify the original
structureM intoM ′, such thatM ′ satisfies〈〈∅〉〉2ϕ? In other words, we ask whether
the overall system can be altered in such a way that it cannot but satisfy the require-
ments. The question whether certain coalitions areable to “act according to the law”
is not addressed in (van der Hoek et al., 2004); the law isimposedon the system as a
whole. On the other hand, we are interested in bringing requirements into the scope
of ATL, so that one can ask questions about which courses of action are “correct”, and
what particular agents or coalitions can do about it. Can they enforce that no forbidden
states will be achieved, for instance? This is a different question from whether some
higher-order entity (e.g. the designer, system administrator etc.) can redefine the game
so that the requirements always hold. Thus, the approach of that paper is prescriptive,
while our approach here is rather descriptive.

The difference is also reflected in the semantics: here, requirements can be referred
to via deontic sentences in the object level, and via modal accessibility relation on
the semantic side. In (van der Hoek et al., 2004), the requirements (objectives) are
expressed purely syntactically, and the focus is on model updates that can lead to a
model in which every state satisfies them. Moreover, (van derHoek et al., 2004) lacks
explicit deontic notions in the object level.

An example of a requirement that cannot be imposed on the system as a whole,
taken from (van der Hoek et al., 2004), isp ∧ 〈〈A〉〉 g¬p: propertyp is obligatory, but
at the same time,A should beable to achieve¬p. This kind of constraints could be
used to model exceptional situations, such as: “it is obligatory that the emergency exit
is not used, although at the same time people in the building should always be able to
use it”. Imposing such an overall objective upon a system means that our behavioral
constraints should both rule out any possibility of¬p from the system, and retain the
possibility of deviating fromp in it – which is obviously impossible. It seems that our
Deontic ATL covers a more local notion of obligation, in whichO(p ∧ 〈〈A〉〉 g¬p) can
well be covered in a non-trivial way.

Note that our “stability” requirements are similarly strong: in fact, the property
of M being stable in stateq, given thatM, q |= Oϕ ∧ UPϕ (cf. Section 5.3.3), is
equivalent to theeffectivenessof (ϕ, βI) in M, q (whereβI is the “identity” constraint,
i.e. βI(α) = Q for each actionα). On the other hand, our “guardian” requirements
are rather weak: to demand that every obligationOϕ is implementable by a coalition
does not yet guarantee that the systemdoesbehave well. In each particular case, we
might be looking for something in between the universal guarantee and a coalitional
efficiency with respect to constraintϕ. And it is one of the features of Deontic ATL
– that one can express many various stability requirements,making explicit who is
responsible for what.
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5.4 Axioms, Model Checking and Similar Stories

Let DL be the language of deontic logic. Then – if we do not haveany mixing ax-
ioms relating the coalitional and the deontic operators – weobtain logic DATL as an
independent combinationof two modal logics: ATL⊕ DL (Franceschet et al., 2000).
Franceschet et al. give an algorithm for model checking suchcombinations, given two
model checkers for each separate logic. However, two technical remarks are in or-
der here. First, the formal results from (Franceschet et al., 2000) refer to combining
temporallogics, while neither ATL nor DL is a temporal logic in the strictest sense.
Moreover, the algorithm they propose for model checking of an independent combi-
nation of logics assumes that the models are finite (while there is no such assumption
in our case). Nevertheless, polynomial model checking of DATL is possible, and we
show how it can be done in Section 5.4.2, through a reduction of the problem to ATL
model checking.2

5.4.1 Imposing Requirements through Axioms

Following the main stream in deontic logic, we can take everydeontic modality to
be KD – the only deontic property (apart from the K-axiom and necessitation for
OA) being the D-axiom¬OA⊥. An axiomatization of ATL has been recently shown
in (Goranko and van Drimmelen, 2003). If we do not need any mixing axioms, then
the axiomatization of DATL can simply consist of the axioms for ATL, plus those of
DL.

Concerning the global requirements, note that endowing DATL models with the
violation atomV is semantically very easy. Evaluating whetherOϕ is true at stateq
suggests incorporating auniversal modality(Goranko and Passy, 1992) although some
remarks are in place here. First of all, it seems more appropriate to use this definition
of global requirements ingenerated modelsonly, i.e., those models that are generated
from some initial stateq0, by the transitions that the grand coalitionAgt can make.
Otherwise, many natural situations may be unnecessarily hard to capture because of
considering violations (or their absence) in unreachable states. As an example, suppose
we have a system that has twoseparatesubsystems: in the first subsystem (withq1 as
the initial state), we must drive in the continental style, while in the latter (withq2
as the initial state) British traffic rules apply. Thus, starting from q1, we violate the
requirements while driving on the left hand side of the road (V ≡ left), but when the
system starts fromq2, driving on the right hand side is a violation of the law (V ≡
prop). To specify one global requirement, we need additional propositions to identify
each subsystem:O((british→ left) ∧ (continental→ right)). Alternatively, we can opt
for a more general solution, and define obligations in a systemM with rootq0 as:

M, q |= Oϕ iff M, q0 |= 〈〈∅〉〉2(¬V → ϕ).

Second, we note in passing that by using the global requirement definition of obli-
gation, theOmodality obtained in this way is a KD45 modality, which meansthat we

2Similar remark applies of course to ATEL in Chapter 3, which is an independent combination of ATL
and epistemic logic.
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inherit the propertiesOϕ → OOϕ and¬Oϕ → O¬Oϕ, as was also observed in (Lo-
muscio and Sergot, 2003a). But also, we get mixing axioms in this case: every deontic
subformula can be brought to the outmost level, as illustrated by the valid scheme

〈〈A〉〉3Oϕ↔ Oϕ

(recall that we haveM, q |= Oϕ iff M, q′ |= Oϕ, for all statesq, q′ and rootq0).
Some of the properties we have mentioned earlier in this chapter can constitute

interesting mixing axioms as well. For instance, a minimal property for requirements
might be

OAϕ→ 〈〈A〉〉3ϕ

saying that every coalition can achieve its obligations. Semantically, we can pinpoint
such a property as follows. Let us assume that this is an axiomscheme, and the model
is distinguishing (i.e., every state in the model can be characterized by some DATL
formula). Then the scheme corresponds to the semantic constraint:

∀q∃FA∀λ ∈ out(q, FA) : states(λ) ∩ img(q,RA) 6= ∅

wherestates(λ) is the set of all states fromλ, andimg(q,R) = {q′ | qRq′} is the
image ofq with respect to relationR. In other words,A can enforce that every possible
computation goes through at least one perfect alternative of q.

Another viable mixing axiom is the DEFF axiom from Remark 5.2, that corre-
sponds to “effective seriality” of the deontic accessibility relation.

5.4.2 Model Checking Requirements and Abilities

In this section, we present a satisfiability preserving interpretation of DATL into ATL.
The interpretation is very close to the one from Section 3.4,which in turn was inspired
by (Schild, 2000). The main idea is to leave the original temporal structure intact,
while extending it with additional transitions to “simulate” deontic accessibility links.
The simulation is achieved through new “deontic” agents: they can be passive and let
the “real” agents decide upon the next transition (actionpass), or enforce a “deontic”
transition. More precisely, the “positive deontic agents”can point out a state that was
deontically accessible in the original model (or, rather, aspecial “deontic” copy of the
original state), while the “negative deontic agents” can enforce a transition to a state
that wasnot accessible. The first ones are necessary to translate formulae of shape
OAϕ; the latter are used for the “unconditionally permitted” operatorUPA.

As an example, letM be the deontic game structure from Figure 5.3, and let us con-
sider formulaeOAgt¬saved, andUPAgtsaved and〈〈k, b〉〉 gpdead (note that all three

formulae are true inM, q3). We construct a new concurrent game structureMATL

by adding two deontic agents:rAgt, r̄Agt, plus “deontic” copies of the existing states:

q
rAgt

3 , q
rAgt

7 , q
rAgt

8 andqrAgt

3 , q
rAgt

7 , q
rAgt

8 (cf. Figure 5.4). AgentrAgt is devised to point
out all the perfect alternatives of the actual state. As state q3 has only one perfect
alternative (i.e.,q3 itself), rAgt can enforce the next state to beqrAgt

3 , provided that
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all other relevant agents remain passive.3 In consequence,OAgtsaved translates as:
¬〈〈rAgt, r̄Agt〉〉 g(rAgt ∧ saved). In other words, it is not possible thatrAgt points out
an alternative ofq3 (while r̄Agt obediently passes), in whichsaved doesnot hold.

Agent r̄Agt can point out all theimperfectalternatives of the current state (forq3,

these are:qrAgt

7 , q
rAgt

8 ). Now, UPAgtsaved translates as¬〈〈rAgt, r̄Agt〉〉 g(rA ∧ saved):
r̄Agt cannot point out an unacceptable state in whichsaved holds, hence the property
of saved guarantees acceptability. Finally, formula〈〈k, b〉〉 gpdead can be translated
as〈〈k, b, rAgt, r̄Agt〉〉 g(act∧pdead): the strategic structure of the model has remained
intact, but we must make sure that both deontic agents are passive, so that a non-deontic
transition (an “action” transition) is executed.

We present the whole translation below in a more formal way, and refer to Sec-
tion 3.4 for a detailed presentation of the method and proofsof correctness.

Given a deontic game structureM = 〈Agt, Q,Π, π, Act, d, δ,R〉 for a set of agents
Agt = {a1, ..., ak}, we construct the corresponding concurrent game structureMATL =
〈Agt′, Q′,Π′, π′, Act′, d′, δ′〉 in the following manner:

• Agt′ = Agt∪Agtr ∪Agtr̄, whereAgtr = {rA | A ⊆ Agt, A 6= ∅} is the set of
“positive”, andAgtr̄ = {r̄A | A ⊆ Agt, A 6= ∅} is the set of “negative” deontic
agents;

• Q′ = Q ∪
⋃

A⊆Agt,A 6=∅
(QrA ∪ QrA). We assume thatQ and allQrA , QrA are

pairwise disjoint. Further we will be using the more generalnotationSe =
{qe | q ∈ S} for anyS ⊆ Q and propositione;

• Π′ = Π ∪ {act, ..., rA, ..., rA, ...}, andπ′(p) = π(p) ∪
⋃

A⊆Agt(π(p)rA ∪ π(p)rA)

for everyp ∈ Π. Moreover,π′(act) = Q, π′(rA) = QrA , andπ′(rA) = QrA ;

• d′q(a) = dq(a) for a ∈ Agt, q ∈ Q: choices of the “real” agents in the original
states do not change,

• d′q(rA) = {pass}∪ img(q,RA)rA , andd′q(r̄A) = {pass}∪(Q\ img(q,RA))rA .
Action pass represents a deontic agent’s choice to remain passive and let other
agents choose the next state. Note that other actions of deontic agents are simply
labeled by the names of deontic states they point to;

• Act′ = Act ∪
⋃

q∈Q,A⊆Agt(d
′
q(rA) ∪ d′q(r̄A));

• the new transition function forq ∈ Q is defined as follows (we put the choices
from deontic agents in any predefined order):

δ
′(q, αa1 , ..., αak

, ..., αr, ...) =

8<: δ(q, αa1 , ..., αak
) if all αr = pass

αr
if r is the first active (positive
or negative) deontic agent

• the choices and transitions for the new states are exactly the same:d′(qrA , a) =
d′(qrA , a) = d′(q, a), andδ′(qrA , αa1

, ..., αrA
, ...) = δ′(qrA , αa1

, ..., αrA
, ...) =

δ′(q, αa1
, ..., αak

, ..., αrA
, ...) for everyq ∈ Q, a ∈ Agt′, αa ∈ d′(q, a).

3We can check the last requirement by testing whether the transition leads to a deontic state ofrAgt
(propositionrAgt ). It can happen only if all other relevant deontic agents choose actionpass.
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Now, we define a translation of formulae from DATL to ATL corresponding to the
above described interpretation of DATL models into ATL models:

tr(p) = p, for p ∈ Π

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)

tr(〈〈A〉〉 gϕ) = 〈〈A ∪ Agtr ∪Agtr̄〉〉 g(act ∧ tr(ϕ))

tr(〈〈A〉〉2ϕ) = tr(ϕ) ∧ 〈〈A ∪ Agtr ∪ Agtr̄〉〉 g〈〈A ∪ Agtr ∪ Agtr̄〉〉2

(act ∧ tr(ϕ))

tr(〈〈A〉〉ϕUψ) = tr(ψ) ∨ (tr(ϕ) ∧ 〈〈A ∪Agtr ∪ Agtr̄〉〉 g〈〈A ∪ Agtr ∪Agtr̄〉〉

(act ∧ tr(ϕ))U(act ∧ tr(ψ)))

tr(OAϕ) = ¬〈〈Agtr ∪ Agtr̄〉〉 g(rA ∧ ¬tr(ϕ))

tr(UPAϕ) = ¬〈〈Agtr ∪ Agtr̄〉〉 g(rA ∧ tr(ϕ)).

Proposition 5.3 For everyDATL formulaϕ, modelM , and a stateq ∈ Q, we have
M, q |= ϕ iff MATL , q |= tr(ϕ).

Proposition 5.4 For everyDATL formulaϕ, modelM , and “action” stateq ∈ Q, we
haveMATL , q |= tr(ϕ) iff MATL , qe |= tr(ϕ) for everye ∈ Π′ \Π.

Corollary 5.5 For everyDATL formulaϕ and modelM , ϕ is satisfiable (resp. valid)
in M iff tr(ϕ) is satisfiable (resp. valid) inMATL .

Note that the vocabulary (set of propositionsΠ) only increases linearly (and cer-
tainly remains finite). Moreover, for a specific DATL formulaϕ, we do not have to
include all the deontic agentsrA and r̄A in the model – only those for whichOA (or
UPA, respectively) occurs inϕ. Also, we need deontic states only for these coalitions
A. The number of such coalitions is never greater than the complexity of ϕ. Letm be
the cardinality of the “densest” modal accessibility relation – either deontic or tempo-
ral – inM , andl the complexity ofϕ. Then, the “optimized” transformation gives us
a model withm′ = O(lm) transitions, while the new formulatr(ϕ) is only linearly
more complex thanϕ.4 In consequence, we can use the ATL model checking algo-
rithm from (Alur et al., 2002) for an efficient model checkingof DATL formulae – the
complexity of such process isO(m′l′) = O(ml2).

Example 5.4 Let us consider again the deontic game structure from Figure5.3. We
construct a corresponding concurrent game structure, optimized for model checking of
the DATL formulaOAgt(¬pdead∧ 〈〈k〉〉 g¬OAgt¬pdead): it is required that the Prime
Minister is alive, but the killer is granted the ability to change this requirement. The
result is shown in Figure 5.4. The translation of this formula is:

¬〈〈rAgt〉〉 g(rAgt ∧ ¬(¬pdead∧ 〈〈k, rAgt〉〉 g(act∧¬¬〈〈rAgt〉〉 g(rAgt ∧ ¬¬pdead))))

which holds in statesq3 andqrAgt

3 of the concurrent game structure. �

4The length of formulae may suffer an exponential blow-up; however, the number ofdifferent subformu-
lae in the formula only increases linearly. This issue is discussed in more detail in Section 3.4.4.
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saved pdead pdead
kdead

< >nop,nop,nop,pass

saved pdead pdead
kdead

act act act

rS rS
rS

3
q

8
q7

q

3
qrS

8
qrS

7
qrS

< >nop,search,nop,pass

< >nop,nop,nop,q3
< >nop,search,nop,q3

< >nop,nop,nop,q8
< >nop,search,nop,q8

Figure 5.4: ATL interpretation for the deontic game structure from Figure 5.3

5.4.3 Planning to Achieve Deontic Goals

Having reduced model checking for DATL to ATL model checking, we can use the
planning algorithm from Section 2.8 in order to generate plans that achieve goals that
include deontic properties as well. The method closely resembles planning for epis-
temic goals from Section 3.4.5, and analogous remarks apply.

Example 5.5 Consider the local requirements from Example 5.3 again. LetM be the
deontic concurrent game structure presented in that example, and let us assume that the
dotted lines depict the obligations of James Bond (i.e., relationRb). If Bond is striving
to be relieved from the tiresome duty of saving the world, then 〈〈b〉〉3¬Obsaved (more
formally: 〈〈b〉〉⊤U¬Obsaved) is the formula to be checked. Re-construction of the
model yields concurrent game structureMATL from Figure 5.4 (only with deontic
agentrAgt replaced withrb), and the formula is translated to:

〈〈b, rb〉〉actU(act ∧ 〈〈rb〉〉 g(rb ∧ ¬saved)).

Now, executingplan(〈〈b, rb〉〉actU(act∧ 〈〈rb〉〉 g(rb ∧¬saved))) forMATL gives the
following plan: {〈q7,−〉, 〈q8,−〉}. In other words, the goal is already achieved in
statesq7 andq8, and impossible to achieve fromq3. Is there anybody else who can
relieve Bond from duty? Yes, of course – the killer. We ask whether〈〈k〉〉3¬Obsaved,
which translates as〈〈k, rb〉〉actU(act ∧ 〈〈rb〉〉 g(rb ∧ ¬saved)), and the execution of
plan(〈〈k, rb〉〉actU(act ∧ 〈〈rb〉〉 g(rb ∧ ¬saved))) gives

{〈q3, shoot〉, 〈q7,−〉, 〈q8,−〉}.

Thus, if James Bondreally wants to get rid of the obligation, then he must form a
coalition with the killer (as〈〈k〉〉3¬Obsaved implies〈〈b, k〉〉3¬Obsaved, and the same
strategy can be used), or delegate the task to the killer in some other way. �



132 CHAPTER 5. OBLIGATIONS VS. ABILITIES OF AGENTS

5.5 Conclusions

In this chapter, we have brought obligations and abilities of agents together, enabling
one to reason about what coalitions should achieve, but alsoto formulate principles
regarding who can maintain or reinstall the “correctness” of states of affairs or courses
of action. We think the tractable model checking of DATL properties makes the ap-
proach attractive as a verification language for multi-agent systems that involve norms,
obligations and/or requirements imposed on the system as a whole, or on individual
agents. The language enables to express and verify specifications of agents’ obliga-
tions, and confront them with abilities of the agents and their teams. But there is more
to DATL than this: it makes also possible to reason about the temporal dynamics of the
obligations, and to express the fact that someone can control the requirementsthem-
selves: formula〈〈k〉〉3¬Obsaved from Example 5.5 illustrates the latter sort of ability.
Last, but not least, we proposed an efficient planning algorithm that extends ATL-based
planning with goals that involve deontic properties.

However, as stated repeatedly, it is at the same time a reportof ideas rather than of
a crystallized and final analysis. Few formal results were presented (it would be per-
haps even fairer to say “suggested”) for DATL in this chapter. Nevertheless, we believe
that DATL is indeed a very attractive framework to incorporate abilities of agents and
teams with deontic notions – and that there are many interesting features yet to be ex-
plored along this line of research. For instance, theoretical properties of DATL, and its
relation to other existing systems that combine deontic andtemporal/strategic perspec-
tive, wait to be investigated; in particular, a closer studyof the relationship between
DATL and the “Social Laws for ATL” approach seems worth conducting. Moreover,
properties of a “guardian agent”, “repairman” etc. are defined on the semantic level
in the general case of local obligations – it can be interesting to try to express them in
the object language as well, although it may require some redefinition of the semantics
of deontic operators and/or cooperation modalities. Another line of research may refer
to the other notion of obligation – obligations with respectto actions instead of states
(“correct” actions rather than “good” states) – which can beconfronted with agents’
abilities as well. Finally, DATL can be extended with an epistemic dimension. Practi-
cal applications may include more realistic analysis of games, security analysis, trust
management as well as requirements engineering.
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Chapter 6

Bringing Adaptivity and
Security Together

SYNOPSIS. So far, various semantics for Alternating-time Temporal Logic
were proved equivalent. Coalition Logic was shown to be subsumed byATL .
Their models and vocabulary were extended to handle obligations (require-
ments) and agents’ beliefs under incomplete information – although the latter
turned out not to be as easy and straightforward as it had seemed. What do we
get from that? One can use multi-player game models to model environments
inhabited by multiple agents, and the agents can employATL model checking
to find infallible plans that satisfy their goals.

But – what about fallible plans which are still good? What about exploiting
the weaknesses of the opponents, or building trust and cooperation with other
agents? How can we make our agents play relatively safe, and adapt to the
changes of the dynamic environment at the same time? Multilevel modeling of
the reality and multilevel decision making comes to rescue.

6.1 Introduction

This chapter presents the idea of hierarchical modeling of the reality. In many situa-
tions, a software agent can see several alternative models of his environment of action:
differing in their structure, the way they have been obtained, and, most of all, the no-
tions that underlie them. One model can include a profile of the user with whom the
agent currently interacts, another one a stereotype or some“average user” model, a
“best defense” model that assumes an adversary and powerfulopponent etc. If the
models are accurate beyond any doubt, then the agent should arguably use the most
specific and detailed model while making his decisions; however, such a situation hap-
pens seldom in a dynamic environment. We propose that the agent can be better off
using all the available models of the reality at the same time, and that the impact of
a particular model should be proportional to its specificityandsome evaluation of its
accurateness and applicability to the actual case.

135
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Chapters 2, 3, 4, and 5 show how multi-agent environments canbe modeled via
game-like scenarios, yielding multi-player game models and similar structures. The
models can be extended to include agents’ beliefs, desires,intentions, obligations, sys-
tem requirements etc. It is not always as easy as it seems initially (cf. Chapter 4), but
(assuming some care) one can imagine adding other notions tothe scope of ATL-like
models in a similar manner. What is very important, ATL modelchecking can be used
as a planning algorithm for agents and their teams. However,ATL-based planning
suffers from the inherent deficiency of game theory solutions: it looks for infallible
plans, assuming in a sense that other agents (and even the “nature”) playsagainstthe
planning agent. But what if the other agents are not necessarily adversary? Or if they
are prone to make errors that could be exploited to reach the goals more easily? The
agent should definitely be interested in learning some up-to-date knowledge about the
environment and adapting his strategy accordingly. On the other hand, adaptivity can
be risky if some opponent turns out to be powerful and adversary indeed. One of the
advantages of using the multi-model decision making proposed here is that the agent
can try to be (generally) adaptive and (relatively) secure at the same time.

The subsequent chapters address related issues: first, Chapter 7 reports research
aimed at finding a good measure for the agent’s self-evaluation of his actual beliefs;
next, Chapter 8 shows how such adaptive-and-secure agents perform in a very simple
setting. Chapter 8 presents also some examples how ATL models can be included in
hierarchical modeling of the reality.

The preliminary idea of using a hierarchy of models was presented in (Jamroga,
2001b), and generalized in (Jamroga, 2002b). The chapter builds upon both papers.

6.2 Multilevel Modeling of Reality

A virtual agent lives in a world which consists of both virtual and “real” components.
The world, together with the agent’s own goals and capabilities, constitutes the reality
the agent has to cope with. The agent interacts with the reality, trying to fulfill his
(implicit or explicit) goals. Thus, it is good for the agent to learn some (implicit or
explicit) model of the reality to adjust future actions to the predicted response of the
environment.

6.2.1 Adaptivity vs. Security

An agent’s knowledge about its environment can be either assumed (“pre-wired”) or
acquired through some kind of learning. The first approach dominates the classical
game theory solutions – predefined, publicly known game trees, fixed payoffs, as-
sumptions about players’ rationality, and the maxmin equilibrium (von Neumann and
Morgenstern, 1944), later generalized with the concept of non-transferable utility and
Nash equilibrium for non-cooperative games (Nash, 1950) – define the best (or at least
safest) choice in a normative way, assuming thus the optimal(or rather most danger-
ous) behavior of the “opponent”. Recent modal logics of strategic ability, like ATL and
CL, discussed extensively in Chapter 2, follow the same tradition. Their models gen-
eralize game trees, output of strategies is defined in a way analogous to maxmin, and
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verification of a formula in a given model generalizes minimax for zero-sum games
(cf. Section 2.8). Similarly, “best defense models” for games involving uncertainty
usually assume the opponent to play his best strategy, even to the extent of making
him omniscient: both in game theory (Frank, 1996; Frank and Basin, 1998) and logics
like ATEL or ATOL (cf. Chapters 3 and 4). Of course, omniscient and perfectly ratio-
nal opponents are seldom met in the real world. Thus, such an assumption makes our
agent over-cautious, although it protects the agent betterin the case of meeting a pow-
erful and strongly adversary enemy. An alternative solution was proposed in (Jamroga,
2001a): some boundaries of the possible opponent’s knowledge have to be assumed (or
learned), and within these boundaries we predict him to playaverage. The opponent
can still be defined as omniscient, but it has to be done explicitly.

The machine learning approach emphasizes the importance ofkeeping an accurate
and up-to-date model of the world. The agent can learn the policy of its adversary
to exploit his weaknesses (Carmel and Markovitch, 1996; Senand Arora, 1997; Sen
and Weiss, 1999), to converge with dynamic, possibly indifferent environment (Sen
and Sekaran, 1998; Sen and Weiss, 1999), or to learn trust andcooperation with other
agents (Banerjee et al., 2000; Sen and Sekaran, 1998). The learning is accomplished
mostly within the reinforcement learning regime (Kaelbling et al., 1996; Sen and Weiss,
1999). The goal of the agent is to maximize his numerical reward (payoff, utility) in
the long run. Thus the decision making criterion is in most cases based on maximiza-
tion of the expected payoff with respect to the agent’s current knowledge about the
environment of his action.

Remark 6.1 Value systems (Pfeifer and Scheier, 1999) are sometimes used as an alter-
native for reinforcement learning. Instead of taking the raw reinforcement as the basis
for his behavior, the agent tries to maximize the output of his own internal evaluation
mechanism (hisvalue system), which is only to some extent based on the external feed-
back. Thus, the agent is driven by a private system of preferences which may include
biases towards specific situations and actions.

In fact, value systems seem to provide a more general view to autonomous agents’
learning than assuming immediate “internalization” of theexternal reinforcement. If
an agent is autonomous, he should rather be supposed to reinterpret the feedback from
the environment in his own, autonomous way. Of course, the difference is mainly philo-
sophical. In the technical sense, the role of both reinforcement mechanisms and value
systems is to provide the agent with numerical values that enable him to evaluate the
utility of possible situations in some predefined sense (and, in consequence, also to
evaluate his actions and strategies). We will refer to thesevalues as payoffs or utilities
throughout the rest of the thesis, and leave out the (no doubtinteresting) issue where
the utilities come from.

It is clear that an agent can benefit from learning up-to-dateknowledge about his
environment of action. However, some assumed “borderline”characteristic of the re-
ality can still be very helpful when the agent’s learned knowledge seems insufficient or
cannot be sufficiently trusted.
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6.2.2 Multiple Models of Reality

An agent may model his environment of action in many different ways, and in most
cases it is up to the designer to decide which one will be maintained and used by the
agent before he starts his “life”. For example, the agent mayperceive the environment
as a unity – this approach pays off especially when the environment consists only of
passive elements. Even in worlds (possibly) inhabited by other agents, it may be a
good solution, as reported in (Sen and Sekaran, 1998) for block pushing agents using
a very simple reinforcement learning scheme. However, if the agent can observe other
agents’ actions and distinguish them from changes of the environment itself, he may
benefit from that in most cases. First, the agent is then able to monitor the state of
the environment more precisely. Second, identifying separate (active) entities in the
neighborhood creates a potential for dialogue in the broadest sense, as every agent-to-
agent interaction may be seen as an instance of multimodal communication. Agents
can be classified with respect to the way they model their environment of action in the
following manner (Vidal and Durfee, 1998; Sen and Weiss, 1999):

• 0-level agentis an agent who models the environment as a unity, i.e. he doesnot
keep separate models of other agents;

• 1-level agentis an agent who maintains and uses explicit models of other agents.
In order to cut down the conceptual loop, the other agents aremodeled as0-level
agents;

• 2-level agentis an agent who models other agents as 1-level agents;

• k-level agentis an agent who models other agents ask − 1-level agents.

In this chapter, we propose that the agent may be better off keeping several alter-
native models of the reality at the same time, and switching to the most appropriate
at the very moment. Most notably, adaptive and normative models can be combined;
ideally, the agent should base his decisions on the knowledge he has learned if the
knowledge is trustworthy, and opt for “safe play” (e.g. maxmin) otherwise. Also, the
concept of belief hierarchy presented here may enable usingthe content-based knowl-
edge (individual user profiles) and the collaborative models (stereotypes) at the same
time, especially for quantitative beliefs (Zukerman and Albrecht, 2001; Kobsa, 1993).
However, we do not pursue the last idea within this thesis.

Similar intuition underlies a number of recent results: an adaptive news agent that
keeps two complementary models of the user (long-term preferences + short-term ones)
(Billsus and Pazzani, 1999), a system that uses alternativeMarkov models for predict-
ing users’ requests on a WWW server (Zukerman et al., 1999), etc. In both cases
hybrid models are presented that perform better than any of the original models alone.
Finally, some papers propose multilevel learning in order to learn user’s interest that
can possibly drift and recur (Koychev, 2001; Widmer, 1997).1

1I would like to thank Ingrid Breymann for her literature overview I dared to use.
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Figure 6.1: Example belief structure for an e-commerce agent

6.2.3 Modeling Dialogue Environment for e-Commerce Agents

The ideas, presented in this chapter, emerged from considerations about agents in
business-to-consumer e-commerce. When a software agent has several communication
modalities at hand (written text, speech, graphics, animation, video sequences, music
samples etc.) – which of the modalities is optimal to presentthe information the agent
is intended to provide? Or, putting it in a more general way, how can the e-commerce
agent adjust to preferences of the so-called “user” (which is in fact a label for an ever-
revolving cast of characters from the external reality)? The setting is not as adversary
as it may seem at the first glance: every agent is interested inestablishing successful
communication, and in efficient information exchange – although the agents do not
necessarily want to exchangethe sameinformation. Still, communication is usually a
cooperative activity: for instance, the issue of making thecommunication fast, clear,
attractive etc. is vital for all the agents being involved. On the other hand, the busi-
ness agent must be cautious enough not to be cheated or manoeuvred into unprofitable
contracts by a number of consumers in a long run.

An e-commerce agent should obviously be interested in possessing a perfectly ad-
equate model of the environment. It may include the current user’s preferences, his
strategy, predicted future actions etc. However, such a model can hardly be acquired:
the user may dynamically change his profile or even try to cheat the agent about his
preferences, strategy or his identity. The agent can only try to build up some model
of the average behavior/preferences presented so far by this particular user – if he is
able to recognize the user in the crowd of all potential interlocutors. Some Internet
agents try to identify the user by the IP number of the computer used by the user at
this moment or through the cookies mechanism, some other force users to log in and
confirm the identity with a password. But even humans, using all the available senses
to recognize the interlocutor, are often full of doubts and make mistakes, especially
when a new person appears in the scope of interest. Thus, the virtual agent may need
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to use some model of the “average user”. This model can be learned simultaneously
with particular users’ profiles.

In a blurred, highly dynamic environment, where the agent cannot easily distin-
guish actions of other agents from changes of the environment itself, some model of
the entire reality may turn out to be most useful and trustworthy. And, finally, when we
cannot trust anything we learned so far, we need some defaultassumptions about the
nature of the reality to evaluate possible courses of actionand choose among them. All
the proposed levels of modeling are shown in Figure 6.1. The more specific the level
of knowledge used by the agent, the more accurate his decisions can be. However, if
the agent has little or no confidence in his lower-level (morespecific) beliefs, he should
turn to the higher-level (more general) ones.

6.2.4 Inside the Boxes and Behind the Arrows

One can imagine expressing the actual agent’s beliefs usingvery different languages.
Also, the learning may proceed along different learning methods and routines.

Let us first consider the qualitative approach. The representation of agents’ beliefs
may be based on any kind of logic. For instance, the whole hierarchy may be defined in
a way similar to a default theory in default logic (Antoniou,1999) – or rather a “multi-
default” logic in this case. The beliefs on a certain level ofspecificity can be therefore
represented with sets of axioms. If some important fact cannot be proven on the most
specific level of beliefs, the agent turns to the “local defaults” level (one level up); if
there is still no answer to be found, he tries “the defaults over defaults”, etc. Thus, the
confidence degrees are defined (implicitly) in a usual binaryfashion of mathematical
logics: either the agentis confident with some formula (if it can be proven), or he is
not.

The hierarchy may be also defined in a subsumption-like architecture, with explicit
activation or inhibition links (if the confidence for the actual level is too low, the upper
level is triggered on). The knowledge on every level can be expressed with any kind
of representation language, including formulae of first-order predicate logic, logic pro-
grams, semantic networks, formulae of complex multimodal logics like ATL, ATOL
or BDI (discussed in Chapters 2, 3 and 4 of this thesis), or even non-monotonic rea-
soning languages – learned via belief revision systems, inductive logic programming,
genetic algorithms etc. The links may be triggered with respect to logical constraints,
fuzzy logic formulae or numerical variables. If the beliefsare expressed with a non-
monotonic logic, for example, an activation link may be triggered for a couple of steps
every time a belief revision is necessary on the particular level (the agent had to change
his beliefs seriously, so for some time he cannot trust them).

Of course modeling the environment withmodelsof the above logics instead of
their formulae is a worthy alternative. Multi-player game models, alternating observa-
tional transition systems, BDI models etc. may obviously serve to describe the structure
and the current state of the reality. It is worth pointing outthat in such case – instead
of provingthat some required formula holds – we must check whether it holds in a par-
ticular state ofthe specified model. In consequence, we replace theorem proving with
model checking, which usually reduces the computational complexity of the decision-
making procedure. Examples of hierarchies of models that include concurrent game
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Figure 6.2: An example hierarchy for an e-commerce agent with probabilistic beliefs.

structures are presented in Section 8.3.
The subsumption-like architecture suits also defining multilevel beliefs within the

quantitative approach. The beliefs can be gathered throughQ-learning, genetic algo-
rithms like BBA or PSP, statistical methods – yielding probability distributions, fuzzy
sets or fuzzy measures, cluster models etc. They can also be accumulated in the form
of Bayesian classifiers, Bayesian nets, neural networks andso on.

Example 6.1 An agent employing Q-learning to estimate the expected long-term re-
ward (discounted over time) for his actions, with models of other agents as probability
distributions over their possible choices (obtained via Bayesian updating), may produce
the following hierarchy:

• Q0(s, a): the default expected reward for actiona taken in states;

• C0: confidence the agent has in modelQ0. Note that weassumeQ0 to be correct
by default, hence we can have no uncertainty about it as long as we keep the
assumption (C0 = 1.0);

• Q1(s, a, b): the average expected reward for actiona in states when the other
agent executes actionb;

• P1(s, b): the (estimated) probability that the average user takes action b in states;

• C1: confidence the agent has inQ1 andP1 being an accurate model of the aver-
age user and environment behavior;

• Q2(s, a, b): the expected reward fora in s against the current user playingb;

• P2(s, b): the (estimated) probability that the current user choosesb in s;

• C2: confidence the agent has inQ2 andP2 being the model of the current be-
havior of the environment and the user;
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Figure 6.3: Combining probabilistic beliefs

The resulting hierarchy is shown in Figure 6.2. The agent should maximize his ex-
pected reward (depending on the belief level he uses at this moment), i.e.:

• he maximizesE0(s, a) = Q0(s, a) if he bases his decision upon the default
assumptions about the environment;

• he choosesa for which E1(s, a) =
∑

bQ1(s, a, b)P1(s, b) is maximal in the
current states if he uses the average user model;

• he choosesa∗ = argmaxa E2(s, a) = argmaxa
∑

bQ2(s, a, b)P2(s, b) if he
uses the model of the current user.

�

Note that within the quantitative approach the agent does not have to stick to one
belief level only when evaluating possible alternatives. Suppose that confidence in a
piece of knowledge (a model) is represented with a value0 ≤ C ≤ 1, with the intended
interpretation thatC = 1 denotes full confidence (the agent believes that the model is
completely accurate), andC = 0 denoting complete distrust. Then the agent may use
a linear combination of the evaluations as well, with the confidence values providing
weights.

Example 6.2 If the agent trusts the most specific model in, say, 70% – the final eval-
uation should depend on the model in 70%, and the remaining 30% should be derived
from the levels above. For the agent from Figure 6.3, the value to be maximized is:

E(s, a) = C2 E2(s, a) + (1− C2) (C1E1(s, a) + (1− C1)C0E0(s, a))
= 0.7

∑

bQ2(s, a, b)P2(s, b) + 0.135
∑

bQ1(s, a, b)P1(s, b) + 0.165Q0(s, a).

�
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Figure 6.4: Generalized belief hierarchy for quantitativebeliefs

In consequence, the decision is based on all the relevant models at the same time, al-
though in different proportions – weighting the partial evaluations with the confidence
the agent has in them.

6.3 Hierarchies of Quantitative Beliefs

The idea of hierarchical modeling of the reality has been presented on a few exam-
ples in the preceding section. In this section, we propose a more complex and general
hierarchy of beliefs, in which several alternative models of the environment can be
maintained and used on the same specificity level, includingthe level of default as-
sumptions. The hierarchy enables multiple “inheritance” relation between concepts,
and an arbitrary number of concept levels; moreover, the links between concepts can
be also assigned numerical labels that describe their “strength”.

6.3.1 Definitions

Let us assume that the agent’s beliefs are quantitative in the sense that they imply some
numerical evaluation of every action at hand, and that the decision making process can
be based on the current evaluation values.

Definition 6.1 (Hierarchy of beliefs) A hierarchy of beliefsis a directed acyclic graph,
in which every node includes a modelM of the agent’s environment of action (the
model can be also seen as aconceptor a notionof the environment). A real number
Ci,j , calledconfidence valueis attached to nodeMi,j , and is meant to represent the
agent’s current degree of trust thatMi,j models the environment accurately. Every
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edge is labeled with a real number called amembership valueµ, reflecting to what
extent the lower-level model is a specialization of the higher-level one. The hierarchy
is depicted in Figure 6.4.

A few remarks may help to clarify the intuitions behind the hierarchy.

• The models are (partially) ordered with respect to their specificity. Top nodes
(roots) describe the default assumptions about the behavior of the environment,
other agents, users of the system etc. Bottom nodes (leaves)refer to the most
specific available models: for instance, separate profiles for users, and models of
how the environment reacts during interaction with each user respectively.

• Several alternative models on the same level refer to several possible classifi-
cation decisions (with the same degree of specificity). For example, many user
profiles can be kept at the bottom level; using a particular one depends on iden-
tification of the current user. Several competing models of the “average environ-
ment response” may refer to different types of the environment. In a sense, they
can represent variousstereotypesof the environment and/or users.

• Each model is underlied by some notion of the reality (its structure, opera-
tional characteristics etc.). The vertical links between models refer to the sub-
set/membership relation between the notions, in a way similar to semantic net-
works (Russel and Norvig, 1995). For instance, a user of an e-banking system
can be classified as an “honest customer” or a “dishonest” one(cf. Example 6.3).
Such a classification depends usually on the actual evidence, and therefore im-
plies some degree of uncertainty. Thus, the links are weighted with membership
values that indicate to what extent we believe that the lower-level notion is a
specific case of the higher-level notion. In consequence,µ

M
forms the charac-

teristic function of a fuzzy set (Klir and Folger, 1988) thatis supposed to model
the notion behindM.

• The membership values appear also below the most specific level of notions: the
current “reality” can be classified as an instance of a particular notion only with
some degree of certainty.

• Since the fuzzy nature of the relationships between notionsis represented with
the membership valuesµ, a confidence valueC refers only to the agent’s cer-
tainty thatthe model in question describes the notion in question in an appropri-
ate way.

• The direction of arcs in the hierarchy is somewhat arbitrary, and reflects the
intuition that we should start with the most specific model ofthe reality, and look
for a more abstract one only when this one fails. On the other hand, we follow
the tradition of placing the most abstract entries at the top, and most specific ones
at the bottom of the hierarchy. Thus, the successors of a nodeare the nodes one
levelup.

• The root of the tree refers to thereal state of affairs, and it is shown at the bottom
of the graph. The fuzzy setsMm,1, ...,Mm,nm

have therefore only one member
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(the reality, that is), and the membership valuesµMm,1
, ..., µMm,nm

show how
we interpret the observed data on the most specific level of knowledge.

Example 6.3 An example belief hierarchy for a banking agent is shown in Figure 6.5.
It is assumed that the response from the environment is constant, deterministic and
known beforehand, given the state of the system and the decisions from both agents
(the e-banking agent and the current user). In consequence,building a model of the
reality boils down to the task ofuser modeling.

The knowledge base includesm different user profiles. Two stereotypes: an “hon-
est user” model, and a “dishonest user” model can be employedif there is substantial
uncertainty about the profile of the current user. There are also two sets of default
assumptions, describing an ordinary self-interested agent, and an enemy agent. �

Definition 6.2 (Multi-model evaluation of actions) Let succ(M) denote the set of
all the successors of nodeM, i.e. all the models exactly one level up. The (multi-
model) evaluation of actiona, starting from modelM, can be defined recursively:

E(M, a) = C
M
· eval(M, a) + (1− C

M
)

∑

M′∈succ(M)

µ
M′ (M) ·E(M′, a)

whereeval(M, a) is a numerical evaluation ofa with respect to modelM only –
expected payoff estimation, for instance. LetSpec denote the “bottom” nodes, i.e. the
set of the most specific models. The final evaluation of alternative decisions can be
now calculated as:

E(a) =
∑

M∈Spec

µM · E(M, a).
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Example 6.4 The multi-model evaluation of actiona, based on the hierarchy of mod-
els from Figure 6.5 (Example 6.3) is calculated as follows:

E(a) = 0.9 E(M1, a) + 0.1 E(M2, a)

= 0.9 (0.8 eval(M1, a) + 0.2 · 1.0 E(Mhon, a)) +

0.1 (0.4 eval(M2, a) + 0.6 (0.7 E(Mhon, a) + 0.3 E(Mdish, a)))

= 0.72 eval(M1, a) + 0.18 (0.9 eval(Mhon, a) + 0.1 E(Mrand, a)) +

0.04 eval(M2, a) + 0.042 (0.9 eval(Mhon, a) + 0.1 E(Mrand, a)) +

0.018 (0.6 eval(Mdish, a) + 0.4 (0.5 E(Mrand, a) + 0.5 E(Menm, a)))

= 0.72 eval(M1, a) + 0.04 eval(M2, a) + 0.1998 eval(Mhon, a) +

0.0108 eval(Mdish, a) + 0.0582 eval(Mrand, a) +

0.036 eval(Menm, a).

�

The weights should be nonnegative and sum up to1 finally (Kyburg, 1988); to
assure this, the following restrictions on the belief structure are suggested.

Definition 6.3 (Additional requirements on the hierarchy)

1. 0 ≤ C
M
≤ 1 and0 ≤ µ

M′ (M) ≤ 1 for every nodeM andM′ (because the
values are used to represent uncertainty);

2.
∑

M′∈succ(M) µM′ (M) = 1 and
∑

M′∈Spec µM′ = 1 (i.e. no relevant notions
are omitted in the hierarchy, and the notions do not overlap);

3. C0,i = 1 for everyi (the agent is fully committed to his most general assump-
tions).

Now when the agent is able to compute some rating for every action, he can use any
well-established decision-making scheme – like choosing the action with the highest
expected payoff.

6.3.2 Verification of the Idea

Some simulations were conducted to verify the idea of keeping and using multiple
alternative models of the reality – the results are presented and discussed in Chapter 8.
In this place, however, we would like to give a preliminary idea how these simulations
looked like, and in what way the results suggest that using such hierarchies of beliefs
can be useful.

In this chapter, we basically propose that an agent may buildup and use more than
one model of the reality. In order to make things as simple as possible, the experiments
employ an agent who interacts with a user in a stateless, stationary and deterministic
environment with publicly known characteristic. The agents interacts with one user at
a time, and the identity of the current user is always known beyond doubt. The agent
uses exactly two models of the environment at a moment: aprofile of the current user,
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Figure 6.6: The simplest hierarchy: only two models of reality are relevant at a time

accept cheat skip
risky offer 30 -100 1
normal offer 6 -20 1
safe offer 1.5 -1 1

Figure 6.7: Payoff table for the e-banking game

and a default “best opponent” model (see Figure 6.6). Moreover, the agent’s utility
function does not change throughout the game.

The simulations have been inspired by the following scenario: a software agent is
designed to interact with users on behalf of an Internet banking service; he can make
an offer to a user, and the user’s response determines his output. The agent has 3
possible offers at hand: the “risky”, “normal” and the “safe” offer, and the customer
can respond with: “accept honestly”, “cheat” or “skip”. Thecomplete table of payoffs
for the game is given in Figure 6.7. The risky offer, for example, can prove very
profitable when accepted honestly by the user, but the agent will lose proportionally
more if the customer decides to cheat; as the user skips an offer, the bank still gains
some profit from the advertisements etc.

Of course it is not essential that the agent is an e-banking broker. What is important
is that he should learn users’ profiles to approximate the actual preferences of each user.
On the other hand, the agent has too much to lose to afford risky decisions when the
identity of a user is unknown or the user is completely new to the system. To prevent
this, he uses a default user model besides the profiles.

The banking agent is a 1-level agent, i.e. an agent that models other agents as 0-
level stochastic agents. The user is simulated as a random static 0-level agent – in other
words, his behavior can be described with a random probabilistic policy, and he does
not change the policy throughout an interaction (a series of100 rounds, consisting
of an offer from the banking agent and a response from the user). To get rid of the
exploration-exploitation tradeoff (Pfeifer and Scheier,1999) we assume also that the
user is rather simple-minded and his response does not depend on the actual offer being
made:p(cheat), p(accept) andp(skip) are the same regardless of the offer (if he is
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Figure 6.8: Two-level beliefs vs. using single model: average payoff per round

dishonest, he cheats for a small reward as well as a big one, for instance). The agent
estimates the user’s policy with a relative frequency distribution, counting the user’s
responses. The default model is defined in the game theory fashion: the user is assumed
an enemy who always cheats. There is no uncertainty about theidentity of the user –
henceµprofile(user) = 1. As there is only one default model,µdefault(profile) = 1;
moreover,Cdefault= 1 (cf. Definition 6.3 pt. 3).

Remark 6.2 One can suspect problems with obtaining appropriate confidence values.
What we can do at least is to make sure that the confidence is lowwhen the agent has
collected few data so far, and that it is close to1 when the data size is large. Some
suggestions can be found in the the literature on statistical inference (Marshall and
Spiegelhalter, 1999; Spiegelhalter et al., 1998) or higher-order uncertainty (Klir, 1999;
Wang, 2001). The “variable confidence” agent defined below uses Wang’s confidence:
C = n

n+1 as the subsequent confidence values (Wang, 2001), wheren is the number
of observations (interaction rounds) completed so far. This – and other – confidence
measures are studied in Chapter 7.

The aim of the experiments was to compare the efficiency of such agent’s behavior
with the behavior of a standard learning agent – i.e. the agent who uses only a user pro-
file when making his decisions.1000000 independent random interactions (a sequence
of 100 rounds each) have been simulated. Figure 6.8 shows the average payoff of the
banking agent. 4 different agents were used:A(profile) denotes a single-model agent
using only users’ profiles,A(default) refers to another single-model agent who uses
only the default “best defense” assumptions;A(profile+ default, C = 0.9) is an agent
that employs both models with fixed confidence in the user profileC = Cprofile = 0.9,
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andA(profile+ default, C = n
n+1 ) denotes a double-model agent with variable confi-

dence values.2

Remark 6.3 Note that the single-model adaptive agent can be also interpreted as
a special case of a double-model agent who always fully trusts his knowledge, i.e.
A(profile) = A(profile+default, C = 1). Moreover, the single-model normative agent
can be interpreted as a double-model agent who is never confident in his knowledge,
i.e.A(default) = A(profile+ default, C = 0).

The output of the simulations shows that the banking agent can indeed benefit from
using a default model together with the users’ profiles in such setting. The last agent
outperforms both single-model agents: he plays much safer in the first25 rounds (when
there is no sufficient data) and after that the payoffs are similar. Only the output of
the first 40 rounds is presented on the chart to emphasize the part where the main
differences lie. The results for rounds41-100 were more or less the same.

6.3.3 Combining Evaluations vs. Combining Strategies

In Section 6.3.1, we proposed that agents can use multiple models of reality via com-
biningevaluationsof each possible strategy with respect to the available models. An-
other way is to combine beststrategiesdirectly – we can do it if we treat the strategies
as mixed ones.

Definition 6.4 (von Neumann and Morgenstern, 1944)LetΣ be a set of possiblepure
strategies of agenta, i.e. strategies that assign a deterministic choice to eachgame
state. Amixed strategys : Σ → [0, 1] is a probability distribution overΣ. We as-
sume thata will draw his action at random fromΣ with the probabilities defined by the
distribution, if he commits to execute strategys.

If the set of pure strategies is finiteΣ = {σ1, ..., σn}, then mixed strategies can be
represented as vectors:s = [s(σ1), ..., s(σn)]. Note that a pure strategy is a special
kind of a mixed strategy:σ1 = [1, 0, ..., 0], σ2 = [0, 1, ..., 0] etc.

A scalar multiplication and a sum of mixed strategies can be defined in a straight-
forward way. Lets ands′ be mixed strategies over the same set of pure strategiesΣ,
and letr be a real number. Then:

• (r · s)(σ) = r · s(σ);

• (s+ s′)(σ) = s(σ) + s′(σ).

Note that not every linear combination of strategies must bea strategy itself.

Definition 6.5 (Multilevel combination of strategies) Suppose that agenta uses the
hierarchy of beliefs from Figure 6.4, ands

M
denotes the (mixed) strategy ofa, based

2In fact, fixedC = 0.5 and0.7 were also tried, but the results were virtually the same as for C = 0.
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on modelM. Again, letsucc(M) denote the set of all the successors of nodeM, and
Spec the set of all the most specific models. The multilevel strategy can be defined as:

S =
∑

M∈Spec

µM · Strat(M)

Strat(M) = C
M
· s

M
+ (1 − C

M
)

∑

M′∈succ(M)

µ
M′ (M) · Strat(M′).

Proposition 6.4 A multilevel combination of mixed strategies is a mixed strategy.

Proof: First we prove that everyStrat(M) is a mixed strategy, i.e. it is a probability
distribution overΣ. The proof follows by structural induction over theM’s level of
specificity. ForM being a root of the hierarchy, we have:Strat(M) = sM , qed.
Suppose now that allStrat(M′) are mixed strategies for modelsM′ down to the level
k. Take any modelM from levelk + 1. Then:

1. Strat(M)(σ) ≥ 0 for everyσ ∈ Σ, because it is a sum of nonnegative elements;

2. by the induction hypothesis, and the requirements from Definition 6.3:
∑

σ∈Σ Strat(M)(σ) = CM ·
∑

σ∈Σ sM(σ)+

(1− C
M

)
∑

M′∈succ(M)

(

µ
M′ (M)

∑

σ∈Σ Strat(M
′)(σ)

)

= C
M

+ (1 − C
M

) = 1.

Thus, eachStrat(M) is a probability distribution overΣ, which implies that the
multilevel combinationS =

∑

M∈Spec µM
· Strat(M) must be a probability distri-

bution overΣ, too. �

Example 6.5 Consider the agent from Section 6.3.2 who uses only the profile of the
user (with confidenceC computed after every step of interaction), and the default user
model. If sprofile is the strategy that maximizesevalprofile(a), andsdefault maxi-

mizesevaldefault(a), then the resulting multilevel strategy is

S = C sprofile+ (1 − C) sdefault
If sprofile andsdefaultare pure strategies, the agent chooses the strategy based onthe
profile with probabilityC, and the default strategy otherwise. �

6.3.4 A Few Remarks before the Next Chapter Begins

The concept of the belief hierarchy is aimed to help a virtualagent to behave in a more
robust, flexible and consistent way, especially when the agent cannot fully trust his
beliefs or he can have several competing models of the reality. There is practically no
restriction on the way the beliefs are expressed; also, the links between the levels can
be defined in many ways. The experiments showed that an autonomous agent can get
more payoff when using multiple models of the environment rather than just one model.
The hierarchy requires only linear growth of computationalpower on the agent’s part
(with respect to the number of models being used), and the particular models can be
constructed and updated in parallel since they are independent by definition – they only
share the input data.
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Do We Really Need to Keep Multiple Models of Reality?

The experiments were primarily designed to be simple: the user was static (so the
confidence could be assumed an increasing function of the data set size), and the agent
was using only two alternative models, one of them fixed and both having the same
structure. Thus, the agent could arguably use Bayesian updating, for instance (Kyburg,
1987), to integrate both sub-models in this very case (starting with the default model
and updating it sequentially as more user-specific evidencearrives). In consequence
the agent would use a single model, and no confidence values would be necessary.
However, things are not always like this. If the user is not static, his behavior may
become suspect from time to time, so the agent can be better off turning back to the
default model to some extent – but it does not seem clever to require that he abandons
all the knowledge gathered so far, and starts the learning process from the scratch
again. If both models are evolving, the agent must keep them anyway to proceed with
the updates. Last but not least, the models may be built upon different structures (for
example, the default model could be a simple Q-function withno probability at all) or
they may represent different entities: conscious beliefs,unconscious beliefs, reflexes –
and then it is not clear how they can be integrated at all.

It is worth noting that in the course of the simulations the agent did gain some
additional profit when incorporating the “best defense” model against 0-levelrandom
agents. In other words, the agent benefited from assuming adversary play from an
opponent who wasnotadversary by any means. More experiments, against other types
of opponents, are presented and discussed in Chapter 8.

Learning to Learn

Another interesting thing we can do is to treat the confidencevalues as parts of the re-
spective models. Now, the learning might also refer directly to the confidence degrees
of various pieces of knowledge. For instance, the agent’s value system may promote
belief states with high confidence values on the most specificlevels (providing the
agent with positively greater rewards in such states), and thus motivating the agent to
explore his environment. This might help to overcome the designer’s problem of the
exploration-exploitation tradeoff in a way: Instead of having the exploration routine
predefined by the designer, the agent would be interested in learning the right propor-
tions between the exploration and exploitation actions by himself. Thus, the designer
may make the agentlearn to learnwithout procedurally forcing the agent to explore
the environment via the learning algorithm. This idea may beworth studying in the
future; however, it is not investigated further in this thesis.

To Trust, or not to Trust

Trust plays an extremely important role in the human society. There are lots of social
rules – both explicit and implicit – that humans are assumed to obey. Nobody claims
that all the people do necessarily follow the rules, but mostof the time we act as if we
believed so. For instance, when you drive on a motorway, you assume that no one is
going to drive on your lane from the opposite direction, thatno child will run suddenly
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in front of your car, that every driver on the road knows how todrive a car, nobody is
doped, and there is no madman or manic killer in the cars around you. Your trust is
limited, of course, and you know such things happen, but if you wanted to take all these
possibilities seriously you would never drive at more than20 kilometers per hour.

However, if you have a weird feeling that other drivers act somehow strange, you
will probably reduce your speedbeforeyou find out what is really going on. Pushing
your trust too far may prove very dangerous. It does not mean that you change your
general believes about drivers and highways instantly – when you are back on a mo-
torway in a couple of days, you will accept the same assumptions more or less again
– but at this momentsomething is not as it ought to be, so you “suspend” the beliefs
now, and you turn to some more fundamental ones instead.

The example illustrates one interesting feature of human behavior. If you have some
“emergency procedure” available at hand, and you have got enough self-confidence that
you can recognize an emergency situation, then you can easier and safer put your trust
in what you have learned about the world around you. The same should be applicable
for artificial agents. The hierarchical modeling of the environment, proposed in this
chapter, enables defining such emergency procedures. Several confidence measures,
designed to detect situations when agents should rather suspend their trust, are studied
in the next chapter.



Chapter 7

Looking for a Suitable
Confidence Measure

SYNOPSIS. Game-like logics and models were introduced, discussed, ex-
tended, analyzed, proposed for automatic multi-agent planning – but that is
still not enough for most real-life applications. The logics show one side of
the coin: the guaranteed profit one can make following his safest strategy –
yet sometimes much more can be gained through exploiting (even dubious or
vague) views of the environment of action. We have proposed hierarchies of
beliefs and multi-model decision making to enable combining adaptivity and
security to some extent. Can it help to resolve the dialectictension between
seizing opportunities and playing things completely safe?Might be. But first,
we need to provide our agents with a way of assessing how good the “views of
the environment” actually are.

7.1 Introduction

An agent may benefit from keeping several alternative modelsof the reality in certain
situations – the point has been advocated in Chapter 6. If theagent is designed to
interact with users, he can be obviously better off keeping the users’ profiles to ap-
proximate the actual preferences of each user. However, when the identity of a user
remains unknown or the user is completely new to the system, an average user model
or a default model may be used instead. While a standard machine learning algorithm
will assume some arbitrary initial model of such a user (via uniform or random distri-
bution, for instance), it should be clear that such knowledge must not be trusted when
it comes to decision making, since the model is not supportedby any data so far. More-
over, users’ preferences may evolve, and even worse: some users may assume someone
else’s identity (incidentally or on purpose). This calls for a kind of self-reflection on the
agent’s part: a confidence measure is needed to determine to which extent every piece
of knowledge can be considered reliable. If we provide the agent with such a measure,
he can base his decisions on the most reliable model, or use a linear combination of all
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the appropriate models.
In this chapter, several confidence measures are proposed for an agent, interacting

with other agents (users) in a very simple environment. The agent is meant to employ
a kind of meta-reasoning to determine the level of reliability of the possessed knowl-
edge. The aim of the confidence measure is to represent meta-(un)certainty – thus the
actual confidence values range from0 (complete distrust) to1 (full confidence). Some
researchers from the probability theory community suggestthat – to solve the problem
– we should take the agent’sknowledgeas a random quantity, and use its variance as
a clue (Pearl, 1987; Kyburg, 1988). The suggestion has been followed in Sections 7.2
and 7.3, with rather negative results. Another possibilityis explored in Section 7.4.
The measure is based on self-information loss function (or log-loss function), used
widely in information theory and universal prediction (Merhav and Feder, 1998) – and
the experiments prove the idea promising.

This chapter uses ideas and results already published in (Jamroga, 2002a), (Jam-
roga, 2003b) and (Jamroga, 2003a).

7.1.1 Why Should We Doubt Our Beliefs?

There are roughly two possible sources of doubt for a learning agent. First, the agent
may have collected too little data. For instance, when the agent starts interaction with
a completely new user, his knowledge about the user is virtually none. However, the
knowledge is utilized in the same way by most algorithms, regardless of the number of
learning steps that have been taken so far.

Next, the environment might have changed considerably, so the collected data do
not reflect its current shape.

The knowledge produced by a learning algorithm is often no more than a working
hypothesis. It is necessary for the agent that he can make hisdecisions; however,
trusting the knowledge blindly implies some additional assumptions which are not true
in most real-life situations. It is good for the agent to havesome measure of uncertainty
about his own knowledge – to minimize the risk of a decision, especially in the case
when he has several alternative models to choose among or combine.

7.1.2 Related Research

Confidence has been recognized an important and useful notion within the Machine
Learning community. It was successfully used in the areas ofmovement recogni-
tion (Wang et al., 1999), speech recognition (Mengusoglu and Ris, 2001; Williams and
Renals, 1997) or in mobile user location (Lei et al., 1999) for instance. In most papers
the term “confidence” or “confidence measure” refers to the probability that the agent’s
decision(e.g. a medical diagnosis, a classification of an image, a sequence of words
assigned to a spoken text etc.) is right – i.e. it refers to theprobability that a particular
patient really suffers from pneumonia, that there is reallya car in the middle of the pic-
ture, that the user really said “open sesame” etc. In this chapter the term “confidence”
refers to a subjective property of thebeliefs(probabilistic or not) themselves, i.e. this
is our ownknowledgein which we may be more or less confident. Thus, the confi-
dence can be viewed as meta-knowledge or, more precisely, meta-uncertainty. Such
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a confidence measure is often seen as a result of some posterior verification that fol-
lows the process of knowledge acquisition or decision making (Hochreiter and Mozer,
2001). Also, the confidence measure may be based on the amountof data we have
available (Wang, 2001) or the way the observed patterns evolve (Pearl, 1987; Kyburg,
1988).

The confidence measures proposed in this chapter come perhaps closest to the mea-
sure proposed by Wang (2001):CWang = n/(n + k), wheren is the amount of data
andk is an arbitrary fixed number. For instance,CWang = n/(n + 1) for k = 1. It
seems simple and rather ad hoc, but turns out to work surprisingly well (Wang, 2001;
Jamroga, 2002a, 2003b).

The time flow and the resulting devaluation of the old data and/or knowledge have
also been a focus of several papers. Kumar (1998) uses a confidence measure to im-
prove a Q-learning based algorithm for adaptive network routing. The measure is very
simple – the confidence in every Q-value which has not been updated in the last step is
subject to “time decay”:Cnew(x) = λ Cold(x), whereλ ∈ (0, 1) is the decay constant.
A similar idea was introduced in (Koychev, 2000) to track theuser’s drifting interests
effectively. There is no explicit confidence measure there,however; instead, a scheme
for “forgetting” old observations by an agent is proposed. Moreover – in contrast to
Kumar’s decayingknowledge– these are ratherdatathat become gradually forgotten.

Another perspective to the task of adapting to the user’s dynamic behavior is of-
fered by the research on time series prediction – especiallythe universal prediction,
where a prediction does not necessarily have to be a simple estimation of the next ob-
servation, but it can be a complex structure (a probability assessment, a strategy etc.),
and the real underlying structure (the “source”) generating the events is assumed to be
unknown (Merhav and Feder, 1998). The universal predictionmethods focus on find-
ing a good predictor, not on assessinghowgood it is, though. A way of transforming
the log-loss values into confidence values is proposed in Section 7.4 – and the results
seem to be promising.

7.2 Datasize-Based Confidence

This section is focused on the first source of the agent’s uncertainty: how much con-
fidence can he have in his knowledge when there is not enough data to support it?
The problem is analyzed in a very simple setting: the agent isassumed to be a 1-level
agent – i.e. an agent that models other agents as stochastic agents (Vidal and Durfee,
1998) – and the users are 0-level agents with probabilistic policies. The reinforcement
is known beforehand for every decision of the agent, given a response from the user,
and the domain of action is stateless (or at least the agent’sperception does not let him
distinguish between different states of the environment).The agent tries to estimate
the actual policy of the user calculating a frequency distribution, which can be further
used to find the decision with the maximal expected reward. The aim of the confidence
is to represent meta-(un)certainty about the agent’s knowledge, so when he has sev-
eral alternative models available he can choose among them or combine their output.
Thus, the actual confidence values should range from 0 (complete distrust) to 1 (full
confidence).
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7.2.1 Self-Confidence with Insufficient Data

It is often assumed that the (un)certainty an agent can have about his knowledge is
nothing but a meta-probability or meta-likelihood – cf. (Draper, 1995) for instance.
On the other hand, there are researchers who argue against it(Kyburg, 1988; Wang,
2001). This seems to reflect the assumption that the meta-uncertainty should refer to
the usability of the model. Indeed, meta-probability is notvery useful in this case:
even if we know for sure that the model is slightly different from the reality (in conse-
quence, its meta-probability is exactly0), it doesmatter whether it is close to the real
situation or not (Wang, 2001). This is also the perspective adopted in this section. In
this respect, some authors propose approaches based on somenotion of error or fitting
obtained through a posterior verification of the model (Hochreiter and Mozer, 2001;
Spiegelhalter et al., 1998; Marshall and Spiegelhalter, 1999). However, the disconfi-
dence studied here isa priori not a posterioriby definition – therefore any posterior
reasoning can do no good here. In consequence, purely practical solutions may be very
useful and work surprisingly well in particular situations(Kumar, 1998; Wang, 2001).

It has been suggested that, when the model is a probability distribution, the agent’s
self-confidence may be defined using the variance of the distribution treated as a ran-
dom quantity itself (Pearl, 1987; Kyburg, 1988). Thus, the confidence measures being
proposed and studied in this section are based on the notion of aggregate variance of
the estimator provided by the learning process.

7.2.2 Frequency Distributions with Decay

Assume an autonomous e-banking agentA who interacts with some other agentB (the
“user”) according to the scenario from Section 6.3.2. The interaction with the user is
sequential and it consists of subsequent turns: firstA chooses to proceed with an action
a from a finite setActA, thenB replies with someb ∈ ActB, thenA doesa′ ∈ ActA
and so on. Letp(b) denote the current probability of agentB choosing actionb in
a predefined context. Usually we will assume that the contextis determined by the
latest action ofA, i.e. thatp(b) denotes the probability of agentB choosing action
b as a response to a particularA’s actiona∗. However,p(b) may as well denote the
probability ofB choosingb in response toa∗ in states (if the context includes states
of the environment), or the probability ofb in general (if our model of the environment
is sparser) etc.

In other words,p(b) denote the current stochastic policy ofB in the given context.
A tries to estimate the policy with a relative frequency distribution p̂:

p̂(b) ←

{

p̂(b)N ·λ+1
N ·λ+1 if b is the user’s response

p̂(b)N ·λ
N ·λ+1 else

N ← N · λ+ 1

whereλ ∈ [0, 1] is the decay rate implementing the wayA “forgets” older observations
in favor of the more recent ones to model users that may changetheir preferences
dynamically (Kumar, 1998; Koychev, 2000, 2001).N represents the data size after
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collectingn observations. Since the older observations are used only partially (the first
one with weightλn−1, the second:λn−2 etc.), the real quantity of data we use is

N =

n
∑

i=1

λn−i =

{

1−λn

1−λ for 0 < λ < 1

n for λ = 1

The nil distribution0(b) = 0 is used as the initial one. If the decay rate is allowed
to vary thenN =

∑n
i=1

∏n
j=i+1 λj , whereλ1, ..., λn denote the actual decay rates at

the moments when the subsequent observations and updates were made.
Note thatp̂(b) is basically a sample mean of a Bernoulli variable, althoughit is a

mean with decay.

Definition 7.1 Mean with decayof a sequence(Xi=1,...,n) = (X1, ..., Xn), weighted
with a series of decay valuesλ1, ..., λn, can be defined as:

Mλ1..n
(Xi=1,...,n) =

∑n
i=1(

∏n
j=i+1 λj)Xi

∑n
i=1

∏n
j=i+1 λj

=

∑n
i=1(

∏n
j=i+1 λj)Xi

Nλ1..n

Proposition 7.1 A frequency distribution with decaŷpn(b) is a mean with decay of
Respi=1,...,n(b), i.e.: p̂n(b) = Mλ1..n

(Respi=1,...,n(b)), where

Resp(b) =

{

1 if b is the user’s response
0 otherwise

Note also that forλ = 1 we obtain an ordinary frequency distribution with no tem-
poral decay. Moreover,Mλ has some standard properties of a mean (the proofs are
straightforward):

Proposition 7.2

1. Mλ1..n
(X + Y ) = Mλ1..n

(X) +Mλ=1..n(Y )

2. Mλ1..n
(aX) = aMλ1..n

(X)

3.
∑

bMλ1..n
(pi=1..n(b)) = 1 if pi is a probability function.

Remark 7.3 The weights assigned to the data sequence satisfy the forgetting con-
straints from (Koychev, 2000).

Remark 7.4 Mean with decay can be computed incrementally:

Mλ1..n
(Xi=1,...,n) =

λnMλ1..n−1
(Xi=1,...,n−1) +Xn

λnNλ1..n−1
+ 1

Thus, the agent must only remember the current values ofMλ1..n
(Xi=1,...,n) and

Nλ1..n
to re-compute the mean when new data arrive.
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7.2.3 Binding the Variance of Sampling

Handbooks on statistics like (Berry and Lindgren, 1996) suggest a way to determine
whether an amount of data is enough to estimate the population meanEX with a
sample meanX: we assume some acceptable error levelε and as soon as the sampling
dispersion (standard deviation, for instance) gets below this value:σ(X) ≤ ε, we feel
satisfied with the estimation itself. Since the real deviation value is usually hard to
obtain, an upper bound or an estimation can be used instead.

If we want the “satisfaction measure” to be continuous, it seems natural that the
satisfaction is full1 when the condition holds forε = 0, and it decreases towards0 as
the dispersion grows. It is proposed here that the confidencefor a frequency distribution
p̂ can be somehow proportional to1−

∑

b disp(b), and the variancevar(p̂(b)) is used
to express the dispersiondisp(b). The reason for choosing the variance is that0 ≤
∑

b var(p̂(b)) ≤ 1 in our case, while the same is not true for the standard deviation σ
as well as the mean deviationm.a.d.

We assume that the old observations are appropriate only partially with respect to
the (cumulative) data decay encountered so far. Letn ≥ 1 be an arbitrary number.
By the properties of the variance and given thatResp1(b), ..., Respn(b) represent a
random sampling of the user’s responses:

var(p̂n(b)) = var
(

Mλ(Respi=1..n(b))
)

=

= var
(

∑n
i=1Respi(b)λ

n−i

∑n
i=1 λ

n−i

)

=

=

∑n
i=1 var(Respi(b))λ

2(n−i)

(
∑n

i=1 λ
n−i)2

The value ofvar(Respi(b)) is a population variance at the moment when theith ob-
servation is being made. Ifpi(b) is the real probability of user responding with action
b at that particular moment, then:

var(Respi(b)) = pi(b)− p
2
i (b)

∑

b

var(p̂n(b)) =

∑n
i=1 λ

2(n−i)
(
∑

b pi(b)−
∑

b p
2
i (b)

)

(
∑n
i=1 λ

n−i)2

∑

b p
2
i (b) is minimal for the uniform distributionpi(b) = 1

|ActB| , so:

∑

b

var(p̂n(b)) ≤

∑n
i=1 λ

2(n−i)

(
∑n

i=1 λ
n−i)2

(1−
1

|ActB|
)

Definition 7.2 We define the measure Cbound as:

Cbound = 1− dispb, where

dispb =

∑n
i=1 λ

2(n−i)

(
∑n

i=1 λ
n−i)2

(1 −
1

|ActB|
)
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Now the confidence is never higher than itshouldbe – the agent is playing it safe:

Proposition 7.5 Cbound≤ 1−
∑

b var(p̂n(b)).

Note also thatdispb is a decreasing function ofλ for λ ∈ (0, 1], so its value
is always between(1 − 1

|ActB|)/n (the value forλ = 1), and1 − 1
|ActB| (which is

limλ→0 dispb).

Corollary 7.6 0 ≤ 1
|ActB| ≤ Cbound ≤ n−1

n + 1
n|ActB| ≤ 1.

Definition 7.3 In the more general case whenλ is variable, the confidence can be
defined as

Cbound= 1−
SLsqrn
(SLn)2

(1−
1

|ActB|
),

whereSLsqrn andSLn are computed incrementally:

SLsqrn =
n

∑

i=1





n
∏

j=i+1

λj





2

= λ2
nSLsqrn−1 + 1

SLn =
n

∑

i=1

n
∏

j=i+1

λj = λnSLn−1 + 1

Note that:
∑

b

var(p̂n(b)) = var
(

Mλ=1..n(Respi=1..n(b))
)

=

∑

b

∑n
i=1(

∏n
j=i+1 λj)

2var(Respi(b))

(
∑n

i=1

∏n
j=i+1 λj)

2
≤

∑n
i=1(

∏n
j=i+1 λj)

2

(
∑n

i=1

∏n
j=i+1 λj)

2
(1−

1

|ActB|
) = 1− Cbound.

Corollary 7.7 0 ≤ Cbound≤ 1−
∑

b var(p̂n(b)).

7.2.4 Adjusting the Confidence Value

The value ofdispb proposed above can give some idea of the uncertainty the agent
should have in̂p. The most straightforward solution:Cbound= 1 − dispb may not
always work well for practical reasons, though. The agent can use a “magnifying glass”
parameterm to sharpen his judgment:

Cbound= (1 − dispb)m.

Since different learning methods show different dynamics of knowledge evolution,
m offers the agent an opportunity to “tune” his confidence measure to the actual learn-
ing algorithm.
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7.2.5 Forward-Oriented Distrust

In a perfect case we would be interested in thereal variation of the sampling made
so far – to have some clue about the expected (real) deviationfrom the estimation̂pn
obtained through the sampling. This value can be approachedthrough its upper bound
– as proposed in Section 7.2.3. Alternatively we can try to approximate the variability
we may expect from our estimator in the future (possibly withtemporal discount).

It is worth noting that insufficient data can be seen as generating “future oriented
distrust”: even if the agent’s knowledge does not change much during the first few steps
(e.g. the corresponding user’s responses are identical) itmay change fast in the very
next moment. When the evidence is larger, the model of the reality being produced gets
more stable and it can hardly be changed by a single observation. Let us assume that the
learning algorithm is correct – i.e. the model converges to the true user characteristics
as the number of input data increases.

Definition 7.4 The agent can base his self-assessment on the possible future-oriented
dispersion (possibly with a temporal discountΛ):

CsizeΛ = (1 − fdispΛ)m

fdispΛ = lim
k→∞

E fdispkΛ = lim
k→∞

E
(

∑

b

VΛ(p̂n+k(b), ..., p̂n(b))
)

wherep̂ is the agent’s current model of the user, everyp̂n+i, i = 1..k is obtained from
p̂n+i−1 through responseb∗i , and the mean is taken over all the response sequences
(b∗1, ..., b

∗
k).

Note thatΛ is the decay rate forknowledge, and does not have to be the same as
the observational decay rateλ.

Definition 7.5 The sample variance with discount/decay can be defined in a natural
way as:

VΛ(X) = MΛ(X −MΛX)2.

Proposition 7.8 By properties of the mean with decay (Proposition 7.2):

VΛ(X) = MΛ(X2)−M2
Λ(X).

The limit in Definition 7.4 can be approximated iteratively for the generalized fre-
quency counting presented in Section 7.2.2, assuming uniform a priori likelihood for all
possible sequences, and approximating the expected value through simple averaging.

Definition 7.6 Let:

avg(b∗
i=1..k

) fdispkΛ =
1

|ActB|k

∑

(b∗
i=1..k

)

fdispkΛ

Mpsqrk = avg(b∗
i=1..k

)

∑

b

MΛ(p̂2
n+k(b), ..., p̂

2
n(b))
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Msqrk = avg(b∗
i=1..k

)

∑

b

M2
Λ(p̂n+k(b), ..., p̂n(b))

MP k = avg(b∗
i=1..k

)

∑

b

p̂n+k(b)MΛ(p̂n+k(b), ..., p̂n(b))

Psqrk = avg(b∗
i=1..k

)

∑

b

p̂2
n+k(b)

Now, for 0 < Λ < 1 being theknowledgedecay rate,λ = λn the current
observationdecay rate,N =

∑n
i=1 λi being the current (decayed) data size, and

Nk = Nλk +
∑k−1

i=0 λ
i, we have:

avg(b∗
i=1..k

) fdispkΛ = Mpsqrk −Msqrk

Mpsqrk =
1− Λk

1− Λk+1
Mpsqrk−1 +

(1− Λ)Λk

1− Λk+1
Psqrk

Msqrk =
(1− Λk)2

(1− Λk+1)2
Msqrk−1 +

2(1− Λ)Λk

1− Λk+1
MP k

−
Λ2k(1− Λ)2

(1 − Λk+1)2
Psqrk

MP k =
(1− Λk)(Nk − 1)

(1 − Λk+1)Nk
MP k−1 +

(1− Λ)Λk

1− Λk+1
Psqrk +

1− Λk

|ActB|(1− Λk+1)Nk

Psqrk =
(Nk − 1

Nk

)2
Psqrk−1 +

2(Nk − 1)

|ActB|N2
k

+
1

N2
k

The resulting algorithm for iterative approximation offdisp is shown in Figure 7.1.

Proposition 7.9 The algorithm from Figure 7.1 is convergent.

Proof: To prove the convergence of sequenceV k = avg(b∗
i=1..k

) fdispkΛ, we will find

an (ak) such that|V k − V k−1| ≤ ak for everyk, and
∑k

i=1 ai forms a convergent
series. Then the series

∑k
i=1(V

i − V i−1) = V k is also convergent. Note that:

|V k − V k−1| = |Mpsqrk −Mpsqrk−1 + Msqrk−1 −Msqrk| =

= |(
1− Λk

1− Λk+1
− 1)Mpsqrk−1 + (1−

(1− Λk)2

(1− Λk+1)2
)Msqrk−1

+
(1− Λ)Λk

1− Λk+1
Psqrk −

2(1− Λ)Λk

1− Λk+1
MP k +

Λ2k(1− Λ)2

(1 − Λk+1)2
Psqrk|

≤ |
Λk(Λ− 1)

1− Λk+1
Mpsqrk−1|+ |

Λk(2− 2Λ− Λk + Λk+2)

(1− Λk+1)2
Msqrk−1|

+|
(1− Λ)Λk

1− Λk+1
Psqrk|+ |

2(1− Λ)Λk

1− Λk+1
MP k|+ |

Λ2k(1− Λ)2

(1− Λk+1)2
Psqrk|
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fdisp (p̂, Λ, λ,N , precision);
Iterative approximation offdispΛ. Returns the approximate value of the average

future-oriented temporally-discounted dispersion (withtemporal discount0 < Λ < 1).
λ is the current temporal decay rate on the observation level,N represents the number
of observations collected so far that takes into account thecumulative time decay;̂p is
the current model of the user.

Mpsqr,Msqr,MP,Psqr←
∑

b p̂
2(b); /* initial values */

k ← 0;
V ← 0;
repeat

Vold ← V ;
k ← k + 1;
N ← Nλ+ 1;

Psqr←
(

N−1
N

)2
Psqr+ 2(N−1)

|ActB|N2 + 1
N2 ;

MP ← (1−Λk)(N−1)
(1−Λk+1)N

MP + (1−Λ)Λk

1−Λk+1 Psqr+ 1−Λk

|ActB|(1−Λk+1)N
;

Msqr← (1−Λk)2

(1−Λk+1)2
Msqr+ 2(1−Λ)Λk

1−Λk+1 MP − Λ2k(1−Λ)2

(1−Λk+1)2
Psqr;

Mpsqr← 1−Λk

1−Λk+1 Mpsqr+ (1−Λ)Λk

1−Λk+1 Psqr;
V ← Mpsqr−Msqr;

until |V − Vold| ≤ precision;
return(V );

Figure 7.1: The algorithm for iterative approximation offdisp.

≤
Λk(1− Λ)

1− Λk+1
+

Λk(1− Λ)(2− Λk(1 + Λ))

(1− Λk+1)2
+

+
Λk(1 − Λ)

1− Λk+1
+

2Λk(1− Λ)

1− Λk+1
+

Λ2k(1 − Λ)2

(1− Λk+1)2

because0 ≤ Mpsqr,Msqr,MP,Psqr≤ 1 by Proposition 7.2 (point 3). Thus

|V k − V k−1| ≤
Λk(1 − Λ)

(1− Λk+1)2
+ 2

Λk(1− Λ)

(1− Λk+1)2
+

Λk(1− Λ)

(1− Λk+1)2

+2
Λk(1− Λ)

(1− Λk+1)2
+

Λk(1 − Λ)

(1− Λk+1)2
≤

≤ 7
Λk(1− Λ)

(1− Λk+1)2
≤ 7

Λk(1− Λ)

(1− Λ)2
=

7

1− Λ
Λk.

�

Note also that, for everyk, we haveV k ≥ 0 (because it is a sum of nonnegative
elements). On the other hand,V k ≤ 1 (becauseV k = Mpsqrk − Msqrk, and0 ≤
Mpsqrk,Msqrk ≤ 1).
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Figure 7.2: Confidence vs. accurateness:Csize

Corollary 7.10 0 ≤ CsizeΛ ≤ 1.

7.2.6 Simulations

The experiments were inspired by the e-banking scenario, depicted in Section 6.3.2.
The banking agent can proceed with3 different offers at each round, and the user has3
different responses available. The table of payoffs for thegame is shown in Figure 6.7.
The agent estimates the user’s policy with a relative frequency distribution, counting
the user’s responses; at the same time he computes a confidence value for the profile
acquired so far.1000000 independent interactions (a sequence of100 rounds each)
with a random user process have been simulated; the average results are presented in
the following charts. Only the output of the first40 rounds is presented in most charts
to emphasize the part where the main differences lie. The results for rounds41− 100
were more or less the same.

Figures 7.2, 7.3 and 7.4 show how the confidence values evolvefor a static random
user (a user with a random stochastic policy that does not change throughout the ex-
periment). The banking agent uses plain frequency countingwith no decay (i.e., the
decay rate for observations isλ = 1). Figure 7.2 presents the characteristic ofCsize,
Figure 7.3 displays the flow ofCbound, and Figure 7.4 shows the characteristic of
the Wang’s confidenceCwang= N/(N + k). The confidence values are compared
against the expected absolute deviation of the learned profile from the real policy of the
user:expdev =

∑

b |p̂(b)− p(b)| · p(b), or rather the “accurateness” of the profile, i.e.
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Figure 7.3: Confidence vs. accurateness:Cbound
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Figure 7.4: Wang’s confidence fork = 1 and2
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1− expdev.
All the presented measures increase as the number of collected data grows, which

is a good thing. Obviously, a higher value of the “magnifyingglass” parameterm
makes the confidence values increase slower – and in consequence the agent is more
“hesitant” to accept the evidence coming from his observations (cf. Figures 7.2 and
7.3). Using a higher value ofk in Cwanghas the same effect (Figure 7.4). Note
that the the measure based on the “forward-oriented distrust” (Csize) goes very fast
to 1, even for a relatively high “magnifying glass” (m = 5). Too fast, in fact: the
performance of agents usingCsizewith fixedm turned out to be almost the same as for
agents using only the user’s profile and no multilevel decision making at all. Looking
for a successful set of parameters we tried a more complicated magnifying scheme
eventually: variablem = 10 + N1.5. The resulting confidence is relatively low at the
beginning, and it grows almost linearly until it reaches thelevel of about97% after
15− 20 rounds.

Figures 7.5 and 7.6 present payoffs obtained by various types of banking agents
against arandom static user. The average payoffs at each round (from1000000 inde-
pendent games played for each setting) are presented. It is worth noting that the results
are presented in a non-cumulative way, i.e. if the agent gains1 in the first round of the
game, and3 in the second round, then his total gain in the first two roundsis 4.

The output of the two single-model agents (Figure 7.5) showsexactly why using
many models of reality at the same time can be beneficial.A(profile) – the agent who
uses only the user’s profile when making his decisions – losesquite a lot in the first few
rounds, because the profile is often inaccurate after the first two or three responses from
the user. Only after some15 rounds the model of the user becomes accurate enough
so that using it is more beneficial than playing the safest strategy all the time; and
after30− 40 rounds the agent approximates the real policy of the user quite correctly.
A(default), on the other hand, has a constant average payoff of0.5 per round; since
the user’s policy is random, the expected value of playing the “safe offer” should be
1.5−1+1

3 = 0.5 indeed. The agent never loses much; however, he is not able toexploit
the fact that the responses he gets from the user might tell something important about
the user’s real policy.

The hybrid agents play safer thanA(profile) with various degrees of success. The
agent using fixed confidence of0.9, i.e. A(profile+ default, C = 0.9), loses slightly
less thanA(profile), but he gets suboptimal payoffs in the latter phase of the game,
when other agents exploit their knowledge to a larger extent. Double-model agents
using Cbound, Csizeand Cwangplay similar toA(default) at the beginning of the
game, and close toA(profile) later on (which seems a natural consequence of the way
the make their decisions). In general, the results show thatan agent using such a
hybrid model of the reality can be better off than an agent using either the profiles or
the default user model alone.1 Cwang(for k = 1) andCbound(for m = 2) give best
results, whileCsizefares slightly worse despite quite complicated parameterssetting
(Λ = 0.8 and variablem = 10+N1.5). As the charts suggest – the agent does not lose
money at the beginning of an interaction (becauseC is low and therefore he is using

1Unfortunately, it is not possible to present all the resultson a single chart because the chart would be
completely unreadable then.
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Figure 7.5: Hybrid agents vs. single-model agents: the average payoffs
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mostly the default model). On the other hand, the confidence is almost1 by the time the
obtained knowledge becomes more accurate so the agent can start using the user profile
successfully. Experiments with other payoff tables gave similar results (cf. Section 8).
Moreover, it seems worth pointing out that, in the middle phase of the game, the hybrid
agents earn more thaneachsingle-model agent. Thus, the average output of an agent
using a linear combination of models is not necessarily a linear combination of the
respective single-model agents’ outputs. The hybrid agents seem to switch between
safe and adaptive behavior accurately.

It should be obvious that the confidence needed to combine alternative models is
neither meta-probability nor meta-likelihood. The simulations suggest that the practical
uncertainty concerned here is rather related to the distance/deviation of the model from
the reality in a way. Interestingly, an agent using1−expdev gets positively best payoff,
especially in the initial phase of the interaction (see Figures 7.6 and 7.8). Perhaps the
expected absolute deviation is not the best deviation measure for this purpose but it
seems a close shot at least. Of course, we cannotdesignsuch an agent (because the
agent can be hardly expected to know theexpdev value in the same way in which he
has no direct access to the real policy of the user), but we candesign an agent that tries
to approximate the value, and use it afterwards.

The measures presented here are primarily designed to tackle lack of data, not the
user’s dynamics. However, some experiments with dynamic users have also been run.
Simulating dynamic policies that imitate preferences drift of human users was not easy,
because human agents are hardly completely random with respect to their policies.
True, humans’ preferences drift – and the drift is never completely predictable – but
neither is it completely chaotic. Real users are usually committed to their preferences
somehow, so the preferences drift more or less inertly (the drift changes its direction
in a long rather than short run). Here, random initial and final policiesp0, p100 were
generated for every simulation, and the user was changing his preferences fromp0 to
p100 in a linear way:pi(b) = p0(b) + i

100 (p100(b) − p0(b)). Figure 7.7 presents the
confidence evolution for a dynamic user andλ = 0.95. Figure 7.8 shows the results of
the “banking game” in the dynamic case. Here, the hybrid agent usingCboundfares
best (except for the hypothetical agent usingC = 1 − expdev), with other hybrid
agents close behind. Most notably, theCboundagent is never worse than both single-
model agents. The agent using only the default model is omitted on the chart to make
it clearer: as before, his average payoff has been about0.5 per round all the time.2 It
should be noted that the learning method used in the experiments (i.e. counting with
decay) isnot linear, so it is not true that this particular type of user simulation dynamics
was chosen to suit the learning algorithm.

7.3 Detecting Changes of Pattern: First Attempt

This section is focused on the second kind of an agent’s uncertainty about his own be-
liefs: even provided a substantial amount of evidence or data, the agent may at some
moment detect that the resulting model of the reality has ceased to characterize the

2A similar chart for the agent usingλ = 1 shows the same regularities, although the payoffs are generally
worse because the learning method is less flexible.
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Figure 7.6: Hybrid agents vs. single-model agents: the average payoffs continued
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Figure 7.7: Confidence: interaction with a dynamic user,λ = 0.95

current behavior of the environment and/or other agents. Insuch case, one may suspect
that the environment might have changed considerably, and the model is not consistent
with its real source any more. The agent can certainly benefitfrom detecting conspic-
uous changes of pattern, and acting more cautiously in such situations.

Two confidence measures to capture this kind of meta-uncertainty are proposed
and evaluated in this section and in Section 7.4. Some researchers from the probability
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Figure 7.8: Hybrid agents vs. single-model agents: dynamicopponent,λ = 0.95



170 CHAPTER 7. LOOKING FOR A SUITABLE CONFIDENCE MEASURE

theory community suggest that – to solve the problem – we should take the agent’s
probabilistic knowledge as a random quantity, and use its variance as a clue (Pearl,
1987; Kyburg, 1988). Therefore the first measure being proposed is based on the ag-
gregate variance of the model (Section 7.3.1). The second measure (Section 7.4) is
based on the self-information loss function (or log-loss function), used widely in the
fields of information theory and universal prediction (Merhav and Feder, 1998).

7.3.1 Aggregate Variance with Temporal Decay and the Variance-
Based Confidence

To detect the moments when the user’s behavior changes considerably, some dispersion
measure can be used that captures its variability. The larger the dispersion, the smaller
the confidence – thus, if the dispersion estimation isdisp ∈ [0, 1], the confidence
measureC can be somehow proportional to1 − disp. If we assume that the agent’s
knowledgêpi approximates the user’s policypi at various time pointsi = 1..n, we can
use the variability of the knowledge (over time) to estimatethe variability of the real
policy. It reflects also the following intuition: if the agent has collected enough data to
estimate a policy of a static user, and still he has to update the estimation considerably,
the pattern must be changing somehow.

The aggregate sample variance (for all the actionsb ∈ ActB the user can choose to
proceed with)

∑

b∈ActB

V (p̂i=1..n(b)) =
1

n

∑

b

n
∑

i=1

(p̂i(b)− p̂i=1..n(b))
2

has some welcome properties: it captures the variability ofthe whole process(the
last update size does not), it can be computed incrementally(aggregate sample mean
deviation can not), and its value is always between 0 and 1 (aggregate sample standard
deviation is not). To implement a simple forgetting scheme,we use again the idea of
the decay rate (cf. Section 7.2.2).

Definition 7.7 LetCV = (1− dispΛ), wheredispΛ =
∑

b VΛ(p̂i=1..n(b)).

Proposition 7.11 (1+Λn)(1−Λ)
(1+Λ)(1−Λn) ≤ CV ≤ 1.

Proof: The upper bound follows from the fact thatdispΛ is a sum of nonnegative
elements. The lower bound is a consequence of the following inequality:

dispΛ =
1

n

∑

b

n
∑

i=1

p̂2
i (b)−

1

n2

∑

b

(

n
∑

i=1

p̂i(b)
)2

=

= 1−
1

n
− (

1

n
−

1

n2
)

n
∑

i=1

∑

b1 6=b2

p̂i(b1)p̂i(b2)−
1

n2

∑

b

∑

i6=j

p̂i(b)p̂j(b) ≤

≤ 1−
(1 + Λn)(1− Λ)

(1 + Λ)(1− Λn)

and the bound is tight forn ≤ |ActB|. �
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7.3.2 Experimental Results forCV

The aim of the simulations was to compare the output of the hybrid agent usingCV as
the confidence to the hybrid agent using Wang’s confidenceCWang = n/(n+ 1), and
to the outputs of both single-model agents.1000000 independent random interactions
(a sequence of100 rounds each) have been simulated for each agent. Figure 7.9A
shows how the confidence values evolve for a dynamic user. Theconfidence values are
compared against the expected absolute deviation of the learned profile from the real
policy of the user:expdev =

∑

b |p̂(b)−p(b))|·p(b), or rather the “accurateness” of the
profile, i.e.1 − expdev. The dynamic opponents were simulated as “stepping” users:
random initial and final policiesp0, p100 were generated for every simulation, and the
user was changing his preferences every30 steps:pi(b) = p0(b)+(i div 30)(p100(b)−
p0(b))/3.

Figure 7.9B shows the average payoffs, and suggests that an agent using such a
hybrid model of the reality can be better off than an agent using either the profiles or
the default user model alone. Again, such a “multi-model” agent does not lose so much
money at the beginning of an interaction (because the confidence is low and therefore
he is using mostly the default model); then the confidence increases almost to1 and
the agent’s knowledge becomes more accurate at the same time– so the agent can
start using the user profile successfully. The results of thesimulations show that using
the variance-based confidence improves the agent’s payoff,but it is never better than
CWang, which is all the more surprising because the Wang’s measurewas designed to
tackle astaticand not dynamic environment. The problem is that the “self-observation”
approach proposed in the literature leans very heavily on the learning method being
used by the agent. Usually the model gets stable quite fast regardless of the user’s
responses; any new item has a very small impact on the mean value after some, say,
20 observations have been collected. Therefore the measuredoes not really detect
the changes in the user’s behavior. It is easy to see in Figure7.9A thatCV increases
constantly almost all of the time, even when the model becomes less and less accurate,
i.e. after the30, 60 and90th step. The agent may even focus on his most recent beliefs
– it does not make things any better, because these are the beliefs that do not change.

Since the simulations show that the measure does not hold to its promise, an alter-
native measure is proposed in Section 7.4.

7.4 Detecting Changes via Logarithmic Loss Function

Log-loss function is used in the research on machine learning and time series predic-
tion – especially universal prediction, where a predictiondoes not necessarily have to
be a simple estimation of the next observation, but it can be acomplex structure (a
probability assessment, a strategy etc.), and the real underlying structure (the “source”)
generating the events is assumed to be unknown (Merhav and Feder, 1998). The uni-
versal prediction methods focus on finding a good predictor,not on assessinghowgood
it is, though. A way of transforming the log-loss values intoconfidence values is pro-
posed in this section.
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7.4.1 Confidence Based on Self-Information Loss Function

Definition 7.8 Let p̂i represent the agent’s beliefs about the preferences of the user in
response to a particular action from the agent in a particular state of the environment
(at theith step of interaction within this context). Letb∗i be the user’s actual response
at that step. One-step lossli and the average loss inn stepsLn can be defined using
the log-loss function:

li = logloss(p̂i, b
∗
i ) = − log2 p̂i(b

∗
i )

Ln =
1

n

n
∑

i=1

li = −
1

n

n
∑

i=1

log2 p̂i(b
∗
i )

Note that the expected value ofl is a function of two probability distributions: the
real distributionp (the “source” distribution), and its model̂p built by the learning
agent. More formally,E l = −

∑

b p(b) log2 p̂(b) = El(p, p̂). The loss is minimal
(in the sense of expected value) when the agent has been guessing correctly, i.e. when
the model he used was a true reflection of the reality:p̂ = p (Merhav and Feder,
1998). However, this holds only if we assume thatp is fixed, and not in general, as the
following example demonstrates.

0

0.25

0.5

0.75

1

b1 b2 b3

P1 P2

Figure 7.10: Minimal vs. optimal loss – an example

Example 7.1 Consider an agent who estimates the user’s policy with probability dis-
tribution p̂ = P1 at some moment (see Figure 7.10). If his guess is right (i.e. the user’s
policy isp = P1 indeed), the expected loss isE l = −0.5 log2 0.5−2·0.25 log2 0.25 =
1.5. Yet if the real policy isp = P2, thenE l = −1 log2 0.5 = 1: the agent’s loss can
be smaller when his guess is wrong... In other words,El(p, p̂) has a global minimum
of p̂ = p for a fixedp, but not when we consider all the possible source distributions.
�

Note that this is not a problem in time series prediction. Thesource distribution is
presumably fixed in a single run (there is oneobjectivesource distribution), and hence
El(p, p̂) is objectivelyminimal for p̂ = p (out of all the objectively possible values
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of E l). As long as the agent is not interested in the loss values themselves – only
in finding the minimum point – minimizing the meanLn is a valid strategy for him to
find a model̂p that approximates the true probability distributionp. However, when the
source distribution is unknown, some smaller loss values may be deemed possible from
the agent’ssubjectivepoint of view. Moreover, he may experience a smaller loss in a
subsequent interaction in which his beliefs would be actually farther from the reality.

Example 7.2 Consider the learning agent from Example 7.1 again. Supposethe agent
computes hisdisconfidencein his own model of the reality as a value proportional
to Ln. Suppose that he interacts with two users, and in both cases he getsp̂ = P1.
Moreover, let the real policy of the first user bep = P1, and the second:p′ = P2. In
a long run, our agent is going to obtain average loss of1.5 in the first case, and1 in
the second. Thus, he is going to trust his beliefs more in the latter (where he actually
guessed the policy incorrectly) – which is unacceptable. Inconsequence, the minimal
loss is not the optimal loss in this case. �

What does “optimal” mean then? Let us define theoptimal series of modelsas a
sequence of the true probability distributions:p̂i = pi for i = 1..n.

Definition 7.9 Theoptimal expected lossOptn is the expected value of the average
loss we get provided the actual sequence of modelsp̂1..p̂n is optimal.

Definition 7.10 Theloss deviation∆n is the difference between the actual lossLn and
the optimal lossOptn.

Note that:

Optn = ELn = −
∑

(b1..bn)

(

p(b1..bn)
1

n

n
∑

i=1

log2 p̂i(bi)
)

=

= −
1

n

n
∑

i=1

∑

bi

pi(bi) log2 p̂i(bi) = −
1

n

n
∑

i=1

∑

b

p̂i(b) log2 p̂i(b)

∆n = Ln −Optn = −
1

n

n
∑

i=1

(

log2 p̂i(b
∗
i )−

∑

b

p̂i(b) log2 p̂i(b)
)

Now, the loss deviation∆n (or rather its absolute value) seems a better basis for
the confidence than the loss itself. As differentp̂’s give different loss characteristics,
however, they also define very different deviation intervals. Forp̂i = P2, i = 1..n,
for instance, the only possible values for∆n are0 and∞ – if the model has proved
to be even slightly mistaken, then∆n will remain∞ forever. On the other end of the
scale it is easy to observe that if the agent stubbornly keepsthe uniform distribution
as the user’s model (i.e.̂p(b) = 1

|ActB| all the time), then the deviation∆n is always
0, regardless of the actual responses from the user. In both cases the value of∆n tells
virtually nothing about the actual reliability of̂p. It would be desirable that our confi-
dence measure produced more appropriate values, or at least“signal” such situations
instead of giving unreliable output.
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Between both extremes the range of possible∆n also vary: it is close to(0,∞) for
very unbalanced models, and very narrow whenp̂ is close to the uniform distribution. It
is proposed here that we can normalize the loss deviation with its range (∆max

n −∆min
n )

to obtain disconfidence value that does not depend on the actual modelŝp so much.

Definition 7.11 The log-loss-based confidence measure can be defined as:

Clog = 2
−

���� ∆n

∆max
n −∆min

n

���� where

∆max
n = max

(b∗1 ..b
∗
n)
{∆n}

∆min
n = min

(b∗1 ..b
∗
n)
{∆n}.

Note that:

∆max
n = max

(b∗1 ..b
∗
n)
{Ln −Optn} = max

(b∗1..b
∗
n)
{Ln} −Optn

∆min
n = min

(b∗1 ..b
∗
n)
{Ln −Optn} = min

(b∗1..b
∗
n)
{Ln} −Optn

∆max
n −∆min

n = max
(b1..bn)

{−
1

n

n
∑

i=1

log2 p̂i(bi)} − min
(b1..bn)

{−
1

n

n
∑

i=1

log2 p̂i(bi)}

= −
1

n

n
∑

i=1

min
bi

log2 p̂i(bi) +
1

n

n
∑

i=1

max
bi

log2 p̂i(bi)

=
1

n

n
∑

i=1

[

log2 max
b
p̂i(b)− log2 min

b
p̂i(b)

]

=
1

n

n
∑

i=1

log2

maxb p̂i(b)

minb p̂i(b)

Proposition 7.12 The measure has the following properties:

1. n ∆n andn (∆max
n − ∆min

n ) can be computed incrementally – the agent does
not have to keep any additional information;

2. if the value ofClog can be computed, then0.5 ≤ Clog ≤ 1;

3. Clog is undefined exactly in the two cases where∆n is most dubious: when̂pi’s
are uniform for alli = 1..n or when there existi andb such that̂pi(b) = 0. Note
also that, when̂pi are frequency distributions (or, more generally: probability
distributions obtained through Bayesian updating), the first situation can happen
only at the very beginning of the interaction, i.e. fori = 1. Moreover, the agent
can be prevented from the latter situation by starting from an initial distribution
such that̂p1(b) > 0 for everyb (for instance, he may use the uniform rather than
nil distribution as the starting point). Then we make sure that the probabilities
will always be positive.
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7.4.2 Log-loss Confidence with Temporal Decay

Temporal decay can be introduced into the log-loss confidence to make the recent loss
values matter more than the old ones: we can redefine the average lossLn to be a mean
with decay, and again base the confidence on the relative lossdeviation.

Definition 7.12 Let us define the average long-term loss with decay as
LΛ
n = MΛ(li=1..n), the optimal expected loss with decay asOptΛn = ELΛ

n [p← p̂],
and the decayed loss deviation as∆Λ

n = LΛ
n −Opt

Λ
n . Moreover, let

∆max,Λ
n = max(b∗1 ..b

∗
n){∆

Λ
n} and∆min,Λ

n = min(b∗1 ..b
∗
n){∆

Λ
n}. Now:

CΛ
log = 2

−

���� ∆Λ
n

∆
max,Λ
n −∆

min,Λ
n

����
Again,

∆Λ
n = LΛ

n − Opt
Λ
n =

∑n
i=1 Λn−i[− log2 p̂i(b

∗
i ) +

∑

b p̂i(b) log2 p̂i(b)]
∑n

i=1 Λn−i
=

= −MΛ

(

log2 p̂i(b
∗
i )

)

i=1..n
+MΛ

(

∑

b

p̂i(b) log2 p̂i(b)
)

i=1..n

and

∆max,Λ
n −∆min,Λ

n = max
(b∗1 ..b

∗
n)
{−MΛ(log2 p̂i(b

∗
i ))} − min

(b∗1 ..b
∗
n)
{−MΛ(log2 p̂i(b

∗
i ))} =

=
−

∑n
i=1 Λn−i log2 minb∗i p̂i(b

∗
i )

∑n
i=1 Λn−i

+

∑n
i=1 Λn−i log2 maxb∗i p̂i(b

∗
i )

∑n
i=1 Λn−i

=

=

∑n
i=1 Λn−i log2[maxb p̂i(b)/minb p̂i(b)]

∑n
i=1 Λn−i

= MΛ

(

log2

maxb p̂i(b)

minb p̂i(b)

)

Remark 7.13 CΛ
log retains the properties ofClog (cf. Proposition 7.12).

7.4.3 Experiments

We ran a number of simulations, analogous to the ones in Section 7.3.2, in order to
verify the new confidence measure. Figure 7.11 shows how the confidence values
evolve against a “stepping” user. The confidence values are compared against the
expected absolute deviation of the learned profile from the real policy of the user:
expdev =

∑

b |p̂(b) − p(b))| · p(b), or rather the “accurateness” of the profile, i.e.
1−expdev. It can be observed that the logloss-based measure is able todetect changes
in the user’s behavior – at least when temporal decay is employed. Every time the
user changes his preferences (that is, after each30 rounds), the confidence valueC0.9

log

decreases and starts to grow only when the model becomes closer to the reality again.
Thus, we finally come up with a measure that has some substantial advantage over the
Wang’s measure, which increases always in the same manner regardless of the users’
responses (because it was designed for static sources of data).
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Figure 7.11: Confidence values:Clog vs.CWang vs. accurateness

Figure 7.12 shows – again – that an agent using a hybrid model of the reality does
not lose so much when his knowledge is inaccurate (i.e. at thebeginning of the game,
and after each change of the user’s policy), the agent startsusing it successfully. More-
over, the agent still has potential to adapt to the changes ofthe environment. In most
cases there were no significant differences in the output of the agents usingClog with
or without temporal decay.

7.4.4 A Slightly Different Log-loss Confidence

The loss values that we “accumulate” to computeClog are based on the logarithmic
function due to its useful properties. However, we need the confidence values to span
the set of[0, 1], which calls for a “translation” of the relative loss deviation values back
to the interval. Defining the log-loss confidence in Section 7.4.1, we used the exponen-
tial function2x to achieve the goal. Of course, there are many different translations that
accomplish this, and the alternative presented below is probably the simplest among
them.

Definition 7.13 Let us define the alternative log-loss confidence as:

C∗Λ
log = 1−

∣

∣

∣

∣

∆Λ
n

∆max,Λ
n −∆min,Λ

n

∣

∣

∣

∣
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Figure 7.12: Hybrid agents vs. single-model agents: payoffs against “stepping” users

C∗Λ
log has similar properties asCΛ

log, but it spans the whole interval of[0, 1]. The way
the confidence values evolve is shown in Figure 7.13. We note that changes ofC∗

log

indicate changes of the profile accurateness even clearer than in the case ofClog. More
results of experiments with hybrid agents usingC∗

log can be found in Chapter 8.

Proposition 7.14 The measure has the following properties:

1. n ∆Λ
n andn (∆max,Λ

n −∆min,Λ
n ) can be computed incrementally;

2. if the value ofC∗Λ
log can be computed, then0 ≤ C∗Λ

log ≤ 1;

3. C∗Λ
log is undefined only when̂pi’s are uniform for alli = 1..n or when there exist

i andb such that̂pi(b) = 0. Thus, ifp̂i are obtained through Bayesian updating
and p̂1(b) > 0 for everyb, we have thatC∗Λ

log can be computed for everyi ≥ 2.

7.5 Confident Remarks

The experiments showed that a confidence measure can be useful – at least in some
settings – for instance, to detect changes in a user’s behavior, or as a means for weight-
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log vs.CWang vs. accurateness

ing alternative beliefs. Two kinds of measures have been proposed:Cbound, Csize
andCV represented the “self-observation” approach and were based on the variance of
model evolution, whileClog was based on the logarithmic loss function. Some of the
measures (namely,CboundandCsize) were meant to capture the meta-uncertainty an
agent should have when the amount of available data is insufficient. The others (CV
andClog) addressed the problem of detecting conspicuous changes ofpatterns in the
responses the agent receives from the world outside.

The simulations showed some merit behindCbound, especially with the “mag-
nifying glass” parameter set tom = 2. The experiments withCsize, on the other
hand, revealed important deficiencies: even a quite complicated “tuning” scheme (m =
10 +N1.5) plus an additional parameterΛ did not guarantee a substantial gain. More-
over, neitherCsizenor Cboundperformed much better than an extremely simple con-
fidence measureCwang= N/(N + 1), proposed by Wang. The “self-observation”
approach is probably too solipsistic – and bad learners yield incorrect self-assessment
in consequence.CV seems to suffer form the same condition.

Fortunately, a preliminary investigation ofClog brought encouraging results. The
logarithmic loss function provides a direct link between the model and the new ob-
servations, and the temporal decay scheme lets the agent focus more on the results
of recent predictions rather than all of them. In consequence, the measure is flexible
enough to react appropriately even after many steps of collecting and analyzing data.
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The results of the simulations suggest also that a meta-uncertainty measure, aimed
for an agent who uses a hierarchy of beliefs, can be somehow based on the estimated
deviation of the model from the reality – and definitely not onthe meta-probability of
the model correctness, or even the (potential) model variability over time.



Chapter 8

Safer Decisions against a
Dynamic Opponent

SYNOPSIS. Throughout the thesis, a considerable amount of knowledge has
been put forward. Various game-like logics and models for multi-agent situ-
ations were found closely related; others yielded counterintuitive properties
which made us try to revise them. In an attempt to combine safegame theory-
based optimality criteria with adaptive machine learning solutions, the idea
of multi-model decision making was proposed. Several confidence measures
were investigated for an agent who may need to evaluate the accurateness of
his own knowledge. Thus, the agent can assess his view of the environment,
and combine safe play with exploiting the knowledge gathered so far.

We resist the temptation to apply the same technique to the picture of multi-
agent systems that emerged within this thesis, and assess its accurateness with
one of the confidence measures. Instead, we opt for the safe strategy of pre-
senting some more experiments with the simple e-banking agent. Finally, for
those who are already fed up with the agent and his not-too-clever customers,
some examples are shown of howATL models and planning can be used within
the hierarchy of models.

8.1 Introduction

The idea of hierarchical modeling of the reality was proposed in Chapter 6; Chap-
ter 7 complemented it with research on a suitable confidence measure that can provide
weights for the decision-making process. The aim of this chapter is to investigate the
performance of such “multi-model” agents in the simplest possible case, i.e. in the case
of an agent using exactly two alternative models of reality.The output of such a hybrid
agent can be then compared with the performance of both “single-model” agents alone
to see if (and when) a software agent can really benefit from using a more complicated
belief structure and decision making scheme.

The controversy between normative models (like non-cooperative equilibria from
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game theory) and adaptive models (obtained through some kind of learning) has been
an important inspiration for this part of the thesis. The adaptive solutions are more
useful when the domain is cooperative or neutral; they also allow the agent to exploit
deficiencies of his adversaries. The “best defense” assumptions are still attractive,
though, in a situation when the agent risks real money. Even one enemy who plays
his optimal strategy persistently can be dangerous then. Chapters 6 and 7 – and this
chapter – present an attempt to integrate both approaches. The main model used by
the agent in the experiments is a profile of the user; the othermodel is based on the
maxmin equilibrium.

Section 8.2 extends the experiments presented in the two previous chapters, and
presents them in a more systematic way. The results suggest that a software agent can
combine machine learning with game theory solutions to display more profitable (or
at least safer) performance in many cases. The confidence measure used here is not
perfect, as the results of the simulations show. Further experiments should include also
agents using more sophisticated learning methods.

This chapter builds on (Jamroga, 2003c) and uses some material from (Jamroga,
2003a).

8.2 The E-Banking Game

In this section, we present more experimental results that extend and complement the
simulations already described in the two previous chapters. But first, let us recall and
summarize the idea behind the “e-banking game”, and the rules of the game.

8.2.1 Online Banking Scenario

The experiments reported in this section follow the scenario presented in Section 6.3.2:
a software agent is designed to interact with users on behalfof an Internet banking
service; he can make an offer to a user, and the user’s response determines his payoff
at this step of interaction.

The Game

The agent has 3 possible offers at hand: the “risky offer”, the “normal offer” and
the “safe offer”, and the customer could respond with: “accept honestly”, “cheat” or
“skip”. The complete table of payoffs for the game is given below. The table, presented
in Figure 8.1, differs slightly from the one used in Chapters6 and 7, yet the payoffs ob-
tained by the agents are similar. Other payoff tables are tried in Sections 8.2.2 and 8.2.4,
again with analogous results.
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accept cheat skip
risky offer 30 -100 0.5
normal offer 10 -30 0.5
safe offer 0.5 0 0.5

Figure 8.1: Payoffs for the game

The Agent

The banking agent is an adaptive 1-level agent, hence he maintains a model of the
other agent’s preferences, and uses the model in the decision-making process.1 The
agent estimates the user’s policyp with a probability distribution̂p, computed through
simple Bayesian updating (Mitchell, 1997) with no observational decay:

p̂i+1(b) =

{

p̂i(b)ni+1
ni+1 if b = b∗

p̂i(b)ni

ni+1 if b 6= b∗

ni+1 = ni + 1

whereb∗ is the actual response from the user in the last (ith) round of interaction.
Valuen0 ≥ 0 is the number of ”virtual” training examples. The initial distributionp̂0

is uniform in most experiments, although the ”safe” distribution (corresponding to the
maxmin strategy) has also been tried.

At the same time the agent computes a confidence valueC for the profile acquired
so far. The default model is defined in the game theory fashion: the user is assumed an
enemy who always cheats. The (multi-model) evaluation of every actiona is based on
sub-evaluations derived from both models separately:

eval(a) = C evalprofile(a) + (1− C) evaldefault(a).

The agent chooses actiona with maximal eval(a) (Section 8.2.2) or uses a more
sophisticated decision making scheme to tackle the exploration-exploitation tradeoff
(Section 8.2.3). Thus, the banking agent’s hierarchy of beliefs consists of two models
of the reality, presented in Figure 8.2.

Confidence

In order to provide the agent with a way of computing his “self-confidence”C, two
measures are combined: the log-loss based confidenceCΛ

log (Section 7.4.1),2 and the
datasize-related measure proposed by Wang (Wang, 2001).

CΛ
log helps to detect changes in the user’s policy, but it is unreliable when the num-

ber observations is small. This disadvantage can be tackled, though, with the simplest

1Recall: a 1-level agent is an agent that models other agents as 0-level agents, i.e. agents whose behavior
can be described with a probabilistic policy (Vidal and Durfee, 1998).

2We tested also the performance of an agent using the other version of the log-loss confidence –C∗ Λ
log

from Section 7.4.4. Every time the results refer to the agentusingC∗

log
instead ofClog , we state it explicitly

in the text.
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profile

default

C . . .. . . profilek Ckprofile1 C1

user

Figure 8.2: The simplest hierarchy: two models of reality ata time (repeated)

variant of the measure by Wang (fork = 1): CWang = n/(n + 1). Now, the agent is
confident in his knowledge if he has enough dataandhe detects no irregularities in the
user’s behavior:

C = min(CΛ
log,CWang).

The knowledge decay rateΛ was set to0.9 throughout the experiments.

Users

To investigate performance of the hybrid agent, several series of experiments were run.
The e-banking agent played with various kinds of simulated “users”, i.e. processes
displaying different dynamics and randomness. Those included:

• static (or stationary) 0-level user with a random policy:p0 = p1 = . . . = p100

generated at random at the beginning of each interaction;

• “linear” user: a dynamic 0-level agent with the initial and the final preferences
p0, p100 generated at random, and the rest evolving in a linear way:pi = p0 +
(p100 − p0)/100;

• “stepping” user: same as the “linear” one except that the preferences change
after every 30 steps:pi(b) = p0(b) + (i div 30)(p100(b)− p0(b))/3;

• “cheater”: a user that chooses action “cheat” with probability of 1.0,

• “malicious”: an adversary 0-level user with a stationary random policy for the
first 30 rounds, then switching to the “cheater” policy.

The user types we consider most important are: the static user, the “stepping” user,
and the “malicious” user. The static user defines the limit case with no dynamics at
all, hence he is a perfect subject for machine learning algorithms. While our method
of multi-level decision making is mostly aimed at inducing safer play in the context of
dynamicusers and environments, it is still interesting to check howit performs in this
borderline case. The “stepping” user is aimed to mimic the interest drift of an ordinary
indifferent human user. We believe that people are to some extent persistent with their
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preferences: the do not change them too often, and the direction of the changes is not
completely random. Thus, the policy of the user changes onlyfrom time to time, and
the changes follow in the same direction during a particularinteraction. Finally, the
“malicious” user represents an adversary entity that triesto squeeze from us as much
as he can; every e-banking or e-commerce service must take such a possibility into
account. The “malicious” user is more clever than the rest: he lets our e-banking agent
to build up a false model of his strategy, and only then he unveils his real plan. In fact,
this kind of user is a 0-level agent only in the strict, technical sense of the term. Since
his strategy is generally quite well suited against 1-leveladaptive agents, he might be
arguably classified as a 2-level agent as well.

1000000 independent random interactions (a sequence of100 rounds each) have
been simulated for every particular setting; the average results are presented in Sec-
tions 8.2.2 and 8.2.3.

8.2.2 Playing Against Single-Minded Users

The user has been assumed rather simple-minded in the first series of experiments, in
order to get rid of the exploration-exploitation tradeoff.

Remark 8.1 Theexploration-exploitation tradeoffis a well-known phenomenon within
the Machine Learning research. Basically, the main objective of a learning agent is to
exploit his knowledge in order to obtain more profit. Thus, it seems perfectly reason-
able for the agent to execute the decision with highest expected payoff. However, the
agent risks in such a case that he might get stuck in a local optimum if his knowledge
is not completely accurate. Moreover, choosing a particular action affects also the
(future) quality of the agent’s knowledge, and hence (indirectly) persistent executing
of the highest expectancy choice may lead to suboptimal results in the future. Thus,
the agent can be better off trying toexplorethe environment and keep his knowledge
up-to-date.

Consider, for example, our e-banking agent. Suppose that the “safe offer” poses
highest expected payoff according to the initial model of the environment. If the agent
onlyexploitsthe model, he will never execute any other offer than the safeone – yield-
ing no successful negotiations even if the actual user is honest and willing to cooper-
ate. Obviously, some exploration is necessary to determinethe kind of customer we are
dealing with. On the other hand, exploratory actions can be very costly if financial risk
is involved.

Thus, it has been assumed that the user’s response does not depend on the actual
offer being made:p(cheat), p(accept) and p(skip) are the same regardless of the
offer (if he is dishonest, he cheats for a small reward as wellas a big one, for instance).
In consequence, no specific exploration strategy is necessary – every action the agent
can choose will reveal exactly the same about the user’s policy – so the agent can just
maximizeeval(a) when making his decisions. Results for various types of users are
presented in Figures 8.3 and 8.4. The hybrid agent is almost never worse than the agent
using only the user’s profile (even for the static user), and in the most risky moments
he plays much safer than the latter. Most notably, the hybridagent do not lose much
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Figure 8.3: Hybrid agents vs. single-model agents: the average payoffs against single-
minded users

score at the beginning of an interaction and in the moments when the user changes his
policy (which is especially evident against the “malicious” user – cf. Figure 8.4). At
the same time, the hybrid agent has potential to play positively better than the “default
model” agent.

Some simulations were also run for a modified version of the banking game, rep-
resenting a situation in which the agent’s decisions involve less risk – see Figure 8.5.
We tested also the hybrid agent using the alternative version of the log-loss confidence
measure (C∗Λ

log instead ofCΛ
log) – Figure 8.6 shows the outcome. Both series of experi-

ments produced results similar to the ones before.

The “single-mindedness” assumption looks like a rough simplification. On the
other hand, the preferences of a particular user (with respect to different offers) are
hardly uncorrelated in the real world. For most human agentsthe situation seems to be
somewhere between both extremes: if the user tends to cheat,he may cheat in many
cases (although not all by any means); if the user is generally honest, he will rather not
cheat (although the temptation can be too strong if the reward for cheating is very high).
Therefore the assumption that the user has the same policy for all the agent’s offers may
be also seen as the simplest way of collaborative modeling (Zukerman and Albrecht,
2001). Section 8.2.4 gives some more rationale for this kindof assumption, while
in the next section users with multi-dimensional (uncorrelated) policies are studied to
complete the picture.
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Figure 8.4: Hybrid agents vs. single-model agents: the average payoffs against single-
minded users continued

8.2.3 Experiments for Users with More Complex Policies

Here, users were simulated with no restriction on the relation between their conditional
policiesp(·|safe), p(·|normal) andp(·|risky). Boltzmann exploration strategy is one
way to deal with the exploration-exploitation problem (Banerjee et al., 2000). The
scheme uses the metaphor of the internal dynamics of a gas: aslong as the temperature
is high, the dynamics is also high, and the molecules displaymainly random behav-
ior; as soon as the gas starts to cool down, its behavior becomes more schematic and
predictable. Putting our learning agent in a similar position, we usually assign him
a “temperature” value that controls the randomness of his decision-making processes.
The initial temperatureT0 is usually high to induce more random decisions, and thus
more exploration of the environment at the beginning of the learning process. After
that, the temperature is decreased by introducing a decay factor η, and updating the
temperature withTn = η Tn−1 = T0 η

n.
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accept cheat skip
risky offer 30 -30 0.5
normal offer 10 -9 0.5
safe offer 0.5 0 0.5
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Figure 8.5: Payoff table and the results for the modified game
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Definition 8.1 (Banerjee et al., 2000)Let T be the current value of the temperature
parameter, andeval(a) the current numerical evaluation of actiona (e.g. its expected
utility or, like in our case, its multi-model evaluation). An agent, using the Boltzmann
exploration strategy, chooses actiona semi-randomly with probability:

P (a) =
eeval(a)/T

∑

a′ e
eval(a′)/T

In other words, the agent employs a mixed strategy in which the actual probabilities
are defined by the formula above.
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Figure 8.8: Hybrid agents vs. single-model agents: payoffsagainst “stepping” users,
combining strategies,C∗ 0.9

log used as the confidence measure.

As the possible rewards span a relatively large interval (weare using the payoff
table from Figure 8.1 again), the initial temperature parameter is relatively high:T0 =
100, and the decay factor is0.8. ThusTi = T0 ∗ (0.8)i. The results in Figure 8.7
show that the double-model agent has some problems with efficient exploration – in
consequence, he playstoo safe against a static user. On the other hand, he is much
better protected from sudden changes in the user’s behavior. Moreover, the double-
model agent plays much better against a “cheater”: he loses86.9 less than the profile-
based agent in the first15 steps (after that both agents fare almost the same).

8.2.4 Combining Strategies for Games with No Pure Equilibrium

Let us go back to section 8.2.2 and to the assumption that the user’s response does not
depend on the actual action from the agent. Note that the assumption makes perfect
sense when the user simply cannot know the agent’s action in advance. This is the case,
for instance, when the negotiation process is longer and consists of multiple steps, or
when some hidden policy of the bank is concerned (instead of particular “offers”). The
game is a matrix game then, and the default strategy pair(safe offer,cheat) is
the maxmin equilibrium (von Neumann and Morgenstern, 1944).

All the results had been obtained for combiningevaluationsso far. Note that – if we
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treat the agents’ strategies as mixed ones – we can combine them directly (as proposed
in Section 6.3.3). This did not prove successful in this setting, as Figure 8.8 shows. It
seems that either multilevel combinations of strategies are not suitable for the “banking
game”, or a different confidence measure should be used in this case.

The games we have been dealing with up to this point, however,are somewhat
special since they have their equilibria within the set of pure strategies (i.e. determin-
istic decisions of the agents). For most matrix games this isnot the case. On the
other hand, every game has its maxmin equilibrium within theset of mixedstrate-
gies (von Neumann and Morgenstern, 1944). Consider, for example, the game with
the strategic form presented below. The agent’s maxmin strategy for this game is
sdefault = [0.4, 0.4, 0.2]. If any of the players plays his maxmin, the expected out-
put of the game is0.

b1 b2 b3
a1 -1 2 0
a2 0 -2 5
a3 2 0 -10

Remark 8.2 The sets of all mixed strategies are obviously infinite for both agents.
However, only a finite subset really matters while the agent is making his decision:
if agentA can guess the opponent’s current (mixed) strategy approximately and the
strategy is different from the opponent’s maxmin, then there is a pure strategy forA
that is no worse than any other (mixed) strategy (in terms of the expected payoff). If
this is not the case, thenA’s maxmin strategy provides the bestguaranteedexpected
payoff. Thus, each player should consider only his pure strategiesplus the maxmin
strategy while looking for the best decision.

In the last series of experiments the hybrid agent has been choosing strategyS =
C sprofile + (1 − C) sdefault, wheresprofile is the strategy with the best estimated
payoff. A modified confidence measure was used: the confidencewas defined as

C′ =

{

min(CΛ
log, CWang) if min(CΛ

log , CWang) ≤ 0.4

max(0.4, 3 min(CΛ
log, CWang)− 1.9) otherwise

The results (Figure 8.9) reveal that the hybrid agent is again too cautious when the user
is random and static. However, the bottom line in the game is drawn by a user who can
guess the agent’s current strategyS somehow (he must be a 2-level agent rather than
0-level, since the banking agent is a 1-level one). The “malicious” user here is defined
this way: he uses a random policy for the first30 steps, and after that starts choosing
the most dangerous action (the one with the minimal payoff),“guessing” the agent’s
strategy in advance. Playing against a user who chooses the most dangerous action all
the time, the hybrid agent was93.6 better off than the profile-based agent after the first
50 steps.

Remark 8.3 Note that even the “malicious” 2-level opponent has no way ofguessing
the banking agent’s finalaction, because the agent uses mixed strategies that imply
some degree of randomness. Thus, all the opponent can guess is the actual (mixed)
strategyof our agent.
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Figure 8.9: Results for the matrix game: static user, “malicious” user

In the next section, multilevel decision making is considered in more sophisticated
scenarios, too.

8.3 Multilevel Modeling of Reality with ATL Models

This section presents a preliminary view to hierarchical modeling of the reality, and
multilevel decision making, in some more complex scenarios. In most real-life scenar-
ios – unlike the e-banking game we used heavily in the last chapters – the domain of
action includes more than one state: there are many possiblesituations in which the
agents’ behavior and the response from the environment can be completely different.
Moreover, the situations (states) and agents’ actions (choices) usually form a complex
temporal and strategic structure, showing which actions – and in what way – may lead
from one state to another. Multi-player game models seem a natural choice as a rep-
resentation language for such domains. They are natural andintuitive, they allow to
define explicitly the outcome of agents’ behavior over time,and they can be extended
to include other aspects of multi-agent systems if necessary: uncertainty, knowledge,
requirements etc. (cf. Chapters 3, 4 and 5). Last but not least, we can use ATL for-
mulae to specify agents’ goals, and use ATL model checking inthe way presented in
Section 2.8 to find a secure plan that satisfies a goal (if such aplan exists).

Unfortunately, using more complex models demands that the decision-making agent
must possess more detailed knowledge as well. For instance,in order to predict oppo-
nents’ behavior, the agent should know how the opponents aresupposed to actin every
particular state. The purpose of multilevel decision making is to exploit theknowl-
edge in a smarter way. However, to exploit the knowledge, we must first obtain it.
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Section 8.2.3 showed that this is hard even in the extremely simple case when there are
only three different situations to be considered (there is only one state and three differ-
ent offers from the banking agent, upon which the user’s decisions may depend). The
hybrid agents from that section had substantial problems with acquiring an accurate
model of the reality. Using the multilevel decision making,the agents played it safer –
and when an agent plays safer, his exploration of all the possibilities is less efficient.

Models presented in this section include not three, but dozens to hundreds of situa-
tions, for which the behavior of other agents should be somehow predicted. Moreover,
simple exploration strategies like the Boltzmann strategy(Banerjee et al., 2000) can
have disastrous effects, because the consequences of some actions can be irreversible.
For instance, if agentx tries to cooperate with agenty in Example 8.1, he maynever
be able to receiveany payoff if the other agent turns out to be hostile or irresponsi-
ble: first agenty helpsx to load the heavy (and more expensive) cargo into the rocket,
and then abandons him completely, so thatx cannot unload the cargo and replace it
with something easier to handle. In such a case, agentx gains knowledge about the
other agent, but he will have no opportunity to use it any more. Collaborative model-
ing (Zukerman and Albrecht, 2001) may prove helpful in such asetting, and the issue
is certainly worth further investigation, but we feel that an exhaustive answer to this
question is beyond the scope of the thesis. In consequence, we strive to show how
multilevel decision makingcan improve agents performance. We do not definitely say
if it really does, though. We just present a few example scenarios in which both the
safe (maxmin) strategy and an adaptive strategy exploitingsome knowledge about the
environment of action have obvious advantages, and in whichsome tradeoff between
both approaches looks intuitively appealing.

8.3.1 Examples: Rockets and Bridge

Example 8.1 First, we present a variant of the Rocket Domain example fromSec-
tion 2.8.3, in which two types of cargo are considered. Again, there are three agents.
Agentx – as before – can decide to load a piece of cargo if the rocket isempty (action
load1for cargo type 1 andload2for cargo type 2), unload the cargo from the rocket if
the cargo is inside (actionunload), or move the rocket (move); he can also stay passive
for a while (actionnop). This time, however, agenty can only lend a hand (help) or do
nothing (nop), and agentz can only supply the rocket with fuel (actionfuel) or remain
passive (nop).

Agentsx andz form a team whose task is to deliver the cargo from London to Paris,
using the available rocket (propositionsatRL andatRP mark the situations in which the
rocket is at the London airport and Paris airport, respectively). The game is repeatable
now: as soon asx andz deliver the cargo to Paris, they get paid and the cargo is taken
away from the airport – and the agents are free to go back and pick up another piece.
The more they deliver, the more they earn, of course. The states in which a piece of
cargo lies inside the rocket are labeled with propositionsinC1 for cargo type 1 andinC2
for cargo type 2, respectively. The London airport has infinite supplies of both types
of cargo, so there is no need to indicate the presence of cargoin London with a special
proposition any more (it would simply hold in every state).

The first type of cargo is easier to handle:x can load and unload it on his own.
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Figure 8.10: Rocket domain again: a multi-player game modelfor agents who deliver
the cargo for money
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Cargo type 2 can be loaded/unloaded only with the help fromy. On the other hand,
cargo type 1 is less profitable: the agents earn on it only 1 acur (Agent CURrency unit)
per delivery, while the second type of cargo is worth 5 acurs when delivered to Paris
(propositionspay1 andpay5). The temporal and strategic structure of the system is
shown in Figure 8.10.

Essentially,x andz can try two sensible strategies: they can try to cooperate with
y in shipping the more valuable cargo, or assume thaty may be unwilling (or unable)
to cooperate, and play the game safe (i.e. stick to the cheaper cargo). The safe strategy
can be computed through the “planning as model checking” procedure:

plan(〈〈x, z〉〉3pay5) = { 〈15,−〉, 〈16,−〉 }

plan(〈〈x, z〉〉3pay1) = { 〈1, x : load1·z :fuel〉, 〈2, x : load1·z :nop〉,

〈3, x :nop·z :fuel〉, 〈4, x :move·z :nop〉,

〈5, x :nop·z :fuel〉, 〈6, x :move·z :nop〉,

〈7, x :unload·z :nop〉, 〈8, x :unload·z :nop〉,

〈9,−〉, 〈10,−〉,

〈15, x :nop·z :nop〉, 〈16, x :nop·z :nop〉 }

Thus, x and z have no infallible plan to deliver cargo type 2 to Paris – unless
they have already done so. On the other hand, they can manage the cheaper cargo
on their own if they never try the more expensive one: they have a collective strategy
to eventually enforce3pay1 from every state except 11, 12, 13 and 14 (we can also
express it with the ATL formula¬inC2→ 〈〈x, y〉〉3pay1). Therefore the strategy with
the highest guaranteed outcome (the “safe” strategy) is:

{ 〈1, x : load1·z :fuel〉, 〈2, x : load1·z :nop〉,

〈3, x :nop·z :fuel〉, 〈4, x :move·z :nop〉,

〈5, x :nop·z :fuel〉, 〈6, x :move·z :nop〉,

〈7, x :unload·z :nop〉, 〈8, x :unload·z :nop〉,

〈9,−〉, 〈10,−〉, 〈15,−〉, 〈16,−〉 }

Intuitively, the other strategy also makes sense:x andz presumably do not know
the attitude and/or preferences ofy at the beginning. Ify is friendly and decides to
help, they can achievepay5; the only way to try it is to executex : load2 ·z : nop or
x : load2·z :fuel at state1, and see whaty does. It is worth pointing out, though, that
such a strategy can have disastrous effects ify turns out to be hostile. First,x andz
have no way of guaranteeingpay5 on their own. What is even more important, when
they try to cooperate withy, they leave themselves vulnerable: ify helps to load the
cargo, and then refuses to unload it, they willneverreceive any payoff.

On the other hand,x andz may have some information abouty that makes them
believe thaty is rather likely to cooperate. In such a case, they should probably try
to establish the cooperation – if only they are sufficiently confident in this belief. Fig-
ure 8.11 shows an example of such a situation: the team keeps aprobabilistic model



8.3. MULTILEVEL MODELING OF REALITY WITH ATL MODELS 197

nofuel
atRL

nofuel
atRL

inC2

nofuel
atRP

fuelOK
atRL

inC2
nofuel
atRP

inC2
fuelOK
atRP

inC2

1

11 12

1413

nofuel
atRL

inC1
fuelOK
atRL

nofuel
atRP

fuelOK
atRP

nofuel
atRP

pay1

inC1 inC1 inC1

5 6

9

15

pay5

87

< >load2,nop,nop

< >load2,help,nop

< >move,nop,nop
< >,help,nopmove

< >nop,help,fuel
< >nop,nop,fuel

< >unload,nop,fuel

< >load1,nop,nop
< >load1,help,nop

< >unload,help,nop
< >unload,nop,nop

C =0.7profile

p( |nop load2) = 0.5

p( |help load2) = 0.5

p( |nop unload) = 0.4
p( |help unload) = 0.6

Figure 8.11: Multilevel decision making in the rocket domain: should we play safe or
try to cooperate?
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of y’s behavior. For instance, they expect thaty helps to load the cargo type 2 in
London with probabilityp(help|load2) = 0.5, and the probability thaty refuses as
p(nop|load2) = 0.5. They also believe thaty is rather likely to help with unloading
the cargo in Paris:p(help|unload) = 0.6, p(nop|unload) = 0.4, and they are confi-
dent inCprofile = 0.7 that the model is accurate. The team assumes that the actions
of y are deterministic, given the state and choices from other agents; in other words,x
andz hold probabilistic beliefs about which deterministic policy of y is really the case.

The team considers two strategies: the agents can try to deliver a piece of cargo
type 1:

S1 = {〈1, x : load1·z :fuel〉, 〈5, x :nop·z :fuel〉, 〈6, x :move·z :nop〉,

〈7, x :unload·z :nop〉},

or a piece of cargo type 2:

S2 = {〈1, x : load2·z :fuel〉, 〈11, x :nop·z :fuel〉, 〈12, x :move·z :nop〉,

〈13, x :unload·z :nop〉}.

The strategies are shown in Figure 8.11, too.3 To evaluateS2, we first observe that the
expected payoff for this strategy in state 11 (according to the profile ofy kept by the
team) is:0.6 · 5 + 0.4 · 0 = 3. Thus,

E(profile, S2) = 0.5 · 3 + 0.5 · 1 = 2.

Moreover,E(maxmin, S2) = 0 because, ify turns out to be hostile, the team gets no
payoff. The multilevel evaluation ofS2 is thus:

eval(S2) = Cprofile · E(profile, S2) + (1− Cprofile) ·E(maxmin, S2) = 1.4

At the same time,eval(S1) = 1 (becauseS1 brings always 1 acur, regardless of the
response fromy), so the team should seriously consider an attempt at the cooperation
with y. �

Example 8.1 presented a situation in which the planning agents did not know the
preferences of the opponent. The following example demonstrates that using a model
of the opponents can be beneficial even in a zero-sum game, when the other agents
are obviously enemies: the playing agent may try to exploit potential mistakes of the
enemies if they are likely to choose suboptimal strategies.Moreover, if we have a
model of the enemy, but we are uncertain about its accurateness, some balance between
exploiting the model and using the maxmin strategy can be a good solution.

Example 8.2 A bridge game is being played: we consider only the final part of the
card play, in which the deck consists of only16 cards. There are three active players at
this stage: one player controls the cards at positions N and S(we call the player NS),
and his enemies (W and E) control the hands at positions W and E, respectively. At this
moment we assume that all the players can see each others’ hands: they play a perfect

3The graph and the presented strategies include only the relevant states, transitions and choices.
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information game. NS starts from the hand labeled N. A fragment of the game tree is
shown in Figure 8.12. NS can open his play withA♥ or any of the spades (it does not
really matter which one). If he plays a spade, then E and W mustjoin with A♠ and
K♠ respectively (players are obliged to follow suit unless they are void in it), and E
wins the trick for his team. If NS opens withA♥, E can play any of his cards (A♠,
K♣,Q♣ or 3♣), then NS can drop any card from the S position, and W completes the
trick with K♥,Q♥ or J♥; NS wins the trick in this case.

For “bridge heads”, we describe the setting of the game. Contract bridge with
tournament scoring is played; the contract being played is 1NTx (1 No Trump doubled),
and both parties are vulnerable. Up to this point, NS has taken 4 tricks, and the team of
W and E 5 tricks. NS must collect the total of 7 tricks (out of 13) to make the contract;
thus, he still needs 3 more tricks (out of 4 remaining). If he makes the contract, he
earns 130 points (together with his partner). One overtrick(i.e. taking all the remaining
tricks) gives additional 200 points; if the contract is down, NS pay the penalty of 200
points for the first trick below the threshold, and 300 for each subsequent one. For most
readers, the list of possible payoffs for NS is the only important factor in this example.
The list is given below; the team WE gets the opposite value:

• if NS take all 4 remaining tricks, they get 330 points;

• if NS take 3 tricks, they get 130 points;

• if NS take 2 tricks, they get -200 points (i.e. they lose 200 points);

• if NS take 1 tricks, they get -500 points;

• if NS take no tricks, they get -800 points.

A game model for the game is sketched in Figure 8.13. Only relevant paths are in-
cluded (it makes no difference, for instance, whether NS playsQ♠, J♠ or 3♠ at the
beginning). Payoffs are represented with propositionspay(n). The model is turn-based,
i.e. at every state only one player effects the next transition (other agents are assumed
to choose the “do nothing” action). Each transition in the graph is thus labeled with
the name of the player who is active at the moment, and his actual choice that executes
this transition.

The thick arrows show the maxmin strategy of NS. Note that, ifNS uses this strat-
egy, he gets−200 points, no matter what the other players do. Note also that opening
with A♥ leads to the payoff of−500 points if the enemies choose the optimal defense:
E throws away his Ace, and W takes the remaining 3 tricks in consequence. However,
E must make a conscious effort and think the game over carefully to throw away his
A♠ instead of3♣ – most players usually follow the reflex to do the reverse.4 If E
follows the reflex and keeps his Ace, NS will inevitably win the game and earn+130.
Thus, if NS suspects that E is a novice or that he usually playsautomatically with no
careful analysis of the deal, the risky strategy of playingA♥ first can be worth trying.

4Actually, this example has been inspired by a game that occured during a high level tournament. The
game was designed to have a completely safe winning strategy, yet many players did not see it – so strong is
the automatic reflex not to throw away one’s high cards in favor of the lower ranks (Macieszczak and Mikke,
1987).
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Figure 8.13: The bridge game: game model. Only the relevant paths are included. The
“grey” states mark the end of a trick. The “+” sign indicates that the trick has been won
by NS; the “–” sign tells that the trick has been lost by NS (i.e., won by the coalition of
W and E.
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C =0.8profile

p( 3E: §)=0.9p(E: Aª)=0.1

pay(-200) pay(-500) pay(-500) pay(+130)

NS:Qª
NS:A©

NS:2§

- + ++

Figure 8.14: The bridge game: exploiting predicted mistakes of the opponents.

Suppose that NS estimates the probability that E will actually make the mistake
and throw away3♣ asp(E : 3♣) = 0.9, and the probability of the optimal choice
from E asp(E : A♠) = 0.1; at the same time, NS estimates his self-confidence
asCprofile = 0.85 (see Figure 8.14). LetS1 be the NS’s maxmin strategy, andS2

the strategy obtained fromS1 through changing the first move fromNS : Q♠ to
NS : A♥. The maxmin strategy gives always−200 points, soeval(S1) = −200.
With the other strategy, we obtain

E(profile, S2) = 0.1 · (−500) + 0.9 · 130 = −50 + 170 = 67

E(maxmin, S2) = −500

and

eval(S2) = Cprofile ·E(profile, S2) + (1 − Cprofile) · E(maxmin, S2)

= 0.8 · 67 + 0.2 · (−500) = 53.6− 100

= −46.4

Again, NS should probably try the risky strategy to get a better payoff. �

ATL (and its models) can be extended along various dimensions to include notions
like knowledge or requirements. We use the two final short examples to hint the poten-
tial that ATEL (or ATOL) and DATL offer for the analysis of more complex scenarios.
Obviously, we may employ multi-player epistemic game models and ATOL formulae
to describe the natural bridge setting: when the players do not see each others’ hands.
DATL can be used, for instance, to include cheating in the scope of the model, and
ask whether such an undesirable behavior can be prevented – or specify sanctions that
should occur when it has been detected.
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Example 8.3 Players seldom have complete knowledge about the distribution of cards
in a bridge game. Every player sees only his own hand and the “dummy” – the cards
at the position of N in this case. Figure 8.15 presents a fragment of the game tree with
epistemic accessibility relations for our 16-cards bridgeproblem in this more natural
setting: the players do not see each others’ hands any more.

The ATOL formula〈〈NS〉〉•Obs(NS)3pay(+130) defines the “maximal” goal for NS;
unfortunately,q1 2 〈〈NS〉〉•Obs(NS)3pay(+130) for the model from Figure 8.15. NS has
a uniform strategy to get−200 points in the game:q1 � 〈〈NS〉〉•CO(∅)3pay(-200), but
he is not able to identify the successful strategy (q1 2 〈〈NS〉〉•Obs(NS)3pay(-200)),
and he is not even aware that it exists at all (q1 2 Ka〈〈NS〉〉•CO(∅)3pay(-200)). Only
the payoff of−500 can be guaranteed (q1 � 〈〈NS〉〉•Obs(NS)3pay(-500)): NS can for
instance play3♠ and wait until the opponent that wins the trick leads in♥ or♦. Note
that−500 points is not very much in this game: in fact, NS has no strategy to make
less. Thus, if NS has some probabilistic model of the actual distribution of cards, and
possible responses from the opponents, he can benefit from using it in a similar way as
in Example 8.2. �

Game theory is sometimes criticized because it treats idealizations rather than the
real phenomena it was supposed to tackle. In a sense, game rules are treated too seri-
ously in game theory: when the rules say that players must follow suit, we usually do
not even include a possibility that some players may not obeythe rule in the model of
the game (see Figure 8.14, for instance). Hence, game theorymodels seem hard to use
when we want to induce emergent behavior, since emergence ofnew ideas often comes
through re-defining thestructureof the existing model of the reality (or putting it in an-
other way, through re-defining the search space). Moreover,game-theoretical analysis
usually omits important phenomena like cheating, illegal epistemic updates (overlook-
ing, eavesdropping) etc., that occur in real games, but not in their game-theoretical
models.

Game rules are unlike the laws of physics: they can be broken.The chapter on
Deontic ATL shows how we can include illegal (albeit “physically” possible) situations
in our models, and at the same tell them apart from the legal ones with the deontic
accessibility relations.

Example 8.4 Figure 8.16 shows how the possibility of cheating can be included in
the game model: some players can replace a card of theirs withone they hold in their
sleeve; also, W and E can try to swap some cards of theirs or some player can try to
play his card at somebody else’s turn. Deontic relations areused to deem illegal every
situation that results from a change of the current distribution, other than playing a card
according to the rules of bridge.

Note that the requirements are local in the model: stateq2 should be considered
legal whenq1 is the initial situation, but it cannot be obtained in a legalway when
we start fromq′1. On the other hand,q′2 is an acceptable alternative ofq′1, whereas
q2 cannot be legally achieved when we start from distributionq′1. Note also that the
model specifies legality of states rather than actions (cf. Section 5.2.1). In particular,
attempted (but unsuccessful) dishonest behavior cannot bedefined as illegal in this
model: it is only the result of agents’ actions that matters in this respect. However, the



204
C

H
A

P
T

E
R

8.
S

A
F

E
R

D
E

C
IS

IO
N

S
A

G
A

IN
S

T
A

D
Y

N
A

M
IC

O
P

P
O

N
E

N
T

QJ3ª ©A

N

W E

4ª ¨ §A A2

Aª

§KQ3

Kª

©KQJ

QJ3ª

N

W E

4ª ¨ §A A2

Aª

§KQ3

Kª

©KQJ

S

A©

J3ª ©A

N

W E

4ª ¨ §A A2

Aª

§KQ3

Kª

©KQJ

S

Qª

q1

q5

q2

NS:Qª

S

NS:A©

J3ª ©A

N

W E

4ª ¨ §A A2

§KQ3

Kª

©KQJ

S

Qª

q2 A
ª

N

W E

4ª ¨ §A A2

Kª

©KQJ

S

Qª

q6

q9

q10

q11

q12

A
ª

E:Aª

E:Aª

E:K§

E:Q§

E:3§

QJ3ª ©A

N

W
E

4ª ¨ §A A2

Q©

§3

ªAK
©KJ

§KQ
q1

'

S

QJ3ª ©A

N

W

E

K4ª ¨ §A 2

Aª

§KQ3

©

§

KQJ

A
q1

S

NS:Qª

NS:A©

N

E

S

J3ª ©A

N

E

S

Qª

q2

J3ª ©A

N

E

§KQ3

S

Qª

q2 A
ª

N

E

S

Qª

q6 A
ª

E:K§

E:Q§

E:3§

QJ3ª

A©

q5

"

"

"

"

"

"

"

"

NS:Qª

NS:A©

Aª

§KQ3

Aª

§KQ3

E:Aª

E:Aª

W

K4ª ¨ §A 2

©

§

KQJ

A

W

K4ª ¨ §A 2

©

§

KQJ

A

W

K4ª ¨ §A 2

©

§

KQJ

A

N

E

4ª ¨ §A A2

S

q5

N

E

4ª ¨ §A A2

S

Qª

q2 A
ª

N

E

4ª ¨ §A A2

S

q9 Q
©

E:Q©

W

W

QJ3ª

A©

'

'

Q

ª

©

§

AK

3

©

§

KJ

KQ

ª

§

AK

3

©

§

KJ

KQ

q9

q10

q11

q12

N

E

4ª ¨ §A A2

S

J3ª ©A

QªW

q2
' Q

ª

©

§

AK

3

©

§

KJ

KQ

E:Aª E:Kª

'

'

q6

q7

NS

NS

NS

NS

E

E

E

E

E

E

E

E

A©

QJ3ª

F
ig

u
re

8
.1

5
:

T
h

e
b

rid
g

e
g

am
e:

p
layers

d
o

n
o

t
see

each
o

th
ers’

card
s

any
m

o
re.

T
h

e
d

o
tted

lin
es

d
isp

lay
ep

istem
ic

accessib
ility

relatio
n

s;
r

eflexive
ep

istem
ic

lin
ks

are
n

o
t

sh
ow

n
fo

r
th

e
clarity

o
fth

e
p

ictu
re.



8.3. MULTILEVEL MODELING OF REALITY WITH ATL MODELS 205

model can be enhanced to include a “trace” of the most recent agents’ choices in the
states – in the way we did it in Example 4.8 – and then we are freeto mark every tuple
of choices as legal or not by determining the acceptability of the resulting state.

Looking for a safe plan with maximal (guaranteed) outcome, agent NS may now
check formulae

〈〈NS〉〉3pay(n)

in the initial state of the model (let it beq1), for every possible payoff valuen. However,
if the agent wants to be honest, he should rather look for a strategy that allows him to
properly enforcethe bestpay(n) in q1, i.e. he must check the following family of
properties:

“given thatq1 |= Oϕ ∧ UPϕ, we haveq1 |= 〈〈NS〉〉ϕU(ϕ ∧ pay(n)),”

and choose the plan that is successful for maximaln.
The agent can have a more specific model of the opponents, too,that gives some

prediction of how likely various actions of the opponents are – including illegal actions
as well (see Figure 8.16 again). Obviously, such a profile of the opponents can be
exploited as before. NS can evaluate available strategies according to the profile, and
both resulting evaluations –E(maxmin, S) andE(profile, S) – can be combined in
the same way as in Example 8.2. �

8.3.2 Concluding Remarks

In this chapter, we tried to show how the multi-level decision making can help to bridge
the gap between normative, game theory-based models of the reality, and adaptive mod-
els obtained through machine learning, collaborative modeling etc. Normative models
usually assume some boundary shape of the environment, while adaptive models try to
approximate the actual shape of it – and both have their advantages for an agent who
tries to make good decisions under uncertainty. Using a linear combination of both
kinds of model should make the agent play relatively safe, while being (relatively)
adaptive at the same time. Results of the experiments from Section 8.2 support the
hypothesis to some extent.

On the other hand, they also show that several pieces of the puzzle are still missing
if we want to use the decision making scheme effectively. A good confidence measure
is necessary; we may also need a better exploration-exploitation scheme. Most impor-
tantly, an efficient way of acquiring a “profile” of the reality is crucial here. This seems
most evident in the context of Section 8.3: the examples include hundreds of states,
and some courses of action can be costly or even irreversible. Computing such a large
(adaptive) model of the reality (i.e. determining all the weights, probabilities etc.) via
straightforward Q-learning or Bayesian updating, for instance, does not seem feasible
at all. One way that may help to overcome this problem is to reduce the state space by
simplifying the characteristic of the domain. Collaborative modeling, where a model of
an agent’s behavior in a particular state can be “transferred” from models for agents or
states we consider similar, and for which we already obtained a good predictor, seems
also promising. As both ideas comprise a non-trivial task, we do not pursue them in
this thesis, leaving them rather for future research.
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Chapter 9

Conclusions

SYNOPSIS. The story draws to its end. Models of reality, modal logics, confi-
dence measures, and planning algorithms have made their appearances in this
book so far. We considered servers and clients, card games, trains, tunnels,
malicious users, and simple e-banking agents. Even James Bond dropped in
for a moment to show us how we can save the world when it is really required.
Now the time comes to conclude that the show was worthwhile. And, of course,
there are fair chances for a sequel.

9.1 A Short Look Backwards

This thesis considers several aspect of agents and their communities. As we explained
in Chapter 1, we primarily seemulti-agent systemsas a metaphor for thinking and
talking about the world, and assigning it a specific conceptual structure. This comes
suspiciously close to our view of logic-based approaches toArtificial Intelligence and
Cognitive Science. The main appeal of formal logics lies – inour opinion – in the fact
that it provides us with a vocabulary to talk and think about reality. The vocabulary
is precise and demands precision when we use it to define conceptual structures that
are meant to model the phenomena we want to investigate. We are also provided a
methodology that enables to investigate the consequences of our conceptual choices in
a systematic way. The first part of the thesis presents thus anattempt to study multi-
agent systems through suitable logics and their models, in the hope that this can induce
some informal understanding of the phenomenon as well.

We chose Alternating-time Temporal Logic (Alur et al., 2002) as the basis for our
studies, because it builds on a number of notions we considercrucial for multi-agent
systems. On one hand, it refers to the game theory concepts ofagents, teams, actions,
choices, strategies and their outcomes; on the other hand, the temporal layer of ATL
allows one to refer to situations and their changes, and to alternative courses of ac-
tion. The formal investigation of ATL produced equivalenceresults for the different
semantics of this language, and proved that Coalition Logic(Pauly, 2001a) – another
recent logic of strategic ability – is strictly subsumed by ATL. However, we tried also
to show ATL and its extensions as a part of a bigger picture: tracing its inspirations,

207
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and pointing out similarities to other languages. Moreover, the extended languages
themselves: ATEL, ATOL, DATL etc. show that ATL can be seen asa generic frame-
work for multi-agent systems, which we can augment with additional concepts when
we need them.

Studies on Alternating-time Temporal Epistemic Logic ATEL(van der Hoek and
Wooldridge, 2002) proved especially insightful. On one hand, ATEL provides our mod-
els with the notion of (qualitative) uncertainty, and toolsto describe agents’ knowledge
about the actual situation – and it is hard to imagine a good representation of agents that
neglects these issues. On the other hand, the strategic and epistemic layers in ATEL are
combined as if they were independent. They are – if we do not ask whether the agents
in question are able to identify and execute their strategies. They are not if we want
to interpret strategies asfeasible plansthat guarantee achieving the goal. Intuitively,
strategic abilities of an agent shouldheavilydepend on his knowledge – it looks very
simple when we put it like this. But it took much time and a few failed attempts before
we arrived at the right conclusions, and proposed ATOL and ATEL-R as remedies.

After devoting much of the thesis for studies on existing logics for agents, we pro-
posed a new extension of ATL ourselves. DATL extends ATL withthe deontic notion
of obligation. This time, the strategic and deontic layers seem to bereally orthogonal.
Is that so? Let us leave it as a challenge for the new, forthcoming wave of avid young
researchers.

As repeatedly stated throughout the thesis, we tried to focus on models, and the
way they (together with the semantic rules) reflect our intuitions about agents acting
in multi-agent environments.Decision makingwas one of the most prominent issues
here. Apart of investigating cooperation modalities and their semantics as the formal
counterpart of the decision making process, we devised an efficient procedure for multi-
agent planning to achieve goals that can be expressed with ATL formulae. We also
proposed a satisfiability preserving interpretation of ATEL, BDICTL and DATL into
ATL, thus extending the scope of the planning algorithm to goals that include epistemic
and deontic properties as well. Unfortunately, ATOL and ATEL-R turned out to be
intractable. Thus, such an efficient procedure does not exist in these cases.

The theme of decision making provided a link to the second part of the thesis, in
which a concept of multi-level modeling of reality was proposed, where various mod-
els of the same environment could be combined to improve decision making. Our
main motivation was to try to endow agents with some way of using secure game
theory-based models (ATL models, for instance) together with adaptive models ob-
tained through machine learning. After trying several confidence measures, the one
based on logarithmic loss function produced some promisingresults – and, finally, ex-
periments with simulated software agents showed that indeed the agents can try to be
generally adaptive and relatively secure at the same time.

So, what have we learned about agents? Did we enhance our “informal understand-
ing” of the way they act in the world and make their decisions?It is hard to say it with
logic, and ambiguous to say it without. One thing is certain:more and more research
paths can be seen, open and unexplored yet.
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9.2 Into the Future

Further research on ATL and its cousins and extensions can bepursued along at least
three different dimensions:

• the theoretical dimension:

– meta-properties of the logical systems – expressive power,decidability, ax-
iomatizability, complexity of model checking etc.

– relationships between various logics and their models – equivalence, sub-
sumption, semantic interpretations and reductions of one logic into another;

• the philosophical/conceptual dimension:

– “tailoring” the logics to our intuitions about various aspects of agents and
their societies, so that we obtain formal counterparts of our “common-
sense” concepts,

– further formal investigation of the concepts, their interrelationships and in-
terference;

• the practical dimension:

– application of the techniques developed for the ATL-based logics to seek
(possibly suboptimal) solutions of more complex games,

– modeling real-life systems with models based on modal logics and game
theory,

– planning and decision making for agents in more realistic situations.

A number of specific problems and research questions, that can be seen immedi-
ately, is listed below. For some of them, the research is already going on.

1. There are several fundamental concepts in game theory, such as preference re-
lations between outcomes andNash equilibria, that are obviously seem worth
investigating in the context of concurrent game structuresand alternating-time
logics. The first step along these lines of research have already been made by
van Otterloo et al. in (van Otterloo, 2004) and (van Otterlooand Jonker, 2004).

2. Coalition effectivity models can be used for logics like ATOL, ATEL-R* and
DATL to obtain mathematically elegant semantics. Moreover, relevant equiva-
lence or subsumption results should be established betweenvarious semantics
for these logics.

3. The parallels between ATEL and BDICTL suggest that the BDI notions ofdesire
andintentioncan enrich ATEL directly, both on the syntactical an semantic level.
The issue of how these extensions carry over to ATOL and ATEL-R* can be then
investigated, too.
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4. ATL and coalition games can provide BDI models with a finer-grained structure
of action (simultaneous choices). Furthermore, the cooperation modalities can be
“imported” into the BDI framework to enable modeling, specifying and verifying
agents’ strategic abilities in the context of their beliefs, desires and intentions.
The treatment of group epistemics from ATEL can be used in theBDI logics too.

5. The authors of ATL had proposed “ATL with incomplete information” (Alur
et al., 2002) before ATEL, ATOL and ATEL-R* were ever defined.It can be
interesting to see if this earlier proposal captures the notion of players under un-
certainty in a way consistent with intuition – and how “ATL with incomplete
information” relates to the epistemic logic-based extensions studied in this the-
sis. Also, stronger languages like alternating-timeµ-calculus can be extended
to include agents beliefs under incomplete information, aswell as obligations,
requirements, desires, intentions etc.

6. In Section 4.3.2, “dynamic logic-like cooperation modalities” were briefly intro-
duced: [FA]Φ meaning “A can use strategyFA to bring aboutΦ” (or: “every
execution ofFA guaranteesΦ”). More research on this subject should follow.

7. Model checking of ATL formulae generalizes minimaxing inzero-sum (i.e. strictly
competitive) games. It can be interesting to model the non-competitive case
within the scope of ATL as well: while checking〈〈A〉〉ϕ, the opponentsAgt \A
may be assumed different preferences and/or goals than justto preventA from
achievingϕ. Then, assuming optimal play fromAgt \ A, we can ask whether
A have a strategy to enforceϕ provided thatAgt \ A desireψ. The issue of
bringing agents’ preferences into the scope of ATL has been addressed recently
in (van Otterloo, 2004), but there is still a lot of work to be done.

8. Opponents’ preferences are usually used in game theory merely to imply the
opponents’ strategy under the rationality and optimal defense assumption. Alter-
natively, we can ask about agents’ abilities if the opponents are directly assumed
to take a particular line of play. More specifically, we can ask whetherA have a
strategy to enforceϕ provided thatAgt \ A intendto bring aboutψ, or even to
execute a collective strategyFAgt\A. This can trigger an interesting discussion
about the nature of intentions: contrary to the treatment ofintention in (Rao and
Georgeff, 1991, 1995; Wooldridge, 2000) – where intentionsare in fact presented
as a special kind of desires (the ones to which the agent is more committed and
striving to satisfy them) – we feel that agents intend todo (an action) rather than
to be (in a state). This distinction closely resembles the controversy between
action-related and situation-related obligations (cf. Chapter 5). Modal logics of
intention might happen to follow the evolution of modal approaches to deontic
notions.

9. The link between ATL model checking and minimaxing can be exploited in other
ways, too. Efficient pruning techniques exist for classicalminimaxing – it may
be interesting to transfer them to ATL model checking. Various phenomena,
studied in the context of games with incomplete informationwithin game theory,
might prove worthwhile to be transfered into the framework of ATL – or rather
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ATEL and ATOL: probabilistic outcomes, best defense criteria for games with
incomplete information (Frank, 1996; Frank and Basin, 1998; Jamroga, 2001a),
non-locality (Frank and Basin, 1998), efficient suboptimalalgorithms for games
with uncertainty (Frank et al., 1998; Ginsberg, 1999) etc.

10. ATEL seems the largest relevant subset of ATEL-R* with tractable model check-
ing, but this needs to be verified. Also, the conjecture that ATEL formulae
provide strongest necessary conditions for their ATOL and “vanilla” ATEL-R*
counterparts should be checked.

11. The approximate evaluation of ATOL formulae through their ATEL necessary
condition counterparts, suggested in Section 3.4.5, strongly resembles the tech-
nique of Monte Carlo Sampling (Corlett and Todd, 1985; Ginsberg, 1999). Simi-
lar techniques, like vector minimaxing and payoff-reduction minimaxing (Frank
et al., 1998), and generalized vector minimaxing (Jamroga,2001a) can be tried
as well.

12. The “planning as ATL/ATEL model checking” approach should be eventually
applied to some real-life problems: for example, to decision making in complex
card games like bridge, security analysis, or planning for e-commerce agents.
As such domains yield usually huge sets of states, optimization techniques like
unbounded model checking (Kacprzak and Penczek, 2004) may be worth testing
in such realistic settings.

13. The interpretations presented in Sections 3.4, 3.4.6, 3.5 and 5.4.2 yield imme-
diate model checking reductions for ATEL, ATEL*, BDICTL and DATL into
simpler languages. Our intuition is that the interpretations can be adapted to
contexts other than model checking: for instance, to reduction of (general) va-
lidity of formulae. Further reduction can also be tried: forexample, it may be
possible to interpret ATEL and ATL in CTL, or at least CTL+K (i.e. CTL plus
knowledge operators).

14. We argued in Chapter 4 that the cooperation modalities should refer to the agents’
ability to identify and execute a plan that enforces a property. In order to capture
all subtleties of this approach, we introduced a number of families of modal
operators. van Otterloo and Jonker (2004) take a different line: they redefine
the semantics of existing cooperation modalities, so that –combining them with
ordinary epistemic operators – one can express the propertyof having a strategy
de re. The research is somewhat preliminary so far, but it looks very promising.
Still, it can be interesting to investigate the relationship between the language
from (van Otterloo and Jonker, 2004) on one hand, and ATOL andATEL-R* on
the other.

15. Further meta-theoretical analysis of ATOL, ATEL-R* andtheir subsets (decid-
ability, axiomatizability, decidability of model checking) is possible. Also, com-
plexity of various problems for subsets of ATEL-R* can be investigated.



212 CHAPTER 9. CONCLUSIONS

16. Theoretical properties of our “Deontic ATL”, and its relation to other existing
systems that combine deontic and temporal/strategic perspective, should be in-
vestigated. In particular, a closer study of the relationship between DATL and
the “Social Laws for ATL” approach (van der Hoek et al., 2004)– especially the
way both approaches can complement each other – should be conducted.

17. In Chapter 5, we demonstrated a number of interesting properties that relate
agents’ abilities and obligations. However, the properties are defined on the
semantic level in the general case of local obligations. It can be interesting to try
to express them in the object language as well (it may requiresome redefinition
of the semantics of deontic operators and/or cooperation modalities).

18. In “Deontic ATL”, states (or computation paths) form thepoint of reference for
obligations (we name such obligationsrequirements), while obligations can be
also understood as referring to agents’ actions or even strategies. Technically
speaking, this is not a big problem: every model can be enhanced so that each
state includes a “trace” of the most recent agents’ choices,and then we are free
to mark every tuple of choices as legal or not by determining the acceptability of
the resulting state. However, philosophically, it is a completely different view of
the notion of obligation – which can be confronted with agents’ abilities as well.

19. Introducing epistemic properties and agents’ abilities under uncertainty into DATL
seems a natural extension of the scope of both ATOL and “Deontic ATL”. Prac-
tical applications may include more realistic analysis of card games, security
analysis, trust management as well as requirements engineering.

A similar list for hierarchies of models and multi-level decision making is shorter,
but the problems it includes are not necessarily simpler:

1. In the simulations, all the agents were using very simple models of the reality,
and very simple learning methods. The performance of more sophisticated hy-
brid agents should also be studied.

2. Using smarter (for instance, 2-level or 3-level) opponents may help to make the
benefits of the proposed decision-making scheme more obvious.

3. Some experiments with human opponents can also be tried.

4. Using more complex models demands that the decision-making agent must pos-
sess more detailed knowledge as well. The hybrid agents had substantial prob-
lems with acquiring an accurate model of the reality. Thus, we may need a
better exploration-exploitation scheme. Collaborative modeling (Zukerman and
Albrecht, 2001) may also prove helpful, especially for models that include thou-
sands or millions of states.

5. The experiments showed that the confidence measures used here were not per-
fect, hence this line of research can hardly be claimed completed.

Quoting old Bilbo – “the road goes on and on”.1

1J.R.R. Tolkien,Lord of the Rings.
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List of Acronyms

AETS alternating epistemic transition system

ATEL alternating-time temporal epistemic logic

ATEL-R* alternating-time temporal epistemic logic with recall

ATL alternating-time temporal logic

ATOL alternating-time temporal observational logic

ATS alternating transition system

BDI beliefs, desires and intentionsframework

BDICTL the propositional modal logic of beliefs, desires and intentions with
CTL as the temporal layer

CEM coalition effectivity model

CGS concurrent game structure

CL coalition logicor coalition game logic

CTL computation tree logic

DATL deonticATL

DTATL deonticATL for temporal obligations

ECL extended coalition logic

MGM multi-player game model

stit the logic ofseeing to it that.
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Summary

This thesis considers some aspects of multi-agent systems,seen as a metaphor for
reasoning about the world, and providing a conceptual machinery that can be used to
model and analyze the reality in which an agent is embedded. First, we study several
modal logics for multi-agent systems; in particular, Alternating-time Temporal Logic
(ATL) is studied in various contexts. Then, a concept of multi-level modeling of reality
and multi-level decision making is proposed in the second part of the thesis.

The formal investigation of ATL yields equivalence resultsfor several different
semantics of this language, as well as a thorough comparisonof ATL and Coalition
Logic – another recent logic of strategic ability. We also study an epistemic extension
of ATL, show a satisfiability preserving interpretation of the extension into the “pure”
ATL, and demonstrate its similarities to the well known BDI logic of beliefs, desires
and intentions. After that, we point out some counterintuitive features of this particular
extension, and propose how it can be recovered. The extension can be also seen as a
generic scheme of enriching game theory-based logics with other concepts and dimen-
sions. To support this, we propose how ATL can be extended with the deontic notion
of obligation. Apart of investigating cooperation modalities and their semantics as the
formal counterpart of the decision making process, we devise efficient procedures for
multi-agent planning to achieve goals that can be expressedwith formulae of ATL and
some of its extensions.

In the second part of the thesis, a concept of multi-level modeling of reality is pro-
posed, where various models of the same environment can be combined to improve
decision making. Our main motivation is to endow agents withsome way of using
secure game theory-based models together with adaptive models obtained through ma-
chine learning. We try several confidence measures, and verify the whole idea through
experiments with simple software agents in an e-banking scenario.
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Samenvatting

Dit proefschrift behandelt een aantal aspecten van muti-agent systemen, welke gezien
kunnen worden als een metafoor voor redeneren over de wereld, en bieden tevens con-
ceptuele gereedschappen aan die gebruikt kunnen worden om de realiteit waarin de
agent zich bevindt te modeleren en analyseren.

Als eerste worden verschillende modale logica’s voor multiagent systemen bekeken,
in het bijzonder wordt de Alternating-time Temporal Logic (ATL) in verschillende con-
texten bestudeerd.

Vervolgens wordt een concept van multi-level modellering van de realiteit en multi-
level decision making voorgesteld in het tweede deel van hetproefschrift.

Het formele onderzoek van ATL leidt tot resultaten van equivalentie voor verschei-
dene semantieken van deze taal alsmede een grondige vergelijking van ATL en Coali-
tion Logic, een andere recente logica van strategische mogelijkheden.

We bestuderen ook een epistemische uitbreiding van ATL, laten een satisfiability
behoudende interpretatie van de uitbreiding in de “pure” ATL zien en demonstreren de
gelijkenis met de bekende BDI logica van geloof, verlangensen intenties.

Hierna stippen we enige tegenintuitieve kenmerken van dezespecifieke uitbreiding
aan en doen een voorstel hoe deze kunnen worden opgelost. De uitbreiding kan ook
gezien worden als een generiek schema voor verrijking van opspeltheorie gebaseerde
logica’s met andere concepten en dimensies.

Om dit te ondersteunen doen we een voorstel hoe ATL uitgebreid kan worden met
de deontische notie van verplichting. Naast het onderzoek naar de samenwerking van
modaliteiten en hun semantiek als formele tegenhanger van het besluitvormingsproces,
laten we efficiente procedures zien die doelgerichte multi-agent planning uitdrukken
geformuleerd in ATL en enkele uitbreidingen daarvan.

In het tweede deel van de thesis wordt een concept van multi-level modellering van
de werkelijkheid voorgesteld, waarmee verschillende modellen van de werkelijkheid
kunnen worden gecombineerd om zo het besluitvormings proces te verbeteren. Onze
belangrijkste motivatie is om agents uit te rusten met een manier om veilige spelthe-
oretische modellen en middels machine learning verkregen adaptieve modellen naast
elkaar te kunnen gebruiken.

Verschillende betrouwbaarheidsmaten worden uitgetest enhet geheel wordt gever-
ifieerd met behulpvan experimenten met eenvoudige softwareagents in een e-banking
scenario.
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Streszczenie

Tematem niniejszej pracy sa̧ niektóre aspekty systemów wieloagentowych, widzianych
jako sposób modelowania świata i rozumowania na temat otaczaja̧cej rzeczywistości.
Na pierwsza̧ czȩść pracy składa siȩ studium wybranych logik modalnych do opisu
środowisk agentowych – a zwłaszcza tak zwanej logiki temporalnej czasu alternuja̧cego
(Alternating-time Temporal Logic, ATL). Druga czȩść pracy przedstawia koncepcjȩ
wielopoziomowego modelowania rzeczywistości i wielopoziomowego podejmowania
decyzji.

Badania nad ATL wykazuja̧ równoważność kilku alternatywnych semantyk tego
jȩzyka. Coalition Logic, logika pokrewna ATL – i równieżinspirowana teoria̧ gier –
okazuje siȩ operować tym samym aparatem konceptualnym(lecz mniejsza̧ siła̧ wyrazu).
Istotnym elementem pierwszej czȩści pracy sa̧ studia nadepistemicznym rozszerze-
niem ATL, zwanym ATEL: demonstrujemy jak interpretowac formuly i modele ATEL
w “czystym” ATL (z zachowaniem spełnialności i prawdziwo´sci formuł w modelach),
a także porównujemy ATEL ze znanym formalizmem BDI (beliefs, desires and in-
tentions: przekonania, pragnienia i intencje). Nastȩpnie wskazujemy pewne aspekty
ATEL, które wydaja̧ siȩ być sprzeczne z intuicja̧, i proponujemy dwa alternatywne
sposoby “naprawy” tej logiki.

Logiki typu ATL można w podobny sposób rozszerzać takżeo inne aspekty agentów
i ich interakcji. Jako przykład posłużyć może zaproponowany w niniejszej pracy “De-
ontyczny ATL”, rozszerzaja̧cy oryginalna̧ logikȩ o deontyczne pojȩcie zobowia̧zania.
Jako że modalności kooperacyjne (leża̧ce u podstawy ATL) stanowia̧ de facto formalny
odpowiednik procesu podejmowania decyzji, niniejsza praca prezentuje też efekty-
wne algorytmy planowania w środowiskach wieloagentowychdla celów daja̧cych siȩ
wyrazić formułami ATL i niektorych jej rozszerzeń.

Przedmiotem drugiej czȩści pracy jest koncepcja wielopoziomowego modelowa-
nia rzeczywistości: jeśli agent posiada kilka alternatywych modeli rzeczywistości, w
niektórych sytuacjach może on uzyskać lepsze rezultaty, używaja̧c kombinacji wszys-
tkich tych modeli, niż wybieraja̧c tylko jeden z nich i rezygnuja̧c z pozostałych. Taki
schemat podejmowania decyzji może, miȩdzy innymi, posłużyć agentom do znaleziena
rozsa̧dnej równowagi pomiȩdzy bezpiecznymi rozwia̧zaniami opartymi o teoriȩ gier, a
adaptywnymi modelami świata uzyskanymi poprzez maszynowe uczenie. Poszukuja̧c
takiego punktu równowagi, wypróbowujemy kilka alternatywnych miar zaufania, by
w końcu zweryfikować przedstawiana̧ ideȩ przy użyciu symulacji prostej gry opartej o
scenariusz bankowości elektronicznej.
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