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Chapter 1

Introduction

Every book tells a story — even if the story sometimes meanaed the book
is full of mathematical symbols. So, let the story begin.

1.1 Agentsin Action

Recent years saw a new discipline emerging within the bragd &f Artificial In-
telligence. Multi-agent system@Meiss, 1999; Wooldridge, 2002) are a philosophical
metaphor that induces a specific way of seeing the world, aakemus use agent-
oriented vocabulary when describing the phenomena we mested in — rather than
offering a ready-to-use collection of tools and impleméataguidelines. Thus, while
some researchers present multi-agent systems as a nevigpafad computation or
design, we believe that primarily multi-agent systems farmew paradigm fothink-
ing andtalking about the world, and assigning it a specific conceptual strac They
offer a bunch of intuitions that can be useful when the realibund seems to include
multiple autonomous entities. Obviously, such intuitiomsy be useful when studying
computational systems and societies of artificial ageats, YWe can see components
of such systems as being autonomous, perhaps intelligefihitdly active or even
pro-active... having some goals and beliefs... et cetera.

A multi-agent system is an environment, inhabited by midtgggents. What is an
agentthen? Despite numerous attempts to answer this questioaremeot quite sure
if it is well-formed, since it asks in fact for a precise defiiom of the term “agent”. The
metaphor of a multi-agent system seems to build on the iotuthatwe are agents —
we, humans — and that other entities we study can be just ke some extent. The
usual properties of agents, like autonomy, pro-activer&ss seem to be secondary:
they are results of an introspection rather than primamnyragsions we start with. Thus,
there seems to be no conclusive definition of an agent — indeedwve ever come up
with such a definition? It is hard tefineourselves.

We are not going to define agents nor multi-agent systemsdrnitasis. We would
rather like to look for a vocabulary and a conceptual stmgcthat approximate our
intuitions about agents and their communities in a good way.

The focus of this thesis is on agents’ decision-making. Ehike theme that links

15



16 CHAPTER 1. INTRODUCTION

the whole “story” together, through all its unexpected adesof direction, and side-
line digressions. Agentact in their environments, and somehow they should be able
to choose the best actions. Or reasonably good actionsstt lRkns, strategies, de-
cisions, choices: these are synonyms that refer to an ageatdroup of agents) ex-
ecuting some action. We would like to exploit the insightytlean provide. How can
they be represented? In what way can they depend on the sigenttnt view of the
world? Because, in order to consider some plan best (or meégpgood), the agent
must have some (implicit or explicit) representation ofédrigzironment of action.

The title of the thesis has a double meaning. There are méieyeatit models that
we can use to represent the same reality, and some of themesenped and studied
in the first part of the thesis. Moreover, having multiple gating models at hand,
agents may be better off combining them in some way, instéatiaking to one of
the models and disregarding the others — and this is whaettens part of the thesis
proposes.

1.2 Models for Agents in Multi-Agent Environments

An agent must have a model of reality in order to make his dwwis The same en-
vironments and situations can be modeled using many differeethodologies and
conceptual apparata. In particular, the models caadaptive— changing their con-
tents, structure, or the way they influence the agent’s esawer time — onormative
— based on some fixed assumptions about the nature of thiyrealil the right ways
to proceed. The first kind of models is usually obtained through somesomachine
learning, statistical analysis etc.; if the agent can bujdaccurate knowledge about
the environment, he can certainly benefit from adapting tias to it. Normative
models usually assume the worst possible response froneshefrthe world. In con-
sequence, they refer to the lower bound of the agent’s iglsiliand provide the agent
with means to plagaferather than brilliant.

Each kind of models proposes a set of notions that can be asaglore the reality
and reason about it. This thesis is concerned with logietdésormative) models of
multi-agent systems, and the way these models can be codhbitie adaptive solu-
tions, so the agents can be more flexible in their actionslewgtill being relatively
secure. In consequence, the thesis includes two main trablesfirst track is focused
on qualitative models of multi-agent systems, that drawinagion from modal logics
of processes as well as classical game theory. The secafdieals with a concept of
multi-level modeling of reality, where various models oétbame environment can be
combined to improve decision making.

1We use the term “normative” in the sense that the models \eatzbut here (e.g. game theory models)
impose soma priori assumptions about the behavior of the environment in arostdtive way, and pre-
scribe fixed rules of “best behavior” for the agent. We do neaam however, that the rules and assumptions
refer in any way to moral norms, social norms or any other tie@oncept.
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1.2.1 Modal Logics and Multi-Agent Systems

Logic-based approaches to Artificial Intelligence seemea@iesently undervalued by
most Al practitioners. This owes much to the fact that logasvbelieved to deliver

the ultimate solution for all basic Al problems for a long &mand the disappoint-
ment which came after that. Indeed, it is hard to claim nowweacan use logic-based
tools (rule-based systems, for instance) to obtain agkatbthave in a satisfying way.
Despite recent development of logic-based tools for magent systems, their appli-
cations restrict mainly to artificial “toy worlds”, as oppaabto the real world which is

usually fuzzy, noisy and, most of all, hard to characteriith & simple mathematical
model. However, we believe that mathematical logic — whitebably not the best tool

for engineering — should still be important in Al researchdbleast two reasons.

First, it provides us with a vocabulary fealking about systems, and gives the
vocabulary precise meaning via models and semantic rulese Mhportantly, mathe-
matical models provide a conceptual apparatusHimkingabout systems, that can be
as well used outside mathematical logic. The second reasihrai creating a formal
model of a problem makes one realize many (otherwise intpAsisumptions under-
lying his or her approach to this problem. The assumptioe®#en given a simplistic
treatment in the model (otherwise the models get too comjpldre dealt with), yet
their implications are usually worth investigating everitirs form. Moreover, having
made them explicit, one can strive to relax some of them ailiduse a part of the
formal and conceptual machinery — instead of designingieolsicompletely ad hoc.

Part | of the thesis investigates such oversimplistic, hanmkse, and yet highly in-
teresting models of multi-agent systems. We focus on mod@d$ with their clear and
intuitively appealing conceptual machinery pdssible world semantiogkaKripke
semantics The logics we investigate draw from the long tradition aflpsophical
studies on human behavior and the behavior of the world irignthat yielded epis-
temic logic, deontic logic, temporal logic etc. In partiaylwe investigate Alternating-
time Temporal Logic and its extensions, with their concapapparatus originating
from the classical game theory. As game theory emerged ifteimt to give precise
meaning to common-sense notions like choices, strategigsnality — and to provide
formal models of interaction between autonomous entitieseems a perfect starting
point for modeling and reasoning about multi-agent systems

It should be pointed out that the modal logics for multi-aggystems (and their
models) can be used in at least two ways. First, we may swivegresent an objec-
tive observer’s view to a multi-agent system with the instemts they provide. This
is the viewpoint we usually adopt while talking about “sffieeition”, “design”, “veri-
fication” etc. The observer (e.g., the designer or the adstnator of the system) may
collect all relevant aspects of the system in a Kripke moaied] then derive or verify
certain properties of this model. Or, the designer can §pscime desirable properties
of a system, and then try to engineer a model in which thoseepties hold.

On the other hand, the models can be also used to expeeggectiveview of an
agentto the reality he is acting in. In such a case, the ag@niepresent his knowledge
about the world with a model, and ask about properties of thddwia the properties of
the model, or, more importantly, look for a strategy that esakome desirable property
true in the model.
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1.2.2 Relaxing the Assumptions to Obtain Adaptivity

Logic-based models (or, more generally, mathematical isp@ee widely used, and
their importance goes well beyond mathematical theorieswoifputing. Decision trees,
control flow charts, data flow charts, Q-models, Bayesian artl classifiers, statisti-
cal models, fuzzy sets and fuzzy measures (including ptissénd probability mea-
sures), and even neural networks to some extent — they alhdeb this class. It is
probably the inflexibility of decision-making procedurg@spvided by “pure” math-
ematical methods, that seems to yield severe limitationghfe applicability of the
methods to real-life problems. The machine learning apgreaphasizes the impor-
tance of flexibility and robustness of agents, through aengtt to obtain an accurate
and up-to-date model of the world. Models aaptivenot because of their inherent
structure, but because of the way they are built up and maéeda

An agent can learn to exploit weaknesses of his adversacpreerge with a dy-
namic, possibly indifferent environment, or to learn trastl cooperation with other
agents. In most cases the representation of the environsngmantitative, not qualita-
tive — hence the goal of the agent is to maximize his numeréwaard (payoff, utility)
in the long run. The popular decision making criterion of @xied payoff maximiza-
tion (with respect to the agent’s current knowledge aboeiteivironment) shows yet
another influence of the mathematical methods from game\ttze decision theory.
However, no learning algorithm can guarantee an accuratkehad the environment,
and that is why game theory solutions are still attractivemvha wrong decision can
bring disastrous results. So, we try to relax the game thassymptions in Part Il of
the thesis, in a way that does not give up the security offeyegiame theory-inspired
solutions completely.

1.3 Structure of the Thesis

The thesis is divided into two parts. Part | presents seweoalal logics that can be used
to model and describe agents and their communities. We di@ugirmilarities between
various languages that have been already proposed, andmsiuctthe conceptual ma-
chinery they provide matches our intuitive understandihtne notion of agency. As
agents are, most of all, supposed to act, we use the “plarasngodel checking”
paradigm to obtain a planning algorithm that can be usedmitiese frameworks.

Part Il presents an idea of hierarchical modeling of thetse@nd multilevel deci-
sion making. In the presentation, we focus on the way theddede used to combine
the adaptivity of machine learning approaches with the rsigcoffered by normative
solutions similar to the ones presented in Part I.

1.3.1 Partl: Around Alternating-time Temporal Logic

We use Chapters 2 and 3 to draw parallels between severasltwit have been re-
cently proposed to reason about agents and their abililibese are: coalition game
logics CL and ECL introduced by Pauly in 2000, alternatimgettemporal logic ATL

developed by Alur, Henzinger and Kupferman between 1992808, and alternating-
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time temporal epistemic logic ATEL by van der Hoek and Woinlge (2002), as well
as the modal logic of beliefs, desires and intentions (BPthposed by Rao and
Georgeff in mid-90s. The focus in this part of the thesis isnoodels: alternating
transition systems, multi-player game models (alias coeot game structures) and
coalition effectivity models turn out to be intimately ridd, while alternating epis-
temic transition systems and BDI models share much of theiogophical and formal
apparatus. Our approach is constructive: we present wayartsform between differ-
ent types of models and languages.

First, Alternating-time Temporal Logic and Coalition Logire introduced and dis-
cussed in Chapter 2. We present the syntax and semantiasefltigics, and show that
both their languages and models have very much in commohelaodnceptual sense,
both CL and ATL build upon branching-time temporal logideeliCTL; they both in-
corporate the game-theoretic notion of strategy, and sklabout what properties can
be infallibly enforcedby which agents or teams. In the formal sense, important sub-
classes of ATL and CL models can be proved isomorphic, andamgycove that the
expressive power of CL is covered by ATL. The chapter is aothet! with a simple
adaptation of the ATL model checking algorithm so that it G&nused for decision
making in environments inhabited by multiple agents.

Then, in Chapter 3, Alternating-time Temporal Epistemigicds discussed. This
logic enriches ATL with an epistemic component to enable efiad (and reasoning
about) agents’ beliefs under uncertainty. We present a éemdl results, relating the
conceptual and formal apparatus of ATEL to to these of ATL tnedBDI framework,
and allowing to use the planning algorithm from Chapter 24BEL and BDI agents as
well. Unfortunately, ATEL semantics turns out to be couimiesitive in some respects.
In Chapter 4 we show that the notion of allowable strategyeundcertainty should be
defined with some caution, and we point out the differencevdeih an agent knowing
that he has a suitable strategy and knowing the stratedy. itd&e also suggest that
the agents should be assumed to have similar epistemiciteain the semantics of
both strategic and epistemic operators. Trying to implantegse ideas, we propose
two different modifications of ATEL. The first one, dubbedekiating-time Temporal
Observational Logic (ATOL), is a logic for agents with boeadecall of the past. The
second, ATEL-R*, is a framework to reason about both pedacdtimperfect recall.

The generic framework of ATL can be extended along varioneedisions. Another
extension of ATL — this time with the notion of agents’ obliigas — is proposed and
discussed in Chapter 5. The way both frameworks are comténsaightforward:
we add deontic accessibility relations to ATL models, anordie operators to the lan-
guage of ATL (an additional operatdi? is proposed for “unconditionally permitted”
properties, similar to the “all | know” operator from episte logic). Some formal
results are presented; however, we rather focus on deratingthow obligations of
agents can be confronted with their abilities.

1.3.2 Partll: Security vs. Adaptivity, Multilevel Decision Making

Chapter 6 opens the less logically-oriented part of theighdsis suggested that an
agent does not have to stick to a single model of the reatigtead he can possess a set
of complementary beliefs, both learned and assumed, antheseproportionally to
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the confidence he has in them. A hierarchy of beliefs for amtiggoroposed here, to-
gether with a decision making scheme. Chapter 7 reportesearch on a confidence
measure that suits the decision making based on hierarwhiesdels. We conjecture
that there are roughly two sources of doubt that should dserthe agent’s confidence
in his own beliefs about the world. First, the agent may hawdittle data. This shows
the need for a confidence measure in an obvious way: whenwagefaigent starts
interaction with a completely new user, for instance, hievidedge about the user is
virtually none — yet it is utilized in the same way by most altfons regardless of the
number of learning steps that have been taken so far. Nex¢rtiironment might have
changed considerably, so the data do not reflect its curhates The agent can cer-
tainly benefit from detecting conspicuous changes of pattethe user’s behavior, and
acting more cautiously in such situations. In order to cagptese phenomena, confi-
dence measures based on aggregate variance of the estmratioied by the learning
process, and on the self-information loss function are @sed and investigated, with
various degree of success.

Chapter 8 presents some experimental results to suppadeheThe experiments
consisted of the agent’s interactions with simulated Oarid 2-level agents, acting as
customers of an imaginary Internet banking service. Thidde where both tracks of
the thesis come to a joint epilogue: ATL models and plannang lze used within the
hierarchy of models to induce safer play in a more sophigétanvironment. Finally,
some concluding remarks are proposed in Chapter 9.

1.3.3 Publications

The thesis builds on a number of papers, and the material these papers was par-
tially used to form the contents of the thesis. The paperd tlhe chapters they were
used in, are indicated below:

e Chapter 2 uses a part of (Goranko and Jamroga, 2004), andofn@stmroga,
2004); also, some remarks from (Jamroga, 2003d) and (Janaod van der
Hoek, 2003) are elaborated there;

e Chapter 3 builds upon another part of (Goranko and Jamrd@ggt)2
e Chapter 4 uses most of (Jamroga and van der Hoek, 2004);

e Chapter 5 is based on (Jamroga et al., 2004);

e Chapter 6 builds upon (Jamroga, 2002b) and (Jamroga, 2001b)

e Chapter 7 presents the research already reported in (Jap2003a), (Jamroga,
2002a) and (Jamroga, 2003b);

e Chapter 8 uses the results from (Jamroga, 2003c) to sometexte
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Chapter 2

Models and Logics of Strategic
Ability

SyNoPsIs As stated in Chapter 1, we are going to study agents and their
environments within this thesis. The agents’ choicesitas) beliefs, obliga-
tions. Ways of modeling the reality around, planning, decisnaking. Using
a popular term: we are going to study agents that aaninlti-agent systems

But — what is a multi-agent system? This question can be aadvaither

in a formal, or an informal way. We investigate sevef@mal models of
multi-agent systems in this chapter, hoping that this caiuge some informal
understanding of the phenomenon as well.

2.1 Introduction

In this chapter we offer a comparative analysis of severamtlogical enterprises that
aim at modeling multi-agent systems. Most of all, t@alition game logicCL and

its extended version ECL (Pauly, 2002, 2001b,a), andAfkernating-time Temporal
LogicATL (Alur et al., 1997, 1998a, 2002) are studied. These twttobe intimately
related, which is not surprising since all of them deal wikentially the same type of
scenarios, viz. aet of agentg¢players, system components) taking actions, simultane-
ously or in turns, on a common set of states — and thus effgttamsitions between
these states. The game-theoretic aspect is very promimeoth approaches; further-
more, in both frameworks the agents pursue certain goafsthgir actions and in that
pursuit they can forneoalitions In both enterprises the objective is to develop formal
tools for reasoning about such coalitions of agents and ditdity to achieve specified
outcomes in these action games.

The study of Alternating-time Temporal Logic and coalititmgic, presented in
this chapter, forms a basis for the first part of the thesi [dgics have clear possible
worlds semantics, are axiomatizable, and have some ititegesomputational prop-
erties. Even these features alone may make them attraotivaelbgician. However,
our motivation goes much beyond that. The logics are undegui by a clear and in-

23
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tuitively appealing conceptual machinery for talking ahahking about systems that
involve multiple autonomous agents. The basic notiong] beee, originate from clas-
sical game theory, which emerged in an attempt to give pgeuisaning to common-
sense notions like choices, strategies, or rationalityd-tarprovide formal models of

interaction between autonomous entities, that could be instirther study. Thus, the
notions and models were meant to describe real-life phenartiat occur in commu-
nities of individual and collective agents (e.g., compahién fact, game theory have
always been considered as much a part of mathematics as jdast ®f economics

(recall the title of the book by von Neumann and Morgensttrat gave birth to the

whole discipline: “Games iEconomidBehavior”).

Of course, the treatment of interaction, given by von Neumafhorgenstern and
Nash,is oversimplistic, and its fundamental philosophical megdtsfalso been ques-
tioned? One may even argue whether modeling of intelligent agerdstlagir inter-
action can be done with the tools of mathematics and forngitlat all (Winograd
and Flores, 1986; Pfeifer and Scheier, 1999). However,ngaaiformal model of a
problem makes one realize many (otherwise implicit) asgiong underlying his or
her approach to this problem. Then — we can study implicatafrthe assumptions,
and accept them or revise them (the way we do in Chapter 4)awextend the mod-
els with additional notions (like the notions of knowledgelabligation in Chapters 3
and 5), or we can strive to relax some of the assumptions irsgeiswatic way (cf.
Chapters 6, 7 and 8, where a combination of game theory-lzaskddaptive decision
making is studied). Modal logics that embody basic gamertheotions — and at the
same time build upon (and extend) branching-time tempogits, well known and
studied in the context of computational systems — seem a gfastihg point for this.

The chapter is organized as follows: first, a brief summarthefbasic concepts
from game theory and computation tree logic is offered; twenintroduce the main
“actors” of this study — logics and structures that have lreeantly proposed for mod-
eling multi-agent systems in a temporal perspective, tholy all relevant definitions
from (Pauly, 2002, 2001a; Alur et al., 1998a, 2082 Section 2.7, the relationships
between these logics and structures are investigated imeafovay. The main results
are the following:

e we show that specific classes of multi-player game modelsNig@ short) are
equivalent to some types of alternating transition systeiiss);

e we show that ATL subsumes CL as well as ECL;

e we show that the three alternative semantics for Alterigatiime Temporal Logic
and Coalition Logics (based on multi-player game modetsriaditing transition
systems and coalition effectivity models) are equivalent.

Obviously, each of the three alternative semantics for E@QLATL, investigated here,
has its own drawbacks and offers different advantages &mtjgal use. A few remarks
on this issue can be found in Section 2.7.4.

1Consider this quote from (Shubik, 1998): “Rational Behais]: greed, modified by sloth, constrained
by formless fear and justifieelk postby rationalization.”

2We make small notational changes here and there to makeftiedces and common features between
the models and languages clearer and easier to see.
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The models (and languages) of ATL and CL can be used in at teastvays.
First, they may represent an objective observer’s view tailiitagent system. This is
the viewpoint we usually adopt while talking about “spegcition”, “design”, “verifi-
cation” etc. The observer (e.g., the designer or the adiréihés of the system) may
collect all relevant aspects of the system in an MGM, and thezive or verify certain
properties on this MGM (via model checking, for instancej). tBe designer can spec-
ify some desirable properties of a system, and then try tineegan MGM in which
those properties hold (this procedure corresponds to tisfighility problem).

On the other hand, the models can be also used to exprassjectiveview of
an agent to the reality he is acting in. In such a case, thetagenrepresent his
knowledge about the world with an MGM or ATS, and ask aboupprtes of the world
via model checking of respective ATL formulae. In particukgents who use multi-
player game models or alternating transition systems caaftiérom the “planning as
model checking” idea. We show how the ATL model checking athm from (Alur
etal., 2002) can be adapted to support planning in Sectin 2.

The results from this chapter prepare the ground for sulesgqehapters. Since
ATL has strictly more expressive power than CL and ECL, westark to ATL as our
device for reasoning about agents without any loss of géityeras the three alterna-
tive semantics of ATL turn out to be equivalent, we can usentli@nd the semantic
structures behind them) interchangeably without payinghrattention to the actual
choice. This proves very convenient while defining extenideduages like ATEL,
ATOL or DATL, as well as semantic structures capable to regné agents’ beliefs,
obligations, and strategic abilities under uncertaintye Subsequent chapters propose
also how model checking for ATEL and DATL can be reduced to Afiddel checking,
yielding an efficient planning procedure for epistemic aedrtic goals, too.

This chapter builds upon a number of papers: most notablygitk@ and Jamroga,
2004), a paper co-written with Valentin Goranko from the &afrikaans Univer-
sity, and (Jamroga, 2004). Also, (Jamroga, 2003d) and @igarand van der Hoek,
2003) were used here to some extent. It should be pointechatittte main equiva-
lence/subsumption results from Sections 2.5 and 2.7 wera@y} published by Goranko
in (Goranko, 2001). A similar proof of the equivalence betwehe ATL semantics
based on alternating transition systems and concurren¢ gémctures was proposed
independently in (Jamroga and van der Hoek, 2003).

2.2 Basic Influences: Logic Meets Game Theory

ATL and CL have clearly been inspired by some fundamentatepts — coming from

both game theory and modal logics of computation — that en@binodel and reason
about situations in which no uncertainty is taken into actoWVe try to sketch the

concepts in this section.

2.2.1 Classical Game Theory

Logics of agents and action build upon several importantepts from game the-
ory, most of them going back to the 40s and the seminal book Neumann and
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Figure 2.1: Extensive and strategic form of the matchinghpehgame: the perfect
information case.

Morgenstern, 1944). We start with an informal survey of ghesncepts, following
mostly Hart (1992). An interested reader is referred to (Anmand Hart, 1992; Os-
borne and Rubinstein, 1994) for a more extensive introdandt game theory.

In game theory, a game is usually presented in its extensidastrategic form.
Theextensive forndefines the game via a tree of possible positions in the gsiaie§,
game movesahoice$ available to players, and the outcomaility or payoff) that
players gain at each of the final states. These games aréyusuatbasedi.e. every
state is assigned a player who controls the choice of themexeg, so the players are
taking turns. Astrategyfor playera specifies:’s choices at the states controlled iy

Thestrategic fornconsists of a matrix that presents the payoffs for all coratdms
of players’ strategies. It presents the whole game in a “simaj as if it was played in
one single move, while the extensive form emphasizes claarticbinformation flow in
the game.

Example 2.1 Consider a variant of the@atching penniegame. There are two players,
each with a coin: first; chooses to show the heads (actiror tails ¢), thenas does.

If both coins are heads up or both coins are tails up, themins (and gets score af
andas loses (scor®). If the coins show different sides, then is the winner.

The extensive and strategic forms for this game are showiginm&2.1. The strate-
gies define agent’s choices at all “his” nodes, and are ldbapgropriately:q;itqsh
denotes, for instance, a strategy for in which the player chooses to show heads
whenever the current state of the gamesisand tails aty,. Note that — using this
strategy -a» wins regardless of the first move from. O

Section 3.2 shows how the concepts of strategic and exeegame forms can be
extended to tackle games that involve players’ uncertaiatyell.

A general remark is in order here. The concept of coalitigaahe, traditionally
considered in game theory, where every possible coalisassigned a real number
(its worth), differs somewhat from the one considered here. In thdystve are rather
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Figure 2.2: Transitions of the variable controller/clisgstem, together with the tree
of possible computations.

concerned withqualitative aspects ofyjame structuresather than withquantitative
analysis of specifigames

2.2.2 Computational Tree Logic

Apart from game theory, the concepts investigated in thisptdr are strongly in-
fluenced by modal logics of computations, such asdbputation tree logicCTL.
CTL (Emerson, 1990; Huth and Ryan, 2000) involves severatatprs for temporal
properties of computations in transition systerqfor all pathg, E (there is a path,
O (nexttimg, & (sometimg O (alway9 and ¢/ (until). “Paths” refer to alternative
courses of events that may happen in the future; nodes orhalpabte states of the
system in subsequent moments of time along this particalarse. Typically, paths
are interpreted as sequences of successive states of @iopsit

Example 2.2 As an illustration, consider a system with a binary variatlén every
step, the variable can retain or change its value. The sdat@possible transitions are
shown in Figure 2.2. There are two propositions availableliserve the value of:
“x=0" and “x=1" (note: these are just atomic propositionss not the equality symbol
here). Then, for exampl&Ox=1 is satisfied in every state of the system: there is a
path such thax will have the value ofl at some moment. However, the above is not
true foreverypossible course of actiomAOx=1. O

It is important to distinguish between tkemputational structuredefined explic-
itly in the model, and théehavioral structurgi.e. the model of how the system is
supposed to behave in time (Schnoebelen, 2003). In manyotainpodels the com-
putational structure is finite, while the implied behavicstiucture is infinite. The
computational structure can be seen as a way of definingebeofrpossible (infinite)
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computations that may occur in the system. The way the caatipogl structure un-
ravels into a behavioral structure (computation tree) amshin Figure 2.2, too.

2.2.3 Other Logics of Action and Agency

The logics studied here have a few things in common. Theyndéeaded for reasoning
about various aspects of multi-agent systems and muljieplgames, they are multi-
modal logics, they have been obviously inspired by gamerthaod they are based on
the temporal logic approach. A number of other proposatd) sis the dynamic logic-
basedntention logic(Cohen and Levesque, 1990), the KARO framework (van Linder
et al., 1998) or thelynamic epistemic logigvan Benthem, 2001), will not be discussed
here. A broader survey of logic-based approaches to mgétivesystems can be found
in (Fagin et al., 1995) and (van der Hoek and Wooldridge, 2D03

One related body of work, however, should be briefly mentiomamely, the “stit”
logic —the logic ofseeing to it tha{Belnap and Perloff, 1988; Belnap, 1991). Such log-
ics contain amgentivamodality, which attempts to capture the idea of an ageasing
some state of affairs. This modality, typically writtgrstit ], is read as “agentsees
to it thaty”. The semantics of stit modalities are typically giverjasit ] iff i makes
a choicec, andy is a necessary consequence of cheigee., ¢ holds in all futures
that could arise throughmaking choice:). A distinction is sometimes made between
the “generic” stit modality and theéeliberatestit modality “dstit” (Horty and Belnap,
1995); the idea is thatdeliberately sees to it thatif [i stit ] and there is at least one
future in whichy does not hold (the intuition being thats then making aleliberate
choicefor ¢, asp would not necessarily hold if did not make choice). The logics
of ATL and CL, which we study in the following sections, emlyabmewhat similar
concerns. However, they are underlain by fundamentalfgidint semantic constructs.
Moreover, stit formulae assert that an ageakes particular choice, whereas we have
no direct way of expressing this in ATL nor CL.

2.3 Coalition Logics and Multi-Player Game Models

Coalition logic (CL), introduced in (Pauly, 2001b, 2002), formalizes reasg about

powers of coalitions in strategic games. It extends clasgimpositional logic with a
family of (non-normal) modalitiegA], A C Agt, whereAgt is a fixed set of players.
Intuitively, [A] means that coalitiorl canenforcean outcome state satisfying

2.3.1 Multi-Player Strategic Game Models

Game framegPauly, 2002), represent multi-player strategic gamesevbets of play-
ers can form coalitions in attempts to achieve desirableanés. Game frames are
based on the notion of strategic game form- a tuple(Agt, {3, | a € Agt}, Q,0)
consisting of:

e a non-empty finite set aigentsor player9 Agt,
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<reject,set()> <reject,set()>
<reject,setl> <réject,setl>
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x=0 <accept,set()> x=1

Figure 2.3: Transitions of the variable controller/clisgstem.

e a family of (hon-empty) sets aictions(choices strategie$ >, for each player
a € Agt,

e a non-empty set dftatesQ),

e anoutcome function : [],.,.. ¥« — @ which associates an outcome state in
@ to every combination of choices from all the players. Bgoédlective choice
o4, we denote a tuple of choicés,).c (one for each player from C Agt),
and we writeo(o 4, 0441\ 4) With the presumed meaning.

Remark 2.1 Elements of set, were originally calledstrategiesn (Pauly, 2001b,
2002). Note that this notion of a “strategy” is local, wrapgp@to one-step actions. It
differs from the notion of a “strategy” in an extensive gammf (used in the semantics
of ATL) which represents a global, conditional plan of action. To& confusion, we
refer to the local strategies aactionsor choices and use the terrgollective choice
instead ofstrategy profildrom (Pauly, 2002) to denote a combination of simultaneous
choices from several players.

Remark 2.2 A strategic game form defines the choices and transitionsadla at a
particular state of the game. If the identity of the stategloet follow from the context
in an obvious way, we use indices to indicate which statertfey to.

The set of all strategic game forms for playégs over states) is denoted by“ggt.

A multi-player game fram#or a set of playerd.gt is a pair(@Q, v) wherey : Q — Fégt

iS a mapping associating a strategic game form with eacé sta). A multi-player
game mode(MGM) for a set of players\gt over a set of propositiont is a triple

M = (Q,~, ) where(Q,~) is a multi-player game frame, and: Q — P(II) is a
valuationlabeling each state frofp with the set of propositions that are true at that
state.

Example 2.3 Consider a variation of the system with binary variabl&om Exam-
ple 2.2. There are two processes: the controller (or sepvean enforce the variable
to retain its value in the next step, or let the client chamgevialue. The client can
request the value of to be0 or 1. The players proceed with their choices simulta-
neously. The multi-player game model for this system casgi two game forms,
defining choices and transitions for statgsandq; respectively; the states and tran-
sitions of the system as a whole are shown in Figure 2.3. Agarshould make the
distinction between computational and behavioral stmestu The multi-player game
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Figure 2.4: The tree of possible computations (assumirtggthia the initial state).

model unravels into a computation tree in a way analogoudtor@odels (Figure 2.4).
O

2.3.2 Coalition Logic

Formulae of CL are defined recursively as:

p:=p|-p|eVy|[Ap.

wherep € II is a proposition, andl C Agt is a group of agents. Every proposition
can be true in some states of the system, and false in thesptherexact truth val-
ues for a particular multi-player game model are given by functionr. Coalitional
modalities|A] are the novelty here: the informal meaning behiAf is that agents!
can cooperate to ensure that the outcome of the (one-stey® sgtisfies.

Formally, the semantics of CL can be given via the clauses:

M,gE=p iff p € w(q) for atomic propositiong;
M.qE—p it M,q¥ ¢

M,qE eV iff M,qEq@orM,q =1

M, q = [A]e iff there is a collective choice 4 such that for every collective
choiceo g\ 4, We haveM, 0,(04, 0xgt\a) = @

Example 2.4 Consider the variable client/server system from Exam@e Zhe fol-
lowing CL formulae are valid in this model (i.e. true in evetate of it):

1. (x=0 — [s]x=0) A (x=1 — [s]x=1) : the server can enforce the valuewoto
remain the same in the next step;

2. x=0 — —[¢|x=1: ¢ cannot change the value frabrto 1 on his own;

3. x=0 — —[s]x=1: s cannot change the value on his own either;
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4. x=0 — [s, ¢|]x=1: s andc can cooperate to change the value.

2.3.3 Logics for Local and Global Effectivity of Coalitions

In CL, operatorgA] can be seen as expressingal effectivityof coalitions, i.e. their
powers to force outcomes in a single game. In this sense, @lbeahought of as
reasoning aboutrategic game formsPauly extends CL to thExtended Coalition
Logic ECL in (Pauly, 2001b), with operators for iteratigéobal effectivityof agents.
[A*]p says that coalitiod has a collective strategy to maintain the truthyofn a
collection of gameplayed repeatedly ad infiniturAlternatively, we can see operators
[A] as a formalization of reasoning about a single move in a (plys:iore complex)
game, andA*] as referring to an analysis of the entire game. In this castd,®L and
ECL formalize reasoning about different aspectsxiénsive game formepresenting
sequences of moves, collectively effected by the playetias.

Since ECL can be embedded as a fragment of ATL (as presenteekction 2.5),
we will not discuss it separately here.

2.4 Alternating-Time Temporal Logic and Its Models

Game-theoretic scenarios can occur in various situatmmespf them beingpen com-
puter systemsuch as computer networks, where the different componamntsct as
relatively autonomous agents, and computations in sudersgsare effected by their
combined actions. ThAlternating-time Temporal LogicATL and ATL*, introduced
in (Alur et al., 1997), and later refined in (Alur et al., 1992802), are intended to
formalize reasoning about computations in such open systemch can be enforced
by coalitions of agents, in a way generalizing the logics Gild CTL*.

2.4.1 The Full Logic of ATL*

In ATL* a class ofcooperation modalitieg A)) replaces the path quantifieEsandA.
The common-sense reading(Qf ) is:

“The group of agents A have a collective strategy to enforce ® re-
gardless of what all the other agents do”.

® can be any temporal formula that refers to properties of b (st calledpath for-
mulg). A dual operatoif A] can be defined in the usual way p$]® = —(A))~®P,
meaning thatd cannot avoid® on their own. The original CTL* operatois andA
can be expressed in ATL* witl{Agt)) and (&) respectively, but between both ex-
tremes one can express much more about the abilities otpkatiagents and groups
of agents. ATL* inherits all the temporal operators from CTLO (nexttimg, <
(sometimg O (alway9 and ¢/ (until).

The full, unrestricted version of Alternating-time Tempbkogic ATL* consists
of state formulae and path formulae. A state formula is orte@following:
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e p, Wherep is an atomic proposition;

e —p Orp V1), Wwherep, 1) are ATL* state formulae;

e ((A)®, whereA C Agt is a set of agents, anblis an ATL* path formula.
A path formula is one of the following:

e an ATL* state formula;

e —p Orp V1), wherep, ¢ are ATL* path formulae;

e Oy orplU, wherep, ¢ are ATL* path formulae.

The temporal operators “sometime®) and “always” 0) can be defined as:

S = TUp,and
Op = =00

2.4.2 *“Vanilla” ATL

In “vanilla” ATL (i.e. ATL without *) it is required that evey occurrence of a temporal
operator is preceded by exactly one occurrence of a cooperabdality (that is, ATL

is the fragment of ATL* subjected to the same syntactic retsdns which define CTL
as a fragment of CTL*). In consequence, only state formutaele found in ATL:

D, —p, o Vb, (ANOp, (A)Oyp, and((A)p Uy, wherep is an atomic proposition,
v, are ATL formulae, andA is a coalition of agents. Since model-checking for
ATL* requires 2EXPTIME, but it is linear for ATL, ATL is more seful for practical
applications, and we will rather focus on ATL here. Formathe recursive definition
of ATL formulae is:

pi=ple eV | (A)O¢| (A)Dp | (A)pU

The “sometime” operato® can be defined in the usual way as:

(Ao = (A)TUp.
Examples of interesting properties that can be expressbdATL include:
L (A)Oe
2. (A)be

3. 2(A)Op A=(B)Op A (AUB) Oy
4. (AU{a})Op — ({a}) O

The first of these expresses a kinccobperative livenegsroperty: coalitionA can
assure that eventually some ATL-formlavill hold. The second item then expresses a
cooperative safetgroperty: A can ensure that is an invariant of the system. The third
item is an example of what coalitions can achieve by formiiggér ones; although
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coalition A and B both cannot achieve that in the next statevill be true, if they
joined their forcesthey would have a strategy to enforgén the next state. Finally,
the last property expresses thatloes not need any partner framto achieve thatp
will hold in the next state: read as a scheme, it says thateveatl together witha
can achieve next, can be achievedioyn his own.

It should be noted that at least three different versionseaiantic structures for
ATL have been proposed by Alur and colleagues in the last /syéee earliest ver-
sion (Alur et al., 1997), includes definitions of synchroadurn-based structures and
asynchronous structures in which every transition is adletl by a single agent. The
next paper (Alur et al., 1998a) defines general structuadkedalternating transition
systemswhere agents’ choices are identified with the sets of ptessibitcomes. In
concurrent game structurdsom (Alur et al., 2002), labels for choices are introduced
and the transition function is simplified; moreover, an &dby finite set of agentégt
is replaced with sefl, ..., k}.

The above papers share the same title and they are oftenimitedectly in the
literature as well as citation indices, which may lead to smwonfusion.

Remark 2.3 The version ofATL from (Alur et al., 1997) is somewhat preliminary:
there is no concurrency possible in the models, as they artdlil to the turn-based
case only (every transition is governed by a single agenty Viersion has distinctly
less expressive power than the other two — many examplesradgtnat are not turn-
based and can be modeled with the later version&f can be found, for instance,
in (Alur et al., 2002). Therefore we will discuss only theetatersions (Alur et al.,
1998a, 2002) through the rest of the chapter.

Remark 2.4 The complexity results fokTL model checking look very attractive at
the first glance: given modél/, the set of all stateg such that)M,q = ¢ can be
computed in time)(ml), wherem is the number of transitions id/, and! is the
length of formulap (Alur et al., 2002). It should be pointed out, however — and ha
been pointed out in (Alur et al., 2002), too — that while thelgem is linearin the
size of the structurdhe structure itself can be very large. In fact, in the siesplcase
when we identify the states in the model with the combinatidvalues ofi Boolean
variables, the model ha®™ states. In other words, the model can be exponentially
large in the number of dimensions of the problem.

Consider the rocket example from Section 2.8.3, and the hpoesented in Fig-
ure 2.13. There are only three (binary) dimensions to thibpgm: the rocket can be
either in London or in Paris, its tank can be either full or etyymnd the cargo can be
in or out. A multi-player game model that describes this dionsexponentially large:
it has2? = 8 states and00 transitions. Unfortunately, the explosion is unavoidable
in the general case, although there is some ongoing researcmore compact rep-
resentation forATL domains, that does not suffer from the exponential exphosfo
states in some situations (Kacprzak and Penczek, 2004).

2.4.3 Alternating Transition Systems

Alternating transition systems — building on the concepéaltérnationdeveloped in
(Chandra et al., 1981) — formalize systems of transitiofectfd by collective actions
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of all agents involved. In the particular case of one agdme giysterh, alternating
transition systems are reduced to ordinary transitioresyst and ATL reducesto CTL.
An alternating transition systerfATS) is a tuplel’ = (Agt, Q, II, 7, §) where:

Agt = {ay, ..., a;} is a non-empty, finite set @fgents

Q is a non-empty set citates

ITis a set of (atomicpropositions

7 : @ — P(II) is avaluationof propositions, and

J:Q x Agt — P(P(Q)) is atransition functiormapping a paifstate, agent)

to a non-empty family of choices of possible next states.idibais that (¢, a) =

{Q1, ..., Qn} (Q1,...,Qn € Q) defines the possible outcomes of agenatde-
cisions at stateg, and the decisions are identified with the outcome sets. When
a chooses a s&b, € d(q, a) at stateg, he forces the outcome state to be from
Q.. The resulting transition leads to a state which is in therggction of all

Q. for a € Agt and so it reflects the mutual will of all agents. Since the sys-
tem is required to be deterministic (given the state and tfem’ decisions),
Qa, N ...NQ,, Must always be a singleton.

Example 2.5 An ATS for the variable client/server system is shown in FgQ.5.
Note that the transition system includes more states amgditians than the multi-
player game model from Example 2.3. Now, the states encalealue ofx andthe
last action madey, refers to “x=0 bys’s force”, ¢, to “x=0 by ¢'s request” etc. In
fact, no ATS with only2 states exists for this problem — we will prove this formatfly i
Section 2.7.4 (see Proposition 2.20). O

Remark 2.5 It seems worth pointing out that the way agents’ choices epeasented
(and the way they imply system transitions) is somewhatssimoi the concept ofe-
fusalsand ready setfrom (Hoare, 1985). There, ready sets of a proc&ssclude
events that can be executed By and the parallel composition of processEs and
P, yields ready sets that are intersectionsifs and P’s ready sets — although no
assumption about determinism is being made.

Remark 2.6 Note also that — despite the singleton requirement — detésmi is not
a crucial issue with alternating transition systems, asabhde easily modeled by in-
troducing a new, fictitious agent (we may call the agent “matwor “environment”).
Then we can attribute our uncertainty about the outcome téciive choices from all
the “real” players to the decisions of this additional playe

Definition 2.1 A stateqs € @ is a successoof ¢; if, whenever the system is in,
the agents can cooperate so that the next statg,is.e. there are choice set3, €
d(q1,a), for eacha € Agt such thai),.,.. Qu = {g2}. The set of successorspfs
denoted by <.

Definition 2.2 A computationin 7" is an infinite sequence of stateg;;... such that
¢i+1 1S @ successor of; for everyi > 0. A g-computationis a computation starting
fromg.
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(A) (B)

Agt = {s,c} %=0

Q = {q07Q6aqlaq/1}

II = {x=0,x=1}
S I

x=0 X=
5(a0.) = (a, ) = (a0} (b i)} .
ggql, s; = ggq/i,S)) = Em}vl{}q{?%}}l}}
4o, C¢) = 0(4p,¢) = 119059055190, 41 o=
5ar.¢) = 8(d,. ) = Hara} Ao al}) 1

Figure 2.5: An ATS for the controller/client problem: (A)gabraic definition; (B)
temporal structure of the system: states, transitionsyahgtion of propositions.

2.4.4 Semantics of ATL Based on Alternating Transition Sysms

Definition 2.3 A strategyfor agenta is a mappingf, : QT — P(Q) which assigns to
every non-empty sequence of stajgs.., ¢,, a choice seff,(qo...qn) € 6(gn,a). The
function specifies’s decisions for every possible (finite) history of systeatest A
collective strategyor a set of agentsi C Agt is just a tuple of strategies (one per
agentfrom A):Fy = (fo)aca.

Now, out(q, F4) denotes the set of all possible (infinite) computationsitisg
from stateq and consistent wittf'4, i.e. the set of all g-computations in which group
A has been usind’s. More formally, computatiolh = ¢oq; ... IS consistent with a
(collective) strategy'a = (fa.)aca if, for everyi = 0,1, ..., there exists a tuple of
agents’ decision®), . € d(qi, a;) forj = 1,...,k, such thaQy, N .. N QL = git1
andQ’ = f.(qo...q;) for eacha € A.

Let A[:] denote theth position in computation. The definition of truth of an ATL
formula at state; of an ATST = (II, Agt, @, «, 0) follows through the clauses given
below.

T.qE=p iff p € m(q), for an atomic propositiop;
T,q - iff T,qF g
T,ql=eVvy iff T.q=eorT, qf= 1
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T,q = {(A)Oyp iff there exists a collective strateglfs such that for every
computatiom\ € out(q, Fa) we haveT, A[1] = ¢;

T,q = (A)Qp iff there exists a collective stratedys such that for everj\
out(q, Fa) we haveT, Afi] = ¢ for everyi > 0;

T,q = (A)eUy iff there exists a collective stratedyy such that for everjs €
out(q, F4) there isi > 0 such thafl, A[i] |= v and for all
jsuchthat < j < iwe havel, Alj] E ¢.

Remark 2.7 This notion of strategy can be specified as “perfect recaditsgyy”, where
the whole history of the game is considered when the choitteeaiext move is made
by the agents. The other extreme alternative is a “memaosysemtegy” where only
the current state is taken in consideration; further vaigats on “limited memory span
strategies” are possible. While the choice of one or anotiion of strategy affects
the semantics of the fulRTL*, it is not difficult to see that perfect recall strategies
and memoryless strategies eventually yield equivalenasgos for ATL — cf. also
(Schobbens, 2003).

Remark 2.8 Note also that a strategy represents what is calledaditionalor univer-
salplan in planning literature, because it does not propose edigequence of actions,
but rather describes what the agent should do in every plessituation.

Example 2.6 The following ATL formulae are valid in the ATS from Figure32.

1. (x=0 — {(s)) O x=0) A (x=1 — {(s) O x=1) : the server can enforce the value of
x to remain the same in the next step;

2. x=0 — (= {{c)<© x=1 A =((s))<© x=1) : neitherc nor s can change the value from
0 to 1, even in multiple steps;

3. x=0 — ((s,¢))<" x=1: s andc can cooperate to change the value.

O

2.4.5 Semantics of ATL Based on Concurrent Game Structures
and multi-player game models

Alur et al. (2002) redefines ATL models esncurrent game structures
M = <k7 Qa H77Ta da 0))
where:

e kis anatural number defining the amount of players (so thesptagre identified
with numbersdl, ..., k and the set of playet&sgt can be taken to bél, ..., k}),

e () is afinite set of (global) states of the system,

e II is the set of atomic propositions, aad: @@ — P(II) is a mapping that
specifies which propositions are true in which states.
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e The decisions available to playerat stateg are labeled with consecutive nat-
ural numbers, and functios : Agt x @ — N specifies how many options are
available for a particular agent at a particular state. Thgenta at state; can
choose his decision from sét, ..., d,(¢)}. Finally, a complete tuple of deci-
sions(ayq, ..., ay;) at stateq implies a deterministic transition according to the
transition functioro(q, aq, ..., ax).

In a concurrent game structure, the type of a strategy fondalightly differs from
the one in an ATS, since choices are abstract entities indexeatural numbers now,
and a strategy is a mapping : @ — N such thatf,(\q) < d.(q). The rest of the
semantics looks exactly the same as for alternating tiansystems.

Remark 2.9 Clearly, concurrent game structures are equivalent to Pauhulti-player
game models; they differ from each other only in notafiéFhus, theATL semantics
can be as well based on MGMs, and the truth definitions looktgxthe same as for
alternating transition systems (see Section 2.4.4). Weeleawriting the definitions of
a strategy, collective strategy and outcome set in termsuitfi4player game models to
the reader. The next section shows how this shared semaatidse used to show that
ATL subsumes coalition logics.

2.4.6 Semantics of ATL*

Semantics of the full language ATL* can be defined in a similay:

T,q = (A)e Iiff there exists a collective stratedy, such thafl’, A = ¢ for all
computations\ € out(q, Fa).

In other words, no matter what the rest of the agents decalds tthe agents from

A have a way of enforcin@ along the resulting course of events. The rest of the
semantics is the same as in CTL*. Letdenote théth suffix of A, i.e. A* = ¢;qiy1 ...
for A = qoq1 . ... Then:

T,A = iff T, A[0] = ¢, for ¢ being a state formula;
TAE Qe iff T,A" =y,

T, A = pUvy iff there existsi > 0 such thafl', A’ |= + and for allj such that
0 < j <iwehavel, A |= .

2.5 Embedding CL and ECL into ATL

It turns out that both CL and ECL are strictly subsumed by Aflterms of the shared
semantics based on multi-player game models. Indeed, therdranslation of the
formulae of ECL into ATL, which becomes obvious once the ABm&ntic clause for
(AN Oy is rephrased as:

3The only real difference is that the set of stafand the sets representing agents’ choices are explicitly
required to be finite in the concurrent game structures,entliGMs and ATSs are not constrained this way.
However, these requirements are not essential and canibearaited if necessary.
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T,q E (A)Oy iff there exists a collective stratedyy = (f.)aca such that for
every collective strateg¥ s\ a = (fa)acagt\a, We have

T7 s 'Z ®, Where{s} = maeA fa(Q) N maeAgt\A fa(q)v

which is equivalent to the truth-condition fpd] in the coalition logic CL.

Thus, CL embeds in a straightforward way as a simple fragmeATL by trans-
lating [A]p into {(A) O . Accordingly,[A*]¢ translates into ATL ag A)) Oy, which
follows from the fact that each dfd*]¢ and {(A))d, is the greatest fixpoint of the
same operator ovér]p and({A) O ¢ respectively (see Section 2.6). In consequence,
ATL subsumes ECL as the fragment ATk involving only {(A) O ¢ and((A))Oe.

We will focus on ATL, and will simply regard CL and ECL as itafiments through-
out the rest of the thesis.

Remark 2.10 Note that the coalition logic-related notions of choice atwllective
choice can be readily expressed in terms of alternatingdition systems, which im-
mediately leads to a semantics 0L based on ATS, too. ThuSTL and the coalition
logics share the semantics based on alternating transiimtems as well.

2.6 Effectivity Functions as Alternative Semantics for
ATL

As mentioned earlier, game theory usually measures the ngosfecoalitionsquan-
titatively, and characterizes the possible outcomes in ternsagbff profiles That
approach can be easily transformed intpualitativeone, where the payoff profiles are
encoded in the outcome states themselves and each coaigssigned preference
orderon these outcome states. Then, the power of a coalition carebsured in terms
of sets of statem which it can force the actual outcome of the game (i.e. feetwhich

it is effectivg, thus defining another semantics for ATL, based on so caledition
effectivity modelgintroduced by Pauly for the coalition logics CL and ECL).i§ ke-
mantics is essentially a monotone neighborhood semaotic®h-normal multi-modal
logics, and therefore it enables the results, methods amigues already developed
for modal logics to be applied here as well.

Definition 2.4 (Pauly, 2002)A (local) effectivity function is a mapping of type
e: P(Agt) — P(P(Q)).

The idea is that we associate with each set of players thdyfahoutcome sets
for which their coalition is effective. However, the notioheffectivity function as de-
fined above is abstract and not every effectivity functiomegponds to a real strategic
game form. Those which do can be characterized with theviimiip conditions (Pauly,
2002):

1. Liveness: for everyA C Agt, & ¢ e(A).

2. Termination: for everyA C Agt, Q € e(A).
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| 2 | {s} | fel | {s,c}

|
[ {90, 11} | {{ao} fao, 13} | Hao}, {90, a:}} | {{eo} {1}, {q0, a1}} |

Figure 2.6: A coalition effectivity function for the varibclient/server system.

3. Agt-maximality:if X ¢ e(Agt) then@ \ X € e(@) (if X cannot be effected by
the grand coalition of players, théh\ X is inevitable).

4. Outcome-monotonicityf X C Y andX € e(A4) thenY € e(A).

5. Super-additivity:for all A;, Ay C Agt and X1, X, C Q,if A1 N Ay = @,
X € 6(141), andX, € G(AQ), thenX; N X, € €(A1 U AQ)

We note that super-additivity and liveness impbnsistency of the powerfor any
A C Agt, if X € e(A) thenQ \ X € e(Agt \ A).

Definition 2.5 (Pauly, 2002) An effectivity functiore is called playableif conditions
(2)—(5) hold fore.

Definition 2.6 (Pauly, 2002) An effectivity functiore is the effectivity function of a
strategic game formy if it associates with each set of playe#ssfrom ~ the family

of outcome set$Q1, @2, ...}, such that for every); the coalitionA has a collective
choice to ensure that the next state will bejn

Theorem 2.11 (Pauly, 2002)An effectivity function is playable iff it is the effectivit
function of some strategic game form.

Example 2.7 Figure 2.6 presents a playable effectivity function thataldes powers
of all the possible coalitions for the variable serverfdisystem from Example 2.3,
and stateyg. O

Definition 2.7 (Pauly, 2002) A coalition effectivity framas a triple 7 = (Agt, Q, E)
whereAgt is a set of playersy) is a non-empty set of states aftt Q — (P(Agt) —
P(P(Q))) is a mapping which associates an effectivity function witbhestate. We
shall write E,(A) instead ofE(q)(A). A coalition effectivity mode(CEM) is a tu-
ple & = (Agt,Q, E, ) where(Agt, Q, E) is a coalition effectivity frame and is a
valuation of the atomic propositions oveér.

Definition 2.8 A coalition effectivity frame (resp. coalition effectivihodel) isstan-
dardif it contains only playable effectivity functions.

Definition 2.9 A multi-player game modél/ implementsa coalition effectivity model
£ if € consists of effectivity functions of the game frames fidm

Corollary 2.12 A coalition effectivity model is standard iff it is implented by some
strategic game model.
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Thus, coalition effectivity models provide semantics of 3L means of the follow-
ing truth definition (Pauly, 2002):

EqllAlp it {sc&[& sk} e Ey(A)

This semantics can be accordingly extended to semantidsGar(Pauly, 2001a)
and ATL (Goranko, 2001) by defining effectivity functions fihe global effectivity
operators in extensive game forms, where they indicatedtmme sets for which the
coalitions have long-terrstrategiedo effect. This extension can be done using charac-
terizations of((A)) Oy and{{A)) ¢ U1 with the greatest fixpoint operatorand the least
fixpoint operatoru respectively. First, let us observe that the following &glénces
are valid (i.e. true in every state of every coalition effatt model):

(A)By < A (A)O(A)Dy,
(Aetty <= PV (A (A)O(A)pUy).

Let stg () denote the set of states in which formuylaolds (in coalition effectivity
model&). From the observation above we obtain the following fixpaimaracteriza-
tions of (A)) Oy and ((A)p U:

ste((A)Op) vZ. (ste(p) N ste((A)OZ)),
ste((A)pUy) 2. (ste() U (ste(p) Nste((A)OZ))) -

Note thatsts ({(A))OZ) corresponds exactly to the getes (A, Z), used within the
presentation of the ATL model checking algorithm in (Aluiaét 2002). Functiopre
is employed there to go “one step back”: it takes as input dtma A and a set of
statesZ, C @) and returns as output the $€tof all states such that, when the system is
in one of the states fror’, the agentsA can cooperate and force the next state to be
one ofZ. We can use the function to obtain a clearer presentatiomeo$émantics of
ATL based on coalition effectivity models. Thus, let us flpaefine the semantics via
the following clauses:

) = {qe€&|ZeE; (A},

) = pres(A,ste(p)),
ste((A)Dp) = vZ.(ste(p) Npres(A 7)),

) = pZ.(ste(¥) U (ste(p) Npree(A,Z)))
E,qFE ¢ iff g€ ste(p).

2.7 Equivalence of the Different Semantics for ATL

In this section we compare the semantics for Alternatingetifemporal Logic, based
on alternating transition systems and multi-player gamdet®- and show their equiv-
alence (in the sense that we can transform the models bothwiaje preserving sat-
isfiability of ATL formulae). Further, we show that these sartics are both equivalent
to the semantics based on coalition effectivity models.
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The transformation from alternating transition systemsatdti-player game mod-
els is easy: in fact, for every ATS, an equivalent MGM can bestaucted via re-
labeling transitions (see Section 2.7.1). Constructian dther way round is more
sophisticated: first, we observe that all multi-player ganoelels obtained from alter-
nating transition systems satisfy a special condition weammvexity(Section 2.7.1);
then we show that for every convex MGM, an equivalent ATS carmbtained (Sec-
tion 2.7.2). Finally, we demonstrate that for every arlpjtnaulti-player game model
a convex MGM can be constructed that satisfies the same faamfl ATL (Sec-
tion 2.7.3).

More analysis, showing how various structural propertie$I&Ms transfer to
ATSs obtained through the transformations we propose (a@iversa), can be found
in (Goranko and Jamroga, 2004).

2.7.1 From Alternating Transition Systems to MGMs

First, for every ATST = (II, Agt, Q, 7, 6) over a set of agentdgt = {a1,...,axr}
there is an equivalent MGMIT = (Q,~7, w) where, for eacly € @Q, the strategic
game form® (q) = (Agt, {22 | a € Agt}, o4, Q) is defined in a very simple way:

o X1 =0(q,a),
® 0,(Qayy-sQuy) =S WhereﬂaieAgt Q., = {s}.

Example 2.8 Let us apply the transformation to the alternating traosisystem from
Example 2.5. The resulting MGM is shown in Figure 2.7. Théofeing proposition
states that it satisfies the same ATL formulae as the origiystem. Note that — as
T and M7 include the same set of stat€s— the construction preserves validity of
formulae (in the model), too. O

Itis easy to observe that the transformation does not chilwegemporal nor strate-
gic structure of the model — it only re-labels agents’ cheicén this sense)M ™ is
isomorphic tal'. The fact has an important consequence: the MGM we obtaiitftr
this transformation is equivalent to the original ATS in tteatext of ATL formulae.

Proposition 2.13 For every alternating transition systeif a stateg in it, and anATL
formulay: T,q = ¢ iff M7, q |= .

The models\/” obtained as above share a specific property wecoalexity and
define below. First, we need an auxiliary technical notiofusionof agents’ choices.

Definition 2.10 A fusion of n-tuples (aq, ...,a,) and (31, ...,3,) is any n-tuple
(Y1, .oy Yn) Wherey; € {a;, 8:},i=1,...,n.

Definition 2.11 A strategic game fornfAgt, {Z,, | a € Agt}, Q, o) is convexif:

0(0ays s Oay) = 0(Tayy oy Tay, ) = s iMplieso(sq, s ..., Sa,. ) = s fOr every fusion
(Says s Say) OF (Oay s oy 0a,, ) @NA(Tay s ooy Tay, )-

A multi-player game modéll = (Q,~, ) is convex ify(q) is convex for every € Q.
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<{Qo}>190,q0}>
<{do}>{90,9}}>

<{qo}{dq0}>
<{qo},190,91 >

<{qp:q1}> 190,90 > 11> 190:90)>

<{q0-q} }>190,91 }>

x=0 x=1

<{q-q},14

<{qi}>19;,90 1>
<{qi},19,,9) 1>

<{q0-91}>19,,90}>
x=1

<{q1}>19,,90}>
<{q:},{9,,9} >

Figure 2.7: From ATS to a convex game structuvé’ for the system from Figure 2.5.

Proposition 2.14 For every AT, the game modeV/” is convex.

Proof: Let M” be defined as above. &,(Q.,,...., Q) = 04(Q2,,....Q2.) = s
thens € @ for eachj = 1,2 anda € Agt, therefore(),.,,, Qi = {s} for any
fusion(Q7.,...,Q% ) of (Q},,..., Q%) and(Q2 ..., Q2.). O

There is an important subclass of convex game models, wigmasimple charac-
teristics:

Definition 2.12 A strategic game form igjectiveif o is injective, i.e. assigns different
outcome states to different tuples of choices. An MGM iginje if it contains only
injective game forms.

Proposition 2.15 Every injective game model is convex.

Note that the MGM from Figure 2.7 is convex, although it is mp¢ctive, so the
reverse implication does not hold.

2.7.2 From Convex Multi-Player Game Models to Alternating Tran-
sition Systems

As it turns out, convexity is a sufficient condition if we wdatre-label transitions from
a multi-player game model back to an alternating transgigstem. Let\ = (Q, v, )
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be a convex MGM over a set of propositiolls whereAgt = {aq,...,ar}, and let
v(g) = (Agt, {27 | a € Agt}, Q,04) for eachg € Q. We transform it to an ATS
T = (II, Agt, Q, m, 6™) with the transition functiod? defined by

5M(Qaa) = {QUa | Oaq € Eg}a
Qs, = {Oq(aaa UAgt\{a}) | Opgt\{a} = <0b17 ey 0bk—1>7 b; # a,op, € Zgl}

Thus,Q,, is the set of states to which a transition may be effected frarhile agent
has chosen to execute. Moreovers (¢, a) simply collects all such sets. For purely
technical reasons we regard thé$é(q, a) asindexed families.e. even if some),,,
and@,, are set-theoretically equal, they are considered diftaasiiong asr; # o».
By convexity ofy(q) it is easy to verify thaf,c s, @o. = {04(0a,, -, 0a,)} fOr
every tuple(Q,, , -, Qo,, ) € 6™ (g, a1)x... x5 (g, ax). Furthermore, the following
proposition holds.

Proposition 2.16 For every convex MGM//, a stateq in it, and anATL formulap,
M.q@iff TV q = .

Note that the above construction transforms the multi@layame model from
Figure 2.7 exactly back to the ATS from Figure 2.5.

2.7.3 Equivalence between the Semantics for ATL Based on ATS
and MGM

So far we have shown how to transform alternating transgimstems to convex multi-
player game models, and vice versa. Unfortunately, notyeMi&M is convex. How-
ever, for every MGM we can construct a convex multi-playenganodel that satisfies
the same formulae of ATL. This can be done by creating distiopies of the original
states for different incoming transitions, and thus “sigtithe knowledge of the previ-
ous state and the most recent choices from the agents inshgtaies. Since the actual
choices are present in the label of the resulting state, @hetransition function is ob-
viously injective. It is also easy to observe that the cartdton given below preserves
not only satisfiability, but also validity of formulae (inéhmodel).

Proposition 2.17 For every MGMM = (Q,~, ) there is an injective (and hence
convex) MGMM' = (Q’,+', #') which satisfies the same formulaeASF¥L .

Proof: For everyy(q) = (Agt,{X? | a € Agt}, Q,0,) we defineQ, = {q} x
]‘[aeAgt Y2 andletQ)’ = QU quQ Q4. Now we definey’ as follows:

o for ge@, we define +/(¢)=(Agt,{X?]|aec Agt},0%,Q"), and
Oq(0a17 ""Oak) = <Q70a1a ---aaak>;

o foro = (q,04,,..,04,) € Qq, ands = 04(04,, ..., 0a, ), We definey’(o) =
Y (s);

e finally, 7'(¢) = m(q) forg € Q, andn’({g, 04, , ..., a,)) = 7(0g(Tay, ..., Ta,.))
for (¢, 04y, s 0a),) € Qq-
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x=0 x=1

Figure 2.8: Construction of a convex multi-player game nhedeivalent to the MGM
from Figure 2.3.

The modelM’ is injective and it can be proved by a straightforward inéarcthat for
every ATL formulay:
o M' qE piff M,q ¢forqge @, and
o M' (04,,....00,) E @iff M,04(04,,....,04,) = @Ol (0a,,....00,) € Qq.
(]

Thus, the restriction of the semantics of ATL to the class@dtive (and hence to
convex, as well) MGMs does notintroduce new validities —arabtain the following
result.

Corollary 2.18 For everyATL formulag the following statements are equivalent:
1. ¢ isvalid in all alternating transition systems.
2. pisvalid in all multi-player game models.

Remark 2.19 The above construction preserves validity and satisfighdf ATL*
formulae, too (Jamroga and van der Hoek, 2003).
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qo, qor0, qorl, qoa0, q1a0 q1, ¢170, qirl, qual, goal
{{q070, gor1}, {goa0, goal}} | {{g170,q1r1},{g1a0,qral}}
{{q070, goa0}, {gorl, goal}} | {{g170,g1a0}, {q:71, qral}}

Figure 2.9: ATS-style transition function for the convexrgamodel from Figure 2.8.

Example 2.9 We can apply the construction to the controller from Exan#& and
obtain a convex MGM equivalent to the original one in the eahbf ATL. The result
is displayed in Figure 2.8. The labels for the transitions ba easily deduced from
their target states. Re-writing the game model into an ispimo ATS, according to
the construction from Section 2.7.2 (see Figure 2.9), ceteplthe transformation from
an arbitrary multi-player game model to an alternatinggition system for which the
same ATL formulae hold. O

2.7.4 ATS or MGM?

Alur stated that the authors of ATL switched from alterngtinansition systems to
concurrent game structures mostly to improve understalitgfadf the logic and clar-
ity of the presentatiofi. Indeed, identifying actions with their outcomes may make
things somewhat artificial and unnecessarily complicatedparticular, we find the
convexity condition which ATSs impose too strong and urifiest in many situations.
For instance, consider the following variation of the ‘Gtgn’ game: two cars run-
ning against each other on a country road and each of theslrseeing the other car,
can take any of the action&drive straight”, “swerve to the left’and“swerve to the
right” . Each of the combined actions for the two drivejdrive straight, swerve to the
left) and (swerve to the right, drive straighteads to a non-collision outcome, while
each of their fusiongdrive straight, drive straightand (swerve to the left, swerve to
the right) leads to a collision. Likewise, in the “Coordinated Attadcenario (Fagin
et al., 1995) any non-coordinated one-sided attack leadefeat, while the coordi-
nated attack of both armies, which is a fusion of these, I¢éadsvictory. Thus, the
definition of outcome function in coalition games is more grah and flexible in our
opinion.

Let us consider the system from Example 2.3 again. The mldjier game model
(or concurrent game structure) from Figure 2.3 looks natamd intuitive. Unfortu-
nately, it can’t be used in the version of ATL based on AltéingaTransitions Systems.
Speaking more formally, there is no isomorphic ATS for thdtirplayer game model
from Figure 2.3 which fits the system description (or: in whtbe same properties
hold as in the MGM). In consequence, an ATS modeling the sammati®n must be
larger.

Proposition 2.20 There exists no ATS with exactly two states, in which the gdrhe
formulae are valid as in the MGM from Example 2.3.

4Private communication.
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Proof: Suppose that such an ATS exists. Let us have a lod@t s) first. Sup-
pose thatqo} ¢ 0(qo,s). In consequence.go, g1} must be ind(qo, s), otherwise no
transition fromgy to ¢; is possible. Let's consider possibis choices aiy,: either
{90, q1} € 6(qo, ¢) (but: {qo, 1} N {qo, 1} isn’t a singleton, so such a transition func-
tion isn’t valid) or {¢1} € d(qo, ¢) (but then:qy = () Ox=1 which doesn't fit the
informal description of the system) @t} € 6(qo, ¢) (but then:gy = —((s, c) Ox=1
which doesn't fit either). Thus{go} € 0(qo, s) (intuitively: the server should have a
choice to “enforce no change” with deterministic outcomég®f}).

Now, for all Q" € 4(qo, ¢), go must be inQ’ becausg gy} N Q' cannot be empty.
Thus{q:1} ¢ (qo,c), and if we want to make the transition froq to ¢, possible
at all then{qo,q1} € 0(qo,c). Now {qo, 1} ¢ d(qo,s) becaus€qo,q1} N {qo, 1}
isn’'t a singleton, sd¢:} € d(qo, s) — otherwise the system still never proceeds from
qo to ¢1. In consequencdyo} ¢ d(qo, c), becausdq; } N {qo} isn’t a singleton either.
The resulting transition function fay, is: §(qo,s) = {{q},{¢1}}, andé(qo,c) =
{{qo0, ¢1}}. Unfortunately, it is easy to show that = ((s)) Ox=1 for this model, and
this is obviously wrong with respect to the original destiop of the system. O

This does not necessarily mean that no ATS can be made upifoptbblem,
having added some extra states and transitions. In facthéoalternating transition
system from Figure 2.5, we have that:

* q = ~(s) Ox=1,
e go = ((s)) O x=0, and soon.

The states reflect the value nfand the last choices made by the agenis:is for
“x=0 by s's force”, ¢, for “x=0 by ¢'s request” etc. This kind of construction has been
generalized in Section 2.7 to prove equivalence of both saéinga The above examples,
however, show that correct alternating transition systamesmore difficult to come
up with directly than multi-player game models, and usutiigy are more complex,
too. This should be especially evident when we consider timagland verifying open
systems. Suppose we need to add another client processAd$hfeom Example 2.5.
It would be hard to extend the existing transition functinraistraightforward way so
that it still satisfies the formal requirements (i.e. so #ihthe intersections of choices
are singletons). Designing a completely new ATS is probahlgasier solution.

Another interesting issue is extendibility of the formais Game models incorpo-
rate explicit labels for agents’ choices — therefore thelgban be used, for instance,
to restrict the set of valid strategies under uncertaintyGhapter 4).

2.7.5 Coalition Effectivity Models as Equivalent Alternative Se-
mantics for ATL

Effectivity functions and coalition effectivity models weeintroduced in Section 2.6,
including a characterization of these effectivity funasowhich describe abilities of
agents and their coalitions in actual strategic game foptes/able effectivity func-
tions, Theorem 2.11). We are going to extend the result toesppndence between
multi-player game models and standard coalition effestiriodels (i.e. the coalition
effectivity models that contain only playable effectivitynctions).
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x=0 @ g {s} {c} {s,c}

Hao, 0171 [{{90}: {90, 911} {{a0}. {90, a1 }}[{{ao}. {a1}. {90, 1 }}

<=1 o {s} {c} {s,c}
@ Hao, o HH{H{ar} {90, e {{an} {0, e {0}, {an ), {q0, 1 }}

Figure 2.10: Coalition effectivity model for the variabléent/server system

Every MGM M = (Q,~, ) for the set of players\gt corresponds to a CEM
EM = (Agt,Q, EM ), where for every; € Q, X C Q andA C Agt, we have

X e Eé”(A) iff 304 Voug\a 35 € X 0(04, 0agi\a) = 5.

The choices refer to the strategic game foyfn). Conversely, by Theorem 2.11, for
every standard coalition effectivity modélthere is a multi-player game modaf
such that€ is equivalent ta€™. Again, by a straightforward induction on formulae,
we obtain:

Proposition 2.21 For every MGMM, a stateg in it, and anATL formulap, we have
M,q = ¢iff EM, g = .

Example 2.10 Let M be the multi-player game model from Example 2.3 (variable
client/server system). Coalition effectivity mod#l is presented in Figure 2.10.0

By Proposition 2.21, Corollary 2.18 and Corollary 2.12, wergually obtain:
Theorem 2.22 For everyATL formulay the following are equivalent:

1. pisvalid in all alternating transition systems,

2. pisvalid in all multi-player game models,

3. pisvalid in all standard coalition effectivity models.

Thus, the semantics of ATL based on alternating transitytesns, multi-player
game models, and standard coalition effectivity modelsegrgvalent. We note that,
while the former two semantics are more concrete and nathegl are mathematically
less elegant and suitable for formal reasoning about ATLleathe semantics based
on coalition effectivity models is essentially a monotoméghborhood semantics for
multi-modal logics. The combination of these semanticswgasl in (Goranko and van
Drimmelen, 2003) to establish a complete axiomatizatiofTdf.
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2.7.6 Relevance of the Results

We have presented a comparative study of several variaAiEL.odnd CL, and demon-
strated their relationship. One obvious conclusion froedtudy is that — while refer-
ring to coalitional games with no uncertainty — ATL can bedisestead of CL without
any loss of generality. Moreover, one can choose the seosafmtiulti-player game
models, alternative transition systems, coalition effégtmodels) he or she finds most
suitable for the intended application.

Still, it is worth pointing out that ATL and CL differ in theimotivations and agen-
das, and hence they can benefit from many ideas and resutigebbnical and concep-
tual, borrowing them from each other. Indeed, ATL has alydaehefited from being
related to coalitional games, as concurrent game stricfuoyide a more general (and
natural) semantics than alternating transition systematellver, coalition effectivity
models are mathematically simpler and more elegant, andd®dechnically handier
semantics, essentially based on neighborhood semantieefenormal modal log-
ics (Parikh, 1985; Pauly, 2000). Furthermore, the pure gdreeretical perspective of
coalition logics can offer new ideas to the framework of opariti-agent systems and
computations formalized by ATL. For instance, fundameaotaicepts in game theory,
such apreference relations between outconmaslNash equilibriahave their counter-
parts in concurrent game structures (and, more importantglternating-time logics)
which are unexplored yet.

On the other hand, the language and framework of ATL has veidéme perspective

on coalitional games and logics, providing a richer and nflesgéble vocabulary to talk
about abilities of agents and their coalitions. Hiternating refinement relation&lur
et al., 1998b) offer an appropriate notion of bisimulati@tvizeen ATSs and thus can
suggest an answer to the questidviien are two coalition games equivaleht?Also,
a number of technical results on expressiveness and coitypbexwell as realizability
and model-checking methods from (Alur et al., 2002, 199&h) be transferred to
coalition games and logics. And there are some specific sspécomputations in
open systems, such asontrollability andfairness constraintswhich have not been
explored in the light of coalition games.

There were a few attempts to generalize ATL by including irfgx information in
its framework: ATLwith incomplete informatiom (Alur et al., 2002), ATEL, ATOL,
ATEL-R* etc. It can be interesting to see how these attemais/cover to the frame-
work of CL. Also, stronger languages like ATL* and altermatitime ;,-calculus can
provide more expressive tools for reasoning about coalg@mmes.

2.8 Multi-Agent Planning with ATL

Planning in an environment inhabited by multiple agentep@number of important
problems. First of all, the relationship between the ageyutals must be determined
in order to evaluate plans. There are roughly 3 possilsli{gen and Weiss, 1999; Bui
and Jamroga, 2003):

5Cf. the paper “When are two games the same” in (van Benthe60)20
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1. collaborative agents who have exactly the same goals anccallaborate to
bring about them,

2. adversarial agents: the goal of the other agentstiso let“our” agent fulfill his
goals,

3. indifferent agents (or rather agents with independelitips) that cover all the
middle ground between both extremes.

As ATL strategies are in fact conditional plans, one may imegising ATL for the
purpose of planning as long as we are able to automatifiatha strategy that brings
about a specified task. For example, a plan for ageateventually enforce a winning
position (i.e. a state in which propositiavin holds) can be found in the form of a
strategyf, that makes formulga))Owin true in the specified model.

Planning with ATL covers only cases (1) and (2). The collalige situation arises
when we put the agents in question in the same tdaand ask whether they achieve
goal @ via the formula{(A)®. Note, however, that the agents within a team are as-
sumed tdfully cooperate — as if they were one (collective) player. Thessbme must
be careful to define the model so that it indeed representmteeded problem do-
main. For example, if we want the agents to negotiate theitesfies by following a
negotiation protocol, represented explicitly in the moeed should rule out all agents’
choices that are inconsistent with the requirement.

The assumed interaction between the team and the rest asdgam Agt, on the
other hand, is clearly adversarial. This reflects a biasasfsital game theory: we want
our agent to play safe; we want him to be protected againswist line of events.
Note that if there is no infallible plan fod to achieved, then no plan will be generated
for (A))® at all. Since a situation when no plan is generated is notpaabe from
the planning agent’s perspective, it seems one of the masiusedrawbacks of the
approach to planning we propose and investigate here.

A number of simplifying assumptions underlies the “plamgnivith ATL approach”:

e the agents have complete knowledge of the situation (nortaingy, no proba-
bilistic beliefs),

e the agents have complete knowledge of the outcomes of eeenpioation of
actions from all the agents (i.e. every complete tuple ofa#x),

e the outcome of every such tuple is deterministic (there arpnobabilistic ac-
tions or actions with uncertain outcome),

e the time is discrete, and the agents act synchronously,
e the goals of every agent are public. Note that the goals telesare specified
by the input ATL formula we are processing.
2.8.1 Strategic Planning as Model Checking

Model checkings an interesting idea that emerged from the research oo ingiom-
puter science. The model checking problem asks whethettigydar formulap holds
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in a particular modelM, which is often more interesting thaatisfiability checking
(i.e. looking for a modelM/ in which ¢ holds) ortheorem provindi.e. proving that
o follows from some set of axioms). In many cases the desigaercome up with
a precise model of the system behavior (e.g. a graph witthalattions that may be
effected), only the model is too large to check on the fly whethfulfills the design
objectives. Model checking seems especially useful in #se of dynamic or temporal
logics, whose models can be interpreted as game modelsijtibansystems, control
flow charts, data flow charts etc. Moreover, model checkingstout to be relatively
cheap in computational terms, while satisfiability cheghkimoften intractable or even
undecidable.

It has been already proposed that the model checking of ctatipuo tree logic
(CTL) formulae can be used for generating plans in detestimas well as non-
deterministic domains (Giunchiglia and Traverso, 1998td?e and Traverso, 2001).
Alternating-time temporal logic ATL is an extension of CThat includes notions of
agents, their abilities and strategies (conditional plaxglicitly in its models. Thus,
ATL seems even better suited for planning, especially intikaglent systems, which
was already suggested in (van der Hoek and Wooldridge, 2082his section, we
introduce a simple adaptation of the ATL model checking atgm from (Alur et al.,
2002) that — besides checking if a goal can be achieved -nealso an appropriate
strategy to achieve it. We point out that this algorithm gatiees the well-known
search algorithm of minimaxing, and that ATL models geneeglirn-based transition
trees from game theory. The section ends with some suggestiat the contribution
can be bilateral, and that more game theory concepts canmartto modal logic-
based models and algorithms for multi-agent systems.

2.8.2 Planning Algorithm

In this section, a simple modification of the ATL model chexkalgorithm (Alur et al.,
2002) is proposed, as shown in Figure 2.11. Fungpianis defined as a special kind
of the “weakest precondition” operator, and is used hereottoge step back” while
constructing a plan for some coalition of agents. More edgjpre(A, Q) takes as
input a coalitionA and a set of state@; C @ and returns as output the @ of all
statesy such that agentd can cooperate in and force the next state to be one(@f.
Moreover, for every such a stafe;e( A, Q1) returns also a collective choice fdrthat
can be executed to enforce a transitioria

Functionstates(P) returns all the states for which plah is defined. P, & P»
refers to augmenting plaf; with all new subplans that can be found i; finally
P|g, denotes platP restricted to the states fro@; only. More formally:

o pre(A, Q1) = {(q,04) | Vos\46(q,04,05\4) € Q1};
o states(P) ={q€ Q| 3,{(¢,0) € P};
e PL®P,=P U{{(q,0) € Py|q¢ states(P1)};

e Plg, ={{(g,0) € P|qeQi}.
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function plan(y).
Returns a subset @f for which formulay holds, together with a (conditiona
plan to achievep. The plan is sought within the context of concurrent
game structuré = (Agt, Q, I, 7, 0).
casep € I1: return{{q,—) | ¢ € 7(q)}
casep = iy : Pp := plan(y);
return{{q, —) | q ¢ states(Py)}
casep =11 Vihy
Py :=plan(yy);  Pe = plan(is);
return{(q, —) | q € states(Py) U states(P2)}
casep = (A) O : returnpre(A, states(plan(v)))
casep = (A) 0y :
Py :=plan(T); Py :=plan(y)); Qs := states(Py);
while states(Py) € states(Ps)
do Py := Pa|states(p,): P2 = pre(A, states(Py))|q, od,
return P | azes(py)
casep = (A)1 Ut :
Py :=0; Qs:=states(plan(yn1)); P2 := plan(T)|siates(plan(ws)):
while states(Ps) € states(P;)
do P, := P, @& Py; Py :=pre(A, states(P1))|q, 0d;
returnP,
end case

=

Figure 2.11: Adapted model checking algorithm for ATL foraer Cases fot; V 9
and{(A) v are omitted, because the first can be re-written@s); V —t)2), and the
latter as((A) T Up.

Proposition 2.23 The algorithm terminates in tim@(ml), wherem is the number of
transitions in the concurrent game structufeand! is the length of formule.

Proof: The proposition follows directly from the complexity pradior ATL model
checking (Alur et al., 2002). O

Remark 2.24 Note that the algorithm returns a (non-empty) plan only & tutmost
operator of the checked formula is a cooperation modality. (it specifies explicitly
whois to execute the plan anghatis the objective). In consequence, our approach to
negation isnot constructive: for-({{A))®, the algorithm will not return a strategy for
the rest of agents to actually avold Why? Because{(A)® does not imply that such
a strategy exists.

Similar remark applies to alternative, conjunction, andstieg of strategic for-
mulae. This approach is more natural than it seems at the diesice — even if the
subformulae refer to the same set of agents for whom plansesded. Consider, for
instance, the transition system from Figure 2.12, and sappbat there is only one
agenta in the system, who executes the transitions. FornfulaOstart A ((a))<halt
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‘@@

start

halt

@ win
Figure 2.12: Example transition system for a single agent

is obviously true ingy; however, it is hard to see what plan should be generated in
this case. Truegq has a plan to remain iy, for ever, and he has a plan to halt the
system eventually, but these aléferentplans and cannot be combined. Similarly,
{@)O{a)Owin holds ingg, but it does not mean that has a plan to win infinitely
many times. He can always see a way to win; however, if he elsdbat way, he will

be unable to win again.

2.8.3 Rocket Example

As an example, consider a modified version of the Simple Rdg&enain from (Blum
and Furst, 1997). The task is to ensure that a cargo evenaralles in Paris (proposi-
tion atCP); there are three agents with different capabilities wholoa involved, and
a single rocket that can be used to accomplish the taskallgjtthe cargo may be in
Paris, at the London airporatCL) or it may lie inside the rocketr(CR). Accordingly,
the rocket can be moved between LondatR() and Paris4tRP).

There are three agents:who can load the cargo, unload it, or move the rocket;
who can unload the cargo or move the rocket, ancho can load the cargo or supply
the rocket with fuel (actiorfuel). Every agent can also decide to do nothing at a par-
ticular moment (therop — “no-operation” action). The agents act simultaneoushe T
“moving” action has the highest priority (so, if one ageigdrto move the rocket and
another one wants to, say, load the cargo, then only the m@executed). “Loading”
is effected when the rocket does not move and more agents kogd than to unload.
“Unloading” works in a similar way (in a sense, the agentst&avhether the cargo
should be loaded or unloaded). If the number of agents trigrigad and unload is
the same, then the cargo remains where it was. Finally,itfgétan be accomplished
alone or in parallel with loading or unloading. The rockeh caove only if it has
some fuel {uelOK), and the fuel must be refilled after each flight. We assumieatha
the agents move with the rocket when it flies to another pldte concurrent game
structure for the domain is shown in Figure 2.13.

plan({x)CatCP) = {(9,—),(10,—),(11,-),(12,—) } (2.1)
plan({x,y)<CatCP) = { (2,z:load-y:nop), (6, x:move-y:nop), (2.2)
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<nop,nop,fuel>

<nop,nop,nop>
load,p unlgad,rfop
nop,unload,load.

<load,nop,nop>
<nop,nop,load>
<load,nop,load>
<load,unload,load

Figure 2.13: A version of the Simple Rocket Domain. Statethefsystem are labeled
with natural numbers. All the transitions for staté€the cargo and the rocket are in

London, no fuel in the rocket) are labeled. Output of agettigices for other states is
analogous.

(7, x:unload-y :unload), (8, x :unload-y : unload),
(9, ), (10, -, (11, -), (12, ~) }

plan({(x, z)CatCP) = { (1,z:load-z:load), (2, 2:load-z :load), (2.3)
(3, z:nop-z: fuel), (4, x:move-z:nop),
(5,x:load-z: fuel), (6, x:move-z:nop),
(7, x:unload- z :nop), (8, x :unload- z :nop),
(

9, _>a <107 _>a <117 _>a <127 _> }

Plans to eventually achiewsCP — for « alone,x with y, andx with z, respectively
— are shown above. In the first cagsecannot guarantee to deliver the cargo to Paris
(unless the cargo alrea@there), becausgandz may prevent him from unloading the
goods (clause 2.1). The coalition:ofandy is more competent: they can, for instance,
deliver the cargo from London if only there is fuel in the retkclause 2.2). However,
they have no infallible plan for the most natural case whathe initial state. Finally,
{z, z} have an effective plan for any initial situation (clause)2.3

2.8.4 Minimaxing as Model Checking

It is easy to see that the algorithm from Figure 2.11 can be f@eemulating the
well known search algorithm of minimaxing. To find the besirpfor coalition A,
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Figure 2.14: Multi-player game model for the matching pesmgame

we should label the final positions with the payoff valpag-1, pay-2, ..., then check
which plan({A))<Opay-i) returns a decision for the initial state, and pick the one for
maximalpay-i. The resulting procedure is still linear in the number ofestatransitions
and different payoff values. Note that the algorithm pregzblsere is more general than
the original minimaxing: the latter can be applied only tatériurn-based game trees
(i.e. systems in which the number of states is finite, theeenarcycles, and players
cannot act simultaneously), while the model checking-thagproach deals also with
models in which players act in parallel, and with infinitessehat can be generated by
a finite transition system.

Example 2.11 Consider the perfect information variant of tmatching penniegame
from Example 2.1. Figure 2.14 shows a model representirsggaime. Now, mini-
maxing for playera; is equivalent to the execution @lan(({a,))<pay-1). We can
also executelan({(a; ) Opay-0) to make sure that the agent is going to gey payoff
along every course of action. O

Let us also observe that the planning algorithm, proposéhisrsection, looks for
a plan that must be successful against every line of evenémeehthe algorithm gen-
eralizes minimaxing in zero-sum (i.e. strictly compe#figames. It can be interesting
to model the non-competitive case within the scope of ATL a#:wwhile checking
{(AYp, the opponentdgt \ A may be assumed different goals than just to prevent
from achievingp. Then, assuming optimal play frofgt \ A, we can ask whethet
have a strategy to enforgeprovided thathgt \ A intend (or desire) to bring aboujt

2.8.5 Further Research: Exploiting the Parallel between Mdel
Checking and Minimaxing

We have proposed a simple adaptation of ATL model checkimg fAlur et al., 2002).

The algorithm looks for infallible conditional plans to aefe objectives that can be
defined via ATL formulae. The algorithm generalizes miniigxn zero-sum games,
extending its scope to (possibly infinite) games in whichapents can act in parallel.
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It seems that the link between model checking and minimagargbe exploited
to enrich the framework of ATL, too. First (as already menéd in the previous sec-
tion), ATL might be extended so that it can be used to modetcammpetitive games.
Next, efficient pruning techniques exist for classical miaking — it may be interest-
ing to transfer them to ATL model checking. Moreover, gameotly has developed
more sophisticated frameworks, like games with incompietermation and games
with probabilistic outcomes, including the discussion estidefense criteria for such
games (Frank, 1996; Frank and Basin, 1998; Jamroga, 200hastigation of sim-
ilar concepts in the context of ATL can prove worthwhile, dedd to new research
questions, concerning phenomena like non-locality (Frami Basin, 1998), and de-
sign of efficient suboptimal algorithms (Frank et al., 1988)he scope of logics for
multi-agent systems.
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Chapter 3

Agents with Incomplete
Information

SYNOPSIS So far, so good. Alternating-time Temporal Logic and Caatit
Logic have been introduced, investigated and proven sowmjeepties. They
even turned out to have a practical dimension, since one cantlem for
automatic planning in multi-agent systems. It seems a hifgé to introduce
some uncertainty. Enter Alternating-time TempdgaistemicLogic.

Now we can express what we know when we do not know every®ing:
do we really know what hides behind this attractive surfade® we really
certain? So far... yes. It seems so.

3.1 Introduction

Two important modal logics for multi-agent systems werelitd in the previous chap-
ter. Those logics, Alternating-time Temporal Logic by Agtral. and Coalition Logic
by Pauly, are appealing in many ways. Theoretically, theydscidable and axiomati-
zable, and they enjoy linear complexity of the model chegkiroblem. Conceptually,
they build upon a very intuitive body of notions. On one hahey refer to moments
in time and alternative courses of events and situationgigvbhanges of situations
result from simultaneous actions of all the involved agen®n the other hand, they
build upon notions of agents, their teams, actions andegfiedé. From the practical
standpoint, models of ATL and CL generalize labeled trémsisystems, control flow
charts, game trees etc. — that have been used for a long tiomeetim a formal descrip-
tion of computational systems as well as communities androegtions of human
agents. Thus, linear model checking enables efficient gatifin of some interesting
properties of concrete systems. Moreover, the “plannimg@del checking” paradigm,
applied here, yields an algorithm that finds infallible dior goals specified with for-
mulae of ATL. As CL turned out to be subsumed by ATL, it is suéfit to focus on
the latter, and regard CL as a sublanguage of ATL.

Mathematical logic seems to be rather out of fashion nowe@sfly in the fields

57
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related to Artificial Intelligence and Cognitive Sciencee Welieve — and have argued
so in Section 2.1 — that formal approaches to multi-agergtesys are still important.
However, besides the inherent deficiencies of the format¢ibgsed approach to mod-
eling and reasoning about the reality, the logics studigdhapter 2 are unrealistic in
one more respect: neither ATL nor CL refer in any way to agémswledge or beliefs
about the actual situation. In particular, the agents’ wagaty about the real state of
affairs cannot be expressed. An extension of ATL, caldtérnating-time Temporal
Epistemic Logid ATEL), was introduced in (van der Hoek and Wooldridge, 2062
order to enable reasoning about knowledge possessed bisagéhough the seman-
tics for ATEL is still under debate (cf. Chapter 4), the onigli version of that logic is
certainly worth investigating.

ATEL adds to ATL operators from epistemic logic: most noyalthe individual
knowledge operatdk, ¢ (“agenta knows thaty”), but also operator&’ 4, C4 andD 4
that refer to collective knowledge of teams. We begin witbgenting the main ideas
behind this extension. Next, we present three alternagireasitics for ATEL, and point
outthat they are equivalent. Finally, we present an intggtion of ATEL into the more
basic language of ATL. It turns out that, while extending ARTEL can be embedded
into the former in the sense that there is a translation ofetsoghd formulae of ATEL
into ATL that preserves the satisfiability of formulae. THizes not imply that logics
like ATEL are redundant, of course — in fact, the way of expimg epistemic facts in
ATL is technical, and the resulting formulae look rather atumal. On the other hand,
the interpretation we propose in Section 3.4 is not a puesgliinical exercise in formal
logic. First, it presents knowledge as a special kind ottsgjia ability of agents. This
perspective to knowledge was proposed in (van Otterloo.e2@03), and we find it
a powerful and insightful metaphor. Second, as the intéaioe can be used for an
efficient reduction of model checking from ATEL to ATL, it eblas using the ATL-
based planning algorithm from Section 2.8 for goals spetifigh ATEL formulae,
too.

The epistemic and temporal layers of ATEL display much sinty to the well
known BDI logic of Beliefs, Desires and Intentions, propbée (Rao and Georgeff,
1991) and subsequent papers. We explore this issue in 8680 and show that a
similar interpretation in ATL (and even in CTL) can be defirfed a propositional
variant of BDI as well.

There is one more thing that may need some explanation — gatheltitle of this
chapter. Why'Agents with Incomplete Information”and not “Agents with Knowl-
edge” or “Agents with Beliefs”, for instance? We would like $tress that epistemic
properties become trivial when every agent basipletanformation about the current
situation. Formally speaking, in such a case we haveghat K, (to be even more
precise: formulap «— K,y is valid, i.e. it holds in every possible model and every
state in it). Thus, the notion of knowledge does not intredaity interesting properties
when all the agents have perfect and complete informationtheir environment of
action. Talking about knowledge or beliefs —in our opiniomakes sense only if there
is at least one entity who mighbt know everything.

Some of material presented in this chapter has already hé#isiped in (Goranko
and Jamroga, 2004), a paper co-written with Valentin Goodrdm the Rand Afrikaans
University.
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q192h|q1q2t
Qh | 1,0 | 0;1
qot | 0;1 | 1;0

0;1 1;0

1;0 0;1

Figure 3.1: Extensive and strategic form of the matchinghmngame:a; does not
show his coin before the end of the game.

3.2 Logic Meets Game Theory Continued

We have already presented (in Section 2.2) the conceptsatégic and extensive game
forms, that can be used to model games with perfect infoonatiThe information
available to agents is incomplete in many games, thoughss@@la game theory han-
dles this kind of uncertainty through partitioning everay®gr's nodes into so called
information sets. Arinformation setfor playera is a set of states that are indistin-
guishable for. Traditionally, information sets are defined only for thatss in which

a chooses the next stépNow a strategy assigns choices to information sets rather
than separate states, because players are supposed te ti®msame move for all the
situations they cannot distinguish.

Example 3.1 Let us go to the matching pennies game from Example 2.1 — it th
time we will assume that; does not show his coin t@, before the end of the game.
In consequence, nodesandg, belong to the same information set@f, as shown in
Figure 3.1. No player has a strategy that guarantees hisrnyimare. O

Epistemic logicoffers the notion of arepistemic accessibility relatiothat gen-
eralizes information sets, and introduces operators fkinta about individual and
collective knowledge. Section 3.3 describes them in motailde reader interested
in a comprehensive exposition on epistemic logic can be ralfsored to the seminal
book by Fagin, Halpern, Moses and Vardi (Fagin et al., 19859 (van der Hoek and
Verbrugge, 2002) for a survey.

1A recent proposal (Bonnano, 2004) investigates also thewhen information sets partition thehole
game space for every agent.
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3.3 ATEL: Adding Knowledge to Strategies and Time

Alternating-time Temporal Epistemic LogATEL (van der Hoek and Wooldridge,
2002, 2003a,b) enriches the picture with epistemic compon&TEL (ATEL*) adds
to ATL (ATL*, respectively) operators for representing kvledge of agents and their
teams:

e K,p, Wherea is an agent ang is a formula of ATEL (ATEL* state formula,
respectively);

e Cap, EapandD o, whereA is a set of agents and is a formula of ATEL
(ATEL* state formula, respectively).

K, reads as “agentknows thaty”. Collective knowledge operatoiss ¢, Ca ¢,
andD 4 refer to“everybody knows; common knowledgenddistributed knowledge
among the agents from. Thus,F 4 means that every agent ihknows thatp holds.
C 4 implies much more: the agents framnot only know thatp, but they alsknow
that they knowhis, know that they know that they know, and so on. Disteiduktnowl-
edgeD 4 denotes a situation in which, if the agents could combine thdividual
knowledge together, they would be able to infer thdtolds.

The time complexity of model checking for ATEL (but not ATELS still polyno-
mial (van der Hoek and Wooldridge, 2002, 2003a).

Intuitively, ATEL should enable expressing various episiteproperties of agents
under uncertainty:

1. (a)Op — Kaib
2. Ky(e=s) = (0)({bh Oo)U(c = s)

3. d — (a)O(Kad AN, L, —Fpd)

a#b

The first two items are examples of so-calletbwledge pre-conditionsThe first
of them intuitively says that ageatmust knowz) in order to be able to bring about
. The second expresses that if Béb knows that the combination of the safesis
then he is able to open ib), as long as the combination remains unchanged. The
third example refers t&nowledge Gamesnvestigated in (van Ditmarsch, 2000) as
a particular way of learning in multiagent systems. The afreaxh player is to find
out the actual distribution of cardd)(in a simple card game. The example specifies
what it means for player to have a winning strategy: it says thatan establish that
eventually he will know the distribution, and all the othéayer will not know it.

3.3.1 AETS and Semantics of Epistemic Formulae

Models for ATEL are calledhlternating epistemic transition systertSETS). They
extend alternating transition systems with epistemic s&ibdity relations~, ..., ~;C
Q x @ for modeling agents’ uncertainty:

T = <Agt7QaH77Ta Nayy e Nak56>-
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These are assumed to be equivalence relations. A¢geapistemic relation is meant to
encoder’s inability to distinguish between the (global) systemietaq ~, ¢ means
that, while the system is in stageagentu cannot really determine whether it isqror

/! .
q'. Then:

T,q = K,piffforall ¢’ suchthay ~, ¢ we haveT , ¢ = ¢

Remark 3.1 Since the epistemic relations are required to be equivasnthe epis-
temic layer ofATEL refers indeed to agent&howledgerather thanbeliefsin general.
We suggest that this requirement can be relieved to akdEL for other kinds of
beliefs as well. In particular, the interpretation &TEL into ATL we propose in Sec-
tion 3.4 does not assume any specific properties of the abdegselations.

Relations~£, ~§ and~%, used to model group epistemics, are derived from the
individual accessibility relations of agents frofn

o first,~% is the union of the relations, i.a.~% ¢ iff ¢ ~, ¢’ for somea € A. In
other words, if everybody knows, then no agent may be unsure about the truth
of it, and hencep should be true in all the states that cannot be distinguished
from the current state by even one member of the group.

e Next,~ is defined as the reflexive and transitive closure-§f

e Finally, ~% is the intersection of all the-,, a € A: if any agent fromA can
distinguishq from ¢/, then the whole group can distinguish the states, having
combined their individual knowledge together.

The semantics of group knowledge can be defined as below:

T,q = Eap iff forall ¢ suchthay ~5 ¢’ we haveT , ¢’ |= ¢
T,q = Cayp iff forall ¢’ suchthay ~G ¢’ we haveT ¢’ = ¢
T,q = Day iff forall ¢ suchthay ~% ¢’ we haveT , ¢ = ¢

Remark 3.2 Epistemic relation~§ is usually defined as only the transitive closure of
~% (van der Hoek and Verbrugge, 2002; van der Hoek and Wooléri@§02). The
reflexivity of the closure changes nothing here, since-gllare defined to be reflexive
themselves — except fdr = (). And that is exactly why we add it: novwg can be
used to describe having complete information.

Example 3.2 Let us consider another variation of the variable/congrakample: the
client can try to addl or 2 to the current value of now (the addition is modulo
3 in this case). Thus the operations available-tare: “r := = + 1 mod 3” and
“r := z+2mod 3". The server can still accept or reject the request feqFigure 3.2).
We depict the epistemic accessibility relations with ditiees in the graph. In this
case, the dotted lines show thatannot distinguish being in statg from being in
stateq;, while s is not able to discriminate, from ¢>. Some formulae that are valid
for this AETS (i.e. true in every state of the model) are shbelow:
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(A) (B)

Agt = {s,c} Q={q, 0,0}
IT = {x=0,x=1,x=2} m(qo) = {x=0}
m(q1) = {x=1} m(g2) = {x=2}
(g0, s) = {{ao}, {q1, a2}}

6((117 ) = {{Q1}7 {QO7Q2}}

6(q2,8) = {{a2}, {q0, a1 }}
§(
§(

V)

q0,¢) = {{q0, @1}, {90, g2} }
q1,¢) = {{a, 90}, {01, 2} }
6(q2,¢) = {{a2, @0} {a2, n }}
qQ ~sq0 qo~sq2 Q1 ~s 1
a2 ~s qo g2 ~s Qg2
qgo ~cqo  4qo ~cq1 41 ~cqo
g1 ~cq1 42 ~c 42

Figure 3.2: (A) An AETS for the modified controller/clientgislem. (B) The temporal
and epistemic structure of the system: dotted lines disjhlayepistemic accessibility
relations fors andc.

1. x=1 — Kx=1. In ¢; (which is the only state that satisfigsl), players must
consider only one possibility — namely, itself. Thus,s knows thatx=1 must
hold now;

2. x=2 — E, .~x=1 A =C, .—x=1: in g2, both players can rule out the possibility
thatx=1. On the other hand, they do not have common knowledge abottét
server knows that the current state is eitfaeor ¢q, but it knows also that if
is the case, then the client must consiggepossible. Thuss cannot rule out a
situation in whiche believes thak=1. In consequence,andc know that—x=1,
but s does not know that knows it, and common knowledge is not obtained;

3. x=0 — {(s)O x=0 A ~K,{(s) O x=0. In qo, the server can enforce that the
system will be ingg in the next step (by choosing to reject the client’s request)
However,s does not know that he is able to do so, because he must copsider
as a possible state of affairs as well, ang4such a strategy fordoes not exist;

4. x=2 — {(5,e))O(x=0 A ~E, .x=0): both players can cooperate to enforge
as the next state, but they cannot impose on themselves ifterajt ability to
recognize the state;

5. x=0 — D; x=0. In qo, the server can rule out the possibility thatis the case,
and the client can rule oyt. Thus, they know that the current state is exaggly
if they are allowed to combine their knowledge.

O
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<rej,addl>
<rej,add?2>

'] Q,U QQ(S» A
<rej,add] >(\ o /0 N\ <rej,addl>
<rej,add2> — < acc.add) = <rej,add2>
x=2 <acc,addl> %=1

Figure 3.3: A multi-player epistemic game model for the nfiedi controller/client
problem

3.3.2 Extending Multi-Player Game Models and Coalition Efec-
tivity Models to Include Knowledge

Multi-player game models and coalition effectivity modekn be augmented with
epistemic accessibility relations in a similar way, givingy to multi-player epistemic
game models\l = (Q,~, T, ~a,, ..., ~a, ) and epistemic coalition effectivity models
E = (Agt,Q,E,m,~g,,...,~q,) for a set of agentd\gt = {ai,...,ar} over a set
of propositiond1. Semantic rules for epistemic formulae remain the same &g
tion 3.3.1 for both kinds of structures. The equivalenceltegrom Section 2.7 can be
extended to ATEL and its models.

Corollary 3.3 For everyATEL formula the following are equivalent:
1. pisvalid in all alternating epistemic transition systems,
2. pisvalid in all multi-player epistemic game models,
3. pisvalid in all standard epistemic coalition effectivity deds.

Example 3.3 A multi-player epistemic game model for the modified cornédtlient
system from Example 3.2 is shown in Figure 3.3. The same flaeare valid. [

We will use multi-player epistemic game models throughbatrest of this chapter
for the convenience of presentation they offer.

3.3.3 Problems with ATEL

One of the main challenges in ATEL is the question how, giveresplicit way to
represent agents’ knowledge, this should interfere wighatlients’ available strategies.
What does it mean that an agent has a strategy to enfgrdfeit involves making
different choices in states that are epistemically indgtishable for the agent, for
instance? Moreover, agents are assumed some epistemiilitegsavhen making de-
cisions, and other for epistemic properties liKgo. The interpretation of knowledge
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operators refers to the agents’ capability to distinguisésiatefrom another; the se-
mantics of((A)) allows the agents to base their decisions upequencesf states.
These relations between complete vs. incomplete infoonatn one hand, and perfect
vs. imperfect recall on the other, are studied in Chaptermane detail. It is also ar-
gued that, when reasoning about what an ageneo#&rce it seems more appropriate
to require the agent to know his winning strategy rather timaknow only that such
a strategy exists. Two variations of ATEL are proposed astisols: Alternating-time
Temporal Observational Logic ATOL (Section 4.4) for agenith bounded memory
and syntax restricted in a way similar to CTL, and full Altatimg-time Temporal Epis-
temic Logic with Recall ATEL-R* (Section 4.5), where ageat® able to memorize
the whole game. We believe that analogous results to thesepted here about ATEL
can be obtained for logics like ATOL and ATEL-R* and their nedsl

3.4 Interpretations of ATEL into ATL

ATL is trivially embedded into ATEL since all ATL formulae @ialso ATEL formulae.
Moreover, every multi-player game model can be extendedralé-player epistemic
game model by defining all epistemic accessibility relagitmbe the equality, i.e. all
agents have no uncertainty about the current state of thersysthus embedding the
semantics of ATL in the one for ATEL, and rendering the formeeduct of the latter.

Finding an interpretation the other way is more involved. Wi first construct
a satisfiability preserving interpretation of the fragmehATEL without distributed
knowledge (we will call it ATEL: ), and then we will show how it can be extended to
the whole ATEL, though at the expense of some blow-up of thdefso The interpre-
tation we propose has been inspired by (Schild, 2000). Walghadso mention (van
Otterloo et al., 2003), as it deals with virtually the samsues Related work is dis-
cussed in more detail at the end of the section.

3.4.1 Idea of the Interpretation

ATEL consists of two orthogonal layers. The first one, integtifrom ATL, refers to
what agents can achieve in temporal perspective, and igpinded by the structure
defined via transition function. The other layer is the epistemic component, reflected
by epistemic accessibility relations. Our idea of the tlatien is to leave the original
temporal structure intact, while extending it with addité transitions to “simulate”
epistemic accessibility links. The “simulation” — like tlo@e in (van Otterloo et al.,
2003) — is achieved through adding new “epistemic” agents) ean enforce transi-
tions to epistemically accessible states. Unlike in thatepathough, the “moves” of
epistemic agents are orthogonal to the original tempoaaisitions (“action” transi-
tions): they lead to special “epistemic” copies of the oraistates rather than to the
“action” states themselves, and no new states are intradat®the course of action.
The “action” and “epistemic” states form separate strata@resulting model, and are
labeled accordingly to distinguish transitions that inmpémt different modalities.

The interpretation consists of two independent parts: msfoamation of models
and a translation of formulae. First, we propose a constmudhat transforms every
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act

Figure 3.4: New model: “action” vs. “epistemic” states, &adtion” vs. “epistemic”
transitions. Note that the game frames for “epistemic’estareexactcopies of their
“action” originals: the “action” transitions from the efasnic layer lead back to the
“action” states.

multi-player epistemic game modgak for a set of agent$as, ..., a;}, into a (pure)
multi-player game modeMATL over a set of agentsas, ..., ag, e1, ..., ek }. Agents
a1, ..., a) are the original agents from/ (we will call them “real agents”). Agents
e, ..., e are “epistemic doubles” of the real agents: the role;ois to “point out”
the states that were epistemically indistinguishable ftieencurrent state for ageat

in M. Intuitively, K, could be then replaced with a formula lik&(e; ) O —¢ that
rephrases the semantic definition/of operator from Section 3.3.1. ASATL inher-
its the temporal structure frotivt, temporal formulae might be left intact. However, it
is not as simple as that.

Note that agents make their choices simultaneously in fpldifer game models,
and the resulting transition is a result of all these choidesconsequence, it is not
possible that an epistemic agentan enforce an “epistemic” transition to statend
at the same time a group of real ageAts capable of executing an “action” transition
to ¢’. Thus, in order to distinguish transitions referring tofeliént modalities, we
introduce additional states in mod&tATL | States;y, ..., ¢& are exact copies of the
original statesy, ..., ¢, from @ except for one thing: they satisfy a new proposition
e;, added to enable identifying moves of epistemic agenOriginal states, ..., ¢,
are still in MATL to represent targets of “action” moves of the real agenis., ay.
We will use a new propositioact to label these states. The type of a transition can be
recognized by the label of its target state (cf. Figure 3.4).

Now, we must only arrange the interplay between agentstespso that the results
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can be interpreted in a direct way. To achieve this, evergtepiic agent can choose
to be “passive” and let the others decide upon the next maveay select one of
the states indistinguishable frognfor an agent:; (to be more precise, the epistemic
agents do select the epistemic copies of states tp§nnather than the original action
states from@). The resulting transition leads to the state selected byitst non-
passive epistemic agent. If all the epistemic agents ddd¢mbe passive, the “action”
transition chosen by the real agents follows.

For such a construction of/ATL , we can finally show how to translate formulae
from ATEL to ATL:

e K, can be rephrased ag({ei,....,e;})O (ei A —¢p): the epistemic moves to
agente;’s epistemic states do not lead to a state whefails. Note that player
e; can select a state of his if, and only if, playess..., e;_; are passive (hence
their presence in the cooperation modality). Note also #atp can be as well
translated as(({e1, ..., ex } ) O (&i A ~) or ={{a1, ..., ar, e1, ...,ex } ) O (e A
—¢): whene; decides to be active, choices fram, ..., a;, ande;;1, ..., e, are
irrelevant.

e (ANOp becomeg(A U {ey,...,ex})O(act A p) in a similar way.

e To translate other temporal formulae, we must require thatélevant part of
a path runs only through “action” states (labeled with proposition). Thus,
{(A)O¢p can be rephrased asA (AU Agt“) O (A U Agt®)O(act A ). Note
that a simpler translation witl{A U Agt®)O(act A ¢) is incorrect: the initial
state of a path does not have to be an action state, €iA¢elp can be em-
bedded in an epistemic formula. A similar method applieh#ttanslation of

(A)etty.

e Translation of common knowledge refers to the definitionedétion~9 as the
transitive closure of relations,,: C'4¢ means that all the (finite) sequences of
appropriate epistemic transitions must end up in a stateeyhes true.

The only operator that does not seem to lend itself to a ta#insl according to
the above scheme is the distributed knowledge operatdor which we seem to need
more “auxiliary” agents. Thus, we will begin with presemtidetails of our interpreta-
tion for ATEL¢ g — a reduced version of ATEL that includes only common knogéed
and “everybody knows” operators for group epistemics. i8a@.4.4 shows how to
modify the translation to include distributed knowledgena.

Since the interpretation yields a polynomial model chegldlgorithm for ATEL,
it can be used for multi-agent planning that involves epistegoals, using the “plan-
ning as model checking” idea discussed already in Secti®n &.few examples of
such “planning for epistemic goals” are shown in Section33.@ne must be cautious,
however, while readingA)® as “teamA has aplan to enforce®” in the context
of ATEL and the incomplete information assumption. ATEL senics implies unex-
pected properties for many models, which is especiallyeidvhen we understand
“having a strategy” as “being in control to execute a plan’e iWestigate the issue
extensively in Chapter 4.
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The interpretation we propose in Sections 3.4.3 and 3.A%e&xtended to handle
the more general language of ATEL*, as shown in Section 3 Bigally, we can also
modify the interpretation to show how to translate formwdétine propositional version
of BDI logic from (Schild, 2000) into ATL (and even to CTL) ireStion 3.5.1.

3.4.2 Related Work

The interpretation presented in this section has beerratspy (Schild, 2000) in which
a propositional variant of the BDI logic (Rao and George®01) was proved to be sub-
sumed by propositionai-calculus. We use a similar method here to show a translation
from ATEL models and formulae to models and formulae of ATatthreserves satisfi-
ability. ATL (just like pu-calculus) is a multi-modal logic, where modalities aredxed
by agents (programs in the caseiotalculus). It is therefore possible to “simulate”
the epistemic layer of ATEL by adding new agents (and hensecoeperation modal-
ities) to the scope. Thus, the general idea of the interfloetss to translate modalities
of one kind to additional modalities of another kind.

Similar translations are well known within modal logics amuomity, including
translation of epistemic logic into Propositional Dynanhiagic, translation of dy-
namic epistemic logic without common knowledge into epistelogic (Gerbrandy,
1999) etc. A work particularly close to ours is included iarfvOtterloo et al., 2003).
In that paper, a reduction of ATEL model checking to modelosirey of ATL formu-
lae is presented, and the epistemic accessibility rela@wa handled in a similar way
to our approach, i.e. with use of additional “epistemic” @ige We believe, however,
that our translation is more general, and provides morebiexXramework in many
respects:

1. The algorithm from (van Otterloo et al., 2003) is intendedly for turn-based
acyclic transition systems, which is an essential limitation ofapplicability.
Moreover, the set of states is assumed to be finite (hencefinitly trees are
considered). There is no restriction like this in our method

2. The language of ATL/ATEL is distinctly reduced in (van @tbo et al., 2003):
itincludes only “sometime”¢) and “always” () operators in the temporal part
(neither “next” nor “until” are treated), and the individdanowledge operator
K, (the group knowledge operatafs F/, D are absent).

3. The translation of a model in (van Otterloo et al., 2003)atels heavily on
the formula one wants to model-check, while in the algorifhmesented here,
formulae and models are translated independently (excepghé sole case of
efficient translation of distributed knowledge).

4. Our intuition is that our interpretation is also more gahé the sense that it
can work in contexts other than model checking. We plan tdyaihe same
translation scheme to reduce the logic of ATEL itself, i.e.réduce ATEL to
ATL. Given decidability and a complete axiomatization ofLA{Goranko and
van Drimmelen, 2003), such a reduction would carry the tesavler to ATEL.
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3.4.3 Interpreting Models and Formulae of ATEL g into ATL

Given a multi-player epistemic game model = (Q,~, 7, ~q,,...,~ ai) for a set
of agentsAgt = {ay, ..., a;} over a set of propositiond, we construct a new game
model MATL — (Q',+', ') over a set of agentsgt’ = Agt U Agt®, where:

o Agt® = {ey, ..., ex} is the set of epistemic agents;

e ) = QUM U..UQ* whereQ% = {¢*|q€ Q}. We assume that
Q,Q%,...,Q%* are pairwise disjoint. Further we will be using the more gahe
notationS® = {¢% | ¢ € S} foranyS C Q.

o II'=1IU{act,e1,...,e}, andn’(p) = 7(p) UU,—;
sitionp € II. Moreover’(act) = Q andn’(e;) = Q°.

. T(p)S for every propo-

We assume that all the epistemic agents fibgn®, states fromStates® U ... U Q%,

and propositions from{act, ey, ..., ex}, arenewand have been absent in the original
modelM.

For every statg in M, we translate the framg(q) = (Agt, {39 | a € Agt}, Q,0)
t0v/(q) = (Agt', {3% | a € Agt'}, Q’,0'):

e X% = ¥4 fora € Agt: choices of the “real” agents do not change;

o X9 = {pass} Uimg(q,~q,)® fori =1,....k, whereimg(q, R) = {¢’ | ¢Rq'}
is the image of; with respect to relatior.

e the new transition function is defined as follows:

0¢(Tays oy Oqy,) 1f Oey = ... = 0¢,, = pass
0g(Tays s Tays Oy ooy Oey ) = - if e; is the first active
e epistemic agent

The game frames for the new states are exactly the saifie®) = +/(¢q) for all
i=1,...,kqeqQ.

Example 3.4 A part of the resulting structure for the epistemic game rhdaen
Figure 3.3 is shown in Figure 3.5. All the new states, plus tthesitions going
out of ¢go are presented. The wildcard “*” stands for any action of thspective
agent. For instancéreject, x, pass, pass) representsreject, set0, pass, pass) and
(reject, setl, pass, pass). O

Now, we define a translation of formulae from ATEJ to ATL corresponding to
the above described interpretation of ATEL models into ATadals:

) = p, forp eIl
tr(-p) = —tr(yp)
) = tr(p) Vir(y)
) = (AUAgt)O(act Atr(p))
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<acc,addl,pass,pass=>

<= x=0
{qrie
x=2 2% %=1
<rej,*,pass,pass> € e,
x=1
act
2 >
X:
( <acc,add2,pass,pass>
act \ Pass.p
oL x=1
e K2 €20 e
<x*_¥ pass, q22>‘~ ,—-'P‘ q2 1S :\ql ;

.........

Figure 3.5: Construction for the multi-player epistemicgamodel from Figure 3.3.

tr((A)8p) = tr(p) A (AU Agt®) O (AU Agt*)D(act A tr(p))
tr((AheUyp) = tr(¥) VvV (tr(p) A (AUAgt ) O (AU Agt)
(act A tr(p))U(act Atr(e))))
tr(Ka, ) = —~({e1, .. 61}» (e ﬂ”’(@))

tr(Eap) = —((Agt®) \/ e A —tr(p
a; €A
tr(Cap) = —(AgtDO(Agt N\ e)U(\/ & A—tr(p)
a; €A a; €A

Lemma 3.4 For everyATEL ¢« formulay, modelM, and “action” stateq € @, we
have MATL 4 E tr(p) iff MATL e = tr(y) foreveryi =1, ..., k.

Proof sketch (structural induction orp): It suffices to note thatr() cannot contain
propositionsact, ey, ..., e outside of the scope @fA)) O for someA C Agt’. Besides,
the propositions fronp are true ing iff they are true ing®, ..., ¢® and the game frames
for ¢, ¢%, ..., ¢* are the same. O

Lemma 3.5 For everyATEL g formulay, modelM, and “action” stateq € @, we
haveM, ¢ = ¢ iff MATL g = tr(o).

Proof: The proof follows by structural induction op. We will show that the con-
struction preserves the truth valuewfor three casesp = (A) Oy, ¢ = (A)TY
andy = C 4. Aninterested reader can tackle the other cases in an ansoeny.

casep = ((A) Oy, ATEL g = ATL. Let M, q = (A)O1, then there igr4 such
that for everyo g\ 4 We haveo, (04, 0agt\4) = 1. By induction hypothesis,
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MATL,oq(aA,UAgt\A) E tr(v); alSO,MATL,Oq(O‘A,O’Agt\A) E act. Thus,
./\/lATL,O;(UA,JAgt\A,passAgte) = 04(0a,0ng004) F act A tr(z), where
passc denotes the strategy where every agent fil@nC Agt® decides to be
passive. In consequenobflATL ,q = (AU Agt)Otr(y).

casep = (A)O, ATL = ATEL cp. MATL ¢ = (AU Agt®) O (act A tr(v)),
so there iszauagee SUch that for every g (auagte) = oagr\a We have that
MATL ; 0y (TauAgte, Tagi\a) = act A tr(y)). Note also thadct is true inMATL
ando;(aAuAgte,aAgt\A) only Wheno suagie = (04, passagie), otherwise the
transition would lead to an epistemic state. In consequeweehave that
0y (T AUAgte, Tagi\a) = 04(TA, Tagr\ 4), @nd henceMATL,oq(aA,aAgt\A) E
tr(1). By the induction hypothesigt, o, (04, oagi\ 4) = ¥ andfinallyM, ¢ =
(AN Owp.

casep = ((A)Oy, ATEL ¢ = ATL. Let M,q | (A)0O%y, then A have a collec-
tive strategyF4 such that for every\ € out(q, Fa) andi > 0 we have
M, Ali] | ¢ (*). Consider a strategy”) .- in the new modeMATL | such
thatF)y s (@)(A) = Fa(a)(N) foralla € AandX € QF, andF) ;. (a)(\) =
pass forall a € Agt®. In other words ") ;.. is a strategy according to which
the agents fromd do exactly the same as in the original strategy for all
the histories of “action” states frof (and do anything for all the other his-
tories), while the epistemic agents remain passive all ithe.t Since all the
epistemic agents pass, eveky € OUtMATL (q,FguAgte) includes only “ac-
tion” states from@ (**). As the agents fromA make the same choices as in
Fy, we obtain thabut , st (¢, Fhupgee) = outm(gq, Fa). By (*) and the in-
duction hypothesis: for every € out AT (¢, Fupg) @ndi > 0 we have

M, Al E tr(y). By (**), also MATL,A[z‘] & act for all suchA andi.
In consequence’,\/lATL,q E (AUAgt)O(tr(y) A act), which implies that
MATL 4 (@) A (AU Agt?)O (AU Agt™)D(tr(y) A act).?

casep = (A)Oy, ATL = ATEL ¢g. Let MATL and an “action” state € Q satisfy
tr() A (AU Agt®)O (AU Agt*)O(tr(e) A act). Note thatMATL | ¢ 1= act,
so MATL ¢ = (tr() A act) A (AU Agt®) O (AU Agt®)O(tr() A act),
which is equivalent tolATL ¢ E (AU Agt“)O(tr(y) Aact). Thus,AUAgt®
have a collective strategyaagt- such that forevery € outM ATL (@ Favagte)
andi > 0 we have/\/lATL,A[i] E actAtr(y). In consequence\/lATL,A[z'] =

act (*) and MATL,A[z‘] E tr(y) (**). By (*), Aincludes only “action” states
from @, and hence\ is a path inM as well. Moreover, (*) implies also that
Fausgte(a)(X) = pass for everya € Agt® and A being any finite prefix of

2The proof suggests a simpler translation(of)) 0vy: namely, (A U Agt ¢)O(tr () A act) instead of
tr() A (AU Agte)O (AU Agt)O(tr(y) Aact) (cf. also Remark 3.9). Indeed, no part of the proof of
Lemma 3.Xdirectly rules out the simpler scheme. Note, however, that the pridoémma 3.5 uses the result
from Lemma 3.4 in several places, and the proof of Lemmal8esdepend on the fact that propositiaat
occurs only in the scope &{T")) O.
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a computation fromthATL (g, Fausgte ). Thus, the actual sequence of “ac-
tion” states in computatioA entirely depends on choices of the “real” agents
from Agt.

Let £y, such thaf”, (a)(\) = Fauagte(a)(\) foreverya € Aand\ € Q*, bea
collective strategy ford in M. Then,out (g, Fy) = out  ATL (¢, Fauagte)-

By (**) and the induction hypothesis\t, A[i] = ¢ for everyA € out r((q, Fa)
andi > 0. In consequence\1, ¢ = (A)O.

casep = Ca9), ATEL ¢y = ATL. We haveM,q E Cat, so for every sequence

of statesqgo = ¢,q1, .., qny @i ~a;, Gi+1, aj; € Afori = 0,..,n —1, it
is true thatM, ¢, | . Consider the same in MATL  The shape of the
construction implies that for every sequenge= ¢, ¢}, ..., ¢, in which every
¢i+1 1S asuccessor @f, and everyy; 11 € Q%,e;, € A°, we haveMATL q, =
tr(v) (by induction and Lemma 3.4). MoreoveMATL,qg = ¢ fori > 1,
henceMATL 4 = V4 eca - Note that the above refers to all the sequences
that can be enforced by the agents fragt®, and havé\/ajeA e true along the
way (fromg} on). Thus,Agt® have no strategy fromp such that\/ajeA ¢; holds
from the next state on, and(«)) is eventually false:
MATL g Ear (At ) O (At NV, cae) UV, cae Atr()),
which proves the case.

casep = Cq1), ATL = ATEL ¢g. We have
MATE g = ~(Agt ) O (At NV, ca &) UV, ca € A (1), s for ev-
ery oagie there isoggnagre = oage SUCh thab] (oagie, oagt) = ¢ € Q' and
MATL o E (At D (Vo,cae) UV, cae A —tr()). In particular, this
implies that the above holds for all epistemic statethat are successors @fn
MATL also the ones that refer to agents frang*).
Suppose that, ¢ # C49 (**). Let us now take the action counterpaft, € Q
of ¢’. By (*), (**) and properties of the construction;., occurs also in\, and
there mustbe a patly = ¢, ¢1 = ¢oct» ---» an, ¢ € Q, such thay; ~aj, Qi+l and
M, qn Farer Y. Then,/\/lATL,qn FaTL tr(t) (by induction). This means
also that we have a sequenge= ¢, ¢} = ¢/, ...,q, in MATL, in which every
q; € Q%, aj, € A, is an epistemic counterpart@f Thus, forevery =1,...,n:
MATL,qg = e, SO MATL,qg = VajeA gj. Moreover,MATL,qn EATL
tr(eh) implies thatMATL ¢/ #ar tr(1) (by Lemma 3.4), souATL g/ 1=

~tr(1). Thus, MATL ¢/ |= (Agt) (Ve 4 ) UV, c 4 & A =tr()), which
contradicts (*).

O

As an immediate corollary of the last two lemmata we obtain:

Theorem 3.6 For everyATEL g formula ¢ and modelM, ¢ is satisfiable (resp.
valid) in M iff tr(¢) is satisfiable (resp. valid) it ATL
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Note that the construction used above to interpret AFElin ATL has several nice
complexity properties:

e The vocabulary (set of propositiori§) only increases linearly (and certainly
remains finite).

e The set of states in an ATEL-model grows linearly, too: if mb includesn
states and: agents, thetATL hasn’ = (k + 1)n = O(kn) states.

e Letm be the number of transitions iM. We have(k + 1)m action transitions
in MATL _ Since the size of every sétg(q, ~,) can be at most, there may

be no more tharkn epistemic transitions per state MATL, hence at most
(k + 1)nkn in total. Becausen < n?, we haven’ = O(k?n?).

e Only the length of formulae may suffer an exponential blqw-hecause the
translation of((A))O¢ involves two occurrences af-(¢), and the translation
of ((A)p U1 involves two occurrences of both(¢) andtr(y). Thus, every
nesting of {(A4)O¢ and (A))¢ U roughly doubles the size of the translated
formula in the technical sense. However, the numbelifbérent subformulaé
the formula only increases linearly. Note that the autorbaised methods for
model checking (Alur et al., 2002) or satisfiability cheakifvan Drimmelen,
2003) for ATL are based on an automaton associated with te& dormula, built
from its “subformulae closure” — and their complexity degeion the number of
different subformulae in the formula rather than numberyofisols.

In fact, we can avoid the exponential growth of formulae i ¢bntext of satisfi-
ability checking by introducing a new propositional vatijp and requiring that

it is universally equivalent tor(y), i.e. adding conjunc{@)0(p < tr(y))

to the whole translated formula. Theéf))Oy can be simply translated as
p A {AUAgt YO (AU Agt®)O(act A p). “Until” formulae {A)p U are
treated analogously. A similar method can be proposed fatenchecking. To
translate((A)) O, we first use the algorithm from (Alur et al., 2002) and model-
checktr(y) to find the stateg € @ in which tr(¢) holds. Then we update
the model, adding a new propositiprthat holds exactly in these states, and we
model-checkp A (A U Agt“) O (A U Agt®)O(act A p)) as the translation of
{(A))Typ in the new model. We tackle:({(A)pU1p) likewise.

Since the complexity of transformingyt to MATL is no worse thar®(n?), and
the complexity of ATL model checking algorithm from (Alur at., 2002) isO(ml),
the interpretation defined above can be used, for instancenfefficient reduction of
model checking of ATEL g formulae to model checking in ATL.

3.4.4 Interpreting Models and Formulae of Full ATEL

Now, in order to interpret the full ATEL we modify the consttion by introducing
new epistemic agents (and states) indexed not only witlvighaal agents, but with all
possible non-empty coalitions:



3.4. INTERPRETATIONS OFATEL INTO ATL 73

Agt® ={ea | A C Agt, A # &}
Q' = QUUacug, a0 Q™
where @ and all Q** are pairwise disjoint. Accordingly, we extend the language
with new propositions{ea | A C Agt}. The choices for complex epistemic agents
refer to the (epistemic copies of) states accessible vialiised knowledge relations:
3L, = {pass} Uimg(g,~%)*. Then we modify the transition function (putting the
strategies from epistemic agents in any predefined order):

04(0ays-.y0q,,) ifall o, =pass
0g(Tays s Tays ooy Oy o) = - if e4 is the first active
ea epistemic agent

Again, the game frames for all epistemic copies of the actiates are the same.
The translation for all operators remain the same as west (jaingey,; instead ofe;)
and the translation ab 4 is:

tr(Daw) = ~(Agt) O (ea A —tr(p))-
The following result can now be proved similarly to Theore®.3

Theorem 3.7 For everyATEL formulap and modelM, ¢ is satisfiable (resp. valid)
in M iff tr(y) is satisfiable (resp. valid) itATL

This interpretation requires (in general) an exponentiaivkup of the original
ATEL model (in the number of agentg. We suspect that this may be inevitable —
if so, this tells something about the inherent complexityttedf epistemic operators.
For a specific ATEL formula, however, we do not have to include all the epistemic
agents: 4 in the model — only those for whichk 4 occurs inp. Also, we need epistemic
states only for these coalitions. Note that the number df soalitions is never greater
than the length ofp. Let![ be the length of formula, and letm be the cardinality of
the “densest” modal accessibility relation — either sgat@r epistemic — inM. In
other wordsjm = max(m, m~,, ...,m~, ), wherem is the number of transitions in
M, andm..,, ..., m., are cardinalities of the respective epistemic relatioteril the
“optimized” transformation gives us a model with’ = O(! - ) transitions, while
the new formular () is again only linearly longer thap (in the sense explained in
Section 4.4.2). In consequence, we can still use the ATL dradaeeking algorithm for
model checking of ATEL formulae that is linear in the size loé toriginal structure:
the complexity of such process@m 12).

3.4.5 Planning for Epistemic Goals

If an agent models reality in terms of alternating epistetraasition systems, multi-
player epistemic game models or epistemic coalition effgtmodels, he can use the
above interpretation to reduce ATHilanningto ATL planning as well. Thus — via
the reduction — we obtain an efficient planning algorithmdoals that may include
epistemic properties: an ATEL goaland the model of the reality1 are translated to
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tr(y) and MATL  and we can execute the procedpien(tr(y)) from Section 2.8 on
model MATL | In this section we show a few examples of such planning.

It should be mentioned, however, that ATEL formulae of sh§pk)® (where
® = O, Oy or pU1p). should rathenot be read as “teamd has a plan to enforce
®” ATEL semantics implies unexpected properties for many elsdwhich is espe-
cially evident when we understand “having a strategy” asripen control to execute a
plan”. The issue is analyzed extensively in Chapter 4, angnepose two new variants
of “ATL with incomplete information” (dubbed ATOL and ATER) that seem to be
in a better agreement with the common-sense understantisitategies as (feasible
and executable) plans. Unfortunately, model checking &h®A\TOL and ATEL-R is
NP-hard (cf. Proposition 4.2 for ATOL, and the discussio®dEL-R complexity in
Section 4.5.5), so it cannot be solved in polynomial timd€ss P=NP, of course) —

This is where ATEL may prove useful. Let us observe that ATBinfula{A))®
is a necessary condition fot having an executable plan to enforde in the sense
defined in (Lin, 2000; Doherty et al., 20031)f A have such a plan, thepd))® must
hold; thus—((A)® implies that such a plan does not exist (this observationvisng
a more formal treatment in Proposition 4.6-4, and Propmsi4i.10-3 for ATOL and
ATEL-R, respectively). In that sense, ATEL formulae can bedito specify an upper
approximation of the agentsal abilities.

Remark 3.8 We pointed out in Section 2.8.4 that model checking of gfi@fermulae
from ATL (and hence fronATEL as well) comes very close to the algorithm of min-
imaxing in zero-sum games. In the same sense, the apprexéwaluation ofATOL
formulae through theiATEL necessary condition counterparts, that we suggest above,
strongly resembles the techniqueMbnte Carlo Sampling(Corlett and Todd, 1985;
Ginsberg, 1996, 1999). Monte Carlo minimaxing was suca#gsised as a basis for
GIB, the first Bridge playing program that could seriouslyngoete with human play-
ers (Ginsberg, 1999, 2001).

Example 3.5 Consider the server/client system from Example 3.3. Supp@swant

to check whether in any state there is common knowledge athesgents about some
situation beingiotthe current situation. In other words: can they rule out setat as
impossible to be the case at this moment, and know that treeotan rule it out, and
know that they know... etc. The ATEL formula to be checkechint C'y, ., —x=0 V
Cls,ey %=1V Oy, .y —x=2. We use the construction from Section 3.4.3 to transform the
multi-player epistemic game modaH from Figure 3.3 to obtain the corresponding
model MATL without epistemic relations (cf. Figure 3.5). The transkaigives the
following ATL formula:

o = ﬁ<<€sa ec>>O <<657 €c>> (es V ec) U((es \Y ec) A ﬂ—|X=O)
V —{es, ec)O((es, ec)(es Vec) U((es V ec) A m—x=1)
V (s, ec)O((es, ec))(es Ve U((es V ec) A 7—x=2).

Executingplan(®) in the context of modelMATL returns the empty set. Thus,
Cls,cy =0V O 03%=1V Cy, .y x=2 is true in no state ol O

3We conjecture that it might be the strongest necessary tiondor the property of having a feasible
plan under incomplete information.
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Remark 3.9 Note that, while looking for a plan that brings about somewe are
usually interested in getting the result for the originahtets from M only, as the
epistemic states fromAATL play only an auxiliary role in the procedure. In such
a case, the formula we must use to ask whether propertan be maintained for-
ever, can be simplified tdA U Agt®)O(act A ), instead of the complicated A
(AU Agt YO (AU Agt®)O(act A ). A similar remark applies t§ Ao Up.

Putting it in a more formal way, we observe that the followitauses allow some
simplification of the translatedTL formulae serving as the planning procedure input:

1. foreveryg € Q:
MATL = o A (AU At ) O (AU Agt®)O(act A )
it MATL g = (AU Agt™)D(act A 9);

2. foreveryg € Q:
MATL 4 = v (o A (AU Agt ) O (AU Agt®) (act A @) U(act A )
iff MATL g = (AU Agt®)(act A @) U(act A ).

Note that the above equivalences hold only for the “actiataites from the original set
Q, so they cannot be used to simplify the whole translation.

Example 3.6 Let us go back to the agents from Example 3.5. Common knowledg
about a situation beingot the case now does not hold in any state, so it cannot be
established in the future as well. We may ask, however, ifetiiea way to ensure at
least thaiall the agentscan rule out such a situation (although they probably witl no
know that they can){(s, ¢)) & (Efs,c;~x=0 V B, .} —X=1V Ef, .;—x=2). Suppose we
are particularly interested in ruling out the case whet2 to simplify the example.
Now, formula((s, c))OEy, .3 —x=2 is in fact a shorthand fo((s, c)) T U E, . —x=2,
which can be translated to ATL as:

® = ((s,c €5, ecNacti (act A (e, ec) O ((es V ec) Ax=2)).
Procedurelan(®) in the context of modeMATL returns:

{<q07 <aCC€pt7 addl,pass,pa55>>, <q15 7>7 <QQ7 <aCC€pt7 addl,pass,pa55>>}.

Thus, agents andc can execute collective strategy

{(qo, (accept, addl)), (g1, —), (g2, (accept, addl))}

to eventually achievé, ., —x=2. O

3.4.6 Interpretation of ATEL* into ATL*

Although the computational complexity makes ATEL* modeécking rather uninter-

esting from the practical standpoint, we find it worth paigtiout that the translation
from Section 3.4.4 is in fact a special case of a more genaeiiretation that enables
translating ATEL* formulae into ATL*. We briefly sketch thatter interpretation here.
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First, models are translated in exactly the same way as iticBe®.4.4. Second, the
translation of formulae is given below:

tr(p) = p, forp eIl
tr(-p) = ~tr(p)
V) = tr(p) Vir()
tr((A)e) = (AUAgt)ir(e)
tr(Op) = Olact Atr(p))

trieUy) = tr(¥) Vv (tr(e) A O(act Atr(p))U(act Atr(y)))
tr(Kap) = —({er, ., ei)Olei A —tr(p))

tr(Bap) = —(Agt)O(\ en-ir(p))

a;€A
tr(Cap) = ~(AgtDO((\ e)U( '\ e n-tr(y)))
a; €A a;€A
tr(Dayp) = —(Agt)O(ea A —tr(p)).

3.5 BDI and Its Interpretation in ATL

One of the best known frameworks for reasoning about raltiagants, inspired by
the philosophical debate on the nature of agency and bgildgon the repository of
various modal logics, is the BDI logic proposed in (Rao anai@eff, 1991, 1995)
and later investigated in (Wooldridge, 2000). BDI enabbgaressing claims about an
agent’sbeliefs desiresandintentions wrapped around the language of computation
tree logic. The original language of BDI is very ornate, udihg first-order version
of full CTL*, plus elements of dynamic logic, quantificati@ver agents and actions
etc. The main “specialty” of the logic, however, lies in itodels: the possible worlds
arenotinstantaneous states of the system, but ratbemputational treethemselves
(emphasizing the fact that in every situation we may seedfft possible lines of
future), and the accessibility relations degnary rather than binary (showing which
possible worlds are indistinguishaldé a particular time point* In this section we
will discuss BDlr 1, a propositional variant of BDI, the way it was defined in (th
2000). We will also follow that paper in our presentation lo¢ fogic’s semantics,
defining the models as more conventional structures, intwtie successor relation
and the accessibility relations must satisfy certain ciooni.

Formulae of BDEry, are:

p:=p|-p| 1V | EOp|EDp | Ep1Ups | Belap | Desyp | Intap
The semantics of BRJr;, can be based osituation structures:

S = <QvAgta Rv Ba17 ---7Bak7Da17 ---7Dak;:z-a17 "'7I¢lk5ﬂ->7

4t is worth noting that this sort of structures resemblesaime extent the representation proposed inde-
pendently in (Frank et al., 1998) to investigate searchralgus for games with incomplete information.
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Figure 3.6: A fragment of a BDI model for the card gameis the actual player in
our gameppt is the “optimistic player”, or at least this agent represeatayera’s idea
about a “real optimist”.

where:

e O =W x T is aset ofituations. A situation(w, t) is a pair of apossible world
w € W and atime pointt € T in w;

e Agt ={ay,...,ai} is a set of agents;

e relationR defines transitions between situations. It is requiredttf@situations
belong to the same possible worldyif, t)R(w’, ) thenw = w’';

e relationsB, show which situations are considered possible by an agéoim
the current situation. The situations must share the tinmgpié (w, ¢) B, (w', t)
thent = ¢'. B, is assumed serial, transitive and Euclidean;

e relationsD, (Z,) show which situations are considered desirable (intendgd
a. Again, if (w, t)D,(w', t') (w,t)Z,(w',t’), respectively) then = t'. D, and
T, are only assumed to be serial;

e 7:Q — P(II) is a valuation of propositions frof.

Example 3.7 Consider a very simple card game, that will serve us as a wgrkkam-
ple in Chapter 4 (cf. Example 4.2). Agenplays against the environmentv, and the
deck consists of Ace, King and Queef, (K, Q). We assume that beatsK, K beats
Q, butQ beatsA.5 Firstenwv gives a card tai, and assigns one card to itself. Then

S5Note that this scheme closely resembles the gariR&hamBor “Rock-Paper-Scissors”: paper covers
rock, scissors cut paper, but rock crushes scissors.
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a can exchange his card for the one remaining in the deck, oah&eep the current
one. The player with the better card wins the game. The gampkyed repeatedly
ad infinitum Figure 3.6 presents a fragment of a (possible) BDI strector player
a; we assume that has just been gived, env holds K, anda can keep the Ace or
exchange it for the remaining card in the next move. Thussitva@tion is(ws, AK1)
now. PropositiorhasA can be used to identify the situations in which playéras the
Ace, and propositiongin labels the winning positions far in the game. Here are
some things that can be said about the game and the play@naticn(w,, AK;):

1. hasA A Bel,hasA : agenta has the Ace, and he is aware of it;
2. Bel,EOwin : he believes there is a way to win in the next step;

3. Des,AOwin : he desires that every path leads to a victory, so he doesawet h
to worry about his decisions. However, he does not belieigegbssible, so his
desires are rather unrealistisBel ,AO win;

4. moreover, he believes that a real optimist would beliézag the victory is in-
evitable:Bel,Belyp,t AO win.

O

BDIlcrr, was shown to be subsumed by the propositionaklculus one of the
standard logics of concurrency (Schild, 2000). We will ussirailar technique to
reduce the model checking problem Bil;, to ATL and CTL. We conjecture that
the interpretation might yield analogous subsumptionltese. that BDl-r;, can be
reduced to ATL or even CTL. At this moment, however, no defiaitesults have been
obtained in this respect.

3.5.1 An Interpretation of BDI o, into ATL and CTL

Using a construction similar to the one in Section 3.4.3, Wweinterpret BDIcr, into
ATL.

Given a situation structur§ = (0, R, Ba,, -, Bays Dars s Dags Lay s s Lay s T)
for a set of agentégt = {aq, ..., ar } Over a set of propositiori$, we construct a game
modelMATL = (@Q',+', ") as follows:

o Agt’ = {env} U Agt™ U Agt?® U Agt™. As BDI is not really about what
outcomes can be effected by which agents, the dynamic gteuof the system
can be attributed to one agent (the “environment”) withowt lass of general-
ity. However, we need additional agentgt’ = {bely, ..., bely}, Agt? =
{desi, ..., desy } andAgtW = {intq, ..., int; } to translate BDI formulae refer-
ring to agents’ beliefs, desires and intentions;

e Q' = QUJQPe U Qdesi y Qinti) whereSPel = {gP¢li | g € S},5 C Q etc.
Additional state$2"e!, Qdesi andQi" are copies of the original ones, and will be
used to simulate thB,,, D,, andZ,, accessibility relations;
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e II' = II U {act,bely, ..., bely, desy, ..., des, inty, ..., inty }. 7'(p) = 7w(p) U
Ui:17,,,7k(7r(p)beli Um(p)desium(p)int) for everyp € I1; ’ (act) = Q, 7’ (bel;) =
Qbeli 7/ (des;) = Qdes andr/(int;) = Qinti.

For every situatior in S, we translate the relatiorf®, 3, D andZ into a game frame

V'(q) = (Agt’, {3, | a € Agt’}, 0, Q"):

o ¥, =1img(q,R);

o X, = {pass}u img(q,Ba_i)be'i, Yes, = {pass} Uimg(q,Da,)*, and
Yine, = 1pass} Uimg(q,Za,)"™ fori =1, .. k;
e again, the new transition function is defined as followsllifree “dummy” agents

decide to be passive, then a “real” transition is executéteraise, the choice
of the first non-passive “dummy” agent is accepted:

Oenv I Opely, = ... = Oipnt, = pass
o;(aem,, Obely s oy Tinty,) = « I e; is the first active agent
out ofbely, ..., int, ands = o,

The game frames for the new states are exactly the sariig™®") = +/(¢%) =
¥(¢™) =+'(q), fori=1,....k,q € .

Now, we define a translation of the BB}, formulae into ATL. The translation is
very similar to the one for ATEL formulae, once we recall thatan be expressed with
(&) in ATL:

p

= ~ir(p)

tr(e) V tr(y)

({env} U Agt® U Agt? U Agt™ ) O (act A tr(y))

= tr(p) A ({env} U Agt"™ U Agt®® U Agt™)O

({env} U Agt®™ U Agt® U Agt™ ) O(act A tr(yp))

=
3
<
\J\/\g/vv
I

tr(EeUyp) = tr() Vitr(p) A ({env} U Agt?™ U Agt® U Agt™ ) O
({env} U Agt® U Agt?®* U Agt™") (act A tr(g)) U(act A tr (1))
tr(Bely, ) = —({bels,...,bel; })O (beli A —tr(p))
tr(Desq,0) = —(Agt™ U {desy,...,des;})O (des; A =tr(p))
tr(intg,0) = —(Agt?® U Agt? U {int, ..., int;}) O (int; A —tr(e))

Theorem 3.10 For everyBDI o7, formula ¢ and modelM, ¢ is satisfiable (resp.
valid) in M iff tr(¢) is satisfiable (resp. valid) inATL .

The proof is analogous to Theorem 3.6.
Note thatir(Bel,, ) may be as well rephrased as

—((Agt U Agt® U Agt?® U Agt™ ) O (bel; A —tr(p))
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since it does not matter what the agents fiogt U Agt s U Agt™ U{bel;; 1, ..., bely }
decide to do at all. Note also théf\gt U Agt’ U Agt?® U Agt™")) is equivalent to
the existential path quantifié& from CTL. Similar remarks apply to the rest of above
clauses. After re-writing the clauses, we obtain an eqeivaranslation:

tr(p) = p
tr(-p) = ~tr(p)
tr(pvy) = tr(e) Vir(y)
tr(AQ¢) = EO(act Atr(y))
tr(AOp) = tr(e) ANEOEO(act A tr(yp))
tr(ApUy) = tr(y) Vir(e) NEOE(act A tr(y))U(act A tr())

tr(Bel,,o) = —EO(beli A =tr(p))
tr(Desq,0) = —EO(desi A —tr(y))
)

tr(lnte,0) = —EO(intj A =tr(p))

Now, we can “flatten” the modeMATL, leaving only the bare temporal structure (i.e.
states and unlabeled transitions only) — and finally we enditipan interpretation of
BDIl o7, into CTL itself.

3.6 Final Remarks

The satisfiability preserving interpretations of ATEL anDIB-r; models and formu-
lae into ATL models and formulae constitute the main resoftghis chapter in the
technical sense. It was already pointed out in (van Otteeloal., 2003) that such
an interpretation portrays knowledge as a strategic ghifita special kind — which
seems a nice and potent metaphor. Moreover, it allows to xisérgy model check-
ing tools like MOCHA (Alur et al., 2000) for an efficient modehecking of ATEL
and BDlor,. The aim of this study goes beyond the formal claims beinggrted,
though. We wanted to show the logics of ATEL and BDI as parta bigger picture,
so that one can compare them, appreciate their similagtiéslifferences, and choose
the system most suitable for the intended application.

The picture suggests that BDI and ATL/ATEL can contributeach other, too:

e The BDI notions ofdesireandintentioncan enrich ATEL directly, both on the
syntactical an semantic level.

e ATL and coalition games can provide BDI models with a fineaitged structure
of action (simultaneous choices). Furthermore, the cadjmer modalities can be
“imported” into the BDI framework to enable modeling, sgdgirig and verifying
agents’ strategic abilities in the context of their beljefssires and intentions.

e The treatment of group epistemics from ATEL can be used iBfkogics too.



Chapter 4

Agents that Know how to Play

SynNoPsis  We have been looking for a good formal language to model
and reason about agents for the last two chapters. We sdtitetthe logics

of “strategic ability”: most notably, Alternating-time Teporal Logic. Then
came Alternating-time Temporal Epistemic LogiTEL) that endowed our
agents with the ability to be uncertain. And to have some ledye. Plus,
endowed us with the ability to model and reason about agéntsivledge and
uncertainty. A seemingly perfect framework for talking atbehat agents can
and cannot achieve under incomplete information.

We already hinted that interpreting strategic ability ATEL agents as “being
in control to execute a plan” can be misleading. Now the tiras bome to
look at this issue more carefully. The tension grows. AF&EL models and
formulae what they seem?

4.1 Introduction

The logics of ATL and CL, investigated in Chapter 2, offer atuitively appealing
perspective to systems inhabited by autonomous entitiesveker, they refer only
to agents who have perfect and complete information abautdrld they live in,
which is somewhat unrealistic. We strongly believe thaeAiating-time Epistemic
Logic, introduced in (van der Hoek and Wooldridge, 2002) distussed at length
in Chapter 3, is a move in the right direction. ATEL adds to Affle vocabulary
of epistemic logic, with its long tradition of talking aboagents’ knowledge under
incomplete information. Still, in ATEL the strategic and&tpmic layers are combined
as if they were independent. They are — if we do not ask whéltleeagents in question
are able to identify and execute their strategies. They atéf nve want to interpret
strategies afeasible planshat guarantee achieving the goal. This issue is going to be
discussed in this chapter.

One of the main challenges in ATEL, not really addressed &m (@er Hoek and
Wooldridge, 2002) but already hinted upon in (Jamroga, 8908 the question how,
given an explicit way to represent the agent’s knowledge ghould interfere with the

81
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agents’ available strategies. What does it mean that art &gera way to enforce,
if he should therefore make different choices in episteityi¢gadistinguishable states,
for instance? In Section 4.3, we argue that in order to add&stesnic component to
ATL, one should give an account of the tension betwieeomplete informationhat
is imposed on the agents on one hand, padect recallthat is assumed about them
when they are to make their decisions, on the other hand. ¥éeaabue that, when
reasoning about what an agent eaforce it seems more appropriate to require the
agent knows his winning strategy rather than he knows ormyshch a strategy exists.

Then, in Section 4.4 we will loosen the assumption of penfecall to agents hav-
ing no, or only limited memory. The epistemic component iteAhating-time Tem-
poral Observational Logic (ATOL) is entirely based on th¢io of observation: the
agents can recall no history of the game except of the infooméstored” in their
local states. We give several examples of what agents caevadhthey are allowed
to make specific observations. Then, in Section 4.5, fulerating-time Temporal
Epistemic Logic with Recall (ATEL-R¥*) is considered; heegjents are again allowed
to memorize the whole game. We propose a semantics for ATELaRd we use
past-time operators to relate the several epistemic magalfinally, expressivity and
complexity of ATEL-R* is briefly investigated.

This chapter presents research from (Jamroga and van dég; Bo@4), a paper
co-written with Wiebe van der Hoek from the University of eiypool.

4.2 Prelude: Unraveling AETS and a Look at Strate-
gies

Going from the model to the behavioral structure behindhiré are at least two ways
of unraveling the alternating epistemic transition systeta a computation tree with
epistemic relations. If agents have no recall of the pasejgixfor the information en-
capsulated in the current state (modulo relatignthen only the last state in a sequence
matters for the epistemic accessibility links; if the agergn remember the history of
previous states, then the whole sequence matters: thesaggmiot discriminate two
situations if they cannot distinguish any correspondinggdaom the alternative histo-
ries.

Example 4.1 Let us consider the variable client/server alternatingsé@inic transi-
tion system from Example 3.2 (cf. Figure 3.2). Both ways odveling the AETS are
presented in Figure 4.1 (A and B).

These two approaches reflect in fact two different “commemss” interpretations
of the computational structure with an epistemic componkn(A), a state (together
with relation~,) is meant to constitute the whole description of an agerdsitjpn,
while in (B) states (anél,,) are more about what agents can perceive or observe at that
point. More precisely, since agentannot distinguislyy from ¢gqo in Figure 4.1A, he
is not aware of any transition being happened that stayg. im Figure 4.1B however,
indistinguishable situations occur always on the samd leivthe tree, denoting that
here the agents at least know how many transitions have bada.m



4.2. PRELUDE: UNRAVELING AETS AND A LOOK AT STRATEGIES 83

A) e 0

e"c qoqo """"""""" qoq1 qoqz' T

AN A

quO quOql quOqZ CloEl_1Clo qulql Qoqlch qOEIqu qOClqu o0

o

- .
''''''
----------------

(B) Qo
|

qoqo """"""""" qoq1 qoqz

e o
- ®
~~~~~~~~

Figure 4.1: Unraveling: the computation trees with an epist relation for the client

process. (A) indistinguishability relation based comglgbon ~. — the agent does
not remember the history of the game; (B) the client has perézall. The resulting

indistinguishability relation should be read as the reflexdnd transitive closure of the
dotted arcs.



84 CHAPTER 4. AGENTS THAT KNOW HOW TO PLAY

Note that ATEL agents are assumed to have perfect recaliniitle semantics of
cooperation modalities: the knowledge available to agewhen he is choosing his
action is determined by the type of strategy functfgn(which allowsa to remember
the whole history of previous states). Thus the epistemilitiab of agents with re-
spect to their decision making should be the ones shown ar€ig.1B. On the other
hand, the knowledge modalitlf,, refers to indistinguishability oftates— therefore
its characteristics is rather displayed in Figure 4.1A.

Let us go back to the AETS from Figure 3.2. It is easy to obséhe¢—x =
2 — {()Owx = 2 is valid in the system (becaugg £ (c)Ox = 2 andq F
{(e)Ox = 2), which is counterintuitive:c cannot really choose a good strategy to
enforceOx = 2 since he can never be sure whether the systemgis @m ¢;. Asking
aboutc’s knowledge does not make things better: it can be provedithgx = 2 —
{c)Ox = 2), too. As it turns out, not every function of tyge : Q+ — 29 represents
a feasible strategy under incomplete information. We viildy the problem in more
detail throughout the next section.

4.3 Knowledge and Action under Uncertainty

ATEL and ATEL* are interesting languages to describe andfywg@roperties of au-
tonomous processes in situations of incomplete informatitowever, their semantics
—the way it is defined in (van der Hoek and Wooldridge, 2002)s-r4dt entirely con-
sistent with the assumption that agents have incompletenrdtion about the current
state. Something seems to be lacking in the definition ofid g&lategy for an agent in
AETS. When defining a strategy, the agent can make his chficesery state inde-
pendently. This is not feasible in a situation of incompiefermation if the strategy
is supposed to be deterministic:dfcannot recognize whether he is in situatignor
s2, he cannot plan to proceed with one actiorsinand another i,. Going back to
Example 3.2, since the client cannot epistemically distigigqgy from ¢1, and in both
he should apply a different strategy to ensure thaill have the value of 2 in the next
state, it is not realistic to say that the client has a stsateg@nforceO (« = 2) in go. It

is very much like with the information sets from von Neumanud &orgenstern (von
Neumann and Morgenstern, 1944): for every state in an irdition set the same action
must be chosen within a strategy. Such strategies are sopwetialleduniformin the
field of logic and games (van Benthem, 2001, 2002).

Example 4.2 Consider the following example: agenplays a very simple card game
against the environmenhwv. The deck consisting of Ace, King and Queeh ., Q);

it is assumed thatl beatsK, K beatsQ, but() beatsA. Firstenv gives a card ta,
and assigns one card to itself. Thewan trade his card for the one remaining in the
deck, or he can keep the current one. The player with therbetd wins the game.
A turn-based synchronous AETS for the game is shown in FigiteRight after the
cards are givery does not know what is the hand of the other player; for theaktste
game he has complete information about the state. Atomiggsitionwi n enables
to recognize the states in whiehis the winner. Stategy, ..., (15 are the final states
for the this game; however, the transition functionstspecify at least one outgoing
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wiln wiln wiln wiln wiln wiln
Agt = {a, env}

6((107@) = {{QI; "'aqﬁ}} ZO N‘l go q1 ~a 2, q2 ~q q

5((]17&) _ {{q7};{q8}} etc. 1 a 41, 41 a 42, 42 ~a 42

5((]0 env) _ {{(h} {QG}} 43 ~a G3, 43 ~a 4, G4 ~a q4 €1C.
5((]1,677/1}) _ {{(J7,qs}} etc. q7 ~a 97, 48 ~a 48, 99 ~a g9 €tC.

(S((]7 a) _ 6(Q7 env) _ {{q7}} etc. 4o ~env 490, 91 ~env 41, 42 ~env 42 etc.

Figure 4.2: Epistemic transition system for the card ganoe elvery state, the players’
hands are described. The dotted lines shawepistemic accessibility relation,. The
thick arrows indicate’s winning strategy.

transition for each state. A reflexive arrow at every finates&hows that — once the
game is over — the system remains in that state forever.

Note thatgy F ((a))Owi n, although it should definitely be false for this game. Of
coursea mayhappento win, but he does not have tipewerto bring about winning
because he has no way of recognizing the right decisionitigitoo late. Even if we
ask about whether the player camowthat he has a winning strategy, it does not help:
K, (a)Owi n is satisfied ing, too, because for all € @ such thayy ~, ¢ we have
q E {a)Owi n. O

This calls for a constraint like the one from (von Neumannsliodgenstern, 1944):
if two situationss; ands, are indistinguishable, then a strateflymust specify the
same action for botky, andss. In order to accomplish this, some relation of “subjective
unrecognizability” over the agents’ choices can be useftib-+tell which decisions will
be considered the same in which states. Probably the easigdb accomplish this is
to provide the decisions with explicit labels — the way it lv@®n done in concurrent
game structures — and assume that the choices with the sheiedaresent the same
action from the agent’s subjective point of view. This kinfdsolution fits also well
in the tradition of game theory. Note that it is harder to $yethis requirement if
we identify agents’ actions with their outcomes completblcause the same action
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started in two different states seldom generates the sasu#.ré o trades his Ace in
q1, the system moves ig anda loses the game; if he trades the cargdnthe system
moves tag;o and he wins. Still cannot discriminate trading the Ace in both situations.

4.3.1 Towards a Solution

The first attempt to solve the problem sketched above hasgresented in (Jamroga,
2003d). The idea was to define ATEL models as concurrent gaonesres extended
with epistemic accessibility relations:

S = <ka QaHaﬂ-7N1; ceey Nk7d7 O>

where agents had the same choices available in indistinglis states, i.e. for every
q,q’ such thayy ~, ¢’ it was required that, (¢) = d.(¢") (otherwisea could distin-
guishg from ¢’ by the decisions he could makepn incomplete information strategy
—we will follow (van Benthem, 2001, 2002) and call itaiformstrategy in this thesis
—was a functiory, : Q* — N for which the following constraints held:

e fu(N\) < d.(q), whereq was the last state in sequence

e if two histories are indistinguishable~, X' thena could not specify different
choices for\ and )\’ within one strategy, i.e. fo(A\) = fo(\).

Two histories are indistinguishable farif he cannot distinguish their corresponding
states. Recall that thi¢h position of\ is denoted by\[i]. Then\ =, X iff A[i] ~,

M\'[i] for everyi. Alternatively, decisions can be specified for sequencésoaf states
instead of global onesf, : QF — N, where local states are defined as the equivalence
classes of relation,, i.e. Q. = {[¢]~. | ¢ € Q}. This kind of presentation has been
employed in (Schobbens, 2003), for example.

Example 4.3 A new model for the card game is shown in Figure 4.3. Now, usinlyg
uniform strategiesg is unable to bring about winning on his owiq; E —{(a)) Cwin.
Like in the real game, he can win only with some “help” from #revironmentiq, F
{a, env)yOwin. O

Unfortunately, the new constraint proves insufficient falirrg out strategies that
are not feasible under incomplete information. Considerl#ist game structure and
stateq;. Itis easy to show tha; F ((a))Owin. Moreover,gy F () O {a) Swin,
although stillgy ¥ ((a) Gwin. In other words, no conditional plan is possible for
at ¢o, and at the same time he is bound to have one in the next steppdiadoxical
results lead in fact to one fundamental questiohat does it mean for an agent to have
a plan?

1The authors of ATEL suggested a similar requirement in (vanHbek and Wooldridge, 2003b). They
also considered whether some further constraint on thelpesans of the system should be added, but they
dismissed the idea.
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Agt = {a, env}
Act = {deal s, deal aq, deal i a, deal k¢,
dealga, dealqr, trade, keep, wait}

goﬂxx

| 7\‘ SIEIT

win

Figure 4.3: New model for the game. The transitions are &bwelith decisions from
the player who takes turn.

4.3.2 Having a Strategy:derevs. dedicto

The consecutive attempts to ATEL semantics seem to refartous levels of “strate-
gic” nondeterminism:

1. the first semantics proposed in (van der Hoek and Wooldrigg02) allows for
subjectively non-deterministic strategiasa sense: the agentis allowed to guess
which choice is the right one, and if there is any way for hingtess correctly,
we are satisfied with this. Therefore the notion of a strafegy (van der Hoek
and Wooldridge, 2002) makes formulgd))® describe what coalitiod may
happento bring about against the most efficient enemies (i.e. wherehemies
know the current state and evérs collective strategy beforehand), whereas the
original idea from ATL was rather about being able tenforced;

2. in the updated semantics from (Jamroga, 2003d), preséntke previous sec-
tion, every strategy is deterministic (i.e. uniform), bbetagent can choose
non-deterministically between them (guess which one istyigrhis is because
{a)® (in the updated version) is true if there is a consistent wWanéorcing®,
but the agent may be unaware of it, and unable to obtain itmseguence;

3. we can strengthen the condition by requiring that{a)®: still, this is not
enough as the examples showed. For eyendistinguishable from the current
state,a must have a strategy to achie®efrom ¢ — but these can be different
strategies for differeny’s. Thus, K, ((a))® (in the updated version) is true df
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knows there is a consistent way of enforcibg unfortunately he is not required
to know the way itself;

4. for planning purposes, the agent should be rather inest@s having a strategy
andknowing it(i.e. not only knowing that he haomestrategy).

The above hierarchy reminds the distinction between lstiefre and beliefsde
dicto. The issue is well known in the philosophy of language (QuIi®56), as well as
research on the interaction between knowledge and actioo(®]1985; Morgenstern,
1991; Wooldridge, 2000). Suppose we have dynamic logeilodalities, parame-
terized with strategieqF'4]® meaning ‘A can use strateg§s to bring about®” (or:
“every execution off’y guarantee®”). Suppose also that strategies are required to be
uniform. Cases (2), (3) and (4) above can be then describidl@ass:

e Jp, [F.]® is (possibly unaware) having a uniform strategy to achie\@);
e K,dr [F,]® is having a strateggie dicto(3);
e dp K,[F,]® is having a strateggie re(4).

This would be a flexible way to express such subtleties. Hewevhaving ex-
tended ATEL this way — we would enable explicit quantificataver strategies in the
object language, and the resulting logic would be propmsii no more. Instead, we
can change the range of computations that are taken intauatbg the player when
analyzing a strategy -eut™ must include all the (infinite) paths that are possible from
the agent’s subjective perspective. Since strategies BLAdre perfect recall strate-
gies, the player must be able to use the information from ##t @during his analysis
of possible future courses of action. Thus, the past historglevant for determining
the set of potential outcome paths for a strategy, and itspéeyimportant role in the
definition ofout*. Section 4.3.3 offers a more detailed discussion of thigeiss

We need some terminology. L&tbe a variable over finite sequences of states, and
let A denote an infinite sequence. Moreover, for any sequéncegq; . . . (be it either
finite or infinite):

e &[i] = g¢; is theith position ing,
® &; = qoq1 - - . q; denotes the first+ 1 positions oft,
o & = qiqiy1 - .. is theith suffix of £.

If i is greater than the length 6f+ 1, these notions are undefined. The lengtk) of
a finite sequence is defined in a straightforward way.

Definition 4.1 Let A be a finite non-empty sequence of states, And strategy for
agenta. We say that\ is afeasiblecomputation run given finite history and agent
a’s strategyf,, if the following holds:

o A starts with a sequence indistinguishable frami.e. A, ~, A, wheren =
(N — 1,



4.3. KNOWLEDGE AND ACTION UNDER UNCERTAINTY 89

e A is consistent witly,. In fact, only the future part ak must be consistent with
fa since the past-oriented part of the strategy is irrelevam: agent can plan
the past.

Then, we defineut* (), f,) = {A] A is feasible, giverA and f, }

If cooperation modalities are to reflect the property of hg\a strategyle re then
out®(\, f,) should replace the original set of objectively possible patations in the
semantics of(a)), so that{(a))® holds for a history\ iff there is an incomplete infor-
mation strategyf,, such that® is true for every computatioN € out*(\, f,). Then
the new semantics of the cooperation modality can be given as

AE (@) k@)@ iff a has a uniform strategyf, such that for everyA ¢
out*(\, fo) we have tha® holds inA.

We use notation(a)) k() to emphasize that these cooperation modalities differ
from the original ones (Alur et al., 2002; van der Hoek and \WWddge, 2002): agent
a must have a uniform strategy and be able to identify it hifnsel

Example 4.4 Let us consider the card game example from Figure 4.3 agajmp&se
qo has been the initial state and the system has moved tww, so the history is
A = qoq1. For every strategy,:

out*(qoq1, fa) = {A| A starts with\’ ~, goq; andA is consistent withy, }
= {A | A starts withgoq, ¢ ~, g1 andA is consistent withy,, }
= {A] A starts withgoq: or gog2 andA is consistent withy, }.

Note thatf, must be a uniform strategy - in particulg,(qoq1) = fa(gog2). There are
two possible combinations of decisions for these histories

(1) fi(g0q1) = f1(q092) = keep,
(2) f2(q0q1) = f2(qoq2) = trade.

Suppose there exisfssuch that for every € out*(gogl, f) we haveCwin. We can
check both cases:

case (1)out*(qoq1, f1) = {909197q7.--, Q092999 --- },
case (2)out*(qoq1, f2) = {909148¢s---, 909291 G1... }-

Now, Gwin does not hold forggagogo... NOT Goq1Gsys..., SOGoqL ¥ (@) i (a) Qwin.
O

Note also that functionut* has a different type than the old functiont, and that
we interpreted formulga)) k) Owin over a (finite) path and not a state in the above
example. This shows another very important issue: epistpmiperties of alternating-
time systems with perfect recall are properties@fuences of statesther than single
states.
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4.3.3 Knowledge as Past-Related Phenomenon

Throughout the preceding sections the term “situation” wsed in many places in-
stead of “state”. This was deliberate. The implicit assuampthat states characterize
epistemic properties of agents (expressed via the semsaoftiknowledge operators
K,, C4 etc. in the original version of ATEL) is probably one of thenéasion sources
about the logic. In concurrent game structurestateis not a complete description
of a situationwhen the agent can remember the whole history of the gaméhéas t
type of agents’ strategies suggest). Note that in the dalsgame theory models (von
Neumann and Morgenstern, 1944) situations do corresposthtes — but these are
computation trees that are used there, so every state imegbeaihiquely identifies a
path in it as well. At the same time a concurrent game streauan alternating tran-
sition system is based on a finite automaton that indireotlyases a tree of possible
computations. A node in the tree corresponds $e@uence of statéis the automaton
(a history).

Within original ATEL, different epistemic capabilities @fgents are assumed in
the context of cooperation modalities and in the contextpi$temic operators. The
interpretation of epistemic operators refers to the ageafsability to distinguish one
statefrom another; the semantics @fi)) allows the agents to base their decisions upon
sequencesf states. This dichotomy reflects the way a concurrent epist game
structure can be unraveled (Figure 4.1 in section 4.2). Weusethat the dilemma
whether to assign agents with the ability to remember thdahistory should be made
explicit in the meta-language. Therefore we will assume thkation ~, expresses
what agentz can “see” (or observe) directly from his current state (ibaving no
recall of the past except for the information that is acfuatored” in the agent’s local
state), and we will call it ambservational accessibility relatioto avoid confusion.
The (perfect) recall accessibility relatiofor agents that do not forget can be derived
from ~ in the form of relatiorr,, over histories.

As the past is important when it comes to epistemic state ehtsgwith perfect
recall, knowledge operators should be given semantics inhnthe past is included.
Thus, formulae likeK,p should be interpreted over paths rather than states of the
system. The new semantics we propose for ATEL* in section(dh&ant as a logic
for agents with finite set of states and perfect recall) drawgh inspiration from
branching-time logics that incorporate past in their scy@@oussinie and Schnoebe-
len, 1995). The simpler case — agents with bounded memory als@sinteresting.
We will discuss it in section 4.4, proposing a logic aimedlaervational properties of
agents.

4.3.4 Feasible Strategies for Groups of Agents

The dichotomy between having a stratedgy re andde dictowas discussed in sec-
tion 4.3.2. The first notion is arguably more important if want/to express what
agents with incomplete information can realyforce In order to restrict the semantics
of the cooperation modalities to feasible plans only, wegesg to rule out strategies
with choices that cannot be deterministically executedheyplayers (via redefinition
of the set of strategies available to agents) and to rechateatplayer is able to identify
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a winning strategy (via redefinition of functiemt: all the computations must be con-
sidered that are possible from the agent’s perspective —hahdnly the objectively
possible ones).

This looks relatively straightforward for a single agef{t)) x (,)® should mean:
“a has a uniform strategy to enfordeand he knows that if he executes the strategy
then he will bring abou®” (cf. Definition 4.1 and Example 4.4). In such a case, there
is nothing that can prevemt from executing it. The situation is not so simple for a
coalition of agents. The coalition should be able to idgrdifvinning strategy — but
in what way? Suppose we require that this is common knowledgeng the agents
that F'4 is a winning strategy — would that be enough? Unfortunatbly,answer is
no.

Example 4.5 Consider the following variant of theatching penniegame. There
are two agents — both with a coin — and each can choose to shews loe tails. |If
they choose the same, they win, otherwise they loose. Therén@ obvious col-
lective strategies that result in victory for the coaliti@ven when we consider com-
mon knowledgele re hencelr,, ,, Cy1,23[F{1,2)]Wi n. However, both agents have to
choosethe sameavinning strategy, so it is still hard for them to win this ganie fact,
they cannot play it successfully with no additional comneation between them. [J

Thus, even common knowledge amaAgf a winning strategy'4 for them does
not imply that the agents from can automatically apply’s as long as there are other
winning strategies commonly identified by, It means that the coalition must have a
strategy selection criterion upon which all agents fraragree. How have they come
to this agreement? Through some additional communicatatside the model”? But
why should not distributed knowledge be used instead théthe iagents are allowed
to communicate outside the model at all, perhaps they cae gair private knowledge
too? Other settings make sense as well: there can be a ledbirtive team that can
assign the rest of the team with their strategies (then itificgent that the strategy
is identified by the leader). Or, the leader may even stay btiiegroup (then he
is not a member of the coalition that executes the plan). dieioto capture the above
intuitions in a general way, we propose to extend the simpdgeration modality A))
to a family of operators{(A))xr)® with the intended meaning that coalitiehhas a
(uniform) strategy to enforc®, and the strategy can be identified by agdhts Agt
in epistemic modé&C (wherekC can be any of the epistemic operatéfsC, £, D):

AE(A)xm® iff A have a collective uniform strategys such that for every
A € outy (A, Fia) we have thaf holds inA.

These operators generalize Jonker’s cooperation magahith indices{(A) ¢, (A)) &
and((A)) k,, introduced in (Jonker, 2003).

We will use the generic notatios) to denote the (path) indistinguishability rela-
tion for agentd” in epistemic modéC:

AN ff Afi] ~K N for everyi.

Functionout,*c(r) (\, Fla) returns the computations that are possible from the viemtpoi
of groupI” (with respect to knowledge operat) after history) took place:
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out,*c(r)(A, Fa) = {A | A starts with)\’ such that\’ ~f ), and the rest of\ is
consistent with#'4 }

Examples include:

e {(A)c(a)® : the agents fromd have a collective strategy to enforéeand the
strategy is common knowledge . This requires the least amount of addi-
tional communication. It is in fact sufficient that the agefrom A agree upon
some total order over their group strategies at the beginwfithe game (the lex-
icographical order, for instance) and that they will alwah®ose the maximal
winning strategy with respect to this order;

e ((A)pca)®: coalition A has a collective strategy to enfordeand everybody in
A knows that the strategy is winning;

e (A)pa)® : the agents fromd have a strategy to enforee and if they share
their knowledge at the current state, they can identify treteggy as winning;

e (A) k()@ : the agents fromd have a strategy to enfordg anda can identify
the strategy and give them orders how to achieve the goal;

e (A)pr)® : groupl acts as a kind of “headquarters committee”: they can fully
cooperate within® (at the current state) to find a strategy to achiéveThe
strategy is aimed foA, so it must be uniform for agents frorh

Note also tha{{A)) ()P means thatl have a uniform strategy to achie®e(but they
may be unaware of it, and of the strategy itself), becaysés the accessibility relation
when complete information is available. In consequeRte(A)) ()P captures the
notion of having a strategye dictofrom section 4.3.2. Since the original ATL meaning
of (A))® (there is acomplete informatiostrategy to accomplist) does not seem to
be expressible with the new modalities, we suggest to ldeveperator in the language
as well.

Example 4.6 Let us consider the modified variable client/server systesmfFig-
ure 3.3 once more to show how the new modalities work:

e v =1— ((s)kOr = 1, because every timeis in ¢;, he can choose to
reject the client’s request (and he knows it, because he iséinglishg; from
the other states);

o =2 — (s, )k Or = 2, because — for every histolyq'q”...q1) — ¢
cannot distinguish it froniqq’q”...qo) and vice versa, so he cannot effectively
identify a uniform strategy;

e v =2— (s)k)Or =2 A ~(c) k) Or = 2, because has no action to
request no change, ards unable to identify the current state;

e howeverr = 2 — ((s)) k() Oz = 2. The client can “indicate” the right strategy
to the server;
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e =0 sk Or=0A(s) K@) Or=0A{$)D({s,c})Ox =21 0nly
if s andc join their pieces of knowledge, they can identify a feasgttategy for
S5

oz =1— (5¢)p(esn O =0A=(c,s)c(s,e) Oz = 0 both processes
can identify a collective strategy to changé&om 1 to 0, but they are not sure if
the other party can identify it too.

O

The next two sections follow with a formalization of the iitions described so far.

4.4 ATOL: a Logic of Observations

Assigning an agent the ability to remember everything ttzet lhappened in the past
seems unrealistic in many cases. Both humans and softwanésdtave obviously lim-
ited memory capabilities. On the other hand, we usually caknow precisely what
the agents in question will actually remember from theitdrg— in such situations
perfect recall can be attractive as the upper bound appegiamof the agents’ poten-
tial. Some agents may also enhance their capacity (ingallmemory chips when
more storage space is needed, for instance). In this casedhmry of the agents is
finite, but not bounded, and they cannot be appropriatelyateadwith bounded recall
apparatus.

We believe that both settings are interesting and worthhé&urinvestigation. In
this section, we start with introducing the simpler casemferfect recall in the form
of Alternating-time Temporal Observational Logic (ATOl4s the original ATL and
ATEL operators((A) were defined to describe agents with perfect recall, it seems
best to leave them with this meaning. Instead, we will useve medality (A)* to
express that the agents fraincan enforce a property while their ability to remember
is bounded. When uniform strategies are to be consideredykrator will be used
with an appropriate subscript in the way proposed in Sest?b8.2 and 4.3.4.

If agents are assumed to remember no more thanost recent positions in a finite
automaton, a new automaton can be proposed in which the fasditions are included
in the states and the epistemic links define what the agetualgcremember in every
situation. Thus, for every model in which the agents can rabver a limited number of
past events, an equivalent model can be constructed in liéghcan recall no past at
all (cf. Example 4.8). ATOL is a logic for agents with no rdeait refers to the features
that agents canbserveon the spot. Note, however, that these are observationgin th
broadest sense, including perceptions of the externaldwarid the internal (local)
state of the agent.

4.4.1 Syntax
An ATOL formula is one of the following:

e p, wherep is an atomic proposition;
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e —p Orp V1, wherep, 1) are ATOL formulae;
e Obs,p, Wherea is an agent ang is a formula of ATOL;

e CO,p, EO,p and DO , ¢, where A is a set of agents and is a formula of
ATOL;

° <<A>>'Obs(7)0g0, (AN Sps B, or <<A>>'Ob5(,y)<puw, wherey, ¢ are ATOL for-
mulae andA is a set oé agents, and an agent (not necessarily a member of
A).

o (AN Op, (A)gr)Be: (A)gr)»UY, wherep, 1) are ATOL formulae and
A andT are sets of agents ai{T") € {CO(T"), DO(T'), EO(T")}.

FormulaObs,p reads: “agent observes thap”. OperatorsCO4, FO4 and

DO 4 refer to “common observation”, “everybody sees” and “dtted observation”
modalities. The informal meaning ¢f4))?,, ., ® is:

“group A has a strategy to enforce ®, and agent v can see the
strategy.”

The common sense reading(@f))?., -, © is that coalition4 has a collective strategy
to enforced, and the strategy itself is a common observation for giouphe meaning
of <<A>>J.EO(F)(I) and ((A))jjo(r)tb is analogous. Since the agents are assumed to have
no recall in ATOL, the choices they make within their stragsgnust be based on the
current state only. As we want them to specify determinigléms under incomplete
information, the plans should be uniform strategies as.well

Note that ATOL contains only formulae for which the past i®levant and no
specific future branch is referred to, so it is sufficient taleate them over single
states of the system.

4.42 Semantics

Formulae of Alternating-time Temporal Observational Laogjie interpreted iooncur-
rent observational game structures

S = <k5 QvHa Ty N1y ey Ny d7 O>
in which agents have the same choices in indistinguishaaless for every;, ¢’ such

thatq ~, ¢’ itis required thatl,(q) = d.(¢’). To specify plans, they can use uniform
strategies with no recall.

Definition 4.2 A uniform strategy with no recai$ a functionv,, : Q@ — N for which:
e v,(q) < d.(q) (the strategy specifies valid decisions),

e if two states are indistinguishable~, ¢’ thenv,(¢) = v.(¢’).
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As usual, a collective strategdy, assigns every agente A with one strategy,.
The group observational accessibility relations can a¢sddfined in the standard way:

RO () s
A - as

acA
FO .
acA
~G9 is the reflexive and transitive closure ef5© .

The set of computations that are possible from agénpoint of view, consistent
with strategyl’4 and starting from state, can be defined as:

outops(v)(q, Va) = {A| Ais consistent with/y andA[0] ~ ¢}.

Definition 4.3 More generally, fol®” C Agt, and® being any of the collective obser-
vation modeg’O, FEO, DO:

outer (g, Va) = {A| A is consistent wittV, and A[0] ~F ¢},

Definition 4.4 We define the semantics ATOL with the following rules:

qFp iff penlq)

qF e iff qF ¢

qF VY iff ¢gFporgkE

q E Obs, ¢ iff foreveryq' ~, ¢ we havey F ¢

qF (A)ope Oy iff there is a strategyVa such that for everyA e
outops(+) (¢, Va) we haveA[l] E ¢

qF ((A))'Obs(v)ljtp iff there is a strategyVs4 such that for everyA €
outops(v)(q, Va) we haveA[i] F pforalli =0,1,. ..

q F (AN ops(yypU iff there is a strategyVa such that for everyA €
outops(v)(q, Va) there is ak > 0 such thatA[k] F ¢
andAfi) F pforall0 <i<k

gFBO4 0 iff for everyq ~§ g we havey F ¢

qE <<A>>6(F)O<p iff there is a strategyV,4 such that for everyA ¢
oute(r) (q,Va) we haveA[l] E ¢

qF ((A)):_)(F)Ehp iff there is a strategyVs such that for everyA €
outer)(q, Va) we havelli] F ¢ foralli = 0,1, ...

qF <<A>>é(r)<pl/l1/) iff there is a strategyVs such that for everyA ¢
outgry(q, Va) there is ak > 0 such thatA[k] F ¢
andAfi) F pforall0 <i<k

Remark 4.1 Note that operator®)bs, and (A))?,,, ., are in fact redundant:



96 CHAPTER 4. AGENTS THAT KNOW HOW TO PLAY

o Obs,p = CO{a}gﬁ;

i <<A>>.Obs(7)o<»0 = <<A>>.co({v})o@v <<A>>.Obs(7)DSO = <<A>>E;o({7})D<Pv
and (A)) 8,5 P UY = (AN S0y P UY-

ATOL generalizes ATL,. from (Schobbens, 2003). AlsdgA)°* O, (A)°*Oyp
and (A)*p U1 can be added to ATOL for complete information (i.e. possitiy-
uniform) strategies with no recall — corresponding to theLATlogic (Schobbens,
2003).

Proposition 4.2 Model checkingATOL is NP-complete.

Proof:

1. ATOL model checking is NP-easy: the only difference betwATOL and the
preliminary version of ATEL from (van der Hoek and Wooldreg?2002) are
the type of a strategy and the set of feasible computatiang;, F4) in the
semantics of cooperation modalities. Note that for evefy) oy the number
of available strategies with no recall is finite, so the agean guess the strategy
nondeterministically. The algorithm produces then theo$states); C @ for
which A have a uniform strategy to achiede(being possibly unable to identify
the strategy). We can now obtai, for which <<A>>;)(F)Q> by guessing a subset

of 1 where all the state®(I")-accessible frond); are inQ;.

2. ATOL model checking is NP-hard: ATOL subsumes ATlfrom (Schobbens,
2003), for which the problem is already NP-complete.

O

Thus, ATOL model checking is intractable (unless P=NP). \leaaly pointed out
that model checking of ATOL formulae can be approximatecchiecking their ATEL
counterparts in all the indistinguishable states (cf. iBac8.4.5 and especially Re-
mark 3.8); the idea resembles closely the algorithm of M@g#do minimaxing (Cor-
lett and Todd, 1985; Ginsberg, 1999). Using it, we often gebgtimal results, but the
process has polynomial complexity again.

Remark 4.3 ATOL (syntactically) subsumes most@TL. Although none O@Agt»é(r)
is equivalent to th&€TL's E, yet still the universal path quantifiéy can be expressed
with ((@})50(@. Thus also most of “there is a path” formulae can also be reusdi

EQ¢ = —(9)0e)O¢,

EDp = ~{@)to(e) e,

ECp = ~(2)eo(z) B¢
Remark 4.4 ATOL (without the perfect information modaliti§s4))®) doesnotcover
the expressive power of fllTL. Unlike in ATL (and everATL ;,.), Ep U1 cannot be

translated to{{Agt))¢.o () ¢ Uth. Moreover,Epl{y) cannot be expressed as a combi-
nation ofAp U, ECp, EOp, AOp, EO¢, andAQ¢ (cf. (Laroussinie, 1995)).
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<rej,addl>
<rej,add?2>

RAPA% D,
<rej,addl> S N <rej,addl>
<rej,add2> acc.addl T <rej,add2>
x=2 <acc,addl> %=1

Figure 4.4: The controller/client problem again

Remark 4.5 Note thatATL ;.. is equivalent toATL (Schobbens, 2003), rOL be-
gins to cover the expressive power@TL as soon as we add the perfect information
modalities toATOL.

4.4.3 Examples

Let us consider a few examples to see how properties of agentsheir coalitions
can be expressed with ATOL. We believe that especially Exad® demonstrates the

potential of ATEL in reasoning about limitations of ageraad the ways they can be
overcome.

Example 4.7 First, we can have a look at the variable client/server system Ex-
ample 3.3 again, this time in the form of a concurrent obdemal game structure
(see Figure 4.4). Note how the observational relation isnddfi if we think ofz in
binary representation; x5, we have that can observer;, whereass observerse,.
The following formulae are valid in the system:

e Obssx =1V Obs,—x = 1: the server can recognize whether the valug &
1 or not;

o {(5.eNE0(s,Oa = 2 the agents have a stratedy reto avoidz = 2 in the
next step. For instance, the client can always exemtidd, and the server rejects
the request ig; and accepts otherwise;

o r=2— ﬂ(s))bbs(s)()(z = 2) A () Bps(e) O (x = 2): The servers must be
hinted a strategy byif he wants the variable to retain the value2ofTo see why
this is true, suppose that= 2. We have to find a strategy, such that for every
A € outops(c)(q2,vs), we haveA[1] = O(z = 2). Letw, be the strategy that
picksrej in all states. Then, obviously, is an incomplete information strategy.
All the computation paths consistent with this strategy@tg . . ., ¢1¢1 .. . and
@292 - - .. The runs from those that are imit o) (g2, vs) are those that start
in g2, so the only element we retainds = ¢2q- . ... Obviously, for thisA, we
haveA[l] = (z = 2). To further see that ig; we have~((s))¢),,) O (z = 2),
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reject,set() reject,set()

[125 10204

accept,setl

reject,setl reject,setl

qaf ~ q'o' [
iff ¢ = ¢’ anda = o’

Q12 ~c 4145
iff g=¢ andg =/’

Figure 4.5: Agents with some memory of the past. Propositejn holds in the states
immediately after a request has been rejected.

assume that there is some strategysuch that for ever\\ € outops(c)(q2, vs)
we haveA[l] = (z = 2). The only strategy, that works here choosesj in g-.
Sincev; has to be an incomplete information strategyprescribesej in ¢» as
well. But the runs generated by thisin outops(c) (g2, vs) areA = gaqs . .. and
A = qoqo - ... Obviously, we do not havA'[1] = = = 2;

o (s, C>>E~O(S7c)<>(0b55$ = 0VObssx = 1VObssz = 2)A((s, c>>;/yo(s7c)<>(0bsczr =
0V Obscx =1V Obscx = 2) A=((s, ) &o(s,0) O (EOs,c}x = 0V EO(s y v =
1V EO¢, x = 2): the agents have a way to make the value observable for

any of them, but they have no strategy to make it observalbetio of them at
the same moment.

O

Example 4.8 Let us go back to the first variable/controller system witlydwo states
(Example 2.3). The system can be modified to include boundedary of the players:
for instance, we may assume that each agent remembersttdedéson he made. The
resulting concurrent observational game structure is shiowFigure 4.5. For this
structure, we may for instance demonstrate that:
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e s can always reject the cIainAD<<s>>5bs(s)Orej, whereA = ()24 (cf.
Remark 4.3);

e if s rejects the claims then the value ofwill not change — and: can see it:
Obss[(x =0—A0O(rej —x=0)A(x=1—-A0(rej —z=1))A(z =
2 — AO(rej — = = 2))]. Note that this kind of formulae can be used in ATOL
to specify results of particular strategies in the objeaglzage (in this case: the
“always reject” strategy).

O

Example 4.9 Let us consider a train controller example similar to the sam (Alur
et al., 2000; van der Hoek and Wooldridge, 2002). There acettainstr, tr-, and
a controllerc that can let them into the tunnel. The algorithm of tratpis sketched
in Figure 4.6. Each train can opt to stay out of the tunneligact) for some time
— its local state is “away”d;) then. When the train wants to enter the tunrg) {t
must wait (statew;) until the controller lights a green light for it (actidet; from
the controller). In the tunnek), the train can again decide to stay for some time
(s) or to exit ). There is enough vocabulary to talk about the position cheaain
(propositionsal, wi, t1, a2, w2 andt2).

The set of possible situations (global states) is

Q = {alag, ajwa, ath, wia2,wW1wW2, wth, t1a2, t1w2, tth}.

The transition function for the whole system, and the adb#isg relations are depicted
in Figure 4.7. Every train can observe only its own positidhe controller is not very
capable observationally: it can see which train is away -nbthiing more. When one
of the trains is away and the other is nothas to light the green light for the lattér.
The trains crash if they are in the tunnel at the same momentf = ¢1 A ¢2), so the
controller should not let a train into the tunnel if the ottrain is inside. Unfortunately:

e cis not able to do so=((c))¢,, . O crash, because it has to choose the same
option inwyty andwst,. Note that the controller would be able to keep the
trains from crashing if it had perfect information{(c))* O-crash, which shows
exactly that insufficient epistemic capability ofs the source of this failure;

e on the other hand, a train (say;) can hint the right strategy (pass a signal) to
the controller every time it is in the tunnel, so that theradgscrash in the next
MOMeNtAD(tl — ()2, v, O ~crash);

e whentry is out of the tunnel, then can choose the strategy of letting, in if
tro is not away (and choosirigt; else) to succeed in the next steyga(—t1 —
(D &ps(e) Oerash);

e two last properties imply also th#0((c))},.. .., Ocrash : the controller
can avoid the crash when he has enough communicationtrgm

2This is meant to impose fair access of the trains to the turmate that whertr; wants to enter the
tunnel, it must be eventually allowed if only the other trdioes not stay in the tunnel for ever. Adding
explicit fairness conditions, like in Fair ATL (Alur et aR002), would probably be a more elegant solution,
but it goes far beyond the scope of the example and the chapter
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enter
if the controller

keeps ir; out
enter

W.

I if the controller
wi lets 7r; in ti

Figure 4.6: Train templater; for the train controller problem

|| s, s, lety | s, s, lets | s, e, lety | s, e, lets | e, s, lety | e, s, lets | e,e,lety | e, e, lets |

ai1a2 a1a2 ai1a2 a1wsy ajwa w1a2 wiaz wi1ws2 wi1w2
aiws - - - aits - - - w12
wi1a2 - - - - t1a2 - t1w2 -
w1 w2 - - - - - - t1w2 wits
aito - aits - aias - wita - wias
tiaso t1as - t1wao - a1a2 - ajwsa -
wita - - - - ti1to wita tias wiaz
t1wa - - t1w2 ti1to - - a1ws aito
tita tits tita tits t1ta t1ta tita t1ta tits

| ~c [Jaraz]arwa |wias [wiws [arts [tiaz [wits [tiws [tais]

a1a2 +

ajwsz + +

wiaz + +
Qg ~i rge 1t g =q wiws + + |+ ]+
Qg2 ~ery q1gs I g2 = g5 aits + +
t1as + +
wth + + + +
tlwz
T1ta + ¥ | + | +

+
+
+
+

Figure 4.7: Transitions and observational accessibititytfie system with two trains
and a controller
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Figure 4.8: A model for afF game:S[Vz3y/x « # y]. To help the reader, the nodes
in which Falsifier makes a move are marked with grey circlds;Verifier's turn at all
the other nodes.

° however,ﬁ<<c>>730(c7t7,l)Dﬂcrash, S0 a one-time communication is not enough;

e finally, ¢ is not a very good controller for one more reason — it cannteéale
crash even if it occursirash — —Obs,. crash.

O

Example 4.10 The last example refers t6 games, introduced by Hintikka and Sandu
in (Hintikka and Sandu, 1997), and investigated furthenvan(Benthem, 2002) from
a game-theoretic perspective. The metaphor of matherhptmaf as a game between
Verifier V' (who wants to show that the formula in question is true) andifier F
(who wants to demonstrate the opposite) is the startingtj@re. One agent takes
turn at each quantifier: atx, Verifier is free to assign: with any domain object he
likes, while atvz the value is chosen by Falsifidi= games generalize the idea with
their “slash notation”3z/y means thal” can choose a value far, but at the same
time he must forget everything he knew about the valug @br ever). (van Benthem,
2002) suggests that such logic games can be given a propertheoretical treatment
too, and uses dynamic-epistemic logic to reason about #ngeed’ knowledge, their
powers etc. Obviously, ATOL can be used for the same purpose.

Let us consider twdF games from (van Benthem, 2002): oneYor3y/z x # v,
the other foiva323y/x = # y. The game trees for both games are shown in Figures 4.8
and 4.9. The arcs are labeled wjth, j  wherejy is the action of Verifier angy is the
Falsifier's decisionpop stands for “no-operation” or “do-nothing” action. Dotteadds
displayV'’s observational accessibility link$. has perfect information in both games.
It is assumed that the domain contains two objegtandt. Atom win indicates the
states in which the Verifier wins, i.e. the states in which &g bheen able to prove the
formula in question.

We will use the trees as concurrent observational gametstegcto demonstrate
interesting properties of the players with ATOL formulae.
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Figure 4.9: AnothelF game:S[va3z3y/x = # y].

o SVady/z x # yl,q0 | (V) opsv) Qwin 1 Verifier has no uniform strategy
to win this game;

e note thatS[Ve3dy/x © # y],q = ﬂ(F»ObS(F)Dﬂwm Falsifier has no power
to prevent from winning as well in the first game — in other words, the gésne
non-determined. Thus, the reason¥ds failure lies in his insufficient epistemic
abilities — in the second move, to be more specifi¢tvz3y/x © # y],q =

(V) obs0) OV D &0y Cwin;

e the vacuous quantifier in (B) does matter a lgt.can use it to store the actual
value ofz, soS[Va3zTy/z x # y|, @0 | (V) o) Qwin.

e \erifier has a strategy that guarantees win (see above) gbwitlhnever be able
to observe that he has actually won:

SVedz3y/z x # yl, g0 = (V) ops) CObsvwin.
0

Giving a complete axiomatization for ATOL is beyond the seaf this chapter.
We only mention a few tautologies below.

Proposition 4.6 The following are validATOL properties:

1. (ANSys (n®— Obs (AN () ®: if 7 is able to identifyd’s strategy to bring
about®, then he observes thalt have such a strategy, too;
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2. more generally({(A)g, ® — O (A)g ) P;

3. (A)sr)® — Or{(A)eo() O if A have a strategyle rein any sense, then
they have also a strategle dictoin the same sense;

4. having a uniform strategy implies having a complete imfation strategy:
(A)eo(e) @ — (AN

4.5 ATEL-R*: Knowledge and Time with no Restraint

Real agents have finite memory and unless they can extemat#épzicity when neces-
sary (hence making the memory finite, but unbounded), mawigisno recall can be
used for them. However, even if we know that an agent hasdamitemory capabili-
ties, we seldom know which observations he will actuallyideto remember. Models
with no recall exist for many problems, but they are often@xiely large and must be
constructed on the fly for every particular setting. Assigrigents with perfect recall
can be a neat way to get rid of these inconveniences, althaitfle expense of making
the agents remember (and accomplish) too much. Our langoagék about agents
with recall — Alternating-time Temporal Epistemic LogictviRecall (ATEL-R*) —
includes the following formulae:

e p, Wherep is an atomic proposition;

e —pory Vi, wherep, ¢ are ATEL-R* formulae;

O or U1, wherep, 1) are ATEL-R* formulae.

K4 ¢, whereK is any of the collective knowledge operatofs; F, D, A is a
set of agents, and is an ATEL-R* formula;

{A) k) », whereA, T are sets of agentk; = C, E, D, andy is an ATEL-R*
formula.

We would like to embed the observational logic ATOL, and niiiés for strategies
with complete information into ATEL-R* in a general way. Ptime operators can be
also useful in the context of perfect recall, so the follogviarmulae are meant to be a
part of ATEL-R* aswell @ = CO, EO, DO andK = C, E, D):

o O4 ¢;

o {Asr)e (ke (Ao ®i

o (A)*e (A)g;

o O 1y (“previouslyy”) andp S+ (“p sincey”) .
Several derived operators can be defined:

e o A1) =(—p V) etc,;
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Kop = Crayp and(A) k() ® = (A oy ¥
Obsap = COayp and{(A) e,y ® = (AN o1 P;

o Oy =trueldp anddyp = O,

Oty =trueSpandO ™ty = =01y

o Ap = (D) c (o) andEp = (D) () -

451 Semantics for ATEL-R*

A few semantics have been proposed for CTL* with past timeféHand Thomas,
1987; Laroussinie and Schnoebelen, 1995). The semantiassevdor ATEL-R* is
based on (Laroussinie and Schnoebelen, 1995), where ctiveuiaear past is as-
sumed: the history of the current situation increases \itle tand is never forgotten.
In a similar way, we do not make the usual (unnecessaryhpdisin between state and
path formulae here.

The knowledge accessibility relation for agents defined as beforeA ~% N
iff A[i] ~% N[i] for all i. Again,£[i], &;, and¢’ denote theith position, firsti + 1
positions, and theéth suffix of ¢ respectively. The semantics for ATEL-R*, proposed
below, exploits also functionuty. ) (A, F4) which returns the set of computations
that are possible from the viewpoint of grolip(with respect to knowledge operator
KC) in situationA (i.e. after history\ took place):

out,*c(r)()\,FA) = {A | A, =F X andA™ is consistent withF4, wheren is the
length ofA}.

Definition 4.5 The semantics oATEL-R* is defined with the following rules:

AnEp iff pen(An])

AnE —p iff A,n¥Fop

AnEpVy iff A,nEgporA,nE

AnEOgp iff An+lEgp

AnE Uy iff there is ak > n such thatA, k£ £ ¢ andA,i E ¢ for all
n<i<k

AnEKA iff for every A’ such thatA{ ~K A, we haveA',n F ¢
(where/C can be any o} the collective knowledge opera-

tors:C, E, D)
A,nFE (A)xr) ¢ iff there exists a collective uniform stratedy, such that for
everyA’ € Out;"c(p)(/\m Fa) we havel' ;n E ¢.

We believe that adding past time operators to ATEL-R* dodéshange its expres-
sive power — the same way as CTL*+Past has been proven egpiival CTL* (Hafer
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and Thomas, 1987; Laroussinie and Schnoebelen, 1995). \r¢ovexplicit past tense
constructs in the language enable expressing historyedeproperties in a natural
and easy way.

Definition 4.6 Semantics of past tense operators can be defined as follows:

AnEQ g iff n>0andA,n—1F¢

AnE Sy iff thereis ak < n such thatA,k F ¢ andA,i E ¢ for all
k<i<n.

Example 4.11 Consider the trains and controller from Example 4.9. Thas¢raan
never enter the tunnel at the same momentAsgcrash — O~ 1(t; V t3)), i.e.
if there is a crash, then a train must have already been inutheet in the previous
moment. The formula is equivalent#83—(— (¢ V t2) A Ocrash) when we consider
both formulae from the perspective of the initial point o tbomputation: it cannot
happen that no train is in the tunnel and in the next stateréestcrasis. O

Example 4.12 Another useful past time formulaisO ~!true, that specifies the start-
ing point in computation. For instance, we may want to regjthiat no train is in the
tunnel at the beginning=O ~true — —t; A —to, Which is initially equivalent to
—t1 A=t but states the fact explicitly and holds for all points ircaimputations. Also,
tautologyAOd <O~ 1= ~!true makes it clear that we deal with finite past in ATEL-R*.
O

4.5.2 Knowledge vs. Observations

It can be interesting to reason about observations in ATELt60. We can embed
ATOL in ATEL-R* in the following way:

Definition 4.7 Forall © = CO, EO or DO:

AnEO4p iff forevery A’,n’ such that\’[n’] ~§ A[n] we haveA’, n’ F
P

AnE <<A>>é(r)<p iff there is a uniform strategy with no recally such that for
everyA’,n/, forwhichA’[n’] ~& A[n] andA’ is consistent
with V4, we havel’, n’ E .

Operators for memoryless strategies, identified by ageittsrecall (((A))',C(F), K=

C, E,D) and vice versa((A)em), © = CO,EO,DO) can also be added in a
straightforward way.

SFor a precise definition and more detailed discussioninitial equivalence consult for in-
stance (Laroussinie and Schnoebelen, 1995).
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The explicit distinction between knowledge and observetican help to clarify a
few things. The first one is more philosophical: an agent lsvatvat he can seglus
what he can remember to have seen. Or — more precisely — kaigavis what we
can deduce from our present and past observations, provideate given sufficient
observational abilities (in the ontological sense, i.e.car name what we see).

Proposition 4.7 Suppose our language is rich enough to identify separatestae.
the set of propositiond includes a propositiom, for every statey € (), such thaiy,

is true only ing (since the set of states is always finite, we can always addmopo-
sitions toll for each particular model). Then for every formutahere exist formulae
oLl o, el such thaty), . .., !, contain no epistemic operators with recall
(K,C, E, D), andy] A ¢! — ¢ for everyi, and:

\/ Koo = (0bsa0; NO ' K,O¢)) Vv (-O " ttrue A Obsyyp).

i=1..n

This implies that, in every situatiofk , can be rewritten to some formu@bs, ¢} A
O~1K,O¢! unless we are at the beginning of a run — then it should be tewrito
Obs, .

Proof: Consider formulae) = —=Obs,—a,, andy; = ~Obs,—ay, — ¢, One pair
for each state; € Q. Let A, n be a computation and a position in it, an¢h| = ¢,
current state of the computation. Suppose that = K,¢; then for everyA’ such
that Afn ~a A}, we have that\’,n = ¢. Note that-Obs,—qy, is true exactly
in the states belief-accessible ferfrom ¢;, soA,n = Obs,(=Obs,—ay,). Now,
Afn_1 ~q A1 andA’,n = —Obs,—ay, imply thatAin ~q N, SON n—1 |
O (=0bsa—aq, — ) and hence\,n = O~ 'K,O (=Obs,~ay, — ¢). Finally,
—0bs, g, and—0bs, g, — @ obviously implye.

An = O'K,O(=0bsqg—ay, — ¢) andA,n = Obs,(—Obs,—ay, ) imply
A,n = K,pin an analogous way. O

Example 4.13 The above proposition can be illustrated with the systerfigare 4.10.
Consider patly. g for example. The agent must have knowryrthat he was iy, or
g2 and therefore in the next step he can be in eithanr gs. Now, in g he can observe
that the current state ig or ¢7, so it must beys in whichp holds. Note that the agent’s
ontology is too poor in system (A): he cannot express withaeglable language the
differences he can actually see. Sufficient vocabulary ésiged in Figure 4.10(B):
for instance, whegg is the current statdy’, p can be always rewritten as
Obs,—0bs,—q6 A O "L K,O (—~0bs,—q6 — p)
and of course-0Obs,—q6 A (=Obs,—q6 — p) — p. O

4.5.3 Complete Information vs. Uniform Strategies

Let (A)® denote thatd have a complete information strategy to enfodce like in
ATL and original ATEL*. Relationship analogous to Propasit 4.7 can be shown
between the incomplete and complete information cooperatiodalities. This one is
not past-, but future-oriented, however.
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Figure 4.10: Knowledge vs. observations: with and withbetyocabulary

Proposition 4.8 (A)® = (A))c(z)O(A)O~'®. In other words, having a com-
plete information strategy is equivalent to having a unificstrategy that can be hinted
at every step by an omniscient observer.

A similar property can be shown for agents with no recall:

Proposition 4.9 (4)*® = (A)2.() O (A)* O~ '@.

4.5.4 More Examples

Several further examples for ATEL-R* are presented below.

Example 4.14 For the variable client/server system from Examples 3.34angdrecall
of the past adds nothing to the agents’ powers:

o (D) = (D Dps(s)#r
o (D icie® = (N bmmer
o K,p — Obsgsp etc.

This is because each state can be reached from all the otbeiroa single step. Thus,
knowledge of the previous positions in the game does nowdto any elimination of
possible alternatives. Obviously, in a realistic settihg, agents would remember not
only their local states from the past, but also the decisibeg made — and that would
improve the client’s epistemic capacity. O
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Example 4.15 Consider a model for the variable client and server, extéime sim-
ilar way as in Example 4.8 (in which every player remembessldnt decision). For
this system, the client starts to have complete knowleddgleesituation as soon as
is assigned the value af

e AU(z =2 - AO(K.(z =0)V K.(z = 1) V K (x = 2)));
e note that stillAO(—=Obs.(z = 0) A =Obs.(z = 1)).

On the other hand, the server gains only some knowledge giake If he has been
rejecting the claims all the time, for instance, he knows #tdhe beginning the value
of x must have been the same as now:

o O lrej —» Ky(v =0 — 0 1(=O true — z = 0)) etc.
O

Example 4.16 Some properties of the train controller from Example 4.9 lsarana-
lyzed through formulae of ATEL-R*:

o t; — K.O '=a,; : every time atrain is in the tunnel knows at least that in the
previous moment it was not away;

e the controlleris still unable to accomplish its missiefi(c)) k() D —crash, but...

o a1 Nay — () k(o) (B-(ar Aaz A O(wr Awsz)) — O-crash). Suppose the
trains never enter “the waiting zone” simultaneously anthlaoe initially away
— thenc can finally keep them from crashing. The strategy is to immauedy
grant the green light to the first train that enters the zond,keep it until the
train is away again — then switch it to the other one if it hasady entered the
zone, and so on;

e also, if ¢ is allowed to remember his last decision (i.e. the model iglifiex
in the same way as in previous examples), th&mows who is in the tunnel:
AO(K.t; V K.—t;) in the new model. In consequene&an keep the other train
waiting and avoid crash as well.

O

Example 4.17 ConsiderF games again (see Example 4.10). An interesting variation

on the theme can be to allow that a game is played repeateqipssibly infinite)

number of times. For instance, we can have fornilladefined as a fixed point:
Y, =Va3dy/x (x # y vV Y1), which means that the gameaf3y/x « # y should be

played until Verifier wins. The structure of this game is jpreed in Figure 4.11.

e \erifier still cannot be guaranteed that he eventually wifif\'1],¢0...,0 &
(V) kv Qwin,

¢ this time around, howevel/’s success is much more likely: for each strategy
of his, he fails on one path out of infinitely many possibled &alsifier has to
make up his mindeforeV’). Intuitively, the probability of eventually bringing

aboutwin is 1, yet we do not see how this issue can be expressed in ATEL-R* or

ATOL at present;



4.5. ATEL-R*: KNOWLEDGE AND TIME WITH NO RESTRAINT 109

nop, x:=s

nop, x:=s

Figure 4.11: Game structugY] for gameY; = Va3Iy/x (x £y V T1)

e note thatin an analogous model ¥6tVz3y /x = # y we haveS[VaVz3y /x « #
ylyqo .., 0 F (V) k(v)OQwin, yet this is only because the semantics of ATEL-
R* does not treat-y as the epistemic accessibility relation, but rather as sbas
from which the relation is generated. Hence, it alldw$o remember the value
of  anyway — which shows th&t[VaVz3y /x « # y] is not a suitable ATEL-R*
model for the formula (although it is still an appropriate@I model);

e in order to encode the new game in ATEL-R*, we should splitifi@rinto two
separate playerg; andV;. Vi makes the move at the first and second steps
and has a complete information about the state of the enwieoity 1, does
not see the Falsifier's choice farat all. What we should ask about then is:
(Vi) e viy O O (Va)) ke (vy) Qwin, which naturally does not hold;

e the above shows that ATOL is much closer to the spirifofames than ATEL-
R*. Why should we care about ATEL-R* for modeling games at all? Well,
consider gam&z Y5, whereYs = Jy/x (z # yV T2); the structure of the game
is shown in Figure 4.12. In ATEL-R*, Verifier has a simple wing strategy:
first try y := s, and the next timg := ¢, and he is bound to hit the appropriate
value — hence$[Ys], qo ..., 0 = (V) kv)OQwin. Atthe same time}” has no
memoryless strategys[Y1], qo - .., 0 = ~{(V))&,,, Qwin, because he loses
the knowledge what he did with last time every time he usgsagain. In a
sense{(V)) k(v) is closer to the way variables are treated in mathematigat lo
than((V')) 51/ in Jy3y ¢ both quantifiers refer tdifferentvariables that have
the same name only incidentally.

O

Proposition 4.10 Finally, the following formulae are examples ATEL-R* tautolo-
gies:
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nop, x:=s nop, x:=t

YI=S, nop

q1 ________________________ q2 Y. =t, nop

Y:=t, nop Y:=s, nop

q4 qS win

win

Figure 4.12: Game structugva Y]

1 (A)xmy® — Kr{A)xm® : if T are able to identifyA’s strategy to bring
about®, then they also know that have such a strategy;

2. {A)km® — Kr{{A)cowe)® : if A have a strategyle re then they have a
strategyde dictq

3. having a uniform strategy implies having a complete imfation strategy:
(AN cowe)® — (A)P;

4. <<A>>',C(F)<I) — (A) k) ® : memoryless strategies are special cases of strategies
with recall.

4.5.5 Expressivity and Complexity of ATEL-R* and its Subses

ATEL-R* logic, as defined here, subsumes ATL* and the origifBEL*, as well
as Schobbens’s ATL*, ATL ;z* and ATL;,.* logics from (Schobbens, 2003). One
interesting issue about ATL*, ATL.*, ATL ,z* and ATL,,.* is that they do not seem to
be expressible by each other on the language feVéis is why we decided to include
separate operators for each relevant perspective to eyistéand strategic abilities of
agents.

The complexity results for “vanilla” ATEL-R are rather doraging. Even parts of
it are already intractable: ATL is NP-complete (Schobbens, 2003), and Af (based
on cooperation modalities for incomplete information amdfgct recall) is generally
believed to be undecidable, although no proof for it exigts Ve would like to stim-
ulate a systematic investigation of the issue by extendiegbtation from (Emerson
and Halpern, 1986). L&® (P, Px,... | Ti,T%,... | M1, M>,...) be the branching time
logic with path quantifier$;, P, . . ., temporal operators; , T, . . . and other modali-
tiesM;, Mo, . ... Every temporal operator must have a path quantifier as itseidiate
predecessor (like in CTL). Then:

1. B(F|O,0,U|-)isCTL;

4Except for ATL and ATL;,. — but without the star — which are equivalent
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2. B({A) | O,0,u | —)is ATL;

3. B({A) | O,0,U | CO4,EOa,DO4) is the original version of ATEL from
(van der Hoek and Wooldridge, 2002);

4. B({A)coe) | O,0,U | COa, EOa,DO4) is the ATEL version from (Jamroga,
2003d);

5. B((A)&r) | O,0,U | COa, EOa, DO4) is ATOL (Section 4.4);

6. B (<<A>>’C(F)7 <<A>>.K(F)7 <<A>>7 <<A>>. | 07D7 Z/[’O—l’ D717 S | CAvEA7DA7COA7
EOA,DO,) is “vanilla” ATEL-R.

The model checking problem can be solved in polynomial tiore(8). On the
other hand, the same problem for (5) is NP-complete (Prtipos#.2). Note that
allowing for perfect recall strategies (but with memorglstrategy identification) does
not make things worse: model checking K (A)er) | O,0, U | COa, EOA,DOA)
is NP-complete in the same way (hint: use the model checkgayithm for (3) and
guess the right set of states from whidltan uniformly get to the current “good” states
every time functiorpre is invoked). It turns out that the authors of the original ATE
proposed the largest tractable member of the family to d&teether anything relevant
can be added to it seems an important question.

4.6 Final Remarks

In this chapter, we have tried to point out that — when one svemteason about knowl-
edge of agents defined via alternating transitions systec@@urrent game structures
(aka multi-player game models) — it is important to distiispthe computational struc-
ture from the behavioral structure of the system, and tod#eioi what way the first one
unravels into the latter. We argue that the initial apprdadiiternating-time Temporal
Epistemic Logic (van der Hoek and Wooldridge, 2002) offet@al weak a notion of
a strategy. In order to say that agentan enforce a property, it was required that
there existed a sequence$ actions at the end of which held — whether he had
knowledge to recognize the sequence was not taken into atdglereover, even the
requirement that the agent’s strategy must be uniform préve weak: it would still
enable plans in which the agent was allowed to “guess” thaiogeaction. We sug-
gest that it is not enough that the agent knows that someggratill help him out; it
is more appropriate to require that the agent can identdytimning strategy itself. In
other words, the agent should be required to have a straeggrather tharde dicto
Under such a constraint, the agent “knows how to play”.

This is still not enough to give the meaning of a cooperatimdatity for coali-
tional planning under uncertainty. Even if a group of ageats collectively identify a
winning strategy, they are prone to fail in case there areratbmpeting strategies as
well. Thus, we propose several different operators instéashe to distinguish subtle
cases here.
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The assumption that agents can use the complete historyke thair subsequent
decisions is also investigated in this chapter. Two paradigre studied here in con-
sequence. First, agents can be assumed to have no (or oitBdjrmemory. In this
case, they make their decisions only on the basis of whatt¢hepbserve(albeit in
the broadest possible sense of the word); a language for ADbservations, dubbed
ATOL, is proposed for specification of such agents. The gplaeadigm is formalized
via a richer system, called Alternating-time Temporal Egisic Logic with Recall
(ATEL-R*). We believe that both approaches can be equatlrasting and useful.

The research, reported here, offers only a step towardéyahay epistemic issues
in ATL, and it leaves many questions open. For instancepalih only recently a
complete axiomatization for ATL has been given (GorankoaarDrimmelen, 2003),
this is still unexplored area for ATEL and ATOL. Also, moremurivial examples of
game-like scenarios should be looked for, in which a logikrafwledge and time may
help to reveal interesting properties, and which are gosdsfor automated planning
via model checking.



Chapter 5

Obligations vs. Abilities of
Agents

5.1

SyNoPsIs The story unveils step by step. In a surprisingly logical wasst,
a number of languages and semantic structures came up tdeeredsoning
and modeling agents and their environments of action. Weettahe origins
and basic concepts behind these logics, classified theatetethem to each
other — and did away with most of them before Chapter 2 was dven, in
an ingenious move that made our story more dramatic and napBisticated
at the same time, we brought to the fore Alternating-timepial Epistemic
Logic — only to show in the next chapter theEEL is not completely what it
had seemed. Of course, it allowed us to investigate the eatithe problem,
and propose ways of improvement. The focus of the thesishbasshifted
from investigating proposals of other researchers to maesentation of our
own ideas; however, even the original ideas of ours aroseutljin an attempt
to improve an existing logical system. It seems a good tinve togpropose
a new combination of modal logics, so that new, young researcharstoo
detect incongruities, propose remedies, and do their PmZ®hsequence.

Through a wealth of uplifting episodes, and a few suddentgva$ action,
we have finally come to the point where we are not afraid ofudising the
ruthless notion of obligation. And we even try to confronith abilities.
Only one thing troubles our conscience: the story has beeking agents so
far. Real, full-bodied agents, that is. But waithe ultimate Agent 007, James
Bond comes to the scene in this chapter.

Introduction

Alternating-time Temporal Logic has been playing a majde ia the material pre-
sented so far. ATL and its models present itself as quite @mgmeans of talking
and thinking about autonomous agents, their actions,doti®ns, and strategic abili-
ties. Chapter 3 shows how the language can be extended \gitbptistemic notions

113



114 CHAPTER 5. OBLIGATIONS VS. ABILITIES OF AGENTS

of individual and collective knowledge. Chapter 4, on thkesthand, demonstrates
that such extensions are not always as easy and straightib@g they seem at the
first glance. Alternating-time Temporal Epistemic Logicsadefined as consisting of
two orthogonal layers: the strategic layer (inherited frdhh), and the epistemic layer
(taken directly from epistemic logic). Unfortunately,lirbs out that the two layers are
in factnotindependentin reality: the strategic abilities of an agecting under uncer-
tainty, heavilydepend on his actual knowledge. However, the core idea ehédiig
ATL with other modalities, referring to other aspects of atgeand their communities,
seems generic and potent.

In this chapter, we propose a concept of “deontic ATL” (or AR short). As
deontic logic focuses on obligatory behaviors of systentsagents, and Alternating-
time Temporal Logic enables reasoning about abilities ehégand teams, we believe
it interesting and potentially useful to combine these falrtnols in order to confront
system requirements (i.e., obligations) with possibleswafysatisfying them by actors
of the game (i.e., abilities). This work is not intended aséirdte statement on how
logics of obligation and strategic ability should be condaln Rather, we intend it to
stimulate discussion about such kinds of reasoning, anchtitkels that can underlie it.

We begin by presenting the main concepts from deontic ldgien, in Section 5.3,
a combination of ATL and deontic logic is defined and discdss&hree different
approaches to modeling obligations in a temporal contextdiscussed: global re-
quirements on states of the system (i.e., requirementslfeah some states “correct”
and some “incorrect”), local requirements on states (‘®ciimess” may depend on the
current state), and temporal obligations, which refer tthgaather than states. We
investigate (in an informal way) the perspectives offerg@ach of these approaches,
and present several interesting properties of agents atersy that can be expressed
within their scope. Some preliminary formal results areegiin Section 5.4. In partic-
ular, we present a reduction of DATL model checking to modhelaking of pure ATL
formulae, yielding a DATL model checking algorithm that iisdar in the size of the
input model (and quadratic in the complexity of the inputfiota). Combining it with
the planning algorithm from Section 2.8 enables efficieahping for deontic goals as
well.

The chapter builds on (Jamroga et al., 2004), a paper ctewnitith Wiebe van
der Hoek and Michael Wooldridge from the University of Ligeol.

5.2 Deontic Logic: The Logic of Obligations

Deontic logic is the modal logic of obligations. It was origlly proposed by Mally
in 1926 — but his logic turned out to introduce nothing reaky in the formal sense.
The contemporary deontic logic dates back to 1950s and thlesvad von Wright (von
Wright, 1951). A survey on deontic logic can be found in (Megad Wieringa,
1993b), and especially (Meyer and Wieringa, 1993a). Theltasmceptsobligation,
permissiorandprohibition, are expressed with modal operators:

e Oyp: “it ought to be thaty” or “it is obligatory thaty”,

e Py: “itis permitted thaty”, and
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(A) (B) <stay,stay>C\ a-in

R a-in <stay,stay>
S ~b-in
: & :
@
R * Z-in
Sstay,stay N stayxenter b-in

Ly <stay,exit) LY <enter,stay>
b-in &
B b-in {stay,stay>

Figure 5.1: (A) Critical section example: the trains andtilrenel. Dotted lines dis-
play the deontic accessibility relation. (B) The trainsiséed: temporal and strategic
structure

e Fy: “itis forbidden thatp”.

It is usually accepted that the concept of obligation is v, and the other two are
defined upon it:

o Fp= O_\SQ,
e Pp=-Fp=-0p,

although in some approaches obligations and permissiergeated independently (Al-
chourron, 1993; Fiadeiro and Maibaum, 1991).

5.2.1 Models and Semantics

In the traditional, von Wright’s version of deontic logicoufels are defined as Kripke
structures with accessibility relation (or relatiori8)for modeling obligations (von
Wright, 1951). A state;’ such thatyR¢’ is called a “perfect alternative” of statg
we can also say that is acceptableor correctfrom the perspective of. As with the
conventional semantics of modal operators, we define:

M, q E Oy ifffor all ¢’ such thagRq’ we haveM, ¢’ = ¢.

Let usillustrate the idea with a simplified version of thaftrs and tunnel” example
(cf. Example 4.9).

Example 5.1 There are two trainse andb; each can be inside a tunnel (propositions
a-in andb-in, respectively) or outside of it. The specification requitest the trains
should not be allowed to be in the tunnel at the same time usecthey will crash (so
the tunnel can be seen as a kind of critical sectighja-in A b-in) or, equivalently,
O-(a-in A b-in). A model for the whole system is displayed in Figure 5.1A. O
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The main idea behind this chapter is that, if we combine ATd deontic logic, it
may, among other things, allow us to express obligationsialvbat coalitions should
or should not achieve — without specifyingwthey achieve it (or refrain from it).

Example 5.2 Let us consider the tunnel example from a temporal (andegfi@tper-
spective; a concurrent game structure for the trains andutmeel is shown in Fig-
ure 5.1B. Using ATL, we have thatAgt) < (a-in A b-in), so the system is physically
able to display undesirable behavior. On the other hgag0—(a-in A b-in), i.e., train

a can protect the system from violating the requirements. O

In this chapter, we propose to extend ATL with deontic oper@tin order to inves-
tigate the interplay between agents’ abilities and reauoinets they should meet. The
resulting language, dubbed “Deontic ATL”, or DATL in shdgdefined in Section 5.3.

Substance of Obligations: Actions vs. States

Originally, obligations were given standard modal logeatiment, being modeled with
accessibility relations that referred $tatesin the model — in the way we have just
presented (von Wright, 1951, 1964; Anderson, 1958). Soroenteapproaches to
deontic logic still use this perspective (Lomuscio and 8&rg003a,b). Meanwhile,
actions have also been recognized as entities that can lgataloy, forbidden or per-
mitted (Meyer, 1988; Alchourron, 1993), and this approaeénss dominant in the
current literature. It seems reasonable that the notiomsavél (or legal) obligation,
permission and prohibition should be in most cases relatedtions one ought to (is
allowed to, is forbidden to) execute, rather than to obbgatacceptable, forbidden)
states of the system. We believe, however, that the fornagicststill makes sense,
especially when we treat deontic statements as referripgeservation (or violation)
of some constraints one would like to impose on a system oesufrits components
(like integrity constraints in a database). In this sensentic modalities may refer to
requirements specification requirements, design requirements, sga@guirements
etc. — an approach that has been already suggested in (Jéeziral., 1989; Wieringa
and Meyer, 1993; Broersen, 2003), albeit in different cetsteThus, we will interpret
Oyp as “p is required” rather thany ought to be” throughout the rest of the chap-
ter. This approach allows to put gihysicallypossible states of the system in the
scope of the model, and to distinguish the states that areec with respect to some
criteria, thus enabling reasoning about possible faultsfanlt tolerance of the sys-
tem (Wieringa and Meyer, 1993).

Locality and Individuality of Obligations

Let us go back to the trains and the tunnel from Example 5.1e Mat the set of perfect
alternatives is the same for each stata Figure 5.1A. In other words, the acceptabil-

ity of situations isglobaland does not depend on the current state. Thus, the semantic
representation can in fact be much simpler: it is sufficientniark the states thai-

olate the requirements with a special “violation” atom (Anderson, 1958; Meyer,
1988). Or, equivalently, mark the forbidden states withd"r@and the acceptable states
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with “green” (Lomuscio and Sergot, 2003a). Then the acbdggirelation R can be
defined as:

qRq iff ¢ E V.
Alternatively, we can use the following semantic rule:

M, q E Opiff for all ¢’ such thaty ¥ V we haveM, ¢’ = ¢ —or:
M, q E Oyiffforall ¢ we haveM, ¢ | -V — ¢.

Using a more elaborate accessibility relation machinergesdt possible, in gen-
eral, to model requirements that doeal with respect to the current state. Is it neces-
sary? In many application areas perhaps not. We argue iilo8écB.3, however, that
local obligations can provide a means for specifying regjaients that evolve in time.
Also, they can be used to specify exception handling in 8dna when full recovery
of the system is impossible.

Another dimension of classifying obligations is thiidividuality. The accessibil-
ity relation can define the requirements for the whole systemnthere can be many
relations, specifying different requirements for eachcess or agent (Lomuscio and
Sergot, 2003a). The requirements in Example 5.1, for icstaare universal rather
than individual: they apply to the whole system. Howevemdty make sense to spec-
ify that the trainb is required to avoid the tunnel at all (because, for instatheetunnel
is too narrow for it):0,—b-in.

Paradoxes

Many paradoxes have been listed for various instances oftieogic — cf. (Meyer
and Wieringa, 1993a), for instance. We believe that (at Isame of) the paradoxes
are due to confusing various kinds of obligations, profobi etc. that are uttered
with the same words in natural language, but their inhereraning is in fact different.
For example, one may confuse dynamic vs. static propehasught to be satisfied
(i.e. actionsthat ought to be executed vstatesthe system should be in), ending up
with Ross’s ParadoxPenitent’s Paradoxthe paradox oho contradictory obligations
etc. One may also confuse properties that ought to hold aeltithe vs. the ones that
must hold at some future moment etc. as long as the tempaisdeive is implicit
(Good Samaritan Paraddx Defining permission as the dual of obligation (i.e. as a
mere statement thatmightbe morally acceptable, while e.g. reading “permission” as
authorization suggests thatis proclaimedto be acceptable) leads to much confusion
too (no free choice permissioparadox). There have been some attempts to clarify
these issues. Alchourron (1993), for instance, makes alic@distinction between
positive permission (i.e. things that have been explig#ymitted) and negative per-
mission (i.e. things that are merely not forbidden), andyarees the formal relationship
between these two concepts. Moreover, it is sometimes stegjénat the use of de-
ontic modalities should be restricted only to actions (actierms) and not to static
properties.

We are not going do dig deep into these issues in this thesigvadid confusion,
we will interpret deontic sentences as referringyetem requiremengspecification re-
quirements, design requirements, security requiremenisteat express which states
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of the system are consideredrrectin a given situation. Moreover, the only notion
of permission, discussed in this chapter, is representelddiyP operator for “uncon-
ditionally permitted” situations (defined in Section 5)3.Thus, we leave the issue of
permissions in general — and a discussion offtheperator — out of the scope of the
thesis.

5.2.2 Combining Deontic Perspective with Other Modalities

The combination of deontic logic with temporal and dynanoigits has been investi-
gated at length in the literature. A well-known reductiondentic operators to dy-
namic logic was proposed in (Meyer, 1988):

o Fa=l[a]V,
e Pa=-Fa=(a)-V,
e Oa = F(—a) = [—a]V, where “~a” stands for “not-doingy”.

It turned out that embedding deontic concepts in dynamiiclogt only enabled to ex-
press and investigate the interplay between obligatioddiare and actions, but it also
cuts off some of the paradoxes. Another body of work propbeesdeontic specifica-
tions can be reduced to temporal specifications (van Eck;1H8deiro and Maibaum,
1991), while in (Maibaum, 1993) a reduction of deontic sfieafions to temporal ones
via a kind of dynamic logic (“deontic action logic”) is suggied. Finally, Dignum and
Kuiper (1997) add temporal operators to dynamic deonticlatpich serves as a basis.
“Artificial social systems” and “social laws” for multiplegants acting in time (Moses
and Tennenholz, 1990; Shoham and Tennenholz, 1992, 1995¢4vamd Tennenholz,
1995) also contribute to the field in a broad sense.

In addition, combinations of deontic and epistemic logiagehbeen investigated,
too. Bieber and Cuppens (1993) proposed such a combinatidhé purpose of se-
curity analysis, and Moses and Tennenholz (1995) inclugkstesmic operators and
accessibility relations in their logical system for reasgnabout artificial social sys-
tems. A generic concept of deontic interpreted systems m&siigated in (Lomuscio
and Sergot, 2002, 2003a,b). Related work concerns alsodirtgthe BDI framework
(beliefs, desires and intentions) with obligations (Beseret al., 2001a,b).

Finally, a recent proposal (van der Hoek et al., 2004) coetbihe deontic and
strategic perspectives, applying the concept of socias lBwATL: behavioral con-
straints (specific model updates) are defined for ATL modslshat some objective
can be satisfied in the updated model. Since that paper déhlsimilar territory as
the ideas presented here, we discuss their relationshipia detail in Section 5.3.5.

5.3 Deontic ATL

In this section, we extend ATL with deontic operators. Weédiglthe definition with an
informal discussion on how the resulting logic (and its nisglean help to investigate
the interplay between agents’ abilities and requiremérasthe system (or individual
agents) should meet.
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5.3.1 Syntax and Semantics

The combination of deontic logic and ATL proposed here ihtécally straightfor-
ward: the new language consists of both deontic and strategnulae, and models
include the temporal transition function and deontic asibéi#ty relation as two inde-
pendent layers. Thus, the recursive definition of DATL folaeus:

o:=p| 0| e1Vea| Oap|UPsp | (ANOw | (A)Dp | (A1 Ups

whereA C Agt is a set of agents.
Models for DATL can be calledleontic game structuresand defined as tuples
M = (Agt, Q,I1, 7, Act, d, §, R), where:

e Agt is a (finite) set of alagentsand( is a non-empty set cftates
e Il is a set of (atomicpropositionsandr : @ — P(II) is theirvaluation

e Actis aset of actions, and: Q x Agt — P(Act) is a function that returns the
decisions available to playerat statey;

e a complete tuple of decisiongv, ...,ax) C dy(a1) x ... x dg(ax) from all
the agents in statgimplies a deterministic transition according to the tréogi
functiond(q, aa, ..., ag);

e finally, R : P(Agt) — P(Q x Q) is a mapping that returns a deontic accessibil-
ity relationR 4 for every group of agentd.

The semantic rules fap, ~¢, ¢ V 9, (A) O, (A)De, (A) U are inherited
from the semantics of ATL (cf. Chapter 2), and the trutltqafy is defined in a similar
way as in the version of dynamic logic presented in Secti@nl5.We also propose a
new deontic operatot/Pp, meaning thaty is unconditionally permitted”, i.e., when-
every holds, we are on the correct side of the picture. This new fitgddosely
resembles the “knowing at most” notion from epistemic Iqgievesque, 1990).

M,qEp iff p € w(q), for an atomic propositiop;
M,qF -y iff M, q ¥ ¢
M,qgF oV iff M,qF @orM,qkF;

M,qE (A)O¢p iff there exists a collective strategl/s such that for every
computation\ € out(q, Fa) we haveM, A[1] E ¢;

M,qF (A)DOp iff there exists a collective stratedy, such that for everj
out(q, Fa) we haveM, A[i] F ¢ for everyi > 0;

M, qE (A)eUy iff there exists a collective stratedy, such that for everj €
out(q, F4) there isi > 0 such that\, A[] E ¢ and for all
jsuch that < j < i we haveM, A[j] E ¢;
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M,q = Oqp iff foreveryq suchthagR ¢’ we haveM, ¢’ = ¢;
M, q E UP4p iff foreveryq suchthat\, ¢ = ¢ we havegR aq’.

Operatoi/P, — among other things — helps to characterizeakactset of “cor-
rect” states, especially in the case of local requiremevitigre the property of a state
being “correct” depends on the current state of the systew,tlaerefore cannot be
characterized with an additional single proposition.

In principle, it should be possible that the requirementaaroup of agents (or
processes) are independent from the requirements for tiednal members of the
group (or its subgroups). Thus, we will not assume any spe@fationship between
relationsR 4, andR 4/, evenifA’ C A. We propose only that a system can be identified
with the complete group of its processes, and thereforegfeirements on a system
as a whole can be defined &p = Oyqt 0. In a similar wayUPp = UPagt .

5.3.2 Dealing with Global Requirements

Let us first consider the simplest case, i.e., when the ditiim between “good” and
“bad” states is global and does not depend on the curreet €&bntic game structures
can in this case be reduced to concurrent game structurdeSwdtation” atomV that
holds in the states that violate requirements. Then:

M, q E Opiffforall ¢’ such thay’ ¥ V we haveM, ¢’ = ¢.

As we have both requirements and abilities in one framewsekcan look at the for-
mer and then ask about the latter. Consider the trains amkexample from Fig-
ure 5.1B, augmented with the requirements from Figure 5LBAus also assume that
these requirements apply to all the agents and their gragpsR 4 = R4 for all
A, A" C Agt; we will continue to assume so throughout the rest of the Ehapnless
explicitly stated. As already proposed, the trains are iregunot to be in the tunnel
at the same moment, because it would result in a cré%hi(a-in A b-in)). Thus, it
is natural to ask whether some agent or team can preventdins from violating the
requirementi{(A)0-(a-in Ab-in)? Indeed, it turns out that both trains have this ability:
{@)O=(a-in A b-in) A (b))O—(a-in A b-in). On the other hand, if the goal of a train
implies that it passes through the tunnel, the train is unab!'safeguard” the system
requirements any morei{{a))—(a-in A b-in) U (a-in A —b-in).

In many cases, it may be interesting to consider questikasdioes an agent have
a strategy to always/eventually fulfill the requirements? r@ore generally: does the
agent have a strategy to achieve his goal in the way that dutegaiate the require-
ments (or so that he can recover from the violation of requénets eventually)? We
try to list several relevant properties of systems and agesiow:

1. the system istable(with respect to moded and statey) if M,q = (@)0-V,
i.e., no agent (process) can make it crash;

2. the system isemi-stabléwith respect to model/ and state) if it will inevitably
recover from any future situatiod, ¢ = (@)O{(@)<>-V;
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3. agentsA form a (collective)guardianin model M at statey if they can protect the
system from any violation of the requiremenid: ¢ = (A)O-V;

4. A canrepair the systerm model)M at statey if M,q = (A)<O-V;

5. A is a (collective)repairmanin model M at stateq if A can always repair the
system:M, g = (@) 0(A)O-V;

6. finally, another (perhaps the most interesting) properagisnts’ ability to eventu-
ally achieve their goalf) without violating the requirements. We say that agents
A canproperly enforcep in M, ¢ if M,q = (A)(=V)U(=V A ).

We will illustrate the properties with the following exanepiThe world is in danger,
and only the Prime Ministemp] can save it through giving a speech at the United Na-
tions session and revealing the dangerous plot that tmgé#te world’s future. How-
ever, there is a killer) somewhere around who tries to murder him before he presents
his speech. The Prime Minister can be hidden in a bunker gsitpnpbunk), moving
through the city fcity), presenting the speecpspeaks = saved), or... well... dead
after being murdered(ead). Fortunately, the Minister is assisted by James Bahd (
who can search the killer out and destroy him (we are verysemve would prefer
Bond to arrest the killer rather than do away with him, but 8drardly works this
way...). The deontic game structure for this problem is shawFigure 5.2. The
Prime Minister’s actions have self-explanatory labelstér, exit, speaknd nop for
“no operation” or “do nothing”). James Bond can defend thaister (actiordefend,
look for the killer (search) or stay idle op); the killer can either shoot at the Minis-
ter (shoo) or wait (nop). The Minister is completely safe in the bunker (he remains
alive regardless of other agents’ choices). He is more vabie in the city (can be
killed unless Bond is defending him at the very moment), aigtilig vulnerable while
speaking at the UN (the killer can shoot him to death even iiBis defending him).
James Bond can search out and destroy the killer in a whilargtmoment). It is
required that the world is saveabl®{(Agt)) Osaved) and this is the only requirement
(UP{Agt))Osaved). Note also that the world can be saved if, and only if, then@ri
Minister is alive (becausgAgt)) Osaved is equivalent-pdead), and the two states that
violate this requirement are marked accordingly (vhich is of course equivalent to
pdead).

The system is neither stable nor semi-stable (the Minigtargo to the UN build-
ing and get killed, after which the system has no way of redogg. Likewise, no
agent can repair the system in stajgsys, and hence there is no repairman. The Prime
Minister is a guardian as long as he stays in the bungbunk — ((p))O-pdead,
because he can stay in the bunker forever. However, if he sl;meke cannot save
the world: —((p))(—pdead) 2/ (—pdead A saved). On the other hand, he can coop-
erate with Bond to properly save the world as long as he ig@lhjitout of the UN
building: (pbunk V pcity) — ((p, b))(—pdead)/(—pdead A saved) — he can get to
the bunker, defended by Bond, and then wait there until Bomdkfthe killer; then
he can go out to present his speech. Incidentally, thereasnoore guardian in the
system — namely, the killer(—pdead) — {((k))O-pdead, and also(—pdead) —

{(p, k) (—pdead) U (—pdead A saved), so the Minister can alternatively pay the killer
instead of employing Bond.
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{enter,nop,shoot>
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{enter,defend,nop>.
) {enter,defend,shoot>
<nop,nop,shoot>

@ @ — @ pd G
<nop,search,nop>
<nop,search,shoot>
{exit,search,nop>,
<exit,search,shoot)! e

<nop,nop,nop>

Q)

<gpeak, d;‘fend,shooﬁ

exit,defend, shoot>

pbunk pcity saved\ |<speak,search,shoot>

dead)<— kdead

<nop,defend,nop> <exit,defend,nop>

{enter,search,nop> <speak,search,nop>

—
o
®
Y]
[0

a

QL

Figure 5.2: James Bond saves the world. The arrows showhpessnsitions of the
system; some of the labels are omitted to improve readgabilihe states that violate
the requirements are marked grey.

Remark 5.1 Note that formulaDp A UPyp characterizes the exact set of correct states
in the sense that/, g = Op A UPy iff o = =V. Thus,Op A UPp can be seen as the
deontic counterpart of the “only knowing” alias “all | knowbperator from epistemic
logic (Levesque, 1990).

5.3.3 Local Requirements with Deontic ATL

A more sophisticated deontic accessibility relation maycbevenient for modeling
dynamics of obligations, for instance when the actors ofgame can negotiate the
requirements (e.g., deadlines for a conference submijssidternatively, “localized”
requirements can give a way of specifyiexception handlingn situations when a full
recovery is impossible.

Example 5.3 Consider the modified “James Bond” example from Figure 5.8e T
Prime Minister is alive initially, and it is required that Ishould be protected from
being shot: g3 = —pdead andg; = O-pdead. On the other hand, nobody ex-
cept the killer can prevent the murdeq; | ((k)O-pdead A —((p, b))d—pdead;
moreover, when the president is dead, there is no way for dibetome alive again
(pdead — ((@))Opdead). Now, when the Minister is shot, a new requirement is im-
plemented, namely it is required that either the Ministereisurrected or the Kkiller is
eliminated:¢; = O(—pdead V kdead). Fortunately, Bond can bring about the latter:
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<nop,nop,nop> <nop,search,nop>

Figure 5.3: “James Bond saves the world” revisited: locguieements. Dotted lines
define the deontic accessibility relation. Solid lines stpmgsible transitions of the
system.

g7 E {(b))Okdead. Note thatgs is unacceptable when the Minister is alivg)( but it
becomes the only option when he has already been ghot ( O

Remark 5.2 In a way, we are making the deontic accessibility relationedén a very
special sense, i.e., every state has at leastreaehablgerfect alternative now. We
suggest to call this semantic propesffective seriality It is a well known fact that
seriality of a modal accessibility relation correspondsthe D axiom, stating (in the
case of obligations) thatO4 L or, equivalentlyOs¢ — 04— (van der Hoek and
Verbrugge, 2002). We conjecture that the effective seyiafiay correspond to the
following axiom scheme:

DEppr: Oap — (mO0a—¢ A (Agt) )
or, equivalently:
Degg: (OA(p/\Z/{PASD) - <<Agt>><>(p.

Similar properties of agents and systems to the ones frompréhagous section can
be specified:

1. the system istablein M, ¢ if, given M, ¢ = Op AUPp, we havel, g = (@) Typ;

2. the system isemi-stablén M, q if, given thatM, ¢ = Op AUPp, we haveM, g =
(@)D — (2)Cp);

3. Aformaguardianin M, q if, given M, ¢ = Op AUPp, we haveM, ¢ |= (A)Ty;

4. A canrepair the system inV/, q if, given thatM, ¢ = Op AUPp, we haveM, q =
(AN Ce;

5. group A is arepairmanin M,q if, given that M,q E Op A UPp, we have
M, q = (2)D(A)Op;

6a. A canproperly enforcep in M, q if, given thatM, ¢ = Oap A UPap, we have
M, q E (AYeU(p A ). Note that this requirement is individualized now;



124 CHAPTER 5. OBLIGATIONS VS. ABILITIES OF AGENTS

6b. A canproperly (incrementally) enforce in M, q if, given thatM, ¢ = Oap A
UPsp, we havel, g = ¢ A, or M, q = ¢ andA have a collective strategys
such that for every\ € out(q, F4) they can properly (incrementally) enforge
in M, A[1].

The definitions show that many interesting properties, damf deontic and strate-
gic aspects of systems, can be defined using semantic nofibpsesent, however, we
do not see how they can be specified entirely in the objeculage.

5.3.4 Temporal Requirements

Many requirements have a temporal flavor, and the full lagguzf ATL* allows to
express properties of temporal paths as well. Hence, it msdese to look at DATL,
where one may specify deontic temporal properties in terht®oect computations
(rather than single states). In its simplest version, waiadDTATL by only allowing
requirements over temporal (path) subformulae that canragithin formulae of ATL:

p=p|=p|e1Ap2 | (A)O¢ | (A)Dp | (A)p1Up2 | OaOp | OaDgp |
OaprUpa | UPAO ¢ | UPADg | UPap1 Ups.

Below we list several properties that can be expressedsrfridanework:

1. OO (A)Oe: itis required that sometime in the future, coalitidngets the op-
portunity to guarantee forever,

2. OO((A)Cp A (A)O—p): itis a requirement that eventually coalitiohcan
determinep;

3. the latter can be strengthened@@(({A))Cp A (A)O—p), saying that it is an
obligation of the system that there must always be oppdrasfior A to toggle
 as it wants.

Note that the definition of DTATL straightforwardly allows express stability
properties like

Ory — (A)Ty

saying thatA can bring about the temporal requiremén.

Semantically, rather than being a relation between stegéstjonR 4 is now one
between states and computations (sequences of states}, fbniany computation
A, ¢R aA means thai is an ideal computation, givepn The semantics of temporal
obligations and unconditional permissions can be defined as
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M,q = 0sO¢ iff forevery A suchthagR 4\, we haveM, \[1] = ¢;

M,q E OaOp iff for every A such thayR 4\, we haveM, \[i] = ¢ for all
1> 0;

M,q = OaplUryy iff for every X such thatgR 4\, there isi > 0 such that
M, \[i] =4 and for all0 < j < i we haveM, \[j] = ¢.

M,q EUPAO¢ iff forevery X suchthatV, \[1] E ¢, we haveyR 4 \;

M,q EUP,O¢ iff for every A such thatM, \[i] = ¢ for all i > 0, we have
qRAN;

M, q = UPspUY iff for every A, such thatM, A[i] = « for somei > 0 and
M, A[j] E pforall 0 < j <, we havegR A \.

One of the most appealing temporal constraints is that o&dldee: teamA should
achieve property within a number (say:) of steps. This could be just expressed by
04O : only these courses of action are acceptable, in which tadlue is met
Note that the DATL obligatiorO(({(A)) O )"y expresses a different property: here,
must beableto meet the deadline.

Fairness-like properties are also a very natural area ®oreabout deontic con-
straints. Suppose we have a resouyrtkat can only be used by one agent at the time
(and as long as is using it,p, is true). The constraint that every agent should even-
tually be able to use the resource is expressef pys. OO ((a)) Op, — or, if this is an
obligation of a particular scheduler we could writeQ; rather thanO. Finally, let us
recall the ATL operatofA]® = —({(A)—~® (coalition A cannot prevenp from being
the case). Formul@O({(ANCp — [A]O(p — {A')<O—y)) says that only these
courses of action are acceptable in which, might coalilaver have a way to enforce
¢, then it must “pass the token” td’ and give the other agents the ability to reverse
this again.

Note also that DTATL formulaé/P;y express a kind of “the end justifies means”
properties. For instancé/Pkdead means thaeverycourse of action, which yields
the killer dead, is acceptable.

5.3.5 Deontic ATL and Social Laws

We mentioned the two main streams in deontic logic, havitigeeistates of affairs
or actions as their object of constraints. In Deontic ATLearan express deontic
requirements aboutho is responsibléo achieve something, without specifying how it
should be achieved. The requireméhi({({a, b})) Osafe-open, for example, states that
it should be impossible fo# andb to bring about the disclosure of a safe in a bank.
However, withc being a third employee, we might ha@—(({a, b})) Csafe-open A
{{a, b, c}))Osafe-open): as a team of three, thewustbe able to do so. We can also
express delegation, as @, (b)) de: authoritya has the obligation thdt can always
bring aboutp.

100 ™ is not a DTATL formula, but the logic can be easily extendethtdude fit.
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A recent paper (van der Hoek et al., 2004) also addressesgue of prescribed
behavior in the context of ATL: behavioral constraints (@fie model updates) are de-
fined for ATL models, so that some objective can be satisfietthénupdated model.
The emphasisin (van der Hoek et al., 2004) is on how the éftsatss, feasibility and
synthesis problems in the area of social laws (Moses andefdmatz, 1990; Shoham
and Tennenholz, 1992) can be posed as ATL model checkindgmnsb One of the
main questions addressed is: given a concurrent gametsteudt and a social law
with objectivep (which we can loosely translate é¥), can we modify the original
structureM into M’, such that\/’ satisfies(@))O¢? In other words, we ask whether
the overall system can be altered in such a way that it carutcatdiisfy the require-
ments. The question whether certain coalitionsabieto “act according to the law”
is not addressed in (van der Hoek et al., 2004); the lawmgsedon the system as a
whole. On the other hand, we are interested in bringing requents into the scope
of ATL, so that one can ask questions about which coursestiofreare “correct”, and
what particular agents or coalitions can do about it. Cay émdorce that no forbidden
states will be achieved, for instance? This is a differemstjon from whether some
higher-order entity (e.g. the designer, system admintetc.) can redefine the game
so that the requirements always hold. Thus, the approadtabpaper is prescriptive,
while our approach here is rather descriptive.

The difference is also reflected in the semantics: herejnagents can be referred
to via deontic sentences in the object level, and via mode¢sibility relation on
the semantic side. In (van der Hoek et al., 2004), the rem&rgs (objectives) are
expressed purely syntactically, and the focus is on modeatgs that can lead to a
model in which every state satisfies them. Moreover, (varHbek et al., 2004) lacks
explicit deontic notions in the object level.

An example of a requirement that cannot be imposed on therayas a whole,
taken from (van der Hoek et al., 2004) sis\ ((A) O -p: propertyp is obligatory, but
at the same timed should beableto achieve-p. This kind of constraints could be
used to model exceptional situations, such as: “it is oldigethat the emergency exit
is not used, although at the same time people in the buildiogld always be able to
use it". Imposing such an overall objective upon a systemnmaéiaat our behavioral
constraints should both rule out any possibility-@f from the system, and retain the
possibility of deviating fronp in it — which is obviously impossible. It seems that our
Deontic ATL covers a more local notion of obligation, in whi©(p A (A)) O—p) can
well be covered in a non-trivial way.

Note that our “stability” requirements are similarly stgpnin fact, the property
of M being stable in state, given thatM,q = Op A UPyp (cf. Section 5.3.3), is
equivalent to theffectivenessf (¢, 8r) in M, g (whereg; is the “identity” constraint,
i.e. Br(a) = @ for each actionw). On the other hand, our “guardian” requirements
are rather weak: to demand that every obligatidnis implementable by a coalition
does not yet guarantee that the systwmaesbehave well. In each particular case, we
might be looking for something in between the universal gntge and a coalitional
efficiency with respect to constraigt And it is one of the features of Deontic ATL
— that one can express many various stability requiremema&ing explicit who is
responsible for what.
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5.4 Axioms, Model Checking and Similar Stories

Let DL be the language of deontic logic. Then — if we do not hamg mixing ax-
ioms relating the coalitional and the deontic operators -ottain logic DATL as an
independent combinatiosf two modal logics: ATL® DL (Franceschet et al., 2000).
Franceschet et al. give an algorithm for model checking sochbinations, given two
model checkers for each separate logic. However, two teahnémarks are in or-
der here. First, the formal results from (Franceschet eR8D0) refer to combining
temporallogics, while neither ATL nor DL is a temporal logic in theistest sense.
Moreover, the algorithm they propose for model checkingrofralependent combi-
nation of logics assumes that the models are finite (whileetieeno such assumption
in our case). Nevertheless, polynomial model checking of D& possible, and we
show how it can be done in Section 5.4.2, through a reductidineoproblem to ATL
model checking.

5.4.1 Imposing Requirements through Axioms

Following the main stream in deontic logic, we can take ewd#gntic modality to
be KD — the only deontic property (apart from the K-axiom aratessitation for
O,) being the D-axiom—O4 L. An axiomatization of ATL has been recently shown
in (Goranko and van Drimmelen, 2003). If we do not need anyimgi;axioms, then
the axiomatization of DATL can simply consist of the axioros ATL, plus those of
DL.

Concerning the global requirements, note that endowing ID&ibdels with the
violation atomV is semantically very easy. Evaluating whetli&s is true at state
suggests incorporatingumiversal modalitf{Goranko and Passy, 1992) although some
remarks are in place here. First of all, it seems more apfaigptio use this definition
of global requirements igenerated modelsnly, i.e., those models that are generated
from some initial statey,, by the transitions that the grand coalitidigt can make.
Otherwise, many natural situations may be unnecessanity toacapture because of
considering violations (or their absence) in unreachabltes. As an example, suppose
we have a system that has tweparatesubsystems: in the first subsystem (wjthas
the initial state), we must drive in the continental styldyiley in the latter (withg
as the initial state) British traffic rules apply. Thus, stag from ¢;, we violate the
requirements while driving on the left hand side of the roEd= left), but when the
system starts fromp,, driving on the right hand side is a violation of the laW &
prop). To specify one global requirement, we need additionappsitions to identify
each subsysten®((british — left) A (continental — right)). Alternatively, we can opt
for a more general solution, and define obligations in a syste with root ¢, as:

M,q = Opiff M,qo = (@)0(=V — o).

Second, we note in passing that by using the global requinededinition of obli-
gation, the©® modality obtained in this way is a KD45 modality, which me&mast we

2Similar remark applies of course to ATEL in Chapter 3, whiskai independent combination of ATL
and epistemic logic.
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inherit the propertie®y — OO0p and—-0Op — O-Op, as was also observed in (Lo-
muscio and Sergot, 2003a). But also, we get mixing axiomiigndase: every deontic
subformula can be brought to the outmost level, as illustraly the valid scheme

(ANCOp = Op

(recall that we hava/, g = Op iff M,q" = Op, for all statesy, ¢’ and rooty).

Some of the properties we have mentioned earlier in thistehaan constitute
interesting mixing axioms as well. For instance, a minintalperty for requirements
might be

Oap — ((A)Ov

saying that every coalition can achieve its obligationsn&atically, we can pinpoint

such a property as follows. Let us assume that this is an ag@rame, and the model
is distinguishing (i.e., every state in the model can be attarized by some DATL

formula). Then the scheme corresponds to the semanticrearist

VgIF AV € out(q, Fa) : states(\) Nimg(q, Ra) # &

wherestates(\) is the set of all states from, andimg(q, R) = {¢' | ¢Rq'} is the
image ofq with respect to relatiof. In other words A can enforce that every possible
computation goes through at least one perfect alternatiye o

Another viable mixing axiom is the E-g axiom from Remark 5.2, that corre-
sponds to “effective seriality” of the deontic accessipitielation.

5.4.2 Model Checking Requirements and Abilities

In this section, we present a satisfiability preservingriprtetation of DATL into ATL.
The interpretation is very close to the one from Section®kch in turn was inspired
by (Schild, 2000). The main idea is to leave the original terapstructure intact,
while extending it with additional transitions to “simutdtdeontic accessibility links.
The simulation is achieved through new “deontic” agentsytban be passive and let
the “real” agents decide upon the next transition (actiess), or enforce a “deontic”
transition. More precisely, the “positive deontic agerdah point out a state that was
deontically accessible in the original model (or, rathespacial “deontic” copy of the
original state), while the “negative deontic agents” cafose a transition to a state
that wasnot accessible. The first ones are necessary to translate faenofilshape
Oa; the latter are used for the “unconditionally permittedeogtort/P, .

As an example, let/ be the deontic game structure from Figure 5.3, and let us con-
sider formulagO, s —saved, andUPygisaved and (k, b)) O pdead (note that all three

formulae are true inV/, ¢3). We construct a new concurrent game structuféTL

by adding two deontic agentsj:, 7aqt, Plus “deontic” copies of the existing states:
a3, g7 qg® andgy™, g7, qg =" (cf. Figure 5.4). Agent,g is devised to point
out all the perfect alternatives of the actual state. Asesiathas only one perfect
alternative (i.e.gs itself), 74, can enforce the next state to hg*', provided that
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all other relevant agents remain passivén consequencel,ssaved translates as:
“(ragt, Tags ) O (rage A saved). In other words, it is not possible that,; points out
an alternative ofi; (while 74, obediently passes), in whiglaved doesnothold.

Agenti,g can point out all themperfectalternatives of the current state (fgy,
these are,*", gg"*"). Now, UPxgisaved translates as((rag, 7agt)) O (Fa A saved):
Tagt CaNNot point out an unacceptable state in wisiafed holds, hence the property
of saved guarantees acceptability. Finally, formul&, b)) O pdead can be translated
as{(k, b, ragt, Tagt ) O (act A pdead): the strategic structure of the model has remained
intact, but we must make sure that both deontic agents asévpaso that a non-deontic
transition (an “action” transition) is executed.

We present the whole translation below in a more formal wayg, i@fer to Sec-
tion 3.4 for a detailed presentation of the method and probfsrrectness.

Given a deontic game structubé = (Agt, Q, 11, m, Act, d, 6, R) for a set of agents
Agt = {a, ..., ax }, we construct the corresponding concurrentgame strustftbl =
(Agt’, Q" I', 7', Act', d’, ') in the following manner:

o Agt = AgtUAgtrpAgt’:, whereAgt” = {ra | A C Agt, A # @} is the set of
“positive”, andAgt” = {74 | A C Agt, A # &} is the set of “negative” deontic
agents;

* Q' = QUUacspgaze(@Q™ U Q™). We assume tha) and allQ™, Q™ are
pairwise disjoint. Further we will be using the more generalationS¢ =
{¢® | ¢ € S} foranyS C @Q and propositior;

o II'=TU{act,...;ra,....;Ta, ...}, andr’ (p) = m(p) UUJ g pge (m(0)™ U 7(p)™)
for everyp € II. Moreovers’(act) = Q, 7' (ra) = Q™, andr’ (fa) = Q™;

e d (a) = dy(a) fora € Agt,q € Q: choices of the “real” agents in the original
states do not change,

° d;(TA> = {pass}Uimg(q, Ra)™, andd;(m) = {pass}U(Q\img(q, Ra))™.
Action pass represents a deontic agent’s choice to remain passive aothkr
agents choose the next state. Note that other actions ofidagents are simply
labeled by the names of deontic states they point to;

o Act' = Act U, e acag(dq(ra) Udy(7a));
e the new transition function fay € @ is defined as follows (we put the choices

from deontic agents in any predefined order):

if r is the first active (positive
or negative) deontic agent

8'(qy Qag s ooy Qg s ony Ay o) =

0(q, tay s -y ay ) ifall co. = pass
Qo

e the choices and transitions for the new states are exa@lgamed’' (¢, a) =
d/(qFAv (1) = d/(Qa a)’ anda/(qrAv Oéal, A aTA’ ) = 5/(qFA7 Oéal, oty aTA’ ) =
8 (qy Qay s ey Qg s oy Oy --.) fOr €VEIYG € Q, 0 € Agt’, 0 € d'(q, ).

3We can check the last requirement by testing whether theitiam leads to a deontic state Ofgt
(propositionr g ). It can happen only if all other relevant deontic agentsosiecactiorpass.
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Now, we define a translation of formulae from DATL to ATL casponding to the
above described interpretation of DATL models into ATL misde

tr(p) = bp, forp e II
tr(~p) = —tr(p)
tr(pvep) = tr(p) Vir(y)
tr((A)Op) = (AU Agt" UAgt")O (act A tr(y))
tr((AYOp) = tr(p) A{(AUAgt" U Agt?»O (AU Agt" U Agt’i»m
(act Atr(p))
tr((ApUyp) = tr(p) V (tr(p) A (AU Agt" UAgt")O (AU Agt” U Agt™)
(act A tr(p))U(act A tr(e))))
tr(Oap) = —(Agt" UAgt")O (ra A =tr(p))
trUPap) = —(Agt" UAgt")O (Fa Atr()).

Proposition 5.3 For everyDATL formula, modelM, and a state; € @, we have
M,q E oiff MATE g tr(p).

Proposition 5.4 For everyDATL formulay, modelM, and “action” stateq € @, we
haveMATL ,q = tr(p) iff M'A‘Tl-,qe = tr(p) for everye € II" \ II.

Corollary 5.5 For everyDATL formula and modelV/, ¢ is satisfiable (resp. valid)
in M iff tr(y) is satisfiable (resp. valid) in/ATL |

Note that the vocabulary (set of propositidis only increases linearly (and cer-
tainly remains finite). Moreover, for a specific DATL formula we do not have to
include all the deontic agents, and7 4 in the model — only those for whict4 (or
UP4, respectively) occurs i. Also, we need deontic states only for these coalitions
A. The number of such coalitions is never greater than the taxitpof . Letm be
the cardinality of the “densest” modal accessibility rielat- either deontic or tempo-
ral —in M, andl the complexity ofp. Then, the “optimized” transformation gives us
a model withm/' = O(lm) transitions, while the new formula:(¢) is only linearly
more complex thap.* In consequence, we can use the ATL model checking algo-
rithm from (Alur et al., 2002) for an efficient model checkioBDATL formulae — the
complexity of such process @(m’l’) = O(mli?).

Example 5.4 Let us consider again the deontic game structure from FigLge We
construct a corresponding concurrent game structureng@d for model checking of
the DATL formulaOje (—pdead A (k) O —Oyq¢ ~pdead): it is required that the Prime
Minister is alive, but the Killer is granted the ability toarge this requirement. The
result is shown in Figure 5.4. The translation of this foranist

((rag ) O (rage A =(—pdead A (k, 7agt)) O (act A ==((rag: ) O (rags A ~—pdead))))

which holds in stateg; andq:',j*gt of the concurrent game structure. O

4The length of formulae may suffer an exponential blow-upyéeer, the number ddifferent subformu-
lae in the formula only increases linearly. This issue is disedsin more detail in Section 3.4.4.
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<nop,nop,nop,pass> ‘ <n0p,search,n0p,pass>‘

<nop,nop,nop,qg’
<nop,search,nop, q8>

{nop,nop,nop,qy’
<nop,search,nop,qy

Figure 5.4: ATL interpretation for the deontic game struetifom Figure 5.3

5.4.3 Planning to Achieve Deontic Goals

Having reduced model checking for DATL to ATL model checkimge can use the
planning algorithm from Section 2.8 in order to generataplénat achieve goals that
include deontic properties as well. The method closelymddes planning for epis-
temic goals from Section 3.4.5, and analogous remarks apply

Example 5.5 Consider the local requirements from Example 5.3 again M die the
deontic concurrent game structure presented in that exam@pd let us assume that the
dotted lines depict the obligations of James Bond (i.eati@hR;). If Bond is striving

to be relieved from the tiresome duty of saving the worldnttig)) &—O, saved (more
formally: (b)) T U—O,saved) is the formula to be checked. Re-construction of the
model yields concurrent game structureTL from Figure 5.4 (only with deontic
agentr,; replaced withr,), and the formula is translated to:

(b, ) actU(act A (O (rp A —saved)).

Now, executinglan({(b, r))actU (act A {(r,)) O (rp, A —saved))) for MATL gives the
following plan: {{g7,—), (gs,—)}. In other words, the goal is already achieved in
statesg; andgs, and impossible to achieve from. Is there anybody else who can
relieve Bond from duty? Yes, of course — the killer. We ask tbe((k)) &—O, saved,
which translates agk, rp))act U (act A () O (r, A —saved)), and the execution of
plan({(k, ry)actU (act A {(rp) O (rp A —saved))) gives

{{gs, shoot), (q7, =), (s, —)}.

Thus, if James Bondeally wants to get rid of the obligation, then he must form a
coalition with the killer (ag(k)) ©—0, saved implies (b, k))>—O, saved, and the same
strategy can be used), or delegate the task to the killemrresather way. O
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5.5 Conclusions

In this chapter, we have brought obligations and abilitieagents together, enabling
one to reason about what coalitions should achieve, buttaléormulate principles
regarding who can maintain or reinstall the “correctnes$states of affairs or courses
of action. We think the tractable model checking of DATL peojies makes the ap-
proach attractive as a verification language for multi-aggstems that involve norms,
obligations and/or requirements imposed on the system dsoéeywor on individual
agents. The language enables to express and verify sp#oific®f agents’ obliga-
tions, and confront them with abilities of the agents andr tteams. But there is more
to DATL than this: it makes also possible to reason abouteh®bral dynamics of the
obligations, and to express the fact that someone can d¢dh&cequirementgshem-
selves: formulg(k)) &—-0, saved from Example 5.5 illustrates the latter sort of ability.
Last, but not least, we proposed an efficient planning allgorthat extends ATL-based
planning with goals that involve deontic properties.

However, as stated repeatedly, it is at the same time a repioleas rather than of
a crystallized and final analysis. Few formal results weesented (it would be per-
haps even fairer to say “suggested”) for DATL in this chapivertheless, we believe
that DATL is indeed a very attractive framework to incorgerabilities of agents and
teams with deontic notions — and that there are many integefgatures yet to be ex-
plored along this line of research. For instance, theabpimperties of DATL, and its
relation to other existing systems that combine deontictamgboral/strategic perspec-
tive, wait to be investigated; in particular, a closer studyhe relationship between
DATL and the “Social Laws for ATL” approach seems worth cocitihg. Moreover,
properties of a “guardian agent”, “repairman” etc. are d=fion the semantic level
in the general case of local obligations — it can be intemgsi try to express them in
the object language as well, although it may require somefird@tion of the semantics
of deontic operators and/or cooperation modalities. Aaoline of research may refer
to the other notion of obligation — obligations with respecactions instead of states
(“correct” actions rather than “good” states) — which cancbafronted with agents’
abilities as well. Finally, DATL can be extended with an é@isic dimension. Practi-
cal applications may include more realistic analysis of gansecurity analysis, trust
management as well as requirements engineering.
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Chapter 6

Bringing Adaptivity and
Security Together

SyNoPsIS  So far, various semantics for Alternating-time Temporagico
were proved equivalent. Coalition Logic was shown to be goriesl byATL .
Their models and vocabulary were extended to handle olxigat(require-
ments) and agents’ beliefs under incomplete informatiolikoagh the latter
turned out not to be as easy and straightforward as it had seeiWhat do we
get from that? One can use multi-player game models to mas@baments
inhabited by multiple agents, and the agents can emfildy model checking
to find infallible plans that satisfy their goals.

But — what about fallible plans which are still good? What abexploiting
the weaknesses of the opponents, or building trust and catipe with other
agents? How can we make our agents play relatively safe, dagtao the
changes of the dynamic environment at the same time? Meltileodeling of
the reality and multilevel decision making comes to rescue.

6.1 Introduction

This chapter presents the idea of hierarchical modeling@freality. In many situa-
tions, a software agent can see several alternative mofiels environment of action:
differing in their structure, the way they have been obtdjraad, most of all, the no-
tions that underlie them. One model can include a profile efutker with whom the
agent currently interacts, another one a stereotype or Sawegage user” model, a
“best defense” model that assumes an adversary and povogibanent etc. If the
models are accurate beyond any doubt, then the agent shuldbdy use the most
specific and detailed model while making his decisions; haresuch a situation hap-
pens seldom in a dynamic environment. We propose that thet age be better off
using all the available models of the reality at the same tiamel that the impact of
a particular model should be proportional to its specifieityl some evaluation of its
accurateness and applicability to the actual case.

135
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Chapters 2, 3, 4, and 5 show how multi-agent environmentdeamodeled via
game-like scenarios, yielding multi-player game modeld$ similar structures. The
models can be extended to include agents’ beliefs, degitestions, obligations, sys-
tem requirements etc. It is not always as easy as it seen@lin(cf. Chapter 4), but
(assuming some care) one can imagine adding other notidhe &cope of ATL-like
models in a similar manner. What is very important, ATL moctecking can be used
as a planning algorithm for agents and their teams. HoweVir;based planning
suffers from the inherent deficiency of game theory solwioih looks for infallible
plans, assuming in a sense that other agents (and even tleealaysagainstthe
planning agent. But what if the other agents are not nedgsadwersary? Or if they
are prone to make errors that could be exploited to reachdhés gnore easily? The
agent should definitely be interested in learning some ugate knowledge about the
environment and adapting his strategy accordingly. On therdvand, adaptivity can
be risky if some opponent turns out to be powerful and advgiisdeed. One of the
advantages of using the multi-model decision making pregdere is that the agent
can try to be (generally) adaptive and (relatively) sectithesame time.

The subsequent chapters address related issues: firstteClagports research
aimed at finding a good measure for the agent’s self-evaluat his actual beliefs;
next, Chapter 8 shows how such adaptive-and-secure agemfibsm in a very simple
setting. Chapter 8 presents also some examples how ATL sadalbe included in
hierarchical modeling of the reality.

The preliminary idea of using a hierarchy of models was preskin (Jamroga,
2001b), and generalized in (Jamroga, 2002b). The chapildshuypon both papers.

6.2 Multilevel Modeling of Reality

A virtual agent lives in a world which consists of both virtaad “real” components.
The world, together with the agent’s own goals and cap#sliconstitutes the reality
the agent has to cope with. The agent interacts with thetye&lying to fulfill his
(implicit or explicit) goals. Thus, it is good for the agewtlearn some (implicit or
explicit) model of the reality to adjust future actions te tpredicted response of the
environment.

6.2.1 Adaptivity vs. Security

An agent’s knowledge about its environment can be eitharmasd (“pre-wired”) or
acquired through some kind of learning. The first approacahidates the classical
game theory solutions — predefined, publicly known gamesiréged payoffs, as-
sumptions about players’ rationality, and the maxmin eéliilm (von Neumann and
Morgenstern, 1944), later generalized with the concepbotinansferable utility and
Nash equilibrium for non-cooperative games (Nash, 195@find the best (or at least
safest) choice in a normative way, assuming thus the op{iarakther most danger-
ous) behavior of the “opponent”. Recent modal logics oftsgi ability, like ATL and
CL, discussed extensively in Chapter 2, follow the sameiticad Their models gen-
eralize game trees, output of strategies is defined in a walpgous to maxmin, and
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verification of a formula in a given model generalizes mininiar zero-sum games
(cf. Section 2.8). Similarly, “best defense models” for ganinvolving uncertainty
usually assume the opponent to play his best strategy, evéretextent of making
him omniscient: both in game theory (Frank, 1996; Frank aasif§ 1998) and logics
like ATEL or ATOL (cf. Chapters 3 and 4). Of course, omniscdiand perfectly ratio-
nal opponents are seldom met in the real world. Thus, suclssumgtion makes our
agent over-cautious, although it protects the agent biettee case of meeting a pow-
erful and strongly adversary enemy. An alternative soiuti@s proposed in (Jamroga,
2001a): some boundaries of the possible opponent’s kngelbdve to be assumed (or
learned), and within these boundaries we predict him to plarage. The opponent
can still be defined as omniscient, but it has to be done éttplic

The machine learning approach emphasizes the importarkezpfng an accurate
and up-to-date model of the world. The agent can learn thieypof its adversary
to exploit his weaknesses (Carmel and Markovitch, 1996; &ehArora, 1997; Sen
and Weiss, 1999), to converge with dynamic, possibly ied#ht environment (Sen
and Sekaran, 1998; Sen and Weiss, 1999), or to learn trustcamération with other
agents (Banerjee et al., 2000; Sen and Sekaran, 1998). aimerlg is accomplished
mostly within the reinforcement learning regime (Kaelglat al., 1996; Sen and Weiss,
1999). The goal of the agent is to maximize his numerical rdvjpayoff, utility) in
the long run. Thus the decision making criterion is in mosessbased on maximiza-
tion of the expected payoff with respect to the agent’'s aurkmowledge about the
environment of his action.

Remark 6.1 Value systems (Pfeifer and Scheier, 1999) are sometimdsasm alter-
native for reinforcement learning. Instead of taking thevn@inforcement as the basis
for his behavior, the agent tries to maximize the output sfdwn internal evaluation
mechanism (higalue systery) which is only to some extent based on the external feed-
back. Thus, the agent is driven by a private system of prefesewhich may include
biases towards specific situations and actions.

In fact, value systems seem to provide a more general viewttmamous agents’
learning than assuming immediate “internalization” of tegternal reinforcement. If
an agent is autonomous, he should rather be supposed terpiet the feedback from
the environment in his own, autonomous way. Of course, ffexelice is mainly philo-
sophical. In the technical sense, the role of both reinforeat mechanisms and value
systems is to provide the agent with numerical values thablerhim to evaluate the
utility of possible situations in some predefined sense,(andonsequence, also to
evaluate his actions and strategies). We will refer to thedaes as payoffs or utilities
throughout the rest of the thesis, and leave out the (no diotétesting) issue where
the utilities come from.

It is clear that an agent can benefit from learning up-to-&ateviedge about his
environment of action. However, some assumed “borderlihetacteristic of the re-
ality can still be very helpful when the agent’s learned kiemlge seems insufficient or
cannot be sufficiently trusted.
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6.2.2 Multiple Models of Reality

An agent may model his environment of action in many difféergays, and in most
cases it is up to the designer to decide which one will be ragiatl and used by the
agent before he starts his “life”. For example, the agent peageive the environment
as a unity — this approach pays off especially when the enmiemnt consists only of
passive elements. Even in worlds (possibly) inhabited Imgioagents, it may be a
good solution, as reported in (Sen and Sekaran, 1998) faklgoshing agents using
a very simple reinforcement learning scheme. Howevergifafgent can observe other
agents’ actions and distinguish them from changes of the@mment itself, he may
benefit from that in most cases. First, the agent is then ablednitor the state of
the environment more precisely. Second, identifying sseafactive) entities in the
neighborhood creates a potential for dialogue in the breiaglnse, as every agent-to-
agent interaction may be seen as an instance of multimodaintmication. Agents
can be classified with respect to the way they model theirenwient of action in the
following manner (Vidal and Durfee, 1998; Sen and Weiss 9)99

e O-level agents an agent who models the environment as a unity, i.e. hertes
keep separate models of other agents;

e 1-level agents an agent who maintains and uses explicit models of otreartag
In order to cut down the conceptual loop, the other agentsadeled a®-level
agents

e 2-level agents an agent who models other agents as 1-level agents;
e k-level agenis an agent who models other agentsg:as 1-level agents.

In this chapter, we propose that the agent may be better effikg several alter-
native models of the reality at the same time, and switchinthé most appropriate
at the very moment. Most notably, adaptive and normativeatsochn be combined;
ideally, the agent should base his decisions on the knowlédghas learned if the
knowledge is trustworthy, and opt for “safe play” (e.g. maxyotherwise. Also, the
concept of belief hierarchy presented here may enable tistngontent-based knowl-
edge (individual user profiles) and the collaborative medsiereotypes) at the same
time, especially for quantitative beliefs (Zukerman antr&tht, 2001; Kobsa, 1993).
However, we do not pursue the last idea within this thesis.

Similar intuition underlies a number of recent results: dagive news agent that
keeps two complementary models of the user (long-term preées + short-term ones)
(Billsus and Pazzani, 1999), a system that uses alterngiwvkov models for predict-
ing users’ requests on a WWW server (Zukerman et al., 1990), k& both cases
hybrid models are presented that perform better than arlyeodtiginal models alone.
Finally, some papers propose multilevel learning in ordeleirn user’s interest that
can possibly drift and recur (Koychev, 2001; Widmer, 1997).

11 would like to thank Ingrid Breymann for her literature ovisw | dared to use.
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Figure 6.1: Example belief structure for an e-commerce tgen

6.2.3 Modeling Dialogue Environment for e-Commerce Agents

The ideas, presented in this chapter, emerged from comasioles about agents in
business-to-consumer e-commerce. When a software ageséWeral communication
modalities at hand (written text, speech, graphics, an@mavideo sequences, music
samples etc.) — which of the modalities is optimal to preieminformation the agent
is intended to provide? Or, putting it in a more general wayy lsan the e-commerce
agent adjust to preferences of the so-called “user” (wtsdh fact a label for an ever-
revolving cast of characters from the external reality)® $htting is not as adversary
as it may seem at the first glance: every agent is interestestablishing successful
communication, and in efficient information exchange —aith the agents do not
necessarily want to exchangee samenformation. Still, communication is usually a
cooperative activity: for instance, the issue of makinge¢henmunication fast, clear,
attractive etc. is vital for all the agents being involvedn the other hand, the busi-
ness agent must be cautious enough not to be cheated or vee@io unprofitable
contracts by a number of consumers in a long run.

An e-commerce agent should obviously be interested in gessga perfectly ad-
equate model of the environment. It may include the curreet’s preferences, his
strategy, predicted future actions etc. However, such agfrmah hardly be acquired:
the user may dynamically change his profile or even try to ttieaagent about his
preferences, strategy or his identity. The agent can oglyotbuild up some model
of the average behavior/preferences presented so far $ypahniicular user — if he is
able to recognize the user in the crowd of all potential iotrtors. Some Internet
agents try to identify the user by the IP number of the compuged by the user at
this moment or through the cookies mechanism, some othee fasers to log in and
confirm the identity with a password. But even humans, usinidpe available senses
to recognize the interlocutor, are often full of doubts anakenmistakes, especially
when a new person appears in the scope of interest. Thusirthal\agent may need



140 CHAPTER 6. BRINGING ADAPTIVITY AND SECURITY TOGETHER

to use some model of the “average user”. This model can beddaimultaneously
with particular users’ profiles.

In a blurred, highly dynamic environment, where the ageminoa easily distin-
guish actions of other agents from changes of the envirohitsstf, some model of
the entire reality may turn out to be most useful and trustfmyorAnd, finally, when we
cannot trust anything we learned so far, we need some defssuimptions about the
nature of the reality to evaluate possible courses of aetimhchoose among them. All
the proposed levels of modeling are shown in Figure 6.1. Toeerapecific the level
of knowledge used by the agent, the more accurate his desisen be. However, if
the agent has little or no confidence in his lower-level (neprecific) beliefs, he should
turn to the higher-level (more general) ones.

6.2.4 Inside the Boxes and Behind the Arrows

One can imagine expressing the actual agent’s beliefs wsingdifferent languages.
Also, the learning may proceed along different learninghods and routines.

Let us first consider the qualitative approach. The reptasien of agents’ beliefs
may be based on any kind of logic. For instance, the wholeatitly may be defined in
a way similar to a default theory in default logic (Antonid®99) — or rather a “multi-
default” logic in this case. The beliefs on a certain levespécificity can be therefore
represented with sets of axioms. If some important fact ceba proven on the most
specific level of beliefs, the agent turns to the “local dé&uevel (one level up); if
there is still no answer to be found, he tries “the defaulesralefaults”, etc. Thus, the
confidence degrees are defined (implicitly) in a usual biffashion of mathematical
logics: either the agerns$ confident with some formula (if it can be proven), or he is
not.

The hierarchy may be also defined in a subsumption-like ctire, with explicit
activation or inhibition links (if the confidence for the aat level is too low, the upper
level is triggered on). The knowledge on every level can hressed with any kind
of representation language, including formulae of firgtemipredicate logic, logic pro-
grams, semantic networks, formulae of complex multimodglds like ATL, ATOL
or BDI (discussed in Chapters 2, 3 and 4 of this thesis), on eam-monotonic rea-
soning languages — learned via belief revision systemsicitne logic programming,
genetic algorithms etc. The links may be triggered with eespo logical constraints,
fuzzy logic formulae or numerical variables. If the beliefe expressed with a non-
monotonic logic, for example, an activation link may bedeged for a couple of steps
every time a belief revision is necessary on the particelzll(the agent had to change
his beliefs seriously, so for some time he cannot trust them)

Of course modeling the environment withodelsof the above logics instead of
their formulae is a worthy alternative. Multi-player gameaels, alternating observa-
tional transition systems, BDI models etc. may obvioustyséo describe the structure
and the current state of the reality. It is worth pointing that in such case — instead
of provingthat some required formula holds — we must check whethetdistio a par-
ticular state othe specified modeln consequence, we replace theorem proving with
model checking, which usually reduces the computationaiptexity of the decision-
making procedure. Examples of hierarchies of models thatidle concurrent game
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Figure 6.2: An example hierarchy for an e-commerce aget pvibbabilistic beliefs.

structures are presented in Section 8.3.

The subsumption-like architecture suits also defining ieukl beliefs within the
quantitative approach. The beliefs can be gathered thrQugarning, genetic algo-
rithms like BBA or PSP, statistical methods — yielding prbitity distributions, fuzzy
sets or fuzzy measures, cluster models etc. They can alscchenalated in the form
of Bayesian classifiers, Bayesian nets, neural networksauaah.

Example 6.1 An agent employing Q-learning to estimate the expected-teny re-
ward (discounted over time) for his actions, with modelsthieo agents as probability
distributions over their possible choices (obtained vigdatan updating), may produce
the following hierarchy:

e (Qo(s,a): the default expected reward for actiotaken in state;

e (Cy: confidence the agent has in modkl. Note that weassume)) to be correct
by default, hence we can have no uncertainty about it as lsngeakeep the
assumption@y = 1.0);

e (Q1(s,a,b): the average expected reward for actiom states when the other
agent executes actidn

e Pi(s,b): the (estimated) probability that the average user takigsrecin states;

e (: confidence the agent hasdh and P, being an accurate model of the aver-
age user and environment behavior;

e ()2(s,a,b): the expected reward farin s against the current user playihg
e P5(s,b): the (estimated) probability that the current user chobses;

e (5. confidence the agent has @ and P, being the model of the current be-
havior of the environment and the user;
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Figure 6.3: Combining probabilistic beliefs

The resulting hierarchy is shown in Figure 6.2. The agentkhmaximize his ex-
pected reward (depending on the belief level he uses at thisent), i.e.:

e he maximizesEy(s,a) = Qo(s,a) if he bases his decision upon the default
assumptions about the environment;

e he chooses: for which Ey(s,a) = >, Q1(s,a,b)P1(s,b) is maximal in the
current state if he uses the average user model;

e he chooses* = argmax, E>(s,a) = argmax, y_, Q2(s,a,b)Ps(s,b) if he
uses the model of the current user.

O

Note that within the quantitative approach the agent doésiae to stick to one
belief level only when evaluating possible alternativespi®se that confidence in a
piece of knowledge (a model) is represented with a valgeC' < 1, with the intended
interpretation tha€' = 1 denotes full confidence (the agent believes that the model is
completely accurate), ard = 0 denoting complete distrust. Then the agent may use
a linear combination of the evaluations as well, with thefince values providing
weights.

Example 6.2 If the agent trusts the most specific model in, say, 70% — tlz éval-
uation should depend on the model in 70%, and the remainiffg3tuld be derived
from the levels above. For the agent from Figure 6.3, theevadlbe maximized is:

E(S, (I) == 02 EQ(S, a) + (1 - CQ) (ClEl(S, a) + (1 - Cl)C()EQ(S, a))
=0.7>", Q2(s,a,b)Pa(s,b) +0.135> ", Q1(s,a,b)Pi(s,b) +0.165 Qo(s,a).

O
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Figure 6.4: Generalized belief hierarchy for quantitabediefs

In consequence, the decision is based on all the relevargisatthe same time, al-
though in different proportions — weighting the partial lenadions with the confidence
the agent has in them.

6.3 Hierarchies of Quantitative Beliefs

The idea of hierarchical modeling of the reality has beersgmeed on a few exam-
ples in the preceding section. In this section, we proposer@ icomplex and general
hierarchy of beliefs, in which several alternative moddishe environment can be
maintained and used on the same specificity level, incluthedevel of default as-

sumptions. The hierarchy enables multiple “inheritanedation between concepts,
and an arbitrary number of concept levels; moreover, tHes Ilretween concepts can
be also assigned numerical labels that describe theimgting.

6.3.1 Definitions

Let us assume that the agent’s beliefs are quantitativesisehse that they imply some
numerical evaluation of every action at hand, and that tleesaey making process can
be based on the current evaluation values.

Definition 6.1 (Hierarchy of beliefs) Ahierarchy of beliefés a directed acyclic graph,
in which every node includes a mod# of the agent’'s environment of action (the
model can be also seen aganceptor a notion of the environment). A real number
C;,;, called confidence valués attached to node\1; ;, and is meant to represent the
agent's current degree of trust that; ; models the environment accurately. Every
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edge is labeled with a real number calledh@mbership valug:, reflecting to what
extent the lower-level model is a specialization of the &ighvel one. The hierarchy
is depicted in Figure 6.4.

A few remarks may help to clarify the intuitions behind therairchy.

e The models are (partially) ordered with respect to theicsjpity. Top nodes
(roots) describe the default assumptions about the behaf/tbe environment,
other agents, users of the system etc. Bottom nodes (leefes)to the most
specific available models: for instance, separate profileggers, and models of
how the environment reacts during interaction with each tespectively.

e Several alternative models on the same level refer to sepessible classifi-
cation decisions (with the same degree of specificity). kan®le, many user
profiles can be kept at the bottom level; using a particula depends on iden-
tification of the current user. Several competing modelfefaverage environ-
ment response” may refer to different types of the envirommia a sense, they
can represent variossereotypesf the environment and/or users.

e Each model is underlied by some notion of the reality (itsicitire, opera-
tional characteristics etc.). The vertical links betweerdeis refer to the sub-
set/membership relation between the notions, in a way &irol semantic net-
works (Russel and Norvig, 1995). For instance, a user of haning system
can be classified as an “honest customer” or a “dishonest{a@nExample 6.3).
Such a classification depends usually on the actual evidamncketherefore im-
plies some degree of uncertainty. Thus, the links are wedyhith membership
values that indicate to what extent we believe that the ldessl notion is a
specific case of the higher-level notion. In consequepggeforms the charac-
teristic function of a fuzzy set (Klir and Folger, 1988) tlimsupposed to model
the notion behind\.

e The membership values appear also below the most speciicdémotions: the
current “reality” can be classified as an instance of a paleticnotion only with
some degree of certainty.

e Since the fuzzy nature of the relationships between noi®nspresented with
the membership valugs, a confidence valué€’ refers only to the agent's cer-
tainty thatthe model in question describes the notion in question inpgomapri-
ate way

e The direction of arcs in the hierarchy is somewhat arbifrand reflects the
intuition that we should start with the most specific modehefreality, and look
for a more abstract one only when this one fails. On the othadhwe follow
the tradition of placing the most abstract entries at theaod most specific ones
at the bottom of the hierarchy. Thus, the successors of a a@de nodes one
level up.

e The root of the tree refers to theal state of affairs, and it is shown at the bottom
of the graph. The fuzzy sef®t,,, 1, ..., M, »,, have therefore only one member
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Figure 6.5: An example: two default models, two stereotypesser profiles

(the reality, that is), and the membership valugs ..., u,,, . show how
we interpret the observed data on the most specific level ofledge.

Example 6.3 An example belief hierarchy for a banking agent is shown guFe 6.5.

It is assumed that the response from the environment is aotsieterministic and
known beforehand, given the state of the system and theidesifrom both agents
(the e-banking agent and the current user). In consequbniding a model of the
reality boils down to the task afser modeling

The knowledge base includesdifferent user profiles. Two stereotypes: an “hon-

est user” model, and a “dishonest user” model can be empibyleere is substantial
uncertainty about the profile of the current user. There &® t@vo sets of default
assumptions, describing an ordinary self-interestedtaged an enemy agent. [J

Definition 6.2 (Multi-model evaluation of actions) Let succ(M) denote the set of
all the successors of nod#t, i.e. all the models exactly one level up. The (multi-
model) evaluation of actioa, starting from model\1, can be defined recursively:

E(M,a) = C, -eval(M,a) + (1-Cy) Y. p,(M)-EM,a)
M’ Esucc(M)

whereeval(M, a) is a numerical evaluation of with respect to modeM only —
expected payoff estimation, for instance. Eptc denote the “bottom” nodes, i.e. the
set of the most specific models. The final evaluation of atem decisions can be
now calculated as:

E(a) = Z tp - E(M, a).

MeSpec
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Example 6.4 The multi-model evaluation of actian based on the hierarchy of mod-
els from Figure 6.5 (Example 6.3) is calculated as follows:

E(a) = 09E(M;,a)+0.1 E(Ms,a)

= 0.9(0.8 eval(My,a) +0.2-1.0 E(Mpopn,a)) +
0.1 (0.4 eval(Maz,a) + 0.6 (0.7 E(Mpon,a) + 0.3 E(Magisn,a)))
0.72 eval(Mi,a) + 0.18 (0.9 eval (Mpon, a) + 0.1 E(Myana, a)) +
0.04 eval(Ma, a) + 0.042 (0.9 eval(Mpon, a) + 0.1 E(M,ana, a)) +
0.018 (0.6 eval(Mgisn,a) + 0.4 (0.5 E(Myandg, a) + 0.5 E(Mepm, a)))
0.72 eval(Mi,a) + 0.04 eval(Maz, a) + 0.1998 eval(Mpon, a) +
0.0108 eval (M gisp, a) + 0.0582 eval(Mand, a) +
0.036 eval(Mepnm, a).

O

The weights should be nonnegative and sum up fmally (Kyburg, 1988); to
assure this, the following restrictions on the belief stuoe are suggested.

Definition 6.3 (Additional requirements on the hierarchy)

1.0<C,, <land0 <, (M) < 1 for every nodeM and M’ (because the
values are used to represent uncertainty);

2. 3" pmresucem) Ppe (M) =T1andy” g .. iy, = 1 (i.€. no relevant notions
are omitted in the hierarchy, and the notions do not overlap)

3. Cp,; = 1 for everyi (the agent is fully committed to his most general assump-
tions).

Now when the agent is able to compute some rating for eveigradte can use any
well-established decision-making scheme — like choodilegatction with the highest
expected payoff.

6.3.2 \Verification of the Idea

Some simulations were conducted to verify the idea of kepgind using multiple
alternative models of the reality — the results are presiatel discussed in Chapter 8.
In this place, however, we would like to give a preliminargachow these simulations
looked like, and in what way the results suggest that usich sierarchies of beliefs
can be useful.

In this chapter, we basically propose that an agent may hbpiland use more than
one model of the reality. In order to make things as simpleoasiple, the experiments
employ an agent who interacts with a user in a statelesgrséay and deterministic
environment with publicly known characteristic. The agdnteracts with one user at
a time, and the identity of the current user is always knowyohd doubt. The agent
uses exactly two models of the environment at a momeptofile of the current user,
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Figure 6.6: The simplest hierarchy: only two models of tgalre relevant at a time

accept cheat skif
risky offer 30 -100 1
normal offer 6 -20 1
safe offer 15 -1 1

Figure 6.7: Payoff table for the e-banking game

and a default “best opponent” model (see Figure 6.6). Magedhe agent’s utility
function does not change throughout the game.

The simulations have been inspired by the following scenaxisoftware agent is
designed to interact with users on behalf of an Internet in@ngervice; he can make
an offer to a user, and the user’s response determines hpsitouThe agent has 3
possible offers at hand: the “risky”, “normal” and the “safdfer, and the customer
can respond with: “accept honestly”, “cheat” or “skip”. Tbemplete table of payoffs
for the game is given in Figure 6.7. The risky offer, for exdeman prove very
profitable when accepted honestly by the user, but the agéribse proportionally
more if the customer decides to cheat; as the user skips an tfé bank still gains
some profit from the advertisements etc.

Of course it is not essential that the agent is an e-bankioiggor What is important
is that he should learn users’ profiles to approximate theshpreferences of each user.
On the other hand, the agent has too much to lose to afforg diskisions when the
identity of a user is unknown or the user is completely nevhtodystem. To prevent
this, he uses a default user model besides the profiles.

The banking agent is a 1-level agent, i.e. an agent that madleér agents as 0-
level stochastic agents. The user is simulated as a randtimGtlevel agent — in other
words, his behavior can be described with a random prolsébifolicy, and he does
not change the policy throughout an interaction (a series06frounds, consisting
of an offer from the banking agent and a response from the.u3erget rid of the
exploration-exploitation tradeoff (Pfeifer and SchelE999) we assume also that the
user is rather simple-minded and his response does notdepehe actual offer being
made: p(cheat), p(accept) andp(skip) are the same regardless of the offer (if he is
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A(profile)

—>— A(default)

A(profile+default, C=n/(n+1))

- A(profile+default, C=0.9)

Figure 6.8: Two-level beliefs vs. using single model: agerpayoff per round

dishonest, he cheats for a small reward as well as a big onssiance). The agent
estimates the user’s policy with a relative frequency itistion, counting the user’s
responses. The default model is defined in the game thedmpfashe user is assumed
an enemy who always cheats. There is no uncertainty aboidehéty of the user —
hence,uprof”e(user) = 1. As there is only one default mod@lgatq i Profile) = 1;
moreoverCyefaylt= 1 (cf. Definition 6.3 pt. 3).

Remark 6.2 One can suspect problems with obtaining appropriate confideralues.
What we can do at least is to make sure that the confidence iwham the agent has
collected few data so far, and that it is closeltavhen the data size is large. Some
suggestions can be found in the the literature on statiktig@rence (Marshall and
Spiegelhalter, 1999; Spiegelhalter et al., 1998) or higbeter uncertainty (Klir, 1999;
Wang, 2001). The “variable confidence” agent defined belo@sWang’s confidence:
C = 25 as the subsequent confidence values (Wang, 2001), whisrthe number
of observations (interaction rounds) completed so far.sFhand other — confidence
measures are studied in Chapter 7.

The aim of the experiments was to compare the efficiency df agent’s behavior
with the behavior of a standard learning agent —i.e. thetagleo uses only a user pro-
file when making his decision$000000 independent random interactions (a sequence
of 100 rounds each) have been simulated. Figure 6.8 shows thegavpegoff of the
banking agent. 4 different agents were usddprofile) denotes a single-model agent
using only users’ profiles4(defaul} refers to another single-model agent who uses
only the default “best defense” assumptioAsprofile + default C = 0.9) is an agent
that employs both models with fixed confidence in the userlprofi= Cprofile =0.9,
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andA(profile + default C = %) denotes a double-model agent with variable confi-
dence values.

Remark 6.3 Note that the single-model adaptive agent can be also inteed as

a special case of a double-model agent who always fully grbgt knowledge, i.e.
A(profile) = A(profile+ default C = 1). Moreover, the single-model normative agent
can be interpreted as a double-model agent who is never @nifid his knowledge,
i.e. A(defauly) = A(profile + default C' = 0).

The output of the simulations shows that the banking agenirzieed benefit from
using a default model together with the users’ profiles irhssgtting. The last agent
outperforms both single-model agents: he plays much safaeifirst25 rounds (when
there is no sufficient data) and after that the payoffs arél&imOnly the output of
the first 40 rounds is presented on the chart to emphasizeatiempere the main
differences lie. The results for rounds-100 were more or less the same.

6.3.3 Combining Evaluations vs. Combining Strategies

In Section 6.3.1, we proposed that agents can use multipteelmof reality via com-
bining evaluationoof each possible strategy with respect to the available isoda-
other way is to combine bestrategiedirectly — we can do it if we treat the strategies
as mixed ones.

Definition 6.4 (von Neumann and Morgenstern, 1944) et>. be a set of possiblgure
strategies of agent, i.e. strategies that assign a deterministic choice to egaime
state. Amixed strategy : ¥ — [0, 1] is a probability distribution ove®. We as-
sume that will draw his action at random fronx: with the probabilities defined by the
distribution, if he commits to execute strategy

If the set of pure strategies is finile = {04, ..., 0, }, then mixed strategies can be
represented as vectors: = [s(o1), ..., s(0,)]. Note that a pure strategy is a special
kind of a mixed strategyr; = [1,0, ...,0], 02 = [0, 1, ..., 0] etc.

A scalar multiplication and a sum of mixed strategies candfadd in a straight-
forward way. Lets ands’ be mixed strategies over the same set of pure strategies
and letr be a real number. Then:

o (r-s)(o)=r-s(o);
o (s+8)(0) =s(o)+ (o).
Note that not every linear combination of strategies must beategy itself.

Definition 6.5 (Multilevel combination of strategies) Suppose that agematuses the
hierarchy of beliefs from Figure 6.4, and,, denotes the (mixed) strategy @fbased

2n fact, fixedC' = 0.5 and0.7 were also tried, but the results were virtually the same a€fe= 0.
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on modelM. Again, letsucc(M) denote the set of all the successors of nddeand
Spec the set of all the most specific models. The multilevel giyatan be defined as:

S = Z porg - Strat(M)
MeSpec
Strat(M) = Cy -5y + (1=Cy) >, (M)- Strat(M).
M Esucc(M)

Proposition 6.4 A multilevel combination of mixed strategies is a mixedtsgy.

Proof: First we prove that evergtrat(M) is a mixed strategy, i.e. it is a probability
distribution overX. The proof follows by structural induction over the(’s level of
specificity. ForM being a root of the hierarchy, we havStrat(M) = s,,, qed.
Suppose now that afitrat(M’) are mixed strategies for modeld’ down to the level
k. Take any modeM from levelk + 1. Then:

1. Strat(M)(o) > 0foreveryos € ¥, because it is a sum of nonnegative elements;

2. by the induction hypothesis, and the requirements frofinidien 6.3:

Yges Strat(M)(o) = Cp -3 pex Sp(0)+
(1 - CM) ZM/Esucc(M) ('LLM/ (M) ZUEE Strat(./\/l’)(o))
=C,+(1-C,)=1.
Thus, eachbtrat(M) is a probability distribution oveE, which implies that the
multilevel combinationS = > g, #r, - Strat(M) must be a probability distri-
bution overx, too. O

Example 6.5 Consider the agent from Section 6.3.2 who uses only the profithe
user (with confidencé’ computed after every step of interaction), and the defeadt u
model. Ifsprofile is the strategy that maximize@alprof”e(a), andsgyefgylt Maxi-

mizesevalgefqyl{a), then the resulting multilevel strategy is

S = C sprofile T (1 = €) sdefault
If Sprofile andsgefgylt@re pure strategies, the agent chooses the strategy batiegl on
profile with probabilityC', and the default strategy otherwise. O

6.3.4 A Few Remarks before the Next Chapter Begins

The concept of the belief hierarchy is aimed to help a viraggnt to behave in a more
robust, flexible and consistent way, especially when thentagannot fully trust his
beliefs or he can have several competing models of theyealitere is practically no
restriction on the way the beliefs are expressed; alsojnke between the levels can
be defined in many ways. The experiments showed that an autaragent can get
more payoff when using multiple models of the environmetiteathan just one model.
The hierarchy requires only linear growth of computatiggaler on the agent’s part
(with respect to the number of models being used), and th&pkr models can be
constructed and updated in parallel since they are indegretihg definition — they only
share the input data.
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Do We Really Need to Keep Multiple Models of Reality?

The experiments were primarily designed to be simple: the uss static (so the
confidence could be assumed an increasing function of tleeseéasize), and the agent
was using only two alternative models, one of them fixed anti baving the same
structure. Thus, the agent could arguably use Bayesiartingdéor instance (Kyburg,
1987), to integrate both sub-models in this very case {stavtith the default model
and updating it sequentially as more user-specific evidantees). In consequence
the agent would use a single model, and no confidence valuakl ke necessary.
However, things are not always like this. If the user is natist his behavior may
become suspect from time to time, so the agent can be betterroing back to the
default model to some extent — but it does not seem clevequinethat he abandons
all the knowledge gathered so far, and starts the learning ggdtem the scratch
again. If both models are evolving, the agent must keep thgmway to proceed with
the updates. Last but not least, the models may be built ufifemeht structures (for
example, the default model could be a simple Q-function witprobability at all) or
they may represent different entities: conscious beligispnscious beliefs, reflexes —
and then it is not clear how they can be integrated at all.

It is worth noting that in the course of the simulations thergtgdid gain some
additional profit when incorporating the “best defense” elaafainst 0-levetandom
agents. In other words, the agent benefited from assumingrsaly play from an
opponent who wasotadversary by any means. More experiments, against othes typ
of opponents, are presented and discussed in Chapter 8.

Learning to Learn

Another interesting thing we can do is to treat the confidesadees as parts of the re-
spective models. Now, the learning might also refer diyetctlthe confidence degrees
of various pieces of knowledge. For instance, the agentisevsystem may promote
belief states with high confidence values on the most spdeifiels (providing the
agent with positively greater rewards in such states), hnd motivating the agent to
explore his environment. This might help to overcome thégihes’s problem of the
exploration-exploitation tradeoff in a way: Instead of maythe exploration routine
predefined by the designer, the agent would be interesteghinihg the right propor-
tions between the exploration and exploitation actionsibysklf. Thus, the designer
may make the agem¢arn to learnwithout procedurally forcing the agent to explore
the environment via the learning algorithm. This idea maymoeth studying in the
future; however, it is not investigated further in this tises

To Trust, or not to Trust

Trust plays an extremely important role in the human soci€here are lots of social
rules — both explicit and implicit — that humans are assumeabey. Nobody claims
that all the people do necessarily follow the rules, but nobghe time we act as if we
believed so. For instance, when you drive on a motorway, wsurae that no one is
going to drive on your lane from the opposite direction, thathild will run suddenly
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in front of your car, that every driver on the road knows hovdtive a car, nobody is
doped, and there is no madman or manic killer in the cars argon. Your trust is
limited, of course, and you know such things happen, butifwanted to take all these
possibilities seriously you would never drive at more tBarkilometers per hour.

However, if you have a weird feeling that other drivers achsebow strange, you
will probably reduce your spedaeforeyou find out what is really going on. Pushing
your trust too far may prove very dangerous. It does not meanytou change your
general believes about drivers and highways instantly -nwioel are back on a mo-
torway in a couple of days, you will accept the same assumgtioore or less again
— but at this momensomething is not as it ought to pgo you “suspend” the beliefs
now, and you turn to some more fundamental ones instead.

The example illustrates one interesting feature of humaawer. If you have some
“emergency procedure” available at hand, and you have guignself-confidence that
you can recognize an emergency situation, then you carnreaslesafer put your trust
in what you have learned about the world around you. The samgdbe applicable
for artificial agents. The hierarchical modeling of the eamiment, proposed in this
chapter, enables defining such emergency procedures. abevafidence measures,
designed to detect situations when agents should rathpesdsheir trust, are studied
in the next chapter.



Chapter 7

Looking for a Suitable
Confidence Measure

SyNoPsIs  Game-like logics and models were introduced, discussed, ex
tended, analyzed, proposed for automatic multi-agentmilan— but that is
still not enough for most real-life applications. The logishow one side of
the coin: the guaranteed profit one can make following hiestadtrategy —
yet sometimes much more can be gained through exploitirey @wbious or
vague) views of the environment of action. We have proposedrthies of
beliefs and multi-model decision making to enable combimigaptivity and
security to some extent. Can it help to resolve the diald¢etision between
seizing opportunities and playing things completely safight be. But first,
we need to provide our agents with a way of assessing how geddiews of
the environment” actually are.

7.1 Introduction

An agent may benefit from keeping several alternative moafetise reality in certain
situations — the point has been advocated in Chapter 6. lagieait is designed to
interact with users, he can be obviously better off keepihgusers’ profiles to ap-
proximate the actual preferences of each user. Howevem wWieeidentity of a user
remains unknown or the user is completely new to the systarayarage user model
or a default model may be used instead. While a standard matarning algorithm
will assume some arbitrary initial model of such a user (\idarm or random distri-
bution, for instance), it should be clear that such knowdehyist not be trusted when
it comes to decision making, since the model is not suppdyethy data so far. More-
over, users’ preferences may evolve, and even worse: s@nemsy assume someone
else’s identity (incidentally or on purpose). This callsddkind of self-reflection on the
agent’s part: a confidence measure is needed to determirfgch axtent every piece
of knowledge can be considered reliable. If we provide trenawith such a measure,
he can base his decisions on the most reliable model, or ursesa tombination of all
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the appropriate models.

In this chapter, several confidence measures are proposed &gent, interacting
with other agents (users) in a very simple environment. gengis meant to employ
a kind of meta-reasoning to determine the level of religbiif the possessed knowl-
edge. The aim of the confidence measure is to represent m@tee(tainty — thus the
actual confidence values range frorcomplete distrust) ta (full confidence). Some
researchers from the probability theory community sugtiest— to solve the problem
— we should take the agenksowledgeas a random quantity, and use its variance as
a clue (Pearl, 1987; Kyburg, 1988). The suggestion has h#knved in Sections 7.2
and 7.3, with rather negative results. Another possibiitgxplored in Section 7.4.
The measure is based on self-information loss functiondg#ldss function), used
widely in information theory and universal prediction (Mear and Feder, 1998) — and
the experiments prove the idea promising.

This chapter uses ideas and results already publishednmrdda, 2002a), (Jam-
roga, 2003b) and (Jamroga, 2003a).

7.1.1 Why Should We Doubt Our Beliefs?

There are roughly two possible sources of doubt for a legragent. First, the agent
may have collected too little data. For instance, when tlembstarts interaction with
a completely new user, his knowledge about the user is Viytnane. However, the
knowledge is utilized in the same way by most algorithmsardtpss of the number of
learning steps that have been taken so far.

Next, the environment might have changed considerablyhaadllected data do
not reflect its current shape.

The knowledge produced by a learning algorithm is often noenttsan a working
hypothesis. It is necessary for the agent that he can makeelisions; however,
trusting the knowledge blindly implies some additionalesptions which are not true
in most real-life situations. Itis good for the agent to hegme measure of uncertainty
about his own knowledge — to minimize the risk of a decisi@peeially in the case
when he has several alternative models to choose among dimem

7.1.2 Related Research

Confidence has been recognized an important and usefulhnettbin the Machine
Learning community. It was successfully used in the areasm@fement recogni-
tion (Wang et al., 1999), speech recognition (MengusogtuRis, 2001; Williams and
Renals, 1997) or in mobile user location (Lei et al., 1999)ifistance. In most papers
the term “confidence” or “confidence measure” refers to tidability that the agent’s
decision(e.g. a medical diagnosis, a classification of an image, aesexg of words
assigned to a spoken text etc.) is right — i.e. it refers ttiobability that a particular
patient really suffers from pneumonia, that there is realtar in the middle of the pic-
ture, that the user really said “open sesame” etc. In thiptelnahe term “confidence”
refers to a subjective property of theliefs(probabilistic or not) themselves, i.e. this
is our ownknowledgen which we may be more or less confident. Thus, the confi-
dence can be viewed as meta-knowledge or, more precisetg-unmeertainty. Such
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a confidence measure is often seen as a result of some postifeation that fol-

lows the process of knowledge acquisition or decision nakifochreiter and Mozer,
2001). Also, the confidence measure may be based on the ambdata we have
available (Wang, 2001) or the way the observed patternve\®earl, 1987; Kyburg,
1988).

The confidence measures proposed in this chapter come gatlbapst to the mea-
sure proposed by Wang (200X)y 4,y = n/(n + k), wheren is the amount of data
andk is an arbitrary fixed number. For instan€®y,,, = n/(n + 1) for k = 1. It
seems simple and rather ad hoc, but turns out to work sunghsivell (Wang, 2001,
Jamroga, 2002a, 2003b).

The time flow and the resulting devaluation of the old datd@rkhowledge have
also been a focus of several papers. Kumar (1998) uses a enodidneasure to im-
prove a Q-learning based algorithm for adaptive networkingu The measure is very
simple — the confidence in every Q-value which has not beeategdn the last step is
subjectto “time decay’Ci,c., (z) = A Coia(z), whereX € (0, 1) is the decay constant.
A similar idea was introduced in (Koychev, 2000) to track tiser’s drifting interests
effectively. There is no explicit confidence measure thieogyever; instead, a scheme
for “forgetting” old observations by an agent is proposedor&bver — in contrast to
Kumar’s decayingnowledge- these are rathetatathat become gradually forgotten.

Another perspective to the task of adapting to the user'sadhya behavior is of-
fered by the research on time series prediction — espedfayuniversal prediction,
where a prediction does not necessarily have to be a simieati®n of the next ob-
servation, but it can be a complex structure (a probabiseasment, a strategy etc.),
and the real underlying structure (the “source”) geneggtire events is assumed to be
unknown (Merhav and Feder, 1998). The universal prediatiethods focus on find-
ing a good predictor, not on assesshmvgood it is, though. A way of transforming
the log-loss values into confidence values is proposed itidde¢.4 — and the results
seem to be promising.

7.2 Datasize-Based Confidence

This section is focused on the first source of the agent’srteiogy: how much con-
fidence can he have in his knowledge when there is not enoughtalaupport it?
The problem is analyzed in a very simple setting: the ageméssimed to be a 1-level
agent —i.e. an agent that models other agents as stochgstitsgVidal and Durfee,
1998) — and the users are 0-level agents with probabilisticips. The reinforcement
is known beforehand for every decision of the agent, giveespanse from the user,
and the domain of action is stateless (or at least the ageariception does not let him
distinguish between different states of the environmemt)e agent tries to estimate
the actual policy of the user calculating a frequency distion, which can be further
used to find the decision with the maximal expected reware.aiim of the confidence
is to represent meta-(un)certainty about the agent’s kedgé, so when he has sev-
eral alternative models available he can choose among thewnabine their output.
Thus, the actual confidence values should range from 0 (emgistrust) to 1 (full
confidence).
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7.2.1 Self-Confidence with Insufficient Data

It is often assumed that the (un)certainty an agent can hawetdis knowledge is
nothing but a meta-probability or meta-likelihood — cf. éper, 1995) for instance.
On the other hand, there are researchers who argue agaiigbiirg, 1988; Wang,
2001). This seems to reflect the assumption that the metarairtty should refer to
the usability of the model. Indeed, meta-probability is wety useful in this case:
even if we know for sure that the model is slightly differertri the reality (in conse-
guence, its meta-probability is exactly, it doesmatter whether it is close to the real
situation or not (Wang, 2001). This is also the perspectil@ged in this section. In
this respect, some authors propose approaches based omatomeof error or fitting
obtained through a posterior verification of the model (Hedbr and Mozer, 2001;
Spiegelhalter et al., 1998; Marshall and Spiegelhalteéd9) 9However, the disconfi-
dence studied here & priori not a posterioriby definition — therefore any posterior
reasoning can do no good here. In consequence, purelyqaksuiutions may be very
useful and work surprisingly well in particular situatiofiimar, 1998; Wang, 2001).

It has been suggested that, when the model is a probab#itytilition, the agent’s
self-confidence may be defined using the variance of thahlition treated as a ran-
dom quantity itself (Pearl, 1987; Kyburg, 1988). Thus, thafcdence measures being
proposed and studied in this section are based on the ndtiaggoegate variance of
the estimator provided by the learning process.

7.2.2 Frequency Distributions with Decay

Assume an autonomous e-banking agémtho interacts with some other agdstthe
“user”) according to the scenario from Section 6.3.2. Therawction with the user is
sequential and it consists of subsequent turns: dirdhooses to proceed with an action
a from afinite setdct A, thenB replies with somé € ActB, thenA doesa’ € ActA
and so on. Lep(b) denote the current probability of ageBt choosing actiorb in
a predefined context. Usually we will assume that the corisedetermined by the
latest action of4, i.e. thatp(b) denotes the probability of agetit choosing action
b as a response to a particuldis actionax. However,p(b) may as well denote the
probability of B choosingb in response ta in states (if the context includes states
of the environment), or the probability 6fin general (if our model of the environment
is sparser) etc.

In other wordsp(b) denote the current stochastic policy®fin the given context.
A tries to estimate the policy with a relative frequency disttion p:

ONSY
NA+L else

N «— N-A+1

56 { % if bis the user’s response
p <

where\ € [0, 1] is the decay rate implementing the wayforgets” older observations
in favor of the more recent ones to model users that may chdreje preferences
dynamically (Kumar, 1998; Koychev, 2000, 2001). represents the data size after
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collectingn observations. Since the older observations are used ortlglpa(the first
one with weight \»~!, the secondA™~2 etc.), the real quantity of data we use is

- 4 LA foro< A <1
— n—i _ T—X
N Zl A { n forA=1
The nil distribution0(b) = 0 is used as the initial one. If the decay rate is allowed
to vary thenV = " | H;‘l:i-q—l Aj, where)q, ..., A, denote the actual decay rates at
the moments when the subsequent observations and updatemage.
Note thatp(b) is basically a sample mean of a Bernoulli variable, althoitigha

mean with decay

Definition 7.1 Mean with decayf a sequencéX;—; .. ) = (X1, ..., X,,), weighted
with a series of decay values, ..., \,,, can be defined as:
Z?:l(H?:i-ﬁ-l )‘j)Xi _ Z?:l(H?:i-ﬁ-l )‘j)Xi

Z?:l H?:i-u Aj Nxi ..

My, ,(Xiz=1,.n) =

Proposition 7.1 A frequency distribution with decay,(b) is a mean with decay of
Respi=1,..n(b),..:pn(b) = My, , (Respi=1,...n(b)), where

.....

1 if bisthe user’s response
0 otherwise

Resp(b) = {

Note also that fon = 1 we obtain an ordinary frequency distribution with no tem-
poral decay. Moreover}/, has some standard properties of a mean (the proofs are
straightforward):
Proposition 7.2

1. My, (X+Y)=M,, ,(X)+ M1 ,(Y)

2. M,\l_‘n(aX) = a]V[,\l_‘n(X)

3. >y My, ., (pi=1.n(b)) = 1if p; is a probability function.

Remark 7.3 The weights assigned to the data sequence satisfy the tfogyebn-
straints from (Koychev, 2000).

Remark 7.4 Mean with decay can be computed incrementally:

MMy, (Xiz1,om—1) + X5

Thus, the agent must only remember the current valued/Qf  (X;=1,. ,) and
Ny, , tore-compute the mean when new data arrive.
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7.2.3 Binding the Variance of Sampling

Handbooks on statistics like (Berry and Lindgren, 1996)g&s a way to determine
whether an amount of data is enough to estimate the popuolaieanZ X with a
sample mearX : we assume some acceptable error levaahd as soon as the sampling
dispersion (standard deviation, for instance) gets befswalue:s(X) < ¢, we feel
satisfied with the estimation itself. Since the real dewiatvalue is usually hard to
obtain, an upper bound or an estimation can be used instead.

If we want the “satisfaction measure” to be continuous, @&msg natural that the
satisfaction is fulll when the condition holds far = 0, and it decreases towardss
the dispersion grows. Itis proposed here that the confidenegrequency distribution
p can be somehow proportionalto- ), disp(b), and the variancear(p(b)) is used
to express the dispersiatisp(b). The reason for choosing the variance is that
> pvar(p(b)) < 1in our case, while the same is not true for the standard dewiat
as well as the mean deviation.a.d.

We assume that the old observations are appropriate ontialpawith respect to
the (cumulative) data decay encountered so far. 7Lét 1 be an arbitrary number.
By the properties of the variance and given ti&tsp, (b), ..., Resp,, (b) represent a
random sampling of the user’s responses:

var(pn (b)) = var(M)\(Respizlnn(b))) =
= var( Zi:l R;espi (Zi))\ =
Zi:l )\n 7
S var(Resp;(b))A2"—9)
(Z?:l )\n—i)Q
The value ofvar(Resp; (b)) is a population variance at the moment when ieob-
servation is being made. #; (b) is the real probability of user responding with action
b at that particular moment, then:

var(Resp;(b)) = pi(b) — p3(b)
) S RO pi(b) — 32, p2(D))
2 var(pa(t)) = CoAE

b
>, p3(b) is minimal for the uniform distributiom; (b) = m, So:

S A2n—d) 1

i=1

2 var(pn(®) < (55T (0~ )

Definition 7.2 We define the measure Cbound as:

Cbound = 1 —dispb, where
Z?:l )\Q(nfi) ( 1
(3o, An—i)2 |ActB|

dispb )
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Now the confidence is never higher thasfhiouldbe — the agent is playing it safe:
Proposition 7.5 Cbound< 1 — >, var(p,(b)).

Note also thatlispb is a decreasing function of for A € (0,1], so its value
is always betweerfl — ﬁ)/n (the value forA = 1), and1 — ‘Ac—ltB‘ (which is
limy_,q dispb).

Corollary 7.6 0 < 15 < Cbound < 214

|[ActB| — L.

1
n|ActB| <

Definition 7.3 In the more general case whenis variable, the confidence can be

defined as
SLsqry, 1

(SL,)? (1= |ActB| )
whereS Lsqr,, and.SL,, are computed incrementally:

Cbound=1 —

2
n

SLsqr, = Z ﬁ Al o= N SLsqr,_1+1

i=1 \j=i+1
SLy = Y J[ N = SLa1+1
i=1 j=i+1

Note that:
Zvar(ﬁn(b)) = var(MA:L,n(Respizlnn(b))) =
b
50 St (I M) oar(Respi(b) _
(Z?:l H?:iﬂ )‘j)Q B

Z?:l(H?:i-ﬁ-l )‘j)2 (1- 1 )
(Z?:l H?:i-u Aj)? |Act B|

=1 — Cbound

Corollary 7.7 0 < Cbound< 1 — ", var(pn(b)).

7.2.4 Adjusting the Confidence Value

The value ofdispb proposed above can give some idea of the uncertainty the agen
should have ip. The most straightforward solutiolf€bound= 1 — dispb may not
always work well for practical reasons, though. The agenusz a “magnifying glass”
parametem to sharpen his judgment:

Cbound= (1 — dispb)™.

Since different learning methods show different dynamfdsxowledge evolution,
m offers the agent an opportunity to “tune” his confidence rasat the actual learn-
ing algorithm.
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7.2.5 Forward-Oriented Distrust

In a perfect case we would be interested in thal variation of the sampling made
so far — to have some clue about the expected (real) devimomthe estimatiorp,,
obtained through the sampling. This value can be approatihedgh its upper bound
—as proposed in Section 7.2.3. Alternatively we can try foragpimate the variability
we may expect from our estimator in the future (possibly wattmporal discount).

It is worth noting that insufficient data can be seen as ge¢ingr&uture oriented
distrust”: even if the agent’s knowledge does not changdrducing the first few steps
(e.g. the corresponding user’s responses are identigalytchange fast in the very
next moment. When the evidence is larger, the model of tHiyréaing produced gets
more stable and it can hardly be changed by a single obsenvatt us assume that the
learning algorithm is correct — i.e. the model converges#ottue user characteristics
as the number of input data increases.

Definition 7.4 The agent can base his self-assessment on the possible-tutented
dispersion (possibly with a temporal discousjt

Csizey, = (1 —fdisp,)™

fdisp, = lim Efdispy = lim £(Y Va(urk(b). . 5n ()
b

wherep is the agent’s current model of the user, evggy ;,i = 1..k is obtained from
Pn+i—1 through responsé?, and the mean is taken over all the response sequences
(b3, ..., b%).

Note thatA is the decay rate fadtnowledgeand does not have to be the same as
the observational decay rake

Definition 7.5 The sample variance with discount/decay can be defined inwala
way as:
VA(X) = MA(X — MpX)%

Proposition 7.8 By properties of the mean with decay (Proposition 7.2):
VA(X) = MA(X?) — M3(X).

The limit in Definition 7.4 can be approximated iterativety the generalized fre-
quency counting presented in Section 7.2.2, assumingrmgariori likelihood for all
possible sequences, and approximating the expected Vvatuggh simple averaging.

Definition 7.6 Let:

. 1 .
avg(bleuk) fd|3dfi = W Z fdlSdX
b

(Vi

Mpsar* = avgp: | ) Z My 41,(b), s i (D))
b
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qur’“ = avge:_, ) Z Mﬁ(ﬁmrk(b), vy P (D))
MPF = avgpr_, ) an-f—k MA(pn+k(b)7 ’ﬁn(b))
Psar’ = avgqy_, ) ZPM

b

Now, for0 < A < 1 being theknowledgedecay rate, A\ = A, the current
observationdecay rate, N = > | \; being the current (decayed) data size, and
Ny = NAF + Y F 70X, we have:

avgue_, ) fdispy = Mpsar* — Msqr*

Mpsqt’C = prsqt’€ ! %P *
Msqr = %qur’C ! %MP’C
MPk — (1(1i\12;5ﬁ]3Nk1)MPk1 +
k k
%Psqﬁ N |ActB|(11—AAk+1)Nk
Psql = (N’;V; 1)2Psqr1“‘1 + 7?/(1];];3?]\2 Ni,f

The resulting algorithm for iterative approximationfdispis shown in Figure 7.1.

Proposition 7.9 The algorithm from Figure 7.1 is convergent.

Proof: To prove the convergence of sequefite = avge:_, ) fdisph, we will find
an (ay) such thafV* — Vk=1| < q; for everyk, ande:1 a; forms a convergent
series. Then the serids!_, (Vi — Vi~1) = V* is also convergent. Note that:

[VE — vE=1 = |Mpsql* — Mpsgr—! 4+ Msqr*—! — Msqr®| =
1 AF (1— AF)2

= (T — )Mpsgr—* + (1 — m)qur"“1
(1— A)AK 21— AJAR  AZR(] — A2
T AT Psqtkfi_A]ﬁL1 MP +7( =y Psqr”|
AF(A 2 — 2\ — AR AFT2 _
_I%Mpsqf“ I AN EGEE >qur’“ o
(1 A) ( — A)AF A%(l A)
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fdisp (p, A, A\, N, precision);

Iterative approximation ofdisp,. Returns the approximate value of the average
future-oriented temporally-discounted dispersion (wéimporal discourt < A < 1).
A is the current temporal decay rate on the observation I&vegpresents the numbe
of observations collected so far that takes into accounttimeulative time decay is
the current model of the user.

=

Mpsar, Msqr, M P, Psqr— >, p*(b); /* initial values */
k — 0;
V «—0;
repeat
Voia — V,;
k—k-+1;
N «— N+ 1;

Psqr« (—) Psqr+ % + 7z

MP — <1(1 AAIZ%A})MPJF <11 ,\Aﬁfl Psqr+ —lA(tBl(l EGIIE
2 2
Msqr — MMSQH‘ %MP %PSQE

Mpsqr« 3 AHlMpsqrqL a f\\,?fl Psqr,

V — Mpsqrf Msar,
until |V — V4| < precision;
return(/);

Figure 7.1: The algorithm for iterative approximationfdisp

AF(1—A)  AF(1—A)(2 — AF

AR AMI- M- AR+ A)
1 — Ak+1 (1 — AR+1)2
AF(1—A)  2AF1 —A)  A%F(1—A)?
1 — Ak+1 1 — Ak+1 (1 _ Ak+1)2

becaus® < Mpsqr, Msqr, M P, Psqr< 1 by Proposition 7.2 (point 3). Thus
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Note also that, for every, we havel’* > 0 (because it is a sum of nonnegative
elements). On the other hand* < 1 (becausé/* = Mpsqg — Msgr®, and0 <
Mpsgr®, Msqr* < 1).
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Figure 7.2: Confidence vs. accuratendssize
Corollary 7.10 0 < Csizeg, < 1.

7.2.6 Simulations

The experiments were inspired by the e-banking scenarjuictdel in Section 6.3.2.
The banking agent can proceed withifferent offers at each round, and the userhas
different responses available. The table of payoffs foigme is shown in Figure 6.7.
The agent estimates the user’s policy with a relative fraquelistribution, counting
the user’s responses; at the same time he computes a coefiggne for the profile
acquired so far.1000000 independent interactions (a sequencd @ rounds each)
with a random user process have been simulated; the averagjésrare presented in
the following charts. Only the output of the firsh rounds is presented in most charts
to emphasize the part where the main differences lie. Thétsfor roundstl — 100
were more or less the same.

Figures 7.2, 7.3 and 7.4 show how the confidence values ef@leestatic random
user (a user with a random stochastic policy that does natgehthroughout the ex-
periment). The banking agent uses plain frequency countittyno decay (i.e., the
decay rate for observations ls= 1). Figure 7.2 presents the characteristicCsize
Figure 7.3 displays the flow d€bound and Figure 7.4 shows the characteristic of
the Wang's confidenc€wang= N/(N + k). The confidence values are compared
against the expected absolute deviation of the learnedefiadim the real policy of the
user:expdev =Y, [p(b) — p(b)| - p(b), or rather the “accurateness” of the profile, i.e.
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Figure 7.4: Wang's confidence far= 1 and2
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1 — expdev.

All the presented measures increase as the number of enlldeta grows, which
is a good thing. Obviously, a higher value of the “magnifyigigss” parametem
makes the confidence values increase slower — and in cormssgtiee agent is more
“hesitant” to accept the evidence coming from his obseowati(cf. Figures 7.2 and
7.3). Using a higher value df in Cwanghas the same effect (Figure 7.4). Note
that the the measure based on the “forward-oriented distf@siz§ goes very fast
to 1, even for a relatively high “magnifying glassin(= 5). Too fast, in fact: the
performance of agents usi@sgizewith fixedm turned out to be almost the same as for
agents using only the user’s profile and no multilevel deaishaking at all. Looking
for a successful set of parameters we tried a more compticaggnifying scheme
eventually: variablen = 10 + N>, The resulting confidence is relatively low at the
beginning, and it grows almost linearly until it reaches kel of aboutd7% after
15 — 20 rounds.

Figures 7.5 and 7.6 present payoffs obtained by variousstgpdanking agents
against aandom static userThe average payoffs at each round (fré@®0000 inde-
pendent games played for each setting) are presented. d¢trik noting that the results
are presented in a non-cumulative way, i.e. if the agentsgaiim the first round of the
game, and in the second round, then his total gain in the first two rougds

The output of the two single-model agents (Figure 7.5) shexestly why using
many models of reality at the same time can be benefidigbrofile) — the agent who
uses only the user’s profile when making his decisions — Igsis a lot in the first few
rounds, because the profile is often inaccurate after thefiosor three responses from
the user. Only after somks rounds the model of the user becomes accurate enough
so that using it is more beneficial than playing the safesttesgly all the time; and
after30 — 40 rounds the agent approximates the real policy of the useée garrectly.
A(defauld, on the other hand, has a constant average paydffsoper round; since
the user’s policy is random, the expected value of playiry“Hafe offer” should be
L5141 — 0.5 indeed. The agent never loses much; however, he is not ableptoit
the fact that the responses he gets from the user might tekfong important about
the user’s real policy.

The hybrid agents play safer thatiprofile) with various degrees of success. The
agent using fixed confidence 09, i.e. A(profile+ defaultC' = 0.9), loses slightly
less thanA(profile), but he gets suboptimal payoffs in the latter phase of theegam
when other agents exploit their knowledge to a larger ext®duble-model agents
using Cbound Csizeand Cwangplay similar to A(defaulj at the beginning of the
game, and close td (profile) later on (which seems a natural consequence of the way
the make their decisions). In general, the results showahaagent using such a
hybrid model of the reality can be better off than an agentgisither the profiles or
the default user model alodeCwang(for £ = 1) andCbound(for m = 2) give best
results, whileCsizefares slightly worse despite quite complicated paramesetting
(A = 0.8 and variablen = 10 + N!-°). As the charts suggest — the agent does not lose
money at the beginning of an interaction (becatisis low and therefore he is using

lUnfortunately, it is not possible to present all the resalisa single chart because the chart would be
completely unreadable then.
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Figure 7.5: Hybrid agents vs. single-model agents: thessyeepayoffs
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mostly the default model). On the other hand, the confidexabmostl by the time the
obtained knowledge becomes more accurate so the agenacamssihg the user profile
successfully. Experiments with other payoff tables gawelar results (cf. Section 8).
Moreover, it seems worth pointing out that, in the middlegghaf the game, the hybrid
agents earn more thaachsingle-model agent. Thus, the average output of an agent
using a linear combination of models is not necessarily @alircombination of the
respective single-model agents’ outputs. The hybrid agseém to switch between
safe and adaptive behavior accurately.

It should be obvious that the confidence needed to combiamalive models is
neither meta-probability nor meta-likelihood. The simigdas suggest that the practical
uncertainty concerned here is rather related to the distedaciation of the model from
the reality in a way. Interestingly, an agent usingexpdev gets positively best payoff,
especially in the initial phase of the interaction (see Fégu/.6 and 7.8). Perhaps the
expected absolute deviation is not the best deviation medsu this purpose but it
seems a close shot at least. Of course, we camhesignsuch an agent (because the
agent can be hardly expected to know thedev value in the same way in which he
has no direct access to the real policy of the user), but welesign an agent that tries
to approximate the value, and use it afterwards.

The measures presented here are primarily designed tetiack of data, not the
user’s dynamics. However, some experiments with dynangcsusave also been run.
Simulating dynamic policies that imitate preferencegdfihuman users was not easy,
because human agents are hardly completely random witkeaesp their policies.
True, humans’ preferences drift — and the drift is never detefy predictable — but
neither is it completely chaotic. Real users are usuallyrodted to their preferences
somehow, so the preferences drift more or less inertly (tifeahanges its direction
in a long rather than short run). Here, random initial andlfpwicies pg, p100 Were
generated for every simulation, and the user was changspgreferences from, to
p1oo in a linear way:p; (b) = po(b) + 1i5(100(b) — po(b)). Figure 7.7 presents the
confidence evolution for a dynamic user axe- 0.95. Figure 7.8 shows the results of
the “banking game” in the dynamic case. Here, the hybrid tgsimg Cboundfares
best (except for the hypothetical agent usifig= 1 — expdev), with other hybrid
agents close behind. Most notably, 8boundagent is never worse than both single-
model agents. The agent using only the default model is echdh the chart to make
it clearer: as before, his average payoff has been abdyter round all the timé. It
should be noted that the learning method used in the expetinfiee. counting with
decay) imotlinear, so it is not true that this particular type of userd@mion dynamics
was chosen to suit the learning algorithm.

7.3 Detecting Changes of Pattern: First Attempt

This section is focused on the second kind of an agent’s taingr about his own be-
liefs: even provided a substantial amount of evidence aa,dhe agent may at some
moment detect that the resulting model of the reality hases#o characterize the

2A similar chart for the agent using = 1 shows the same regularities, although the payoffs are atyner
worse because the learning method is less flexible.
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Figure 7.6: Hybrid agents vs. single-model agents: thessyeepayoffs continued
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Figure 7.7: Confidence: interaction with a dynamic uses 0.95

current behavior of the environment and/or other agentsut¢h case, one may suspect
that the environment might have changed considerably,techbdel is not consistent
with its real source any more. The agent can certainly beinefit detecting conspic-
uous changes of pattern, and acting more cautiously in stuatiens.

Two confidence measures to capture this kind of meta-uriogrtare proposed
and evaluated in this section and in Section 7.4. Some r&se@from the probability
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theory community suggest that — to solve the problem — we ldhiailte the agent’s

probabilistic knowledge as a random quantity, and use itenee as a clue (Pearl,
1987; Kyburg, 1988). Therefore the first measure being ppegas based on the ag-
gregate variance of the model (Section 7.3.1). The secorabune (Section 7.4) is

based on the self-information loss function (or log-losscfion), used widely in the

fields of information theory and universal prediction (Maviand Feder, 1998).

7.3.1 Aggregate Variance with Temporal Decay and the Variace-
Based Confidence

To detect the moments when the user’s behavior changesievably, some dispersion
measure can be used that captures its variability. Therlgngelispersion, the smaller
the confidence — thus, if the dispersion estimatiodiigp € [0, 1], the confidence
measure’’ can be somehow proportional to— disp. If we assume that the agent’s
knowledgep; approximates the user’s poligy at various time points = 1..n, we can
use the variability of the knowledge (over time) to estinmtite variability of the real
policy. It reflects also the following intuition: if the ageimas collected enough data to
estimate a policy of a static user, and still he has to upti@testimation considerably,
the pattern must be changing somehow.

The aggregate sample variance (for all the actioasAct B the user can choose to
proceed with)

n
> Vi(piz1.a(b) = Z > (Bi(b) = pi1.n (b))
beActB b =1

has some welcome properties: it captures the variabilitthefwhole procesgthe
last update size does not), it can be computed incremerftalyregate sample mean
deviation can not), and its value is always between 0 anddréaate sample standard
deviation is not). To implement a simple forgetting scheme,use again the idea of
the decay rate (cf. Section 7.2.2).

Definition 7.7 LetCy = (1 — dispa), Wheredispy = Y, VA (Di=1..n(D)).

(A+A™)(1=A)

Proposition 7.11 TN

<Oy <1.

Proof: The upper bound follows from the fact thétsp, is a sum of nonnegative
elements. The lower bound is a consequence of the followieguality:

sy = AN f;22<zﬁi<b>2:

b 1=1 i=1
1 1 1.« .
SERESILERE) 35 Y ANASEES 3 WAOICE
i=1 by #£bsy b iy
1+ A™)(1—A)

= (1+A)(1-Am)
and the bound is tight for < |ActB|. O
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7.3.2 Experimental Results forC'y,

The aim of the simulations was to compare the output of theittigent using’y as

the confidence to the hybrid agent using Wang’s confidéhgg,,, = n/(n + 1), and

to the outputs of both single-model agent800000 independent random interactions
(a sequence of00 rounds each) have been simulated for each agent. Figure 7.9A
shows how the confidence values evolve for a dynamic usercdiigddence values are
compared against the expected absolute deviation of thedéaprofile from the real
policy of the userexpdev = >, |p(b)—p(b))|-p(b), or rather the “accurateness” of the
profile, i.e.1 — expdev. The dynamic opponents were simulated as “stepping” users:
random initial and final policiegy, p10o Were generated for every simulation, and the
user was changing his preferences eB@rgteps:p; (b) = po(b) + (i div 30)(p100(b) —
po(b))/3.

Figure 7.9B shows the average payoffs, and suggests thajean asing such a
hybrid model of the reality can be better off than an agemaisither the profiles or
the default user model alone. Again, such a “multi-mode&ragloes not lose so much
money at the beginning of an interaction (because the cord&is low and therefore
he is using mostly the default model); then the confidenceeases almost td and
the agent’'s knowledge becomes more accurate at the same-tsndhe agent can
start using the user profile successfully. The results o$ttmellations show that using
the variance-based confidence improves the agent’s pdydfft is never better than
Cwang, Which is all the more surprising because the Wang’'s measasalesigned to
tackle astaticand not dynamic environment. The problem is that the “sb¥eovation”
approach proposed in the literature leans very heavily erléarning method being
used by the agent. Usually the model gets stable quite fgardiess of the user's
responses; any new item has a very small impact on the meae afier some, say,

20 observations have been collected. Therefore the medsea not really detect
the changes in the user’s behavior. It is easy to see in FigOre thatC'y, increases
constantly almost all of the time, even when the model besdess and less accurate,
i.e. after the30, 60 and90th step. The agent may even focus on his most recent beliefs
— it does not make things any better, because these are thtslleat do not change.

Since the simulations show that the measure does not hadisl podmise, an alter-
native measure is proposed in Section 7.4.

7.4 Detecting Changes via Logarithmic Loss Function

Log-loss function is used in the research on machine legraird time series predic-
tion — especially universal prediction, where a predictioes not necessarily have to
be a simple estimation of the next observation, but it can beraplex structure (a
probability assessment, a strategy etc.), and the reatlynutgstructure (the “source”)
generating the events is assumed to be unknown (Merhav atet,F998). The uni-
versal prediction methods focus on finding a good prediotaron assessingowgood

it is, though. A way of transforming the log-loss values intmfidence values is pro-
posed in this section.



7.4. DETECTING CHANGES VIA LOGARITHMIC LOSS FUNCTION 173

7.4.1 Confidence Based on Self-Information Loss Function

Definition 7.8 Letp; represent the agent’s beliefs about the preferences ofgbein
response to a particular action from the agent in a particudtate of the environment
(at thesth step of interaction within this context). Ligt be the user’s actual response
at that step. One-step logsand the average loss in stepsL,, can be defined using
the log-loss function:

I, = logloss(pi,b;) = —log, pi(b})

L, = —zzﬁf%ZogQﬁm

i=1

3

Note that the expected value bis a function of two probability distributions: the
real distributionp (the “source” distribution), and its modgl built by the learning
agent. More formallyE | = — 3", p(b) log, p(b) = El(p,p). The loss is minimal
(in the sense of expected value) when the agent has beernrguessectly, i.e. when
the model he used was a true reflection of the reality= p (Merhav and Feder,
1998). However, this holds only if we assume thas fixed, and not in general, as the
following example demonstrates.

1-
0.75 1 mP1 OP2
0.5 |
0.25 -
11
b1 b2 b3

Figure 7.10: Minimal vs. optimal loss — an example

Example 7.1 Consider an agent who estimates the user’s policy with pritibadis-
tributionp = P1 at some moment (see Figure 7.10). If his guess is right (ieeuser’s
policy isp = P1indeed), the expected lossis = —0.5 log, 0.5—2-0.25log, 0.25 =
1.5. Yet if the real policy ip = P2, thenE [ = —1log, 0.5 = 1: the agent’s loss can
be smaller when his guess is wrong... In other wofd$p, p) has a global minimum
of p = p for a fixedp, but not when we consider all the possible source distioinsti
O

Note that this is not a problem in time series prediction. $twerce distribution is
presumably fixed in a single run (there is argectivesource distribution), and hence
El(p,p) is objectivelyminimal for p = p (out of all the objectively possible values
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of E' ). As long as the agent is not interested in the loss valueagblves — only

in finding the minimum point — minimizing the medn, is a valid strategy for him to
find a modep that approximates the true probability distributiprHowever, when the
source distribution is unknown, some smaller loss valueslmealeemed possible from
the agent'subjectivepoint of view. Moreover, he may experience a smaller loss in a
subsequent interaction in which his beliefs would be abtdafther from the reality.

Example 7.2 Consider the learning agent from Example 7.1 again. Supihesagent
computes higlisconfidencen his own model of the reality as a value proportional
to L,. Suppose that he interacts with two users, and in both casegetsp = P1.
Moreover, let the real policy of the first user pe= P1, and the secondy = P2. In

a long run, our agent is going to obtain average loss.®in the first case, and in
the second. Thus, he is going to trust his beliefs more indtterl (where he actually
guessed the policy incorrectly) — which is unacceptableomsequence, the minimal
loss is not the optimal loss in this case. O

What does “optimal” mean then? Let us define tipdimal series of modelss a
sequence of the true probability distributiops:= p; fori = 1..n.

Definition 7.9 Theoptimal expected los®pt,, is the expected value of the average
loss we get provided the actual sequence of matlels,, is optimal.

Definition 7.10 Theloss deviation\,, is the difference between the actual Idssand
the optimal lospt,,.

Note that:
1 n
Optn = ELn=— Y (p(br-bn)— logypi(hi)) =
(bl..bn) i=1
1 n
= _EZZ 1Og2pz i :__Zzpl 10g2pl )
i=1 b;
1 n
An = Ln 7Optn = 77’1; 10g2p1 Zpl 1Og2p1 ))

Now, the loss deviatiod\,, (or rather its absolute value) seems a better basis for
the confidence than the loss itself. As differgist give different loss characteristics,
however, they also define very different deviation intesveforp; = P2,i = 1..n,
for instance, the only possible values fty, are( andoo — if the model has proved
to be even slightly mistaken, thek,, will remain oo forever. On the other end of the
scale it is easy to observe that if the agent stubbornly kdepsiniform distribution
as the user’'s model (i.¢i(b) = TAE] tB‘ all the time), then the deviatiof,, is always
0, regardless of the actual responses from the user. In be#s the value of\,, tells
virtually nothing about the actual reliability gf It would be desirable that our confi-
dence measure produced more appropriate values, or atd&gsal” such situations
instead of giving unreliable output.
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Between both extremes the range of possiblealso vary: it is close td0, oo) for
very unbalanced models, and very narrow whénclose to the uniform distribution. It
is proposed here that we can normalize the loss deviatidnitgitange (7% — A™n)
to obtain disconfidence value that does not depend on thalantdelss so much.

Definition 7.11 The log-loss-based confidence measure can be defined as:

An

Clog = 9 |aper—apm where
AT = e {An}
Apn = (oin {4},
Note that:
AT = (brilax {L, — Opty} = rPa)§ {L.} — Opty,
Amin — (b{knlg {L,, — Opty, }7 mm {L } — Opty,

Af‘”fAfi" = —— lo i(D;) —— lo i
(b1 b ){ ; g2 Pi( (b b ){ ; o Pi(

1
= —— 1 A 1 B bz
nzngm 0gy pi (bi) Zmax 08 pi (bi)

i

n

1
= = 1 p; (b) — 1 in p;
- Zzzl [ 0g, mgxpz(b) 0g, mblnpz(bﬂ
1< maxy p; (b)
= - log T A N
; 2 miny Pi(b)
Proposition 7.12 The measure has the following properties:

1. n A, andn (A™e® — A™m) can be computed incrementally — the agent does
not have to keep any additional information;

2. if the value ot’;,, can be computed, then5 < Cj,q < 1;

3. Clo4 is undefined exactly in the two cases whareis most dubious: whep,’s
are uniform for all; = 1..n or when there existandb such that; (b) = 0. Note
also that, wherp; are frequency distributions (or, more generally: probdtiil
distributions obtained through Bayesian updating), th&t ituation can happen
only at the very beginning of the interaction, i.e. o= 1. Moreover, the agent
can be prevented from the latter situation by starting framiratial distribution
such thaty, (b) > 0 for everyb (for instance, he may use the uniform rather than
nil distribution as the starting point). Then we make surat tthe probabilities
will always be positive.
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7.4.2 Log-loss Confidence with Temporal Decay

Temporal decay can be introduced into the log-loss confielemmake the recent loss
values matter more than the old ones: we can redefine thegaiessL,, to be a mean
with decay, and again base the confidence on the relativel&sation.

Definition 7.12 Let us define the average long-term loss with decay as
LA = My (li=1.,), the optimal expected loss with decay @st2 = ELA [p « 7],

and the decayed loss deviation ad’ = LA — Opt. Moreover, let
Apard — max(e o {AL} and AA = minge 4. ) {AL}. Now:

AN

Cljz\)g = 27‘W
Again,
AN = A OptA _ Z?:l Anfi[* log, pi(b}) + Zb Di (D) log, ;i (b)] _
n n n Zi:l N
= —MA(logQ ﬁz(b:))1:1n + MA ( Zﬁz(b) 10g2 ﬁl(b))121n
b
and

Amaz A _ gminA _ (lglab{f){_MA(Ing pi(b7))} — (brpilg){—MA(logzﬁi(bi))} =

>, A""tlog, ming: pi(bF) N Dy A"t log, maxyp: p; ()
D A i AT

B Oy A"t log,[maxy, p;(b)/ miny, p; (b)) maxy, p;(b) )

a D An min, p; (b)

= M,\(log2

Remark 7.13 Cl/;g retains the properties af’,, (cf. Proposition 7.12).

7.4.3 Experiments

We ran a number of simulations, analogous to the ones in@e¢tB.2, in order to
verify the new confidence measure. Figure 7.11 shows how dh&dence values
evolve against a “stepping” user. The confidence values amgpared against the
expected absolute deviation of the learned profile from #a policy of the user:
expdev = Y, [p(b) — p(b))| - p(b), or rather the “accurateness” of the profile, i.e.
1—expdev. It can be observed that the logloss-based measure is aldécict changes
in the user’s behavior — at least when temporal decay is gragloEvery time the
user changes his preferences (that is, after 8agbunds), the confidence val 0'3
decreases and starts to grow only when the model becomes tbahe reality again.
Thus, we finally come up with a measure that has some sulstadtiantage over the
Wang’s measure, which increases always in the same margadtess of the users’
responses (because it was designed for static sourcesa)f dat
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Figure 7.11: Confidence valueSj,, vS. Cyyang VS. accurateness

Figure 7.12 shows — again — that an agent using a hybrid mddet seality does
not lose so much when his knowledge is inaccurate (i.e. abe¢lgenning of the game,
and after each change of the user’s policy), the agent stsirig it successfully. More-
over, the agent still has potential to adapt to the changéseoénvironment. In most
cases there were no significant differences in the outputeagents using’,, with
or without temporal decay.

7.4.4 A Slightly Different Log-loss Confidence

The loss values that we “accumulate” to compGig, are based on the logarithmic
function due to its useful properties. However, we need thdidence values to span
the set of 0, 1], which calls for a “translation” of the relative loss devat values back
to the interval. Defining the log-loss confidence in SectighT, we used the exponen-
tial function2® to achieve the goal. Of course, there are many differenskasions that
accomplish this, and the alternative presented below ibgirly the simplest among
them.

Definition 7.13 Let us define the alternative log-loss confidence as:

A
C*A -1 — An
log — Amax,A Amin,A
n — An
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Figure 7.12: Hybrid agents vs. single-model agents: payagfhinst “stepping” users

Cj% has similar properties &S}, but it spans the whole interval &, 1]. The way

the confidence values evolve is shown in Figure 7.13. We matechanges of’;,,

indicate changes of the profile accurateness even cleareiritihe case of',,. More
results of experiments with hybrid agents usirig, can be found in Chapter 8.

Proposition 7.14 The measure has the following properties:
1. n A® andn (AmesA — AminA) can be computed incrementally;

2. if the value ot can be computed, thén< Cji% < 1;

3. Cl*o/; is undefined only whepy’s are uniform for alli = 1..n or when there exist
1 andb such thatp; (b) = 0. Thus, ifp; are obtained through Bayesian updating
andp;(b) > 0 for everyb, we have thaC;‘of; can be computed for every> 2.

7.5 Confident Remarks

The experiments showed that a confidence measure can bé dsgfleast in some
settings — for instance, to detect changes in a user’s behavias a means for weight-
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ing alternative beliefs. Two kinds of measures have beepgsed: Cbound Csize
andC'y represented the “self-observation” approach and weredbaséhe variance of
model evolution, whilel;,, was based on the logarithmic loss function. Some of the
measures (namelZboundandCsiz§ were meant to capture the meta-uncertainty an
agent should have when the amount of available data is inmuffi The others(y
andC),,) addressed the problem of detecting conspicuous changestefns in the
responses the agent receives from the world outside.

The simulations showed some merit behi@dound especially with the “mag-
nifying glass” parameter set tm = 2. The experiments witlCsize on the other
hand, revealed important deficiencies: even a quite coatplic'tuning” schemenf =
10 + N1-%) plus an additional parametardid not guarantee a substantial gain. More-
over, neithelCsizenor Cboundperformed much better than an extremely simple con-
fidence measur€wang= N/(N + 1), proposed by Wang. The “self-observation”
approach is probably too solipsistic — and bad learnersl yielorrect self-assessment
in consequence&y, seems to suffer form the same condition.

Fortunately, a preliminary investigation 6f,, brought encouraging results. The
logarithmic loss function provides a direct link betweee thodel and the new ob-
servations, and the temporal decay scheme lets the agerg foore on the results
of recent predictions rather than all of them. In conseqegetite measure is flexible
enough to react appropriately even after many steps ofatitpand analyzing data.
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The results of the simulations suggest also that a metarianty measure, aimed
for an agent who uses a hierarchy of beliefs, can be somehsedlin the estimated
deviation of the model from the reality — and definitely nottba meta-probability of
the model correctness, or even the (potential) model viditiabver time.



Chapter 8

Safer Decisions against a
Dynamic Opponent

8.1

SyNopsis  Throughout the thesis, a considerable amount of knowledge h
been put forward. Various game-like logics and models foltiragent situ-
ations were found closely related; others yielded counteiiive properties
which made us try to revise them. In an attempt to combinegsafee theory-
based optimality criteria with adaptive machine learnirgwions, the idea
of multi-model decision making was proposed. Several comfiel measures
were investigated for an agent who may need to evaluate therateness of
his own knowledge. Thus, the agent can assess his view ofitirerenent,
and combine safe play with exploiting the knowledge gathsosfar.

We resist the temptation to apply the same technique to ttierpiof multi-
agent systems that emerged within this thesis, and asses=iirateness with
one of the confidence measures. Instead, we opt for the safegst of pre-
senting some more experiments with the simple e-banking.agmally, for
those who are already fed up with the agent and his not-tegeslcustomers,
some examples are shown of WAL models and planning can be used within
the hierarchy of models.

Introduction

The idea of hierarchical modeling of the reality was progb&e Chapter 6; Chap-
ter 7 complemented it with research on a suitable confiderasuare that can provide
weights for the decision-making process. The aim of thiptdras to investigate the
performance of such “multi-model” agents in the simplestgilole case, i.e. in the case
of an agent using exactly two alternative models of realitye output of such a hybrid
agent can be then compared with the performance of bothlésimgdel” agents alone
to see if (and when) a software agent can really benefit frangusmore complicated
belief structure and decision making scheme.
The controversy between normative models (like non-caatper equilibria from
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game theory) and adaptive models (obtained through songedfitearning) has been
an important inspiration for this part of the thesis. Theda solutions are more
useful when the domain is cooperative or neutral; they dlswahe agent to exploit

deficiencies of his adversaries. The “best defense” assonspare still attractive,

though, in a situation when the agent risks real money. Evenememy who plays
his optimal strategy persistently can be dangerous thempitehs 6 and 7 — and this
chapter — present an attempt to integrate both approactesmain model used by
the agent in the experiments is a profile of the user; the otiwatel is based on the
maxmin equilibrium.

Section 8.2 extends the experiments presented in the twiopsechapters, and
presents them in a more systematic way. The results sudgest software agent can
combine machine learning with game theory solutions toldismore profitable (or
at least safer) performance in many cases. The confidenceuneeased here is not
perfect, as the results of the simulations show. Furtheexgents should include also
agents using more sophisticated learning methods.

This chapter builds on (Jamroga, 2003c) and uses some aldtern (Jamroga,
2003a).

8.2 The E-Banking Game

In this section, we present more experimental results tktahe and complement the
simulations already described in the two previous chaptus first, let us recall and
summarize the idea behind the “e-banking game”, and the nflthe game.

8.2.1 Online Banking Scenario

The experiments reported in this section follow the sceranésented in Section 6.3.2:
a software agent is designed to interact with users on beliah Internet banking
service; he can make an offer to a user, and the user’s respletsrmines his payoff
at this step of interaction.

The Game

The agent has 3 possible offers at hand: the “risky offerg, ‘thormal offer” and
the “safe offer”, and the customer could respond with: “@tdenestly”, “cheat” or
“skip”. The complete table of payoffs for the game is givetole The table, presented
in Figure 8.1, differs slightly from the one used in Chapteand 7, yet the payoffs ob-
tained by the agents are similar. Other payofftables azd in Sections 8.2.2 and 8.2.4,
again with analogous results.
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accept cheat skif
risky offer 30 -100 05
normal offer| 10 -30 05
safe offer 0.5 0 0.5

Figure 8.1: Payoffs for the game

The Agent

The banking agent is an adaptive 1-level agent, hence hetairesra model of the
other agent’s preferences, and uses the model in the decisading process. The
agent estimates the user’s poliewith a probability distributiorp, computed through
simple Bayesian updating (Mitchell, 1997) with no obseivadl decay:

pi(b)ni+1 if b= b*
b1 (b 5, (it _
Pix1(b) { G if b b

Ni4+1 = nN; 4+ 1

whereb* is the actual response from the user in the last) (round of interaction.
Valueny > 0 is the number of "virtual” training examples. The initiakstiibutionpg
is uniform in most experiments, although the "safe” disttibn (corresponding to the
maxmin strategy) has also been tried.

At the same time the agent computes a confidence Valige the profile acquired
so far. The default model is defined in the game theory fashi@user is assumed an
enemy who always cheats. The (multi-model) evaluation efyactiona is based on
sub-evaluations derived from both models separately:

eval(a) = C evalprof”e(a) + (1 = C) evalgefaulfa)-

The agent chooses actienwith maximal eval(a) (Section 8.2.2) or uses a more
sophisticated decision making scheme to tackle the exjporaxploitation tradeoff
(Section 8.2.3). Thus, the banking agent’s hierarchy aebgetonsists of two models
of the reality, presented in Figure 8.2.

Confidence

In order to provide the agent with a way of computing his “smlihfidence’C, two
measures are combined: the log-loss based confic@ﬁge{Section 7.4.1%,and the
datasize-related measure proposed by Wang (Wang, 2001).

C} helps to detect changes in the user’s policy, but it is uaibédi when the num-

log
ber observations is small. This disadvantage can be tadkledgh, with the simplest

1Recall: a 1-level agent is an agent that models other agsiitdevel agents, i.e. agents whose behavior
can be described with a probabilistic policy (Vidal and 2e;f1998).

2We tested also the performance of an agent using the othgiomesf the log-loss confidenceGj‘O;‘
from Section 7.4.4. Every time the results refer to the age'mthl*Og instead ofC},, 4, we state it explicitly
in the text.
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Figure 8.2: The simplest hierarchy: two models of realitg éime (repeated)

variant of the measure by Wang (fbr= 1): Cwang = n/(n + 1). Now, the agent is
confident in his knowledge if he has enough datd he detects no irregularities in the
user’s behavior:

C= min(Cf})g7 Cwang)-

The knowledge decay rafewas set td).9 throughout the experiments.

Users

To investigate performance of the hybrid agent, sever@sef experiments were run.
The e-banking agent played with various kinds of simulatesets”, i.e. processes
displaying different dynamics and randomness. Those dsdu

e static (or stationary) O-level user with a random polipy:= p; = ... = p1oo
generated at random at the beginning of each interaction;

e “linear” user: a dynamic 0O-level agent with the initial arrebtfinal preferences
Do, P1oo generated at random, and the rest evolving in a linear way: py +

(p100 — po)/100;

e “stepping” user: same as the “linear” one except that théepeaces change
after every 30 stepgi;(b) = po(b) + (i div 30)(p100(b) — po(b))/3;

e “cheater”: a user that chooses action “cheat” with probigtuif 1.0,

e “malicious”. an adversary O-level user with a stationamydam policy for the
first 30 rounds, then switching to the “cheater” policy.

The user types we consider most important are: the staticthee'stepping” user,
and the “malicious” user. The static user defines the limsiecaith no dynamics at
all, hence he is a perfect subject for machine learning dlgos. While our method
of multi-level decision making is mostly aimed at induciredes play in the context of
dynamicusers and environments, it is still interesting to check ftquerforms in this
borderline case. The “stepping” user is aimed to mimic therest drift of an ordinary
indifferent human user. We believe that people are to sortenegersistent with their
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preferences: the do not change them too often, and the idinexftthe changes is not
completely random. Thus, the policy of the user changes fooiy time to time, and
the changes follow in the same direction during a particintaraction. Finally, the
“malicious” user represents an adversary entity that taesqueeze from us as much
as he can; every e-banking or e-commerce service must takeaspossibility into
account. The “malicious” user is more clever than the restets our e-banking agent
to build up a false model of his strategy, and only then he ilsés real plan. In fact,
this kind of user is a O-level agent only in the strict, teclahsense of the term. Since
his strategy is generally quite well suited against 1-ledsptive agents, he might be
arguably classified as a 2-level agent as well.

1000000 independent random interactions (a sequence)dfrounds each) have
been simulated for every particular setting; the averagalt®are presented in Sec-
tions 8.2.2 and 8.2.3.

8.2.2 Playing Against Single-Minded Users

The user has been assumed rather simple-minded in the filess 8€ experiments, in
order to get rid of the exploration-exploitation tradeoff.

Remark 8.1 Theexploration-exploitation tradeof§ a well-known phenomenon within
the Machine Learning research. Basically, the main obyjextf a learning agent is to
exploit his knowledge in order to obtain more profit. Thus, it seemifepty reason-
able for the agent to execute the decision with highest eéggquayoff. However, the
agent risks in such a case that he might get stuck in a locafraypnh if his knowledge
is not completely accurate. Moreover, choosing a particaetion affects also the
(future) quality of the agent’s knowledge, and hence (extly) persistent executing
of the highest expectancy choice may lead to suboptimaltseisuthe future. Thus,
the agent can be better off trying &xplorethe environment and keep his knowledge
up-to-date.

Consider, for example, our e-banking agent. Suppose tleatdhfe offer” poses
highest expected payoff according to the initial model eféhvironment. If the agent
only exploitsthe model, he will never execute any other offer than thewade- yield-
ing no successful negotiations even if the actual user ig&oand willing to cooper-
ate. Obviously, some exploration is necessary to deterthankind of customer we are
dealing with. On the other hand, exploratory actions can é&ecostly if financial risk
is involved.

Thus, it has been assumed that the user’s response doespeoidden the actual
offer being made:p(cheat), p(accept) and p(skip) are the same regardless of the
offer (if he is dishonest, he cheats for a small reward as &g big one, for instance).
In consequence, no specific exploration strategy is negessevery action the agent
can choose will reveal exactly the same about the user'sypelso the agent can just
maximizeeval(a) when making his decisions. Results for various types ofsuass
presented in Figures 8.3 and 8.4. The hybrid agent is alnevstriworse than the agent
using only the user’s profile (even for the static user), anthé most risky moments
he plays much safer than the latter. Most notably, the hydgieht do not lose much
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pé;yoff

= = = default model only

—»— profile only - static user

profile+default - static user

—+— profile only - linear user

profile+default - linear user

Figure 8.3: Hybrid agents vs. single-model agents: theameepayoffs against single-
minded users

score at the beginning of an interaction and in the momen&nwine user changes his
policy (which is especially evident against the “malicibuser — cf. Figure 8.4). At
the same time, the hybrid agent has potential to play pesjtivetter than the “default
model” agent.

Some simulations were also run for a modified version of thekimgy game, rep-
resenting a situation in which the agent’s decisions invdéss risk — see Figure 8.5.
We tested also the hybrid agent using the alternative verdithe log-loss confidence
measure(Cl*O‘; instead ofCl‘;g) — Figure 8.6 shows the outcome. Both series of experi-
ments produced results similar to the ones before.

The “single-mindedness” assumption looks like a rough §fiogtion. On the
other hand, the preferences of a particular user (with mdpedifferent offers) are
hardly uncorrelated in the real world. For most human agietsituation seems to be
somewhere between both extremes: if the user tends to d¢teeatay cheat in many
cases (although not all by any means); if the user is gegdraiiest, he will rather not
cheat (although the temptation can be too strong if the r@feaicheating is very high).
Therefore the assumption that the user has the same palialf foe agent’s offers may
be also seen as the simplest way of collaborative modeling€inan and Albrecht,
2001). Section 8.2.4 gives some more rationale for this kihdssumption, while
in the next section users with multi-dimensional (uncated) policies are studied to
complete the picture.
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Figure 8.4: Hybrid agents vs. single-model agents: thesmyeepayoffs against single-
minded users continued

8.2.3 Experiments for Users with More Complex Policies

Here, users were simulated with no restriction on the i@fdtietween their conditional
policiesp(-|safg, p(-\norma) andp(-|risky). Boltzmann exploration strategy is one
way to deal with the exploration-exploitation problem (Bgee et al., 2000). The
scheme uses the metaphor of the internal dynamics of a gkmigaas the temperature
is high, the dynamics is also high, and the molecules dispiainly random behav-
ior; as soon as the gas starts to cool down, its behavior besomore schematic and
predictable. Putting our learning agent in a similar positiwe usually assign him
a “temperature” value that controls the randomness of hissbs-making processes.
The initial temperaturdy is usually high to induce more random decisions, and thus
more exploration of the environment at the beginning of tegrning process. After
that, the temperature is decreased by introducing a decéyrfa and updating the
temperature with',, = n 1,1 = To n".



188

CHAPTER 8.

SAFER DECISIONS AGAINST A DYNAMIC OPPONENT

-10 A

accept cheat skif
risky offer 30 -:30 05
normal offer 10 -9 0.5
safe offer 0.5 0 0.5

-12 4

14 1

-16 -

—— profile only - static user

profile+default - static user

—+—— profile only - 'stepping' user

profile+default - 'stepping’ user
- profile only - 'malicious' user

— = profile+default - 'malicious' user

Figure 8.5: Payoff table and the results for the modified game
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Figure 8.6: Hybrid agents vs. single-model agedts;-”

Definition 8.1 (Banerjee et al., 2000)Let T be the current value of the temperature
parameter, an@wval(a) the current numerical evaluation of actian(e.g. its expected
utility or, like in our case, its multi-model evaluation)nAgent, using the Boltzmann
exploration strategy, chooses actiarsemi-randomly with probability:

eeval(a)/T

P(a/) - —Ea/ eeval(a')/T

In other words, the agent employs a mixed strategy in whiehatitual probabilities
are defined by the formula above.
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payoff
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Figure 8.7: Playing against non-singleminded users
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2 profile only
- - - - default model only
—=—— profile+default, confidence: Clog, A.=0.8

—— profilet+default, confidence: Clog, A =1.0

Figure 8.8: Hybrid agents vs. single-model agents: payaijfsnst “stepping” users,
combining strategie;;:,)* used as the confidence measure.

As the possible rewards span a relatively large interval gweeusing the payoff
table from Figure 8.1 again), the initial temperature pagtmnis relatively high7y =
100, and the decay factor 8.8. ThusT; = T, * (0.8)°. The results in Figure 8.7
show that the double-model agent has some problems withegffiexploration — in
consequence, he playso safe against a static user. On the other hand, he is much
better protected from sudden changes in the user’s behaMVioreover, the double-
model agent plays much better against a “cheater”: he ki&@dess than the profile-
based agent in the fir$t steps (after that both agents fare almost the same).

8.2.4 Combining Strategies for Games with No Pure Equilibrim

Let us go back to section 8.2.2 and to the assumption thatstresuesponse does not
depend on the actual action from the agent. Note that thergtgan makes perfect
sense when the user simply cannot know the agent’s actiatvamae. This is the case,
for instance, when the negotiation process is longer andistsnof multiple steps, or
when some hidden policy of the bank is concerned (insteadnicplar “offers”). The
game is a matrix game then, and the default strategy(saif e of f er, cheat) is
the maxmin equilibrium (von Neumann and Morgenstern, 1944)

All the results had been obtained for combinevgluationsso far. Note that — if we
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treat the agents’ strategies as mixed ones —we can comlamedinectly (as proposed
in Section 6.3.3). This did not prove successful in thisisgftas Figure 8.8 shows. It
seems that either multilevel combinations of strategiesat suitable for the “banking
game”, or a different confidence measure should be usedsicéise.

The games we have been dealing with up to this point, howeversomewhat
special since they have their equilibria within the set afgpstrategies (i.e. determin-
istic decisions of the agents). For most matrix games thisoisthe case. On the
other hand, every game has its maxmin equilibrium within $be of mixed strate-
gies (von Neumann and Morgenstern, 1944). Consider, fompleg the game with
the strategic form presented below. The agent’'s maxmiriegfyafor this game is
sgefault = [0-4,0.4,0.2]. If any of the players plays his maxmin, the expected out-
put of the game i§.

bl b2 b3
al| -1 2 0
a2| 0 -2 5
a3 | 2 0 -10

Remark 8.2 The sets of all mixed strategies are obviously infinite fothkegents.
However, only a finite subset really matters while the agemhaking his decision:
if agent A can guess the opponent’s current (mixed) strategy app ey and the
strategy is different from the opponent’s maxmin, thenghgra pure strategy ford
that is no worse than any other (mixed) strategy (in termsefeaxpected payoff). If
this is not the case, theA’s maxmin strategy provides the begtarantee@xpected
payoff. Thus, each player should consider only his puretegiasplus the maxmin
strategy while looking for the best decision.

In the last series of experiments the hybrid agent has besosaiy strategys =
c Sprofile + (1 = C) sgefault Wheresprofile is the strategy with the best estimated
payoff. A modified confidence measure was used: the confideaselefined as

o min(C{})g, Cwang) if min(Cl/;g, Cwang) <04
— | max(0.4,3min(C}},, Cwang) —1.9)  otherwise

The results (Figure 8.9) reveal that the hybrid agent israigai cautious when the user
is random and static. However, the bottom line in the gameas/d by a user who can
guess the agent’s current strategypomehow (he must be a 2-level agent rather than
0-level, since the banking agent is a 1-level one). The “ci@lis” user here is defined
this way: he uses a random policy for the fi3ststeps, and after that starts choosing
the most dangerous action (the one with the minimal paytgf)essing” the agent’s
strategy in advance. Playing against a user who choosesasiedangerous action all
the time, the hybrid agent wa8.6 better off than the profile-based agent after the first
50 steps.

Remark 8.3 Note that even the “malicious” 2-level opponent has no wagu#ssing

the banking agent’s finaction because the agent uses mixed strategies that imply
some degree of randomness. Thus, all the opponent can guthss actual (mixed)
strategyof our agent.
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Figure 8.9: Results for the matrix game: static user, “nialis” user

In the next section, multilevel decision making is consédkEin more sophisticated
scenarios, too.

8.3 Multilevel Modeling of Reality with ATL Models

This section presents a preliminary view to hierarchicatiglimg of the reality, and
multilevel decision making, in some more complex scenatiosnost real-life scenar-
ios — unlike the e-banking game we used heavily in the lagbtehng — the domain of
action includes more than one state: there are many possibagions in which the
agents’ behavior and the response from the environmenteaopletely different.
Moreover, the situations (states) and agents’ actiong¢elpusually form a complex
temporal and strategic structure, showing which actionsdHiawhat way — may lead
from one state to another. Multi-player game models seentwaalahoice as a rep-
resentation language for such domains. They are naturaindmtve, they allow to
define explicitly the outcome of agents’ behavior over tianed they can be extended
to include other aspects of multi-agent systems if necgssacertainty, knowledge,
requirements etc. (cf. Chapters 3, 4 and 5). Last but not,lesscan use ATL for-
mulae to specify agents’ goals, and use ATL model checkirthenway presented in
Section 2.8 to find a secure plan that satisfies a goal (if syptareexists).
Unfortunately, using more complex models demands thateébisihn-making agent
must possess more detailed knowledge as well. For instanogejer to predict oppo-
nents’ behavior, the agent should know how the opponents.gmeosed to adh every
particular state The purpose of multilevel decision making is to exploit &rewl-
edge in a smarter way. However, to exploit the knowledge, wstrfirst obtain it.
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Section 8.2.3 showed that this is hard even in the extrenmalyie case when there are
only three different situations to be considered (therenlg one state and three differ-
ent offers from the banking agent, upon which the user’ssiges may depend). The
hybrid agents from that section had substantial problentis aéquiring an accurate
model of the reality. Using the multilevel decision makittge agents played it safer —
and when an agent plays safer, his exploration of all theilpitiges is less efficient.

Models presented in this section include not three, buti®zehundreds of situa-
tions, for which the behavior of other agents should be saweairedicted. Moreover,
simple exploration strategies like the Boltzmann strat@gnerjee et al., 2000) can
have disastrous effects, because the consequences of stoms &an be irreversible.
For instance, if agent tries to cooperate with ageptin Example 8.1, he magever
be able to receivany payoff if the other agent turns out to be hostile or irrespons
ble: first agent helpsz to load the heavy (and more expensive) cargo into the rocket,
and then abandons him completely, so thatannot unload the cargo and replace it
with something easier to handle. In such a case, agegains knowledge about the
other agent, but he will have no opportunity to use it any m@ellaborative model-
ing (Zukerman and Albrecht, 2001) may prove helpful in sudetiing, and the issue
is certainly worth further investigation, but we feel that exhaustive answer to this
question is beyond the scope of the thesis. In consequerasirive to show how
multilevel decision makinganimprove agents performance. We do not definitely say
if it really does, though. We just present a few example séesén which both the
safe (maxmin) strategy and an adaptive strategy explaosiimge knowledge about the
environment of action have obvious advantages, and in wéoahe tradeoff between
both approaches looks intuitively appealing.

8.3.1 Examples: Rockets and Bridge

Example 8.1 First, we present a variant of the Rocket Domain example f&so-
tion 2.8.3, in which two types of cargo are considered. Agtiare are three agents.
Agentx — as before — can decide to load a piece of cargo if the rocleshzty (action
load1for cargo type 1 antbad2for cargo type 2), unload the cargo from the rocket if
the cargo is inside (actiaomload), or move the rocketiove; he can also stay passive
for a while (actiomop). This time, however, agegtcan only lend a handchglp) or do
nothing fop), and agent can only supply the rocket with fuel (actidnel) or remain
passive jop).

Agentsz andz form a team whose task is to deliver the cargo from London tsPa
using the available rocket (propositicst®L andatRP mark the situations in which the
rocket is at the London airport and Paris airport, respebtjv The game is repeatable
now: as soon as andz deliver the cargo to Paris, they get paid and the cargo isitake
away from the airport — and the agents are free to go back akdupi another piece.
The more they deliver, the more they earn, of course. Thestatwhich a piece of
cargo lies inside the rocket are labeled with propositin@s for cargo type 1 anthC2
for cargo type 2, respectively. The London airport has itdisupplies of both types
of cargo, so there is no need to indicate the presence of aatgmdon with a special
proposition any more (it would simply hold in every state).

The first type of cargo is easier to handle.can load and unload it on his own.
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<nop,nop,fuel>
<n0§, he p,J}uel >

<nop,nop,fuel>
<nop,help,fuel>
<unload,nop,fuel>

<unload, help,fuel>
< move,nOf?, nop>
<move,help,nop> | |<unload,help,nop> }—

<nop,nop,nop>
<unload,nop,nop>
<nop,help,nop>

<nop,nop,nop>
<nop,help,nop> [T

<load?2,help,nop>

<nop,nop,nop> |
<load2,nop,nop>
<nop,help,nop> %thL

<nop,nop,fuel>
<loa§2 ngj)],('uel >
<n0p,/telp, uel>

<loadl,nop,fuel>
<loadl, help, fuel>

<load1,n0f7,n0p>
<loadl, help,nop>

A

atRL atRL\
nofuel | = (fuelOK
inC1 inC1

Figure 8.10: Rocket domain again: a multi-player game méatedgents who deliver
the cargo for money
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Cargo type 2 can be loaded/unloaded only with the help fgor®n the other hand,
cargo type 1 is less profitable: the agents earn on it only i (@gent CURrency unit)
per delivery, while the second type of cargo is worth 5 acunsmwdelivered to Paris
(propositionspayl andpay5). The temporal and strategic structure of the system is
shown in Figure 8.10.

Essentially,: andz can try two sensible strategies: they can try to cooperéte wi
y in shipping the more valuable cargo, or assume ghagy be unwilling (or unable)
to cooperate, and play the game safe (i.e. stick to the cheapgo). The safe strategy
can be computed through the “planning as model checkingZqatore:

plan({z, z)Opay5) = {(15,—),(16,—) }

plan({(x, z)Cpayl) = {(1,z:loadl-z: fuel), (2,x:loadl-z:nop),
(3,x:nop-z: fuel), (4, x:move-z:nop),
(5,x:nop-z: fuel), (6, x:move-z:nop),
(7, 2:unload-z:nop), (8, x:unload- z: nop),

<9a _>7 <10a _>7

(15, x:nop-z:nop), (16, x:nop-z:nop) }

Thus, x and z have no infallible plan to deliver cargo type 2 to Paris — asle
they have already done so. On the other hand, they can mahagd¢aper cargo
on their own if they never try the more expensive one: theyelaeollective strategy
to eventually enforc&payl from every state except 11, 12, 13 and 14 (we can also
express it with the ATL formulainC2 — ((x, y))Cpayl). Therefore the strategy with
the highest guaranteed outcome (the “safe” strategy) is:

{ (1,z:loadl-z: fuel),(2,x:loadl-z:nop),

3,x:nop-z: fuel), (4, x:move-z:nop),

7,2 :unload- z :nop), (8, x:unload- z : nop),
) > < >a <1577>5 <1677> }

Intuitively, the other strategy also makes sens@ndz presumably do not know
the attitude and/or preferenceswpft the beginning. Ify is friendly and decides to
help, they can achieveay5; the only way to try it is to execute : load2- z : nop or
x:load2-z: fuel at statel, and see whaj does. It is worth pointing out, though, that
such a strategy can have disastrous effecistifrns out to be hostile. First; and z
have no way of guaranteeimgy5 on their own. What is even more important, when
they try to cooperate witly, they leave themselves vulnerableyihelps to load the
cargo, and then refuses to unload it, they walverreceive any payoff.

On the other hand; andz may have some information aboythat makes them
believe thaty is rather likely to cooperate. In such a case, they shouldaghiy try
to establish the cooperation — if only they are sufficientpfident in this belief. Fig-
ure 8.11 shows an example of such a situation: the team keppbabilistic model

(1,
(3,
(5,z:nop-z: fuel), (6, x:move-z:nop),
(
(9
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<nop,nop,fuel>
<nop,help,fuel>
<unload,nop,fuel>

< move,nOf;, nop>
<move,help,

nop>

nofuel

p(help | load2) = 0.5

<load2,help,nop>

Cproﬁlezo' 7

p(nop | load2) = 0.5

<load2,nop,nop>
a2 atRL
nofuel

atRP
nofuel
pay1

<load1,n0fn,nop>
<loadl, help,nop>

atRL
fuelOK

Figure 8.11: Multilevel decision making in the rocket domashould we play safe or

try to cooperate?
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of y's behavior. For instance, they expect thahelps to load the cargo type 2 in
London with probabilityp(helplload2) = 0.5, and the probability thay refuses as
p(nop|load2) = 0.5. They also believe that is rather likely to help with unloading
the cargo in Parisp(help|unload) = 0.6, p(nop|unload) = 0.4, and they are confi-
dent inCprof”e = 0.7 that the model is accurate. The team assumes that the actions
of y are deterministic, given the state and choices from othentsgin other wordsy
andz hold probabilistic beliefs about which deterministic pglbf y is really the case.

The team considers two strategies: the agents can try teedelipiece of cargo
type 1:

S = {{1,z:loadl-z: fuel), (5, z:nop-z: fuel), (6, x:move-z:nop),
(7, z:unload-z :nop)},

or a piece of cargo type 2:

Sy = {(1,z:load2-z: fuel), (11, z:nop-z: fuel), (12, x: move-z:nop),
(13, z:unload-z:nop) }.

The strategies are shown in Figure 8.11, {dtm evaluateS,, we first observe that the
expected payoff for this strategy in state 11 (accordindnéogrofile ofy kept by the
team) is:0.6 - 5+ 0.4 - 0 = 3. Thus,

E(profile, S3) =0.5-3+0.5-1=2.

Moreover,E(maxmin, Se) = 0 because, ify turns out to be hostile, the team gets no
payoff. The multilevel evaluation of; is thus:

eval(Ss) = Cprofile' E(profile, S2) + (1 — Cprofile) - E(maxmin, Ss) = 1.4

At the same timegval(S,) = 1 (becauses; brings always 1 acur, regardless of the
response frony), so the team should seriously consider an attempt at theecation
with . O

Example 8.1 presented a situation in which the planning sgdid not know the
preferences of the opponent. The following example dematest that using a model
of the opponents can be beneficial even in a zero-sum game tlikeother agents
are obviously enemies: the playing agent may try to exploiéptial mistakes of the
enemies if they are likely to choose suboptimal strategidsreover, if we have a
model of the enemy, but we are uncertain about its accurséeseme balance between
exploiting the model and using the maxmin strategy can beod golution.

Example 8.2 A bridge game is being played: we consider only the final pathe
card play, in which the deck consists of onlycards. There are three active players at
this stage: one player controls the cards at positions N afweeSall the player NS),
and his enemies (W and E) control the hands at positions W aresgectively. At this
moment we assume that all the players can see each otheds:tthry play a perfect

3The graph and the presented strategies include only thearglstates, transitions and choices.
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information game. NS starts from the hand labeled N. A fragioéthe game tree is
shown in Figure 8.12. NS can open his play witkp or any of the spades (it does not
really matter which one). If he plays a spade, then E and W ijpirstvith A& and

K & respectively (players are obliged to follow suit unlessythee void in it), and E
wins the trick for his team. If NS opens withQ, E can play any of his cardsi@,
K&, Q& or 3%), then NS can drop any card from the S position, and W comptate
trick with K©, QQ© or JO; NS wins the trick in this case.

For “bridge heads”, we describe the setting of the game. r@onbridge with
tournament scoring is played; the contract being playeN®x(1 No Trump doubled),
and both parties are vulnerable. Up to this point, NS hasitédkeicks, and the team of
W and E 5 tricks. NS must collect the total of 7 tricks (out of iBmake the contract;
thus, he still needs 3 more tricks (out of 4 remaining). If hakes the contract, he
earns 130 points (together with his partner). One overfriektaking all the remaining
tricks) gives additional 200 points; if the contract is doW$ pay the penalty of 200
points for the first trick below the threshold, and 300 forlesgbsequent one. For most
readers, the list of possible payoffs for NS is the only int@ot factor in this example.
The list is given below; the team WE gets the opposite value:

o if NS take all 4 remaining tricks, they get 330 points;

o if NS take 3 tricks, they get 130 points;

o if NS take 2 tricks, they get -200 points (i.e. they lose 20{®);
e if NS take 1 tricks, they get -500 points;

e if NS take no tricks, they get -800 points.

A game model for the game is sketched in Figure 8.13. Onlwaelepaths are in-
cluded (it makes no difference, for instance, whether N2, J& or 3 at the
beginning). Payoffs are represented with propositi@yn). The model is turn-based,
i.e. at every state only one player effects the next transitbther agents are assumed
to choose the “do nothing” action). Each transition in thegris thus labeled with
the name of the player who is active at the moment, and hisbchoice that executes
this transition.

The thick arrows show the maxmin strategy of NS. Note thai3fuses this strat-
egy, he gets-200 points, no matter what the other players do. Note also thaniog
with AQ leads to the payoff of 500 points if the enemies choose the optimal defense:
E throws away his Ace, and W takes the remaining 3 tricks irseqnence. However,
E must make a conscious effort and think the game over ciyetuthrow away his
Ad instead of3& — most players usually follow the reflex to do the reversé.E
follows the reflex and keeps his Ace, NS will inevitably wiretjame and earn 130.
Thus, if NS suspects that E is a novice or that he usually @aysmatically with no
careful analysis of the deal, the risky strategy of playiig first can be worth trying.

4Actually, this example has been inspired by a game that edcduring a high level tournament. The
game was designed to have a completely safe winning strategsnany players did not see it — so strong is
the automatic reflex not to throw away one’s high cards inrfafdhe lower ranks (Macieszczak and Mikke,
1987).
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NS:QA

Ww:le

NS:34

E:Q%

NS: A

Ww:Qv

NS:Ja

NS:Ae

NS:Av

E:Q% E:3%

pay (-500) pay(-200) pay(-200) pay (-500) pay(-500) Ppay (+130)

Figure 8.13: The bridge game: game model. Only the relewathispare included. The
“grey” states mark the end of a trick. The “+” sign indicatleattthe trick has been won
by NS; the “~" sign tells that the trick has been lost by NS. (ien by the coalition of
W and E.
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®
NS:Qa w profile
pE: AW*FOQ

5

pay (-200) pay(-500) pay(-500) pay(+130)

Figure 8.14: The bridge game: exploiting predicted mistakfeghe opponents.

Suppose that NS estimates the probability that E will agtuabke the mistake
and throw away3é asp(E : 3&%) = 0.9, and the probability of the optimal choice
from E asp(E : A#&) = 0.1; at the same time, NS estimates his self-confidence
ascprofile = 0.85 (see Figure 8.14). Le$; be the NS’s maxmin strategy, artt
the strategy obtained fror; through changing the first move froW.S : Q& to
NS : AQ. The maxmin strategy gives alway200 points, soeval(S;) = —200.
With the other strategy, we obtain

E(profile, S3) = 0.1-(—500)+0.9-130 = —50+ 170 = 67
E(maxmin, S3) = —500
and
eval(Sy) = Cprofile - E(profile, S3) + (1 — Cprofile) - E(maxmin, S)
= 0.8-67+0.2-(—500) = 53.6 — 100
= —46.4
Again, NS should probably try the risky strategy to get adrgityoff. O

ATL (and its models) can be extended along various dimesgminclude notions
like knowledge or requirements. We use the two final shonrgtas to hint the poten-
tial that ATEL (or ATOL) and DATL offer for the analysis of mercomplex scenarios.
Obviously, we may employ multi-player epistemic game meadeld ATOL formulae
to describe the natural bridge setting: when the playersolsee each others’ hands.
DATL can be used, for instance, to include cheating in theoecaf the model, and
ask whether such an undesirable behavior can be preventespedfy sanctions that
should occur when it has been detected.
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Example 8.3 Players seldom have complete knowledge about the distibat cards
in a bridge game. Every player sees only his own hand and theridy” — the cards
at the position of N in this case. Figure 8.15 presents a feagmof the game tree with
epistemic accessibility relations for our 16-cards briggeblem in this more natural
setting: the players do not see each others’ hands any more.

The ATOL f0rmu|a<<NS>>5bs(Ns)<>pay(+130) defines the “maximal” goal for NS;
unfortunatelyg; ¥ <<NS>>'Obs(NS)<>PaY(+13O) for the model from Figure 8.15. NS has
a uniform strategy to get 200 points in the gamey, F <<NS>>5O(Q)<>pay(-200), but
he is not able to identify the successful strategy ¥ ((NS))‘ObS(NS)<>pay(-200)),
and he is not even aware that it exists at @l K,(NS))¢, )< pay(-200)). Only
the payoff of—500 can be guaranteed( <<NS>>'ObS(NS)<>pay(-500)): NS can for
instance playd# and wait until the opponent that wins the trick lead§ir <>. Note
that —500 points is not very much in this game: in fact, NS has no stsategnake
less Thus, if NS has some probabilistic model of the actual ihistion of cards, and
possible responses from the opponents, he can benefit fiogitg a similar way as
in Example 8.2. O

Game theory is sometimes criticized because it treatsimgi@ns rather than the
real phenomena it was supposed to tackle. In a sense, gaesearel treated too seri-
ously in game theory: when the rules say that players mustwicluit, we usually do
not even include a possibility that some players may not ¢heyule in the model of
the game (see Figure 8.14, for instance). Hence, game themtgls seem hard to use
when we want to induce emergent behavior, since emergemaoideas often comes
through re-defining thstructureof the existing model of the reality (or putting it in an-
other way, through re-defining the search space). Moregaeng-theoretical analysis
usually omits important phenomena like cheating, illegdg&emic updates (overlook-
ing, eavesdropping) etc., that occur in real games, butmdtheir game-theoretical
models.

Game rules are unlike the laws of physics: they can be broléw. chapter on
Deontic ATL shows how we can include illegal (albeit “phyadig” possible) situations
in our models, and at the same tell them apart from the legas$ evith the deontic
accessibility relations.

Example 8.4 Figure 8.16 shows how the possibility of cheating can beuidet in
the game model: some players can replace a card of theirowélhey hold in their
sleeve; also, W and E can try to swap some cards of theirs og galyer can try to
play his card at somebody else’s turn. Deontic relationsiaegl to deem illegal every
situation that results from a change of the current distiglo other than playing a card
according to the rules of bridge.

Note that the requirements are local in the model: sjatehould be considered
legal wheng; is the initial situation, but it cannot be obtained in a legaly when
we start fromg]. On the other handy, is an acceptable alternative ¢f, whereas
g2 cannot be legally achieved when we start from distributipn Note also that the
model specifies legality of states rather than actions (ettin 5.2.1). In particular,
attempted (but unsuccessful) dishonest behavior canndefieed as illegal in this
model: it is only the result of agents’ actions that mattarthis respect. However, the
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model can be enhanced to include a “trace” of the most rea@mita’ choices in the
states —in the way we did it in Example 4.8 — and then we aredre@ark every tuple
of choices as legal or not by determining the acceptabifithe resulting state.
Looking for a safe plan with maximal (guaranteed) outcongend NS may now
check formulae
(NS)Opay(n)

in the initial state of the model (let it bg), for every possible payoff value However,
if the agent wants to be honest, he should rather look foragegy that allows him to
properly enforcethe bestpay(n) in ¢1, i.e. he must check the following family of
properties:

“given thatg, = Op A UPp, we havey (= (NS)oU(p A pay(n),”

and choose the plan that is successful for maximal

The agent can have a more specific model of the opponentghtatogives some
prediction of how likely various actions of the opponents-aincluding illegal actions
as well (see Figure 8.16 again). Obviously, such a profilhefdpponents can be
exploited as before. NS can evaluate available strategis@ing to the profile, and
both resulting evaluations E(maxmin, S) and E(profile, S) — can be combined in
the same way as in Example 8.2. O

8.3.2 Concluding Remarks

In this chapter, we tried to show how the multi-level deaisioaking can help to bridge
the gap between normative, game theory-based models @&fdhigyrand adaptive mod-
els obtained through machine learning, collaborative riogetc. Normative models
usually assume some boundary shape of the environmeng adglptive models try to
approximate the actual shape of it — and both have their adgas for an agent who
tries to make good decisions under uncertainty. Using atfimembination of both
kinds of model should make the agent play relatively safejentreing (relatively)
adaptive at the same time. Results of the experiments frastidBe8.2 support the
hypothesis to some extent.

On the other hand, they also show that several pieces of ttiepare still missing
if we want to use the decision making scheme effectively. Adyoconfidence measure
is necessary; we may also need a better exploration-eapitoitscheme. Most impor-
tantly, an efficient way of acquiring a “profile” of the reglis crucial here. This seems
most evident in the context of Section 8.3: the examplesudehundreds of states,
and some courses of action can be costly or even irreversioimputing such a large
(adaptive) model of the reality (i.e. determining all theigies, probabilities etc.) via
straightforward Q-learning or Bayesian updating, foramste, does not seem feasible
at all. One way that may help to overcome this problem is tocedhe state space by
simplifying the characteristic of the domain. Collaboratnodeling, where a model of
an agent’s behavior in a particular state can be “trangdefrem models for agents or
states we consider similar, and for which we already obthingood predictor, seems
also promising. As both ideas comprise a non-trivial task&,d@ not pursue them in
this thesis, leaving them rather for future research.
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Chapter 9

Conclusions

SYNoPsIs The story draws to its end. Models of reality, modal logicsfc
dence measures, and planning algorithms have made the@aappces in this
book so far. We considered servers and clients, card gamagst tunnels,
malicious users, and simple e-banking agents. Even Jamed @opped in
for a moment to show us how we can save the world when it is/nessgjuired.
Now the time comes to conclude that the show was worthwhilé, & course,
there are fair chances for a sequel.

9.1 A Short Look Backwards

This thesis considers several aspect of agents and themaaities. As we explained
in Chapter 1, we primarily semulti-agent systemas a metaphor for thinking and
talking about the world, and assigning it a specific concalpttructure. This comes
suspiciously close to our view of logic-based approachéstificial Intelligence and
Cognitive Science. The main appeal of formal logics lies eunopinion — in the fact
that it provides us with a vocabulary to talk and think abaality. The vocabulary
is precise and demands precision when we use it to define puatestructures that
are meant to model the phenomena we want to investigate. &/also provided a
methodology that enables to investigate the consequefoes conceptual choices in
a systematic way. The first part of the thesis presents thagtampt to study multi-
agent systems through suitable logics and their modelbgihope that this can induce
some informal understanding of the phenomenon as well.

We chose Alternating-time Temporal Logic (Alur et al., 2D@8 the basis for our
studies, because it builds on a number of notions we coneideral for multi-agent
systems. On one hand, it refers to the game theory conceptgeots, teams, actions,
choices, strategies and their outcomes; on the other haedemporal layer of ATL
allows one to refer to situations and their changes, andtéoraltive courses of ac-
tion. The formal investigation of ATL produced equivalerresults for the different
semantics of this language, and proved that Coalition L{gauly, 2001a) — another
recent logic of strategic ability — is strictly subsumed byLAHowever, we tried also
to show ATL and its extensions as a part of a bigger pictui@eing its inspirations,
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and pointing out similarities to other languages. Moreptiee extended languages
themselves: ATEL, ATOL, DATL etc. show that ATL can be seeraageneric frame-
work for multi-agent systems, which we can augment with toldil concepts when
we need them.

Studies on Alternating-time Temporal Epistemic Logic ATBlan der Hoek and
Wooldridge, 2002) proved especially insightful. On oneda&T EL provides our mod-
els with the notion of (qualitative) uncertainty, and toslescribe agents’ knowledge
about the actual situation —and it is hard to imagine a gopiesentation of agents that
neglects these issues. On the other hand, the strategipateaic layers in ATEL are
combined as if they were independent. They are — if we do Hovagther the agents
in question are able to identify and execute their stragegiehey are not if we want
to interpret strategies dsasible planghat guarantee achieving the goal. Intuitively,
strategic abilities of an agent shouiéavilydepend on his knowledge — it looks very
simple when we put it like this. But it took much time and a femldd attempts before
we arrived at the right conclusions, and proposed ATOL anBIAR as remedies.

After devoting much of the thesis for studies on existingdedor agents, we pro-
posed a new extension of ATL ourselves. DATL extends ATL wlith deontic notion
of obligation. This time, the strategic and deontic layemsms to beeally orthogonal.
Is that so? Let us leave it as a challenge for the new, fortimgmave of avid young
researchers.

As repeatedly stated throughout the thesis, we tried tosfactumodels, and the
way they (together with the semantic rules) reflect our tidos about agents acting
in multi-agent environmentdecision makingvas one of the most prominent issues
here. Apart of investigating cooperation modalities arelrteemantics as the formal
counterpart of the decision making process, we devisediareat procedure for multi-
agent planning to achieve goals that can be expressed withféxfnulae. We also
proposed a satisfiability preserving interpretation of ATBDIcr;, and DATL into
ATL, thus extending the scope of the planning algorithm talgthat include epistemic
and deontic properties as well. Unfortunately, ATOL and AT turned out to be
intractable. Thus, such an efficient procedure does not iexisese cases.

The theme of decision making provided a link to the secontl gfathe thesis, in
which a concept of multi-level modeling of reality was prepd, where various mod-
els of the same environment could be combined to improvesigcimaking. Our
main motivation was to try to endow agents with some way ohgisecure game
theory-based models (ATL models, for instance) togethdéh adaptive models ob-
tained through machine learning. After trying several ateriice measures, the one
based on logarithmic loss function produced some promigaglts — and, finally, ex-
periments with simulated software agents showed that thtteagents can try to be
generally adaptive and relatively secure at the same time.

So, what have we learned about agents? Did we enhance oaintiafunderstand-
ing” of the way they act in the world and make their decisioli$® hard to say it with
logic, and ambiguous to say it without. One thing is certamure and more research
paths can be seen, open and unexplored yet.
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9.2 Into the Future

Further research on ATL and its cousins and extensions cpuitseied along at least
three different dimensions:

e the theoretical dimension:

— meta-properties of the logical systems — expressive palgerdability, ax-
iomatizability, complexity of model checking etc.

— relationships between various logics and their models 4vatpnce, sub-
sumption, semantic interpretations and reductions of ogie into another;

¢ the philosophical/conceptual dimension:

— “tailoring” the logics to our intuitions about various aspe of agents and
their societies, so that we obtain formal counterparts af “common-
sense” concepts,

— further formal investigation of the concepts, their ingationships and in-
terference;

e the practical dimension:

— application of the techniques developed for the ATL-baseyick to seek
(possibly suboptimal) solutions of more complex games,

— modeling real-life systems with models based on modal bgitd game
theory,

— planning and decision making for agents in more realisticasions.

A number of specific problems and research questions, tmabeaseen immedi-
ately, is listed below. For some of them, the research isidjrgoing on.

1. There are several fundamental concepts in game theaty,asipreference re-
lations between outcomes aidsh equilibrig that are obviously seem worth
investigating in the context of concurrent game structares alternating-time
logics. The first step along these lines of research havadjrbeen made by
van Otterloo et al. in (van Otterloo, 2004) and (van Ottedod Jonker, 2004).

2. Coalition effectivity models can be used for logics lik€@L, ATEL-R* and
DATL to obtain mathematically elegant semantics. Morepreevant equiva-
lence or subsumption results should be established betwag@us semantics
for these logics.

3. The parallels between ATEL and Bp#;, suggest that the BDI notions désire
andintentioncan enrich ATEL directly, both on the syntactical an sentetiel.
The issue of how these extensions carry over to ATOL and ARElcan be then
investigated, too.
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4. ATL and coalition games can provide BDI models with a figeained structure

of action (simultaneous choices). Furthermore, the cadjmer modalities can be
“imported” into the BDI framework to enable modeling, sgdgirig and verifying
agents’ strategic abilities in the context of their beljiefesires and intentions.
The treatment of group epistemics from ATEL can be used iBibHogics too.

. The authors of ATL had proposed “ATL with incomplete infation” (Alur

et al., 2002) before ATEL, ATOL and ATEL-R* were ever defineld.can be
interesting to see if this earlier proposal captures thonatf players under un-
certainty in a way consistent with intuition — and how “ATL tiviincomplete
information” relates to the epistemic logic-based extensistudied in this the-
sis. Also, stronger languages like alternating-timealculus can be extended
to include agents beliefs under incomplete informationyweall as obligations,
requirements, desires, intentions etc.

. In Section 4.3.2, “dynamic logic-like cooperation matkes” were briefly intro-

duced: [F'4]® meaning A can use strategy4 to bring aboutd” (or: “every
execution off’y guarantee®”). More research on this subject should follow.

. Model checking of ATL formulae generalizes minimaxing@ro-sum (i.e. strictly

competitive) games. It can be interesting to model the ramgetitive case
within the scope of ATL as well: while checking4))¢, the opponentégt \ A
may be assumed different preferences and/or goals thatojpséventA from
achievingy. Then, assuming optimal play fromgt \ A, we can ask whether
A have a strategy to enforee provided thatAgt \ A desirey. The issue of
bringing agents’ preferences into the scope of ATL has beenessed recently
in (van Otterloo, 2004), but there is still a lot of work to ben.

. Opponents’ preferences are usually used in game theorglyne imply the

opponents’ strategy under the rationality and optimal aiegeassumption. Alter-
natively, we can ask about agents’ abilities if the opposarg directly assumed
to take a particular line of play. More specifically, we cak a$etherA have a
strategy to enforce provided thatAgt \ A intendto bring abouty, or even to
execute a collective stratedy, .\ 4. This can trigger an interesting discussion
about the nature of intentions: contrary to the treatmeiritehtion in (Rao and
Georgeff, 1991, 1995; Wooldridge, 2000) — where intentemesn fact presented
as a special kind of desires (the ones to which the agent is pwnmitted and
striving to satisfy them) — we feel that agents intendadan action) rather than
to be (in a state). This distinction closely resembles the cosmtrey between
action-related and situation-related obligations (cfagter 5). Modal logics of
intention might happen to follow the evolution of modal apgches to deontic
notions.

. The link between ATL model checking and minimaxing canXy@ated in other

ways, too. Efficient pruning techniques exist for classialimaxing — it may
be interesting to transfer them to ATL model checking. Masigpghenomena,
studied in the context of games with incomplete informatigthin game theory,
might prove worthwhile to be transfered into the framewdflR®L — or rather
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10.

11.

12.

13.

14.

15.

ATEL and ATOL: probabilistic outcomes, best defense cidtéor games with
incomplete information (Frank, 1996; Frank and Basin, 19@81roga, 2001a),
non-locality (Frank and Basin, 1998), efficient suboptimgbrithms for games
with uncertainty (Frank et al., 1998; Ginsberg, 1999) etc.

ATEL seems the largest relevant subset of ATEL-R* widittable model check-
ing, but this needs to be verified. Also, the conjecture thBEIAformulae
provide strongest necessary conditions for their ATOL avahfila” ATEL-R*
counterparts should be checked.

The approximate evaluation of ATOL formulae throught®EL necessary
condition counterparts, suggested in Section 3.4.5, glyaesembles the tech-
nigue of Monte Carlo Sampling (Corlett and Todd, 1985; Gargh1999). Simi-
lar techniques, like vector minimaxing and payoff-redoctminimaxing (Frank
et al., 1998), and generalized vector minimaxing (Jamrag@la) can be tried
as well.

The “planning as ATL/ATEL model checking” approach sldolie eventually

applied to some real-life problems: for example, to decisiaaking in complex

card games like bridge, security analysis, or planning foommerce agents.
As such domains yield usually huge sets of states, optifoizéechniques like

unbounded model checking (Kacprzak and Penczek, 2004) maspiih testing

in such realistic settings.

The interpretations presented in Sections 3.4, 3.45ai3d 5.4.2 yield imme-
diate model checking reductions for ATEL, ATEL*, BB}, and DATL into
simpler languages. Our intuition is that the interpretagican be adapted to
contexts other than model checking: for instance, to rednaf (general) va-
lidity of formulae. Further reduction can also be tried: é&xample, it may be
possible to interpret ATEL and ATL in CTL, or at least CTL+K¢gi CTL plus
knowledge operators).

We argued in Chapter 4 that the cooperation modalitiesidhefer to the agents’
ability to identify and execute a plan that enforces a priypémn order to capture
all subtleties of this approach, we introduced a number ofilfas of modal
operators. van Otterloo and Jonker (2004) take a diffeiimat Ithey redefine
the semantics of existing cooperation modalities, so tlatmbining them with
ordinary epistemic operators — one can express the propihngving a strategy
de re The research is somewhat preliminary so far, but it lookg peomising.
Still, it can be interesting to investigate the relatiopshetween the language
from (van Otterloo and Jonker, 2004) on one hand, and ATOLAATEL-R* on
the other.

Further meta-theoretical analysis of ATOL, ATEL-R* atheir subsets (decid-
ability, axiomatizability, decidability of model checlgiis possible. Also, com-
plexity of various problems for subsets of ATEL-R* can bedstigated.
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16.

17.

18.

19.

Theoretical properties of our “Deontic ATL”, and itsagbn to other existing
systems that combine deontic and temporal/strategic eetigp, should be in-
vestigated. In particular, a closer study of the relatigmé&tetween DATL and
the “Social Laws for ATL” approach (van der Hoek et al., 2084)specially the
way both approaches can complement each other — should Haated.

In Chapter 5, we demonstrated a number of interestingepties that relate
agents’ abilities and obligations. However, the propsrtee defined on the
semantic level in the general case of local obligationsartloe interesting to try
to express them in the object language as well (it may regoinee redefinition
of the semantics of deontic operators and/or cooperatiatelit@s).

In “Deontic ATL", states (or computation paths) form thant of reference for
obligations (we name such obligatioregjuirementy while obligations can be
also understood as referring to agents’ actions or evetegtes. Technically
speaking, this is not a big problem: every model can be erdthse that each
state includes a “trace” of the most recent agents’ choaed then we are free
to mark every tuple of choices as legal or not by determirtiegaicceptability of
the resulting state. However, philosophically, it is a céetgdy different view of

the notion of obligation — which can be confronted with ageabilities as well.

Introducing epistemic properties and agents’ abdlitisder uncertainty into DATL
seems a natural extension of the scope of both ATOL and “Dedt”. Prac-
tical applications may include more realistic analysis afdcgames, security
analysis, trust management as well as requirements enigjigee

A similar list for hierarchies of models and multi-level @&on making is shorter,
but the problems it includes are not necessarily simpler:

1.

In the simulations, all the agents were using very simpidelefs of the reality,
and very simple learning methods. The performance of magohisticated hy-
brid agents should also be studied.

. Using smarter (for instance, 2-level or 3-level) oppdaenay help to make the

benefits of the proposed decision-making scheme more ofwviou

. Some experiments with human opponents can also be tried.

. Using more complex models demands that the decisionfgalgent must pos-

sess more detailed knowledge as well. The hybrid agentsutzstamntial prob-
lems with acquiring an accurate model of the reality. Thus,may need a
better exploration-exploitation scheme. Collaborativaeling (Zukerman and
Albrecht, 2001) may also prove helpful, especially for medkeat include thou-
sands or millions of states.

. The experiments showed that the confidence measures eszd/ére not per-

fect, hence this line of research can hardly be claimed cetag!

Quoting old Bilbo — “the road goes on and oh”.

1J.R.R. TolkienLord of the Rings



Appendix A

List of Acronyms

AETS
ATEL
ATEL-R*
ATL
ATOL
ATS

BDI
BDlorr

CEM
CGS
CL
CTL
DATL
DTATL
ECL
MGM
stit

alternating epistemic transition system
alternating-time temporal epistemic logic
alternating-time temporal epistemic logic with recall
alternating-time temporal logic

alternating-time temporal observational logic
alternating transition system

beliefs, desires and intentioframework

the propositional modal logic of beliefs, desires and ititers with
CTL as the temporal layer

coalition effectivity model
concurrent game structure

coalition logicor coalition game logic
computation tree logic

deonticATL

deonticATL for temporal obligations
extended coalition logic

multi-player game model

the logic ofseeing to it that
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Summary

This thesis considers some aspects of multi-agent systeees, as a metaphor for
reasoning about the world, and providing a conceptual nmachithat can be used to
model and analyze the reality in which an agent is embeddiest, e study several
modal logics for multi-agent systems; in particular, Aftating-time Temporal Logic
(ATL) is studied in various contexts. Then, a concept of iFleltel modeling of reality
and multi-level decision making is proposed in the secomtigfdhe thesis.

The formal investigation of ATL yields equivalence resuls several different
semantics of this language, as well as a thorough compaoséiiL and Coalition
Logic — another recent logic of strategic ability. We alsadst an epistemic extension
of ATL, show a satisfiability preserving interpretation bétextension into the “pure”
ATL, and demonstrate its similarities to the well known BDgic of beliefs, desires
and intentions. After that, we point out some counteriintaiteatures of this particular
extension, and propose how it can be recovered. The extenaiobe also seen as a
generic scheme of enriching game theory-based logics \hr concepts and dimen-
sions. To support this, we propose how ATL can be extenddd & deontic notion
of obligation. Apart of investigating cooperation modaktand their semantics as the
formal counterpart of the decision making process, we @evfificient procedures for
multi-agent planning to achieve goals that can be expresghdormulae of ATL and
some of its extensions.

In the second part of the thesis, a concept of multi-level etind of reality is pro-
posed, where various models of the same environment canrbbiced to improve
decision making. Our main motivation is to endow agents witme way of using
secure game theory-based models together with adaptivelmoldtained through ma-
chine learning. We try several confidence measures, aniy leei whole idea through
experiments with simple software agents in an e-bankingasie
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Samenvatting

Dit proefschrift behandelt een aantal aspecten van mativagystemen, welke gezien
kunnen worden als een metafoor voor redeneren over de werelideden tevens con-
ceptuele gereedschappen aan die gebruikt kunnen wordereaeatiteit waarin de
agent zich bevindt te modeleren en analyseren.

Als eerste worden verschillende modale logica’s voor nagjént systemen bekeken,
in het bijzonder wordt de Alternating-time Temporal Logdd () in verschillende con-
texten bestudeerd.

Vervolgens wordt een concept van multi-level modelleriag de realiteit en multi-
level decision making voorgesteld in het tweede deel vapioafschrift.

Het formele onderzoek van ATL leidt tot resultaten van egl@mtie voor verschei-
dene semantieken van deze taal alsmede een grondige jkéngetan ATL en Coali-
tion Logic, een andere recente logica van strategische lijidgelen.

We bestuderen ook een epistemische uitbreiding van ATenlaen satisfiability
behoudende interpretatie van de uitbreiding in de “purel’ £ilen en demonstreren de
gelijkenis met de bekende BDI logica van geloof, verlanganmtenties.

Hierna stippen we enige tegenintuitieve kenmerken van sigeeifieke uitbreiding
aan en doen een voorstel hoe deze kunnen worden opgelostithbeEding kan ook
gezien worden als een generiek schema voor verrijking vaspeftheorie gebaseerde
logica’s met andere concepten en dimensies.

Om dit te ondersteunen doen we een voorstel hoe ATL uitgelbes worden met
de deontische notie van verplichting. Naast het onderzaek de samenwerking van
modaliteiten en hun semantiek als formele tegenhangereidrdsluitvormingsproces,
laten we efficiente procedures zien die doelgerichte nagléint planning uitdrukken
geformuleerd in ATL en enkele uitbreidingen daarvan.

In het tweede deel van de thesis wordt een concept van rauttlinodellering van
de werkelijkheid voorgesteld, waarmee verschillende riederan de werkelijkheid
kunnen worden gecombineerd om zo het besluitvormings prieceerbeteren. Onze
belangrijkste motivatie is om agents uit te rusten met eenienam veilige spelthe-
oretische modellen en middels machine learning verkredaptaéeve modellen naast
elkaar te kunnen gebruiken.

Verschillende betrouwbaarheidsmaten worden uitgeteBeegeheel wordt gever-
ifieerd met behulpvan experimenten met eenvoudige softageats in een e-banking
scenario.
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Streszczenie

Tematem niniejszej pracy sa niektore aspekty systemi@oagentowych, widzianych

jako sposdb modelowania Swiata i rozumowania na tematajacej rzeczywistosci.

Na pierwsza czest pracy sktada sie studium wybranggiklmodalnych do opisu

Srodowisk agentowych — a zwlaszcza tak zwanej logiki teralpej czasu alternujacego
(Alternating-time Temporal Logic, ATL). Druga czestapy przedstawia koncepcje
wielopoziomowego modelowania rzeczywistosci i wielopozowego podejmowania
decyzji.

Badania nad ATL wykazuja rownowaznos¢ kilku altegvatych semantyk tego
jezyka. Coalition Logic, logika pokrewna ATL — i rowniéaspirowana teoria gier —
okazuje sie operowat tym samym aparatem konceptual@anifhniejsza sita wyrazu).
Istotnym elementem pierwszej czesci pracy sa studiaepestemicznym rozszerze-
niem ATL, zwanym ATEL: demonstrujemy jak interpretowacrfarly i modele ATEL
w “czystym” ATL (z zachowaniem spetnialnosci i prawdzised formut w modelach),
a takze pordbwnujemy ATEL ze znanym formalizmem BDEliefs, desires and in-
tentions przekonania, pragnienia i intencje). Nastepnie wslkernyj pewne aspekty
ATEL, ktore wydaja sie byt sprzeczne z intuicja, i poopjemy dwa alternatywne
sposoby “naprawy” tej logiki.

Logiki typu ATL moznaw podobny sposob rozszerzac takiene aspekty agentow
i ich interakcji. Jako przyktad postuzy¢ moze zapropmany w niniejszej pracy “De-
ontyczny ATL”, rozszerzajacy oryginalna logike o deyeene pojecie zobowiazania.
Jako ze modalnosci kooperacyjne (lezace u podstawy) Afidnowia de facto formalny
odpowiednik procesu podejmowania decyzji, niniejsza @raezentuje tez efekty-
wne algorytmy planowania w srodowiskach wieloagentowgiehcelow dajacych sie
wyrazit formutami ATL i niektorych jej rozszerzen.

Przedmiotem drugiej czesci pracy jest koncepcja wietogpnowego modelowa-
nia rzeczywistosci: jesli agent posiada kilka altermgtgh modeli rzeczywistosci, w
niektorych sytuacjach moze on uzyskac lepsze rezyliawajac kombinacji wszys-
tkich tych modeli, niz wybierajac tylko jeden z nich i regyjac z pozostatych. Taki
schemat podejmowania decyzji moze, miedzy innymi, poghagentom do znaleziena
rozsadnej rownowagi pomiedzy bezpiecznymi rozwigaea opartymi o teorie gier, a
adaptywnymi modelami Swiata uzyskanymi poprzez maszgnaoszenie. Poszukujac
takiego punktu rownowagi, wyprobowujemy kilka alteyahych miar zaufania, by
w kohcu zweryfikowat przedstawiana idee przy uzycimsiacji prostej gry opartej o
scenariusz bankowo5ci elektroniczne;j.
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