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1 Introduction

Overview. Multi agent systems (MAS) provide an important framework for
formalizing various problems in computer science, artificial intelligence, game
theory, social choice theory, etc. Modal logics are amongst the most suitable and
versatile logical formalisms for specification and verification of computational
systems. Here, we present an overview of some important developments in the
area. We introduce modal logics used for specification of temporal, epistemic,
and strategic properties of systems; then, we present some model checking algo-
rithms, and discuss the computational complexity of the model checking prob-
lem. Finally, we consider symbolic (compact) representations of systems based
on Binary Decision Diagrams (BDD) and propositional logic formulas, and show
how the representations change the algorithmic side of model checking. We also
discuss other techniques that help to reduce the complexity and make the veri-
fication feasible even for large systems.

Contents. The materials consist of 5 parts, with the content outlined below:

1. Reasoning about evolution of systems. Multi-agent systems. Modal logic,
Kripke models, epistemic logic. Temporal logic, linear vs. branching time,
synchronous vs. asynchronous product; reasoning about knowledge and time;
�-calculus. Basic complexity classes, basic complexity results.

2. Introduction to model checking for knowledge and time. Standard non-symbolic
algorithms. Introduction to symbolic model checking.

3. Specification of agents and their teams. Strategic logics: Coalition Logic,
ATL. Meta-properties: axiomatization, model equivalence. Reasoning about
scenarios with imperfect information.

4. Complexity of verification. Model checking complexity for explicit models,
complexity proofs. State-space explosion. Complexity revisited: compact rep-
resentation of transitions, higher-order representations.

5. Practical model checking. BDD-based and SAT-based approaches to model
checking, bounded and unbounded model checking for CTLK, unbounded
model checking for ATL.



Further reading. The following publications may be of particular interest to
readers of this chapter:

– R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal
Logic. Journal of the ACM, 49:672–713, 2002.

– A. Lomuscio, W. Penczek. Logic Column 19: Symbolic Model Checking for
Temporal-Epistemic Logics, CoRR abs/0709.0446, 2007.

– N. Bulling, J. Dix, and W. Jamroga. Model Checking Logics of Strategic
Ability: Complexity. In M. Dastani, K. Hindriks, and J.-J. Meyer, editors,
Specification and Verification of Multi-Agent Systems, pp. 125–159. Springer,
2010.

We give more detailed references for further reading throughout the rest of the
materials.
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2 Reasoning about Evolution of Systems

This section serves as an introduction of some fundamental concepts that we are
going to use throughout.

2.1 Multi-Agent Systems

Multi-agent systems (MAS ) are systems that involve several autonomous enti-
ties acting in the same environment. The entities are called agents. What is an
agent? Despite numerous attempts to answer this question, there seems to be
no conclusive definition. We assume that MAS are, most of all, a philosophical
metaphor that induces a specific way of seeing the world, and makes us use
agent-oriented vocabulary when describing the phenomena we are interested in.
Thus, while some researchers present multi-agent systems as a new paradigm
for computation or design, we believe that primarily multi-agent systems form
a new paradigm for thinking and talking about the world, and assigning it a
specific conceptual structure. The metaphor of a multi-agent system seems to
build on the intuition that we are agents – and that other entities we study can
be just like us to some extent. The usual properties of agents, like autonomy,
pro-activeness etc., seem to be secondary: they are results of an introspection
rather than primary assumptions we start with.

We note that this view of multi-agent systems comes close to the role of
logic in both philosophy and computer science. Logic provides conceptual struc-
tures for modeling and reasoning about the world in a precise manner – and,
occasionally, it also provides tools to do it automatically.

References: Reader interested in issues related to multi-agent systems is re-
ferred to [105, 104].

2.2 Modal Logic

Modal logic is an extension of classical logic with new operators □ (necessity)
and ◇ (possibility): □p means that p is true in every possible scenario, while
◇p means that p is true in at least one possible scenario. Let PV be the set
of propositional variables (also called propositions). Models of modal logics are
called Kripke models or possible world models, and include the set of possible
worlds (or states) St, modal accessibility relationℛ ⊆ St×St, and interpretation
of the propositions V : PV → 2St. Now, for a model M = (St,ℛ, V ) and world
q in M :

M, q ∣= □' iff M, q′ ∣= ' for all q′ such that qℛq′

M, q ∣= ◇' iff M, q′ ∣= ' for some q′ such that qℛiq′

Modal logic can be further extended to multi-modal logic, where we deal
with several modal operators: □i and ◇i, each of them interpreted over the
corresponding i-modal accessibility relation ℛi ⊆ St× St.



The actual accessibility relations can capture various dimensions of the re-
ality (and therefore give rise to different kinds of modal logics): knowledge (↝
epistemic logic), beliefs (↝ doxastic logic), obligations (↝ deontic logic), actions
(↝ dynamic logic), time (↝ temporal logic) etc. In particular, various aspects
of agents (and agent systems) can be naturally captured within this generic
framework.

References: A gentle introduction to modal logic can be found in [7].

2.3 Reasoning about Knowledge

The basic epistemic logic which we consider here involves modalities for indi-
vidual agent’s knowledge Ki, with Ki' interpreted as “agent i knows that '”.
Additionally, one can consider modalities for collective knowledge of groups of
agents: mutual knowledge (EA': “everybody in group A knows that '”), common
knowledge (CA': “all the agents in A know that ', and they know that they know it
etc.”), and distributed knowledge (DA': “if the agents could share their individual
information, they would be able to recognize that '”). Note that EA' ≡

⋀
i∈A Ki',

and hence the operators for mutual knowledge can be omitted from the language.
The formal semantics for the logic is based on multi-agent epistemic models of

the type ⟨St,∼1, ...,∼k, V ⟩, where St is a set of epistemic states, V is a valuation
of propositions, and each ∼i⊆ St×St is an equivalence relation that defines the
indistinguishability of states for agent i. Operators Ki are provided with the
usual Kripke semantics given by the clause:

M, q ∣= Ki' iff M, q′ ∣= ' for all q′ such that q ∼i q′

The accessibility relation corresponding to EA is defined as ∼E
A=

∪
i∈A ∼i,

and the semantics of EA becomes

M, q ∣= EA' iff M, q′ ∣= ' for all q′ such that q ∼E
A q
′.

Common knowledge CA is given semantics in terms of the relation ∼C
A defined

as the transitive closure of ∼E
A:

M, q ∣= CA' iff M, q′ ∣= ' for all q′ such that q ∼C
A q
′.

Finally, distributed knowledge DA is given semantics in terms of the relation
∼D
A defined as

∩
i∈A ∼i, following the same pattern:

M, q ∣= DA' iff M, q′ ∣= ' for all q′ such that q ∼D
A q
′.

Example 1 (Robots and Carriage). Consider the scenario depicted in Figure 1.
Two robots push a carriage from opposite sides. As a result, the carriage can
move clockwise or anticlockwise, or it can remain in the same place – depending
on who pushes with more force (and, perhaps, who refrains from pushing). To
make our model of the domain discrete, we identify 3 different positions of the
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Fig. 1. Two robots and a carriage: a schematic view (left) and a Kripke model M1 of
the robots’ knowledge (right).

carriage, and associate them with states q0, q1, and q2. We label the states with
propositions pos0, pos1, pos2, respectively, to allow for referring to the current
position of the carriage in the object language.

Moreover, we assume that robot 1 is only able to observe the color of the
surface on which it is standing, and robot 2 perceives only the texture. As a
consequence, the first robot can distinguish between position 0 and position
1, but positions 0 and 2 look the same to it. Likewise, the second robot can
distinguish between positions 0 and 2, but not 0 and 1. In the resulting epistemic
model, we have for instance that M1, q0 ∣= ¬K1pos0 ∧ ¬K1pos2 ∧ K1(pos0 ∨
pos2): the first robot knows that the position is either 0 or 2, but not which of
them precisely. Moreover, M1, q0 ∣= K1¬pos1 (robot 1 knows that the current
position is not 1). The robot also knows that the other agent can distinguish
between smooth and rough texture: M1, q0 ∣= K1

(
(pos2 → K2pos2) ∧ (¬pos2 →

K2¬pos2)
)
. Finally, if the robots share their information, they know the current

position precisely: M1, q0 ∣= D{1,2}pos0.

Note that epistemic models are usually constructed from the point of view
of an external omniscient observer, most typically a system designer who has a
complete view of the entire system.

References: [28] presents what has become the standard treatment of reason-
ing about knowledge within the computer science community. More lightweight
surveys can be found in [36, 97].

2.4 Modal Logics of Time and Action

We present a brief overview of logics that regard the dynamics of systems. That
is, essentially, logics that focus on actions that can be performed by (or in) a
system, and on the way in which the system can evolve over time. We consider



two basic cases here: either actions are first-class citizens of the language, or we
abstract from them and reason about change in general.

PDL. Propositional Dynamic Logic (PDL), which was primarily designed to
reason about computer programs, is probably the most typical representative of
logics with explicit actions. Actions are represented in the language with action
labels �1, �2, ... from a finite set Act. Complex action terms can be also con-
structed, for example sequential composition (�1;�2), nondeterministic choice
(�1 ∪�2), finite iteration (�∗) etc. Now, [�]' expresses the fact that ' is bound
to hold after every execution of �, and ⟨�⟩' ≡ ¬[�]¬' says that ' holds af-
ter at least one possible execution of �. On the semantic side, we have Labeled
Transition Systems M = ⟨St, �1→, �2→, ..., V ⟩, where actions are modeled as (non-

deterministic) state transformations
�→ ⊆ St × St, and the following semantic

clause:
M, q ∣= [�]' iff M, q′ ∣= ' for all q′ such that q

�→ q′.

We mention PDL only in passing here, as it will not be used in the rest of
the chapter.

LTL. Temporal logics leave actions implicit, and instead focus on possible pat-
terns of evolution. Typical temporal operators are: X (“in the next state”), G
(“always from now on”), F (“sometime in the future”), and U (“until”). Models
include one transition relation, and come in two versions. Linear time models
define a total ordering on possible worlds (“time moments”), so that a model
can be seen as a single infinite path � with successive states �[0], �[1], ... ; by �i
we denote the suffix of � starting from the state �[i]. The semantics of Linear
Temporal Logic (LTL) can be defined as follows:

� ∣= p iff �[0] ∈ V (p);

� ∣= ¬' iff � ∕∣= ',

� ∣= ' ∧  iff � ∣= ' and � ∣=  ;

� ∣= X' iff �1 ∣= ';

� ∣= 'U iff (∃j ≥ 0)
(
�j ∣=  and (∀0 ≤ i < j) �i ∣= '

)
.

with F' ≡ trueU' and G' ≡ ¬F¬', where true
def
= p ∨ ¬p, for some p ∈ PV.

Example 2. Consider the path (q0q1q2)! = q0q1q2q0q1q2q0q1q2 . . . from the robots
and carriage scenario (Example 1). For that path, we have for instance that
Fpos2 (position 2 will be eventually achieved), and even GFpos2 (position 2 will
be achieved infinitely many times). However, it is not the case that the carriage
will stop and stay in position 0 for good: ¬FGpos2.

Typically, when LTL is used for specifying properties of a system, the for-
mulae are interpreted over all the infinite paths from a transition model of the
system.

CTL*. Branching-time models, on the other hand, consist of a tree that encap-
sulates all possible evolutions of the system. Computation Tree Logic (CTL*)



extends LTL with path quantifiers E (“there is a path”), and A (“for every
path”). Formally, the syntax and semantics of CTL* is defined in the following
way. Let PV = {p1, p2 . . .} be a set of propositional variables. The language of
CTL* is given as the set of all the state formulas ' (interpreted at states of a
model), defined using path formulas  (interpreted at paths of a model), by the
following grammar:

' := p ∣ ¬' ∣ ' ∧ ' ∣ A ∣ E
 := ' ∣ ¬ ∣  ∧  ∣ X ∣ U.

In the above p ∈ PV, A (’for All paths’) and E (’there Exists a path’) are
path quantifiers, whereas X (’neXt’) and U (’Until’) are temporal operators like
before.

Obviously, when verifying properties of a particular system, a model given
in the form of a set of infinite paths (for LTL) or an infinite tree (CTL∗) would
be impractical. Instead, the behavior of the system is usually represented as a
Kripke model of transitions – either labeled (with multiple transition relations,
one per action name) or unlabeled (all transitions “collapsed” into a single rela-
tion→). Therefore, semantics of CTL* is frequently defined in terms of standard
Kripke models. Notice that the unfolding of a Kripke model is an inifinite tree.

Let M = (St,→, V ) be a Kripke model. For q0 ∈ St a (full) path � =
(q0, q1, . . .) is an infinite sequence of states in St starting at q0, where qi → qi+1

for all i ≥ 0, and �i = (qi, qi+1, . . .) is the i-th suffix of � starting at qi. By
M, q ∣= ' (M,� ∣= ) we mean that ' holds in the state q ( holds on the path
�, respectively) of the model M . In what follows the model M is sometimes
omitted if it is clear from the context. The relation ∣= is defined inductively
below.

M, q ∣= p iff q ∈ V (p), for p ∈ PV,
M, x ∣= ¬y iff M,x ∕∣= y, for x ∈ {q, �}, y ∈ {', },
M, x ∣= y1 ∧ y2 iff M,x ∣= y1 and M,x ∣= y2, for x, y as above,

M, q ∣= A iff M,� ∣=  for each path � starting at q,
M, q ∣= E iff M,� ∣=  for some path � starting at q,
M, � ∣= ' iff M,�[0] ∣= ', for a state formula ',
M, � ∣= X iff M,�1 ∣= ,
M, � ∣= 1U2 iff (∃j ≥ 0)

(
M,�j ∣= 2 and (∀0 ≤ i < j) M,�i ∣= 1

)
.

The logic CTL is an important subset of CTL∗−X. In “pure” (or “vanilla”)
CTL every occurrence of a path quantifier is followed by exactly one temporal
operator, so there are only state formulae. Note that in the case of “vanilla”
CTL, there exists an alternative semantics given entirely in terms of satisfaction
of formulae in states:

M, q ∣= p iff q ∈ V (p);
M, q ∣= ¬' iff M, q ∕∣= ';
M, q ∣= ' ∧  iff M, q ∣= ' and M, q ∣=  ;
M, q ∣= EX' iff M,�[1] ∣= ' for some path � starting from q;



q0

q2 q1

pos0

pos1pos2

Fig. 2. Two robots and a carriage: transition system M2 that models possible move-
ments of the carriage.

M, q ∣= EG' iff there is a path � starting from q such that (∀i ≥ 0) M,�[i] ∣= ';
M, q ∣= E'U iff there is a path � starting from q such that (∃j ≥ 0)

(
M,�[j] ∣=

 and (∀0 ≤ i < j) M,�[i] ∣= '
)
.

Example 3. A possible transition system for the robots scenario is depicted in
Figure 2. In that model, we have for instance M2, q0 ∣= EFpos1: in state q0, there
is a path such that the carriage will reach position 1 sometime in the future. The
same is clearly not true for all paths, so we also have that M2, q0 ∣= ¬AFpos1.

Temporal and dynamic dimensions have been combined with other modali-
ties, e.g. in the well-known BDI logics of beliefs, desires, and intentions [16, 84].
We will present simple extensions of LTL and CTL with epistemic modalities in
Section 2.5, and discuss verification of temporal-epistemic logic in later sections.

Modal �-calculus. Propositional modal �-calculus was introduced by D. Kozen
[62]. Let PV be a set of propositional variables and FV be a set of fixed-point
variables. The language of modal �-calculus L� is defined by the following gram-
mar:

' := p ∣ ¬' ∣ ' ∧ ' ∣ AX' ∣ EX' ∣ Z ∣ �Z.'(Z) ∣ �Z.'(Z),

where p ranges over PV, Z – over FV , and '(Z) is a modal �-calculus formula
syntactically monotone in the fixed-point variable Z, i.e., all the free occurrences
of Z in '(Z) fall under an even number of negations.

Let M = (St,→, V ) be a Kripke model. Notice that the set 2St of all subsets
of St forms a lattice under the set inclusion ordering. Each element St′ of the
lattice can also be thought of as a predicate on St, where this predicate is viewed
as being true for exactly the states in St′. The least element in the lattice is the
empty set, which we also refer to as false, and the greatest element in the lattice
is the set St, which we sometimes write as true. A function � mapping 2St to
2St is called a predicate transformer. A set St′ ⊆ St is a fixed point of a function
� : 2St −→ 2St if

�(St′) = St′.



Whenever � is monotonic, i.e., S1 ⊆ S2 implies �(S1) ⊆ �(S2), where S1, S2 ⊆
St, it has the least fixed point denoted �Z.�(Z) and the greatest fixed point-
denoted �Z.�(Z). When �(Z) is also

∪
-continuous, i.e., S1 ⊆ S2 ⊆ . . . implies

�(
∪
i≥0 Si) =

∪
i≥0 �(Si), then

�Z.�(Z) =
∪
i≥0

�i(false).

When �(Z) is also
∩

-continuous, i.e., S1 ⊇ S2 ⊇ . . . implies �(
∩
i≥0 Si) =∩

i≥0 �(Si), then

�Z.�(Z) =
∩
i≥0

�i(true)

(see [94]).

The semantics of L� is given inductively for each formula ' of L�, a model M ,
a valuation ℰ : FV −→ 2S of the fixed-point variables (called an environment),
and a state q ∈ St:

M, ℰ , q ∣= p iff q ∈ V (p), for p ∈ PV,
M, ℰ , q ∣= ¬' iff M, ℰ , q ∕∣= ',
M, ℰ , q ∣= ' ∧  iff M, ℰ , q ∣= ' and M, ℰ , q ∣=  ,
M, ℰ , q ∣= AX' iff (∀q′ ∈ St)((q→q′)⇒ (M, ℰ , q′ ∣= ')),
M, ℰ , q ∣= EX' iff (∃q′ ∈ St)((q→q′) ∧M, ℰ , q′ ∣= '),
M, ℰ , q ∣= Z iff q ∈ ℰ(Z), for Z ∈ FV ,
M, ℰ , q ∣= �Z.'(Z) iff q ∈

∩
{U ⊆ St ∣
{q′ ∈ St ∣M, ℰ [Z ← U ], q′ ∣= '} ⊆ U},

M, ℰ , q ∣= �Z.'(Z) iff q ∈
∪
{U ⊆ St ∣
U ⊆ {q′ ∈ St ∣M, ℰ [Z ← U ], q′ ∣= '}},

where ', ∈ L�, and ℰ [Z ← U ] is like ℰ except that it maps Z to U . Now, we
define M, q ∣= ' iff M, ℰ , q ∣= ' for each environment ℰ .

It is known that both CTL and CTL* can be translated into modal �-calculus
[62]. For example, we give characterisations of basic CTL modalities in terms of
modal �-calculus formulas:

– A('U ) ≡ �Z.( ∨ (' ∧AXZ)),
– E('U ) ≡ �Z.( ∨ (' ∧ EXZ)),
– AG' ≡ �Z.(' ∧AXZ),
– EG' ≡ �Z.(' ∧ EXZ).

The translation of CTL* to modal �-calculus is more involved and can be found
in [24]. It is worth noticing that the translations are important in practice be-
cause correctness specifications written in logics such as CTL or CTL* are often
much more readable than specifications written directly in modal �-calculus.

References: Dynamic logic is treated extensively in [37]; readers interested
in temporal logic are referred to [23, 29]. An introduction to �-calculus can be
found in [93].



2.5 Combining Time and Knowledge

In this section we discuss how the interaction between knowledge and time can
be captured in modal logic. To this end, we combine epistemic and temporal
dimensions in a multi-modal logic. The main proposals that we are going to
consider is LTLK and CTLK, which are straightforward combinations of respec-
tively LTLK, CTL, and standard epistemic logic.

LTLK. The language of LTLK includes all the operators of LTL and epistemic
logic. Moreover, its semantics is based on Kripke models which include both
temporal and epistemic accessibility relations: M = ⟨St,R,∼1, ...,∼k, V ⟩. The
semantics of LTLK simply combines the clauses for LTL and modal epistemic
logic:

� ∣= p iff �[0] ∈ V (p);

� ∣= ¬' iff � ∕∣= ',

� ∣= ' ∧  iff � ∣= ' and � ∣=  ;

� ∣= X' iff �1 ∣= ';

� ∣= 'U iff (∃j ≥ 0)
(
�j ∣=  and (∀0 ≤ i < j) �i ∣= '

)
;

� ∣= Ki' iff �′j ∣= ' for all paths �′ and all (j ≥ 0) s.t. �[0] ∼i �′[j],

where 1 ≤ i ≤ k and M, q ∣= ' iff M,�0 ∣= ' for all the paths � starting at q.

CTLK. The language of CTLK includes all the operators of CTL and epistemic
logic. Moreover, its semantics is based on Kripke models which include both
temporal and epistemic accessibility relations: M = ⟨St,R,∼1, ...,∼k, V ⟩. Like
for LTLK, the semantics of CTLK takes the union of both respective semantics:

M, q ∣= p iff q ∈ V (p);
M, q ∣= ¬' iff M, q ∕∣= ';
M, q ∣= ' ∧  iff M, q ∣= ' and M, q ∣=  ;
M, q ∣= EX' iff M,�[1] ∣= ' for some path � starting from q;
M, q ∣= EG' iff there is a path � starting from q such that (∀i ≥ 0) M,�[i] ∣= ';
M, q ∣= E'U iff there is a path � starting from q such that (∃j ≥ 0)

(
M,�[j] ∣=

 and (∀0 ≤ i < j) M,�[i] ∣= '
)
.

M, q ∣= Ki' iff M, q ∣= ' for every q′ such that q ∼i q′, for 1 ≤ i ≤ k.

Example 4. Let M3 be the temporal-epistemic model of robots and carriage
that combines states and relations from models M1,M2 (Figures 1 and 2).
Now, M3, q0 ∣= K1EFpos2: robot 1 knows that the carriage can get to position
2 eventually. Moreover, M3, q0 ∣= EX

⋁
i=0,1,2(posi → K1posi): it is possible that

in the next moment robot 1 will know its position precisely.

Interpreted systems. A well known study of the interplay between knowledge
and time has been presented in [28]. The proposal builds on a notion of global
states, defined formally as follows. Firstly, each agent i ∈ Agt = {1, ..., k} has
a set of local states Sti. Every global state is represented by a tuple of local



states ⟨q1, ..., qk⟩ corresponding to all agents. Thus, the global state space St is
(a subset of) the product St1× ...×Stk. It has been argued in many places that
interpreted systems provide more “grounded” semantics for agents’ knowledge
than abstract Kripke models. This is because starting from the local state spaces
makes it clearer how the epistemic model should be actually constructed.

It is usually assumed in interpreted systems that each agent has access only
to its own local state, i.e.:

⟨q1, ..., qk⟩ ∼i ⟨q′1, ..., q′k⟩ iff qi = q′i.

The temporal dimension is added by considering runs, i.e., sequences of global
states:

r : ℕ→ St1 × ...× Stk.
A system is a set of such runs. An interpreted system is a system plus a valuation
of propositions: ⟨ℛ, V ⟩. Given an interpreted system ℐ = ⟨ℛ, V ⟩, a point in ℐ is
a pair ⟨r,m⟩ where r is a run and m ∈ ℕ. Epistemic equivalence between points
is defined as follows:

⟨r,m⟩ ∼i ⟨r′,m′⟩ iff r(m) ∼i r′(m′).

Now, all epistemic modalities can be interpreted as before, e.g.:

ℐ, r,m ∣= Ki' iff ℐ, r′,m′ ∣= ' for all ⟨r′,m′⟩ such that ⟨r,m⟩ ∼i ⟨r′,m′⟩.

Moreover, the standard temporal operators of LTL can be interpreted, too:

– ℐ, r,m ∣= X' iff ℐ, r,m+ 1 ∣= ',
– ℐ, r,m ∣= 'U iff ℐ, r,m′ ∣=  for some m′ > m and ℐ, r,m′′ ∣= ' for all m′′

such that m ≤ m′′ < m′.

Finally, the semantics of path quantifiers from CTL* can be defined in inter-
preted systems as follows:

– ℐ, r,m ∣= E' iff there is r′ such that r′[0..m] = r[0..m] and ℐ, r′,m ∣= '.

It should be pointed out that the semantics of knowledge presented above is
only one of several possibilities. It encodes the assumption that agents are mem-
oryless in the sense that they do not have “external” memory of past events; the
whole memory of an agent is encapsulated in its local state. The other extreme is
to assume that local states represent the agents’ observations rather than knowl-
edge, and that agents have perfect recall of everything that has been observed.
If we additionally assume the existence of a global universally accessible clock,
the semantics of knowledge can be defined as follows:

⟨r,m⟩ ≈i ⟨r′,m′⟩ iff m = m′ and r(j) ∼i r′(j) for all j ≤ m,
ℐ, r,m ∣= Ki' iff ℐ, r′,m′ ∣= ' for all ⟨r′,m′⟩ such that ⟨r,m⟩ ≈i ⟨r′,m′⟩.

Interpreted systems have been applied to modeling of distributed systems,
knowledge bases, message passing systems, and more specifically to phenomena
like perfect recall, synchrony and asynchrony etc.

References: Possible interactions between the temporal and epistemic dimen-
sions are studied extensively in [28].



3 Introduction to Model Checking for Knowledge and
Time

In this section, we look at standard non-symbolic model checking algorithms for
temporal and temporal-epistemic logics. We start with some notes on verification
and complexity classes in Section 3.1. Basic algorithms and complexity results for
verification of temporal logics are presented in Section 3.2. Then, we discuss the
model checking algorithm exploiting the fixed-point characterization of CTLK
in Section 3.3.

3.1 Complexity of Verificatin

Within the materials we consider both practical algorithms for verifying prop-
erties of MAS, and the theoretical complexity of these problems. Here is a short
(and rather informal) description of the most relevant complexity classes. A
formal introduction can be found in any textbook on complexity theory (cf.
e.g. [72]).

– P: problems solvable in polynomial time by a deterministic Turing machine,
– NP: problems solvable in polynomial time by a nondeterministic Turing

machine,
– ΣP

n / ΠP
n / ΔP

n : problems solvable in polynomial time with use of adaptive
queries to an n-level oracle,

– PSPACE: problems solvable by queries to a multilevel oracle with un-
bounded “height”,

– EXPTIME: problems solvable in exponential time by a deterministic Tur-
ing machine.

Of course, theoretical complexity has many deficiencies: it refers only to the
worst (hardest) instance in the set, neglects coefficients in the function char-
acterizing the complexity, etc. However, it often gives a good indication of the
inherent hardness of the problem in terms of scalability. For low complexity
classes, scaling up from small instances of the problem to larger instances is
relatively easy. For high complexity classes, this is not the case anymore.

The process of verification (so called model checking) answers whether a given
formula ' is satisfied in a state q of model M . Formally, local model checking is
the decision problem that determines membership in the set

MC(ℒ,Struc, ∣=) = {(M, q, ') ∈ Struc× St× ℒ ∣ M, q ∣= '},

where ℒ is a logical language, Struc is a class of (pointed) models for ℒ, and ∣=
is a semantic satisfaction relation compatible with ℒ and Struc.1

It is often useful to compute the set of states in M that satisfy formula '
instead of checking if ' holds in a particular state. This variant of the problem
is known as global model checking. It is easy to see that, for the settings we

1 We omit parameters if they are clear from the context.



consider here, the complexities of local and global model checking coincide, and
the algorithms for one variant of model checking can be adapted to the other
variant in a simple way. As a consequence, we will use both notions of model
checking interchangeably.2

References: For a comprehensive textbook on model checking, see e.g. [15].

3.2 Verifying Temporal Logic

An excellent survey on the model checking complexity of temporal logics has
been presented in [86]. Here, we only recall the most relevant results before
turning our focus to actual algorithms in Section 3.

Let M be a Kripke model and q be a state in the model. Model checking a
CTL formula ' in M, q determines whether M, q ∣= ', i.e., whether ' holds in
M, q. The same applies to model checking CTL∗. For LTL, checking M, q ∣= '
means that we check the validity of ' in the pointed model M, q, i.e., whether
' holds on all the paths in M that start from q (equivalent to CTL∗ model
checking of formula A' in M, q.

It has been known for a long time that the formulae of CTL can be model-
checked in time linear with respect to the size of the model and the length of
the formula [14], whereas formulae of LTL and CTL∗ are significantly harder to
verify. The size of the model M , denoted by ∣M ∣, is defined by the sum of the
number of its states and its transitions ∣St∣+ ∣R∣.

Theorem 1 (CTL [14, 86]). Model checking CTL is P-complete, and can be
done in time O(∣M ∣ ⋅ ∣'∣).

Proof (Sketch). The algorithm (for an extension of CTL) determining the states
in a model at which a given formula holds is presented in Section 3.3. The
lower bound (P-hardness) can be for instance proven by a reduction of the tiling
problem [86]. ⊓⊔

Theorem 2 (LTL [92, 67, 102]). Model checking LTL is PSPACE-complete,
and can be done in time 2O(∣'∣)O(∣M ∣).

Proof (Sketch). We sketch here the approach of [102]. Firstly, given an LTL-
formula ', a Büchi automaton A¬' of size 2O(∣'∣) accepting exactly the runs
(infinite paths of states) satisfying ¬' is constructed. The pointed Kripke model
M, q can directly be interpreted as a Büchi automaton AM,q of size O(∣M ∣)
accepting all possible runs in the Kripke model starting in q. Then, the model
checking problem reduces to the non-emptiness check of L(AM,q) ∩ L(A¬'),
which can be done in time O(∣M ∣) ⋅2O(∣'∣) by constructing the product automa-
ton. Notice that the non-emptiness can be checked in linear time w.r.t. to the
size of the automaton. A PSPACE-hardness proof can be for instance found
in [92]. ⊓⊔
2 The only logic mentioned in this chapter, for which the complexities of global and

model checking differ, is Constructive Strategic Logic from Section 4.4. However, we
do not discuss the model checking problem for CSL in the materials.
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Fig. 3. Basic complexity results: model checking (left) and satisfiability (right)

The hardness of CTL∗ model checking is immediate from Theorem 2 as
LTL can be seen as a fragment of CTL∗. For the proof of the upper bound
one combines the CTL and LTL model checking techniques. Consider a CTL∗

formula ' which contains a state subformula E , where  is a pure LTL formula.
Firstly, we can use the LTL model checking to determine all the states which
satisfy E (these are all states q in which the LTL formula ¬ is not true) and
label them by a fresh propositional symbol, say p, and replace E in ' by p
as well. Applying this procedure recursively yields a pure CTL formula, which
can be verified in polynomial time. Hence, the procedure can be implemented
by an oracle machine of type PPSPACE = PSPACE (the LTL model checking
algorithm might be employed polynomially many times). Thus, the complexity
for CTL∗ is the same as for LTL.

Theorem 3 (CTL∗ [14, 25]). Model checking CTL∗ is PSPACE-complete,
and can be done in time 2O(∣'∣)O(∣M ∣).

Figure 3 presents the basic complexity results for model checking of tempo-
ral and epistemic logics. For comparison, we also list complexities of analogous
satisfiability problems. The input of the SAT problem is given as a formula of
the logic, and its size is measured in the length of the formula. The input of the
model checking problem is given as the formula and the model; the size of an
input instance is measured as m ⋅ l, where m is the number of transitions in the
model, and l is the length of the formula.

References: Readers interested in basic complexity results for model checking
temporal logics are referred to the excellent survey [86].

3.3 Fixed-point Verification for CTL and CTLK

Symbolic and non-symbolic model checking methods can exploit the fixed-point
characterization of CTLK formulas. These methods operate on sets of states
contrary to the state labeling algorithm operating on single states of the model.

In what follows by CA we denote the modality dual to CA, i.e., CA'
def
= ¬CA¬'.

Similarly, for EA and DA. We do not discuss here algorithms for the operators EA

and DA as these are straightforward given an algorithm for Ki. Then, labelling
of the states with the subformulas or computation of OBDD representation of



a CTLK formula uses the standard algorithms for computing the minimal and
the maximal fixpoints as follows.

– EG' ≡ ' ∧ EXEG',
– E('U ) ≡  ∨ (' ∧ E('U )),
– CA' ≡ ' ∨ EACA'.

Let J'K = {q ∈ St ∣ q ∣= '}. Then, we have:

– JEG'K = J'K ∩ JEXEG'K,
– JE('U )K = J K ∪ (J'K ∩ JEXE('U )K)
– JCA'K = J'K ∪ JEACA'K)

For each subset X ⊆ St, we can easily define algorithms computing the following
sets:

– pre(X) = {q ∈ St ∣ (∃q′ ∈ X) q → q′},
– indisi(X) = {q ∈ St ∣ (∃q′ ∈ X) q ∼i q′}, and
– indisEA(X) = {q ∈ St ∣ (∃q′ ∈ X) q ∼EA q′}.

Then, we have:

– JEG'K = J'K ∩ pre(JEG'K),
– JE('U )K = J K ∪ (J'K ∩ pre(JE('U )K)),
– JCA'K = J'K ∪ indisEA(JCA'K).

Next, define three functions on 2St, which fixed points are equal to respectively
JEG'K, JE('U )K, and JCA'K.

1. �EG'(X) = J'K ∩ pre(X),
2. �E('U )(X) = J K ∪ (J'K ∩ pre(X)),
3. �CA'

(X) = J'K ∪ indisEA(X).

Since EG' is the maximal fixpoint of �EG'(X), it can be computed as �kEG'(St)
for some finite k. Since E('U ) is the minimal fixpoint of �E('U )(X) it can

be computed as � lE('U )(∅) for some finite l. Similarly, for �CA'
(X). The above

characterization can be now used for defining a model checking algorithm mchk
for the formulas of CTLK.

mcℎk(M,') {
if ' ∈ PV , then return V −1('),
if ' = ¬ , then return St ∖mcℎk(M, ),
if ' = '1 ∧ '2, then return mcℎk(M,'1) ∩mcℎk(M,'2),
if ' = EX , then return mcℎkEX(M, ),
if ' = Ki , then return mcℎkKi

(M, ),
if ' = EG , then return mcℎkEG(M, ),
if ' = E(�U ), then return mcℎkEU(M,�,  ),
if ' = C , then return mcℎkC(M, ).
}



mcℎkEX(M, ){
X := mcℎk(M, );
Y := pre(X);
return Y };

mcℎkEKi
(M, ){

X := mcℎk(M, );
Y := indisi(X);
return Y };

mcℎkEG(M, ){
X := mcℎk(M, );
Y := St;
Z := ∅;
while (Z ∕= Y ){
Z := Y ;
Y := X ∩ pre(Y )}
return Y };

mcℎkEU(M, 1,  2){
X := mcℎk(M, 1);
Y := mcℎk(M, 2);
Z := ∅;
W := St;
while (Z ∕= W ){
W := Z;
Z := Y ∪ (X ∩ pre(Z))}
return Z };

mcℎkC(M, ){
Y := mcℎk(M, );
Z := ∅;
W := St;
while (Z ∕= W ){
W := Z;
Z := Y ∪ indisEA(Z))}
return Z };

References: The original state labelling algorithm for CTL was introduced in
[13]. More information on model checking CTL can be found in [76, 43]. CTLK
is treated extensively in [68].

For other non-symbolic approaches to model checking temporal-epistemic
properties, one may e.g. refer to [41]. There, a translation of a fragment of LTLK
to LTL is proposed, and the SPIN model checker is used for verification.



4 Specification of Agents and Their Teams

In this section we present modal logics that can be used to reason about strategies
and abilities of agents in game-like scenarios. We begin with a short exposition
of the game-theoretic inspiration (normal form models of games). However, it
should be pointed out that the current modal logic-based approaches to reason-
ing about strategic play are very weak in game-theoretic sense. They are based
on worst case analysis (“surely winning”) and binary winning conditions, and
hence roughly correspond to maxmin analysis in two-player zero-sum games with
binary payoffs. Some attempts have been made at incorporating more sophis-
ticated solution concepts like Nash equilibrium, dominance, Paret-optimality
etc. [39, 38, 95, 103, 12] as well as probabilistic features like chance nodes and
mixed strategies [19, 46, 10, 87, 42]. Still, none of them matches the elegance and
simplicity of the way models and solution concepts are defined in game theory.

4.1 Games and Strategies

Interactions between autonomous and rational agents acting strategically have
been extensively studied in the field of game theory. The models used in game
theory can be categorised into two types: non-cooperative games, in which the
possible actions of individual players are taken as primitives, and coalitional (or
cooperative) games, in which the possible joint actions of groups of players are
taken as primitives.

A standard model in non-cooperative game theory is that of a strategic game.
In a strategic game, it is assumed that each agent chooses her future actions (her
strategy) once and for all at the beginning of the game, and that all agents do
this simultaneously. Formally, a strategic game is a tuple G = (Agt, {�i : i ∈
Agt}, o, St, {રi: i ∈ Agt}), where Agt is the set of agents, St is a set of states, �i
is the set of actions (or strategies) available to agent i, o associates an outcome
state o(a1, . . . , an) ∈ St with every tuple of actions (a1, . . . , an) ∈ ×i∈Agt�i,
and રi⊆ St × St is a preference relation (complete, reflexive, transitive) over
the outcome states for agent i. Leaving out the preference relations, we get a
strategic game frame G = (Agt, {�i : i ∈ Agt}, o, St).

Cooperation in games. Henceforth, a coalition is simply a group of agents.
Coalitional actions are tuples of individual actions, one per member of the coali-
tion; formally, �C =

∏
i∈C �i. An effectivity function models the power that

agents can obtain by forming coalitions. Given a set of states X, we can say that
a coalition C is effective for X if C can cooperate to ensure that the outcome
will be in X. Formally, an effectivity function for a set of players Agt over a set
of states St is a function

E : 2Agt → 22St

giving the sets of outcomes E(C) for which each coalition C is effective. Game
frame G induces an associated effectivity function EG as follows:

X ∈ EG(C)⇔ ∃�C ∈ �C ∀�Agt∖C ∈ �Agt∖C . o(�C , �Agt∖C) ∈ X.



Effectivity functions induced from game frames in this way are called �-
effectivity functions in social choice theory.

References: [71] is a standard textbook in game theory. [66] approaches game-
theoretical concepts from multi-agent systems perspective. Effectivity functions
and related correspondence results are studied in [73, 33]

4.2 Coalition Logic

Modal logics of strategic ability form one of the fields where logic and game
theory can successfully meet. Marc Pauly’s Coalition Logic (CL) formalises rea-
soning about the abilities of coalitions. The language of CL extends propositional
logic with a modality [C] for each coalition C. The intended meaning of [C]' is
that C can make the outcome of the game satisfy '.

Formally, the language is interpreted over coalition models

M = (St,E, V )

where St is a set of states, V : PV → 2St an interpretation of atomic propositions
PV in the states, and

E : St→ (2Agt → 22St

)

assigns to each q ∈ St an effectivity function E(q).3 The semantics of [C]' is
defined as follows:

M, q ∣= [C]� iff �M ∈ E(q)(C)

where �M = {q ∈ St : M, q ∣= �}.
Since the coalition models being used are usually based on �-effectivity func-

tions of some strategic game, formulae of Coalition Logic can be alternatively
seen as statements about strategic game forms.

References: Coalition Logic was introduced and studied in [73].

4.3 ATL

Coalition Logic allows only to reason about agents’ outcomes in strategic (one-
step) games. What if a game consists of multiple steps, like in the case of exten-
sive form games? In this section, we focus on Alternating-time Temporal Logic
(ATL), one of the most important logics of time and strategies that have emerged
in recent years. ATL can be seen as a generalization of the branching time tem-
poral logic CTL (Computation Tree Logic), in which path quantifiers (E: “there
is a path”, A: “for every path”) are replaced with strategic quantifiers ⟨⟨A⟩⟩. The
formula ⟨⟨A⟩⟩', where A is a coalition of agents, expresses the claim that A has
a collective strategy to enforce the temporal property ' throughout the interac-
tion. Moreover, ATL formulas include the usual temporal operators: X (“in the
next state”), G (“always from now on”), F (“sometime in the future”), and U
(“until”).

3 E(q) is usually required to satisfy some structural constraints, cf. [73] for details.



Several semantics have been introduced for ATL, of which the one based on
concurrent game structures (CGS ) is perhaps the most popular. A concurrent
game structure M = ⟨Agt, St, Act, d, o, V ⟩ includes: a nonempty finite set of
agents Agt = {1, ..., k}; a nonempty set of global states St of the system; a set
of (atomic) actions Act; function d : Agt× St→ 2Act defining the set of actions
available to an agent in a state; a valuation of propositions V : St → 2PV ;
finally, a (deterministic) transition function o which assigns an outcome state
q′ = o(q, �1, . . . , �k) to state q and a tuple of actions ⟨�1, . . . , �k⟩ that can
be executed by Agt in q. Note that a concurrent game structure can be seen
as a collection of interconnected strategic game forms, or, alternatively, as a
generalized extensive game form (plus a valuation of propositions).

A strategy of agent a is a conditional plan that specifies what a is going
to do for every ‘possible situation’. For an agent with no implicit recall of the
past, a strategy can be thus represented by function sa : St → Act such that
sa(q) ∈ da(q), i.e., a function that specifies a valid choice of action for each state
of the system. For agents with perfect recall, this would be sa : St+ → Act such
that sa(q0q1...qi) ∈ da(qi), i.e., one that specifies a valid choice of action for each
history of the game. A collective strategy sA for a group of agents A is a tuple of
strategies, one per agent from A. Then, by outM (q, sA) (or just out(q, sA)) we
denote the set of all paths that may result from agents A executing strategy sA
from state q onward. The semantics of strategic quantifiers is defined as follows:

M, q ∣= ⟨⟨A⟩⟩ iff there is a strategy sA, such that M,� ∣=  for every � ∈
out(q, sA);

M,� ∣= X iff M,�1 ∣= ;
M,� ∣= G iff M,�i ∣=  for all i ≥ 0;
M,� ∣= 1U2 iff for some i ≥ 0 (�i ∣= 2 and for all (0 ≤ j < i) �j ∣= 1).

Additionally, the “sometime” modality can be defined as: F ≡ ⊤U.
Note that concurrent game structures do not allow to represent any kind

of uncertainty, and strategies can freely assign arbitrary choices in states (resp.
histories). In consequence, ATL can be seen as a logic for reasoning about agents
with perfect information. That is, it is implicitly assumed that each agent always
knows the current state of the game precisely, and in particular he can distin-
guish between any pair of global states. The notions of perfect vs. imperfect
information will be address more formally in Section 4.4.

The above clauses define the semantics of the full version of alternating-time
logic, usually called ATL* for historical reasons. It must be noted, however, that
the typical variant of ATL, used in the literature, is restricted to formulae in
which every temporal operator is immediately preceded by exactly one cooper-
ation modality. We will usually refer to the restricted variant as “vanilla” ATL.

Example 5 (Robots and Carriage, ctd.). Models and languages in Section 2 en-
abled studying evolution of the robots and carriage as a whole. However, they
did not allow us to represent who can achieve what, and how possible actions of
the agents interact. Concurrent game structure M4, presented in Figure 4, fills
the gap. We assume that each robot can either push (action pusℎ) or refrain from
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Fig. 4. The robots and the carriage: a concurrent game structure M4.

pushing (action wait). Moreover, both robots use the same force when pushing.
Thus, if they push simultaneously or wait simultaneously, the carriage does not
move. When only one of the robots is pushing, the carriage moves accordingly.

As the outcome of each robot’s action depends on the current action of the
other robot, no agent can make sure that the carriage moves to any particular
position. So, we have for example that M4, q0 ∣= ¬⟨⟨1⟩⟩Fpos1. On the other
hand, the agent can at least make sure that the carriage will avoid particular
positions. For instance, it holds that M4, q0 ∣= ⟨⟨1⟩⟩G¬pos1, the right strategy
being s1(q0) = wait, s1(q2) = pusℎ (the action in q1 is irrelevant).

We observe that ATL syntactically embeds two important logics. First, the
branching time logic CTL can be seen as a strategic logic with a very limited set
of strategic quantifiers (as the CTL path quantifiers can be embedded in ATL
with the following definitions: E' ≡ ⟨⟨Agt⟩⟩', A' ≡ ⟨⟨∅⟩⟩'). Second, Coalition
Logic can be seen as the “next”-fragment of ATL, with the following embedding
of the central modality of CL: [A]' ≡ ⟨⟨A⟩⟩X'. We also point out that ATL
embeds CTL semantically because CTL can be seen as the single-agent fragment
of ATL. More precisely, CTL is equivalent to ATL interpreted over structures
that include only one player (“the system”).

Bisimulation in ATL. The concept of bisimulation is central in modal logic,
and is for example very useful in order to study the key meta-logical property
of expressiveness. Bisimulation is a relationship between semantic structures,
and it is typically the case that bisimilar structures satisfy exactly the same
formulae. Then, we immediately know something about the expressiveness of
the logical language: if two structures are bisimilar and one of them has some
property while the other has not, then that property is not expressible in the
logical language. The following is an adaption [2] of the standard modal logic
notion of a bisimulation to CGSs.

First, let D(q, C) =
∏
i∈C di(q) denote the set of joint actions of coalition C

in state q. For aC ∈ D(q, C), let

nextM (q,aC) = {o(q, �) : there is � ∈ D(q,Agt) such that ai = �i for all i ∈ C}



denote the set of possible next states in CGS M when coalition C choose actions
aC .

Given two concurrent game structures, M1 = (Agt, St1, Act1, d1, o1, V1) and
M2 = (Agt, St2, Act2, d2, o2, V2), and a set of agents C ⊆ Agt, a relation � ⊆
St1 × St2 is a C-bisimulation between M1 and M2, denoted M1 ⇄C

� M2, iff for
all states q1 ∈ St1 and q2 ∈ St2, we have that q1�q2 implies the following:

Local harmony V1(q1) = V2(q2);
Forth For all joint actions a1

C ∈ D1(q1, C) for C, there exists a joint action
a2
C ∈ D2(q2, C) for C such that for all states q′2 ∈ nextM2

(q2,a
2
C), there

exists a state q′1 ∈ nextM1
(q1,a

1
C) such that q′1�q

′
2;

Back Likewise, for 1 and 2 swapped.

A relation � is a bisimulation between M1 and M2, denoted M1 ⇄� M2, if � is
a C-bisimulation between M1 and M2 for every C ⊆ Agt.

Using this notion of bisimulation, we can characterise the expressiveness of
ATL as mentioned above. It is especially relevant when one wants to study the
role of memory. Two different ways to define strategies are, first, as mappings
from states to actions, and second, as mappings from sequences of states (histo-
ries) to actions. We call the first type memoryless strategies, modelling agents
who base their actions on the current state only, and the second perfect recall
strategies, modelling agents who base their strategies on the history of states.
The semantics of ATL can be defined using either; by restricting the quantifi-
cation (“there is a strategy..”) in the semantic clauses to the appropriate class
of strategies. To make the distinction formal, we will refer to the two seman-
tics as ∣=IR , ∣=Ir for “no recall” vs. “perfect Recall” (“I” stands for “perfect
Information”, cf. Section 4.4 for more details).

We can now show that the language of “vanilla” ATL cannot discern between
bisimilar CGSs (neither with memoryless nor with perfect recall strategies). In
consequence, for “vanilla” ATL, memory does not matter: the interpretation of
a formula (its truth value in a state of a structure) is the same whether we use
only memoryless strategies or whether we use perfect recall strategies. On the
other hand, memory matters for ATL∗: the truth of a formula depends on the
type of recall characterizing agents in the coalition.

Theorem 4 ([2]). ATLIr is invariant under bisimulation. That is, if M1 ⇄�

M2 and s1�s2, then for every ATL formula ' we have that:

M1, s1 ∣=Ir ' iff M2, s2 ∣=Ir '.

The proof is somewhat technical; we refer to [2] for details.

Theorem 5 ([2]). For “vanilla” ATL, memory does not matter. That is, M, q ∣=Ir

' iff M, q ∣=
IR
'.

Proof (Sketch). Let fincompM (q) denote the set of finite prefixes of computa-
tions starting in q. Let ℓ(q0 ⋅ ⋅ ⋅ qk) = qk. Given a CGS M = (Agt, St, Act, d, o, V )
and q ∈ St, the tree-unfolding T (M, q) of M from q is defined as follows:

T (M, q) = (Agt, St∗, Act, d∗, o∗, V ∗),



Fig. 5. Memory matters in ATL∗: a concurrent game structure with single agent a

where St∗ = fincompM (q); V ∗(�) = V (ℓ(�)); d∗i (�) = di(ℓ(�)); and o∗(�,a) =
�o(ℓ(�),a).

First, we observe that the tree unfolding includes exactly the same possibili-
ties of action as the original model. Formally, for any M , q, we have T (M, q) ⇄�

M where � = {(�, ℓ(�)) ∣ � ∈ fincompM (q)}. Second, perfect recall strate-
gies in M correspond exactly to memoryless the tree unfolding of M . Thus,
T (M, q), q ∣=

Ir
' ⇔ M, q ∣=

IR
' for every q and '. Finally, by invariance under

bisimulation, we obtain that M, q ∣=
Ir
'iffT (M, q), q ∣=

Ir
' iff M, q ∣=

IR
'.

Corollary 1 ([2]). ATLIR is also invariant under bisimulation.

Theorem 6 ([2]). For ATL∗ memory matters. That is, there is a pointed model
M, q and a formula ' such that the truth of ' in the model is different in the Ir
and IR semantics.

Proof. To see this, it suffices to consider the single-agent CGS M given in Fig-
ure 5 and ' ≡ ⟨⟨a⟩⟩(Xp ∧XX¬p).

References: Our presentation of ATL and its properties follows [4]. Meta-
properties like axiomatization and model equivalence for ATL have been studied
in [34, 2].

4.4 Strategic Reasoning for Imperfect Information

Bringing strategies and knowledge together: ATEL. ATL does not take
into account the epistemic limitations of the agents; it assumes that every agent
has complete information about the global state of the system. The Alternating-
time Temporal Epistemic Logic ATEL was introduced in [98] as a straightforward
combination of the multi-agent epistemic logic and ATL in order to formalize rea-
soning about the interaction of knowledge and abilities of agents and coalitions.
ATEL enables specification of various modes and nuances of interaction between
knowledge and strategic abilities, e.g.: ⟨⟨A⟩⟩'→ EA⟨⟨A⟩⟩' (if group A can bring
about ' then everybody in A knows that they can), EA⟨⟨A⟩⟩'∧¬CA⟨⟨A⟩⟩' (the
agents in A have mutual knowledge but not common knowledge that they can
enforce '); ⟨⟨i⟩⟩' → Ki¬⟨⟨Agt ∖ {i}⟩⟩¬' (if i can bring about ' then she knows
that the rest of agents cannot prevent it), etc.



Models of ATEL are concurrent epistemic game structures (CEGS):

M = ⟨Agt, St, Act, d, o, V,∼1, ...,∼k⟩

combining the CGS-based models for ATL and the multi-agent epistemic models.
The semantics of ATEL takes union of the semantic clauses for ATL and those
from epistemic logic.

Problems with ATEL. While ATEL extends both ATL and epistemic logic,
it also raises a number of conceptual problems. Most importantly, one would ex-
pect that an agent’s ability to achieve property ' should imply that the agent has
enough control and knowledge to identify and execute a strategy that enforces '.
A number of approaches have been proposed to overcome this problem. Most of
the solutions agree that only uniform strategies (i.e., strategies that specify the
same choices in indistinguishable states) are really executable. However, in order
to identify a successful strategy, the agents must consider not only the courses of
action, starting from the current state of the system, but also from states that
are indistinguishable from the current one. There are many cases here, especially
when group epistemics is concerned: the agents may have common, ordinary, or
distributed knowledge about a strategy being successful, or they may be hinted
the right strategy by a distinguished member (the “leader”), a subgroup (“head-
quarters committee”) or even another group of agents (“consulting company”).

Levels and modes of strategic ability. There are several possible interpre-
tations of A’s ability to bring about property , formalized by formula ⟨⟨A⟩⟩,
under imperfect information:

1. There exists behavior specification �A (not necessarily executable!) for agents
in A such that, for every execution of �A,  holds,

2. There is a uniform strategy sA such that, for every execution of sA,  holds
(A have objective ability to enforce ),

3. A know that there is a uniform sA such that, for every execution of sA, 
holds (A have a strategy “de dicto” to enforce ),

4. There is a uniform sA such that A know that, for every execution of sA, 
holds (A have a strategy “de re” to enforce ).

Note that the above interpretations form a sequence of increasingly stronger
levels of ability – each next one implies the previous ones.

Case 4 is arguably most interesting, as it formalizes the notion of agents in A
knowing how to play. However, the statement “A know that every execution of
sA satisfies ” is precise only if A consists of a single agent a. Then, we take into
account the paths starting from states indistinguishable from the current one
according to a (i.e.,

∪
q′∈img(q,∼a) out(q

′, sa)). In case of multiple agents, there
are several different “modes” in which they can know the right strategy. That
is, given strategy s, coalition A can have:

– Common knowledge that s is a winning strategy. This requires the least
amount of additional communication when coordinating a joint strategy



(agents from A may agree upon a total order over their collective strategies
at the beginning of the game and that they will always choose the maximal
winning strategy with respect to this order);

– Mutual knowledge that s is a winning strategy: everybody in A knows that
s is winning;

– Distributed knowledge that s is a winning strategy: if the agents share their
knowledge at the current state, they can identify the strategy as winning;

– “Leader”: the strategy can be identified by an agent a ∈ A;
– “Headquarters committee”: the strategy can be identified by a subgroup
A′ ⊆ A;

– “Consulting company”: the strategy can be identified by another group B;
– ...other cases are also possible.

We will briefly present two variants of ATL that take into account the above
considerations.

Economic solution: Schobbens’ ATLir and ATLiR. In [88] a natural tax-
onomy of four strategy types was introduced and labeled as follows: I (resp. i)
stands for perfect (resp. imperfect) information, and R (resp. r) refers to per-
fect recall (resp. no recall). The semantics of ATL can be parameterized with
the strategy type – yielding four different semantic variants of the logic, labeled
accordingly (ATLIR, ATLIr, ATLiR, and ATLir).

Like for ATEL, models are concurrent game structures augmented with a
family of indistinguishability relations ∼a⊆ St × St, one per agent a ∈ Agt.
It is required that agents have the same choices in indistinguishable states: if
q ∼a q′ then d(a, q) = d(a, q′). We define two histories ℎ = q0q1 . . . qn and
ℎ′ = q′0q

′
1 . . . q

′
n′ to be indistinguishable for agent a under perfect recall (ℎ ≈a ℎ′)

iff n = n′ and qi ∼a q′i for i = 1, . . . , n.
The following types of strategies are used in the respective semantic variants:

– Ir : sa : St→ Act such that sa(q) ∈ d(a, q) for all q;
– IR: sa : St+ → Act such that sa(q0 . . . qn) ∈ d(a, qn) for all q0, . . . , qn;
– ir : like Ir , with the additional constraint that q ∼a q′ implies sa(q) = sa(q′);
– iR: like IR, with the additional constraint that ℎ ≈a ℎ′ implies sa(ℎ) =
sa(ℎ′).

That is, strategy sa is a conditional plan that specifies a’s action in each state
of the system (for memoryless agents) or for every possible history of the sys-
tem evolution (for agents with perfect recall). Moreover, imperfect information
strategies4 specify the same choices for indistinguishable states (resp. histories).
As before, collective xy-strategies sA are tuples of individual xy-strategies sa,
one per a ∈ A. Note that the constraints in collective strategies refer to individ-
ual choices and individual relations ∼a (resp. ≈a), and not to collective choices
and any derived relations (e.g., ∼EA and ≈EA).

We obtain the semantics for ATLxy by changing the clause for ⟨⟨A⟩⟩ from
Section 4.3 in the following way:

4 We have already used the term uniform strategies exactly for this concept.
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Fig. 6. Two robots and a carriage: imperfect information concurrent game structure
M5. Dashed lines represent indistinguishability relations between states.

M, q ∣=xy ⟨⟨A⟩⟩ iff there is an xy-strategy sA for agents A such that for each
path � ∈

∪
q′∈img(q,∼E

A) out(q
′, sA), we have M,� ∣=xy .

Note that the above semantics of coalitional ability implements the “every-
body knows” mode of identifying the strategy.

Example 6. Let us consider the concurrent epistemic game structure M5 in Fig-
ure 6 that combines the strategic structure from model M4 (Figure 4) with the
epistemic relations from M1 (Figure 1). Now, no agent knows how to make the
carriage reach or avoid any selected state singlehandedly from q0, i.e., M5, q0 ∣=iy

¬⟨⟨i⟩⟩Fposj and M5, q0 ∣=iy ¬⟨⟨i⟩⟩G¬posj for all y ∈ {r,R}, i ∈ {1, 2}, j ∈ {1, 2, 3}.
Note in particular that the strategy from Example 5 cannot be used here because
it is not uniform. The robots cannot even identify the right strategy together,
e.g., M5, q0 ∣=iy ¬⟨⟨1, 2⟩⟩G¬pos1 (when in q0, robot 2 considers it possible that
the system is already in the “bad” state q1). So, do the robots know how to play
to achieve anything? Yes, for example they know how to make the carriage reach
a particular state eventually: M5, q0 ∣=iy ⟨⟨1, 2⟩⟩Fpos1 etc. – it suffices that one
of the robots pushes all the time and the other waits all the time.

For the above properties the type of robots’ recall does not matter (they hold
in both memoryless and perfect recall strategies). ⟨⟨1, 2⟩⟩FGpos1 is an example
ATL* formula that distinguishes between the two sets of strategies.

Constructive Strategic Logic. Most existing solutions (ATLir [88], ETSL [101])
treat only some of the cases (albeit in an elegant way), while others (ATOL [54],
“Feasible ATEL” [55]) offer a more general treatment of the problem at the ex-
pense of an overblown logical language. Constructive Strategic Logic (CSL) [49],
on the other hand, proposes a solution which we believe to be both intuitive, gen-
eral and elegant. However, there is a price to pay here, too. In CSL, formulae are
interpreted over sets of states rather than single states. We write M,Q ∣= ⟨⟨A⟩⟩'
to express the fact that A must have a strategy which is successful for all “open-
ing” states from Q. New epistemic operators Ki,EA,ℂA,DA for “practical” or
“constructive” knowledge yield the set of states for which a single evidence (i.e.,



q0

q1

bad-market

loss

success

2
1

c
c

c
wait

subproduction

own-productio
n

own-production

own-production

subproduction

subproduction

q2

ql

qs

oligopoly

s&m

wait

wait

Fig. 7. Simple market: model M6

a successful strategy) should be presented (instead of checking if the required
property holds in each of the states separately, like standard epistemic operators
do).

M,Q ∣= ⟨⟨A⟩⟩' iff there is a uniform strategy sA such that M,� ∣= ' for every
� ∈ ∪q∈Q out(q, sA);

M,Q ∣= Ki' iff M, {q′ ∣ ∃q∈Q q ∼i q′} ∣= ';
M,Q ∣= ℂA' iff M, {q′ ∣ ∃q∈Q q ∼CA q′} ∣= ';
M,Q ∣= EA' iff M, {q′ ∣ ∃q∈Q q ∼EA q′} ∣= ';
M,Q ∣= DA' iff M, {q′ ∣ ∃q∈Q q ∼DA q′} ∣= '.

We point out that in CSL:

1. Ka⟨⟨a⟩⟩' refers to agent a having a strategy “de re” to enforce ' (i.e. having
a successful uniform strategy and knowing the strategy);

2. Ka⟨⟨a⟩⟩' refers to agent a having a strategy “de dicto” to enforce ' (i.e.
knowing only that some successful uniform strategy is available);

3. ⟨⟨a⟩⟩' expresses that agent a has a uniform strategy to enforce ' from the
current state (but not necessarily even knows about it).

Thus, Ki⟨⟨i⟩⟩' captures the notion of i’s knowing how to play to achieve
', while Ki⟨⟨i⟩⟩' refers to knowing only that a successful play is possible. This
extends naturally to abilities of coalitions.

Example 7 (Market scenario). Consider an industrial company that wants to
start production, and looks for a good strategy when and how it should do it.
The market model is depicted in Figure 7. The economy is assumed to run in
simple cycles: after the moment of bad economy (bad-market), there is always
a good time for small and medium enterprises (s&m), after which the market



tightens and an oligopoly emerges. At the end, the market gets stale, and we
have stagnation and bad economy again.

The company c is the only agent whose actions are represented in the model.
The company can wait (action wait) or decide to start production: either on
its own (own-production), or as a subcontractor of a major company (subpro-
duction). Both decisions can lead to either loss or success, depending on the
current market conditions. However, the company management cannot recog-
nize the market conditions: bad market, time for small and medium enterprises,
and oligopoly market look the same to them, as the epistemic links for c indicate.

The company can call the services of two marketing experts. Expert 1 is
a specialist on oligopoly, and can recognize oligopoly conditions (although she
cannot distinguish between bad economy and s&m market). Expert 2 can recog-
nize bad economy, but he cannot distinguish between other types of market. The
experts’ actions have no influence on the actual transitions of the model, and are
omitted from the graph in Figure 7. It is easy to see that the company cannot
identify a successful strategy on its own: for instance, for the small and medium
enterprises period, we have that M6, q1 ∣= ¬Kc⟨⟨c⟩⟩Fsuccess. It is not even enough
to call the help of a single expert: M6, q1 ∣= ¬K1⟨⟨c⟩⟩Fsuccess∧¬K2⟨⟨c⟩⟩Fsuccess,
or to ask the experts to independently work out a common strategy: M6, q1 ∣=
¬E{1,2}⟨⟨c⟩⟩Fsuccess. Still, the experts can propose the right strategy if they join
forces and cooperate to find the solution: M6, q1 ∣= D{1,2}⟨⟨c⟩⟩Fsuccess.

This is not true any more for bad market, i.e., M6, q0 ∣= ¬D{1,2}⟨⟨c⟩⟩Fsuccess,
because c is a memoryless agent, and it has no uniform strategy to enforce success
from q0 at all. However, the experts can suggest a more complex scheme that in-
volves consulting them once again in the future, as evidenced by
M6, q0 ∣= D{1,2}⟨⟨c⟩⟩X D{1,2}⟨⟨c⟩⟩Fsuccess.

References: Imperfect information variants of ATL have been studied in nu-
merous papers. We recomend especially [88, 49]. The former clarifies the basic
conceptual structure of what it means to have strategic ability for some temporal
property. The latter give a more involved treatment of the interplay between the
epistemic and the strategic dimensions.



5 Verification of Strategic Abilities

We present an overview of complexity results for model checking strategic logic.
The survey is based on the overview papers [47] and especially [9].

5.1 Model Checking ATL and CL: Perfect Information

One of the main results concerning ATL states that its formulae can also be
model-checked in deterministic linear time, analogously to CTL. It is important
to emphasize, however, that the result is relative to the number of transitions in
the model and the length of the formula.

The ATL model checking algorithm from [4] is presented in Figure 8. The al-
gorithm employs the well-known fixpoint characterizations of strategic-temporal
modalities:

⟨⟨A⟩⟩G'↔ ' ∧ ⟨⟨A⟩⟩X⟨⟨A⟩⟩G'
⟨⟨A⟩⟩'1U'2 ↔ '2 ∨ '1 ∧ ⟨⟨A⟩⟩X⟨⟨A⟩⟩'1U'2,

and computes a winning strategy step by step (if it exists). That is, the algorithm
starts with the appropriate candidate set of states (∅ for U and the whole set
St for G), and iterates backwards over A’s one-step abilities until the set gets
stable. It is easy to see that the algorithm needs to traverse each transition at
most once per subformula of '. Note that it does not matter whether perfect
recall or memoryless strategies are used: the algorithm is correct for the IR-
semantics, but it always finds an Ir -strategy. Thus, for an ATL-formula ⟨⟨A⟩⟩,
if A have an IR-strategy to enforce , they also have an Ir -strategy to obtain it.

Theorem 7 (ATLIr and ATLIR [4]). Model checking ATLIr and ATLIR is
P-complete, and can be done in time O(∣M ∣ ⋅ ∣'∣), where ∣M ∣ is given by the
number of transitions in M .

Proof (Sketch). Each case of the algorithm is called at most O(∣'∣) times and
terminates after O(∣M ∣) steps [4]. The latter is shown by translating the model to
a two-player game [4], and then solving the “invariance game” on it in polynomial
time [5]. Hardness is shown by a reduction of reachability in And-Or-Graphs,
which was shown to be P-complete in [44], to model checking the (constant)
ATL-formula ⟨⟨1⟩⟩Fp in a two player game. In each Or-state it is the turn of
player 1 and in each And-state it is player 2’s turn [4]. ⊓⊔

The next theorem shows that model checking of coalition logic is as hard as
for ATL.

Theorem 8 (CLIr and CLIR [9]). Model checking CLIr and CLIR is P-
complete, and can be done in time O(∣M ∣ ⋅ ∣'∣), where ∣M ∣ is given by the number
of transitions in M .



function mcℎeck(M,').

ATL model checking. Returns the set of states in model M = ⟨Agt, St, V, o⟩ for which
formula ' holds.

case ' ∈ PV : return V (p)
case ' = ¬ : return St ∖mcℎeck(M, )
case ' =  1 ∨  2 : return mcℎeck(M, 1) ∪mcℎeck(M, 2)
case ' = ⟨⟨A⟩⟩X : return pre(M,A,mcℎeck(M, ))
case ' = ⟨⟨A⟩⟩G :
Q1 := St; Q2 := mcℎeck(M, ); Q3 := Q2;
while Q1 ∕⊆ Q2

do Q1 := Q2; Q2 := pre(M,A,Q1) ∩Q3 od;
return Q1

case ' = ⟨⟨A⟩⟩ 1U 2 :
Q1 := ∅; Q2 := mcℎeck(M, 1);
Q3 := mcℎeck(M, 2);
while Q3 ∕⊆ Q1

do Q1 := Q1 ∪Q3; Q3 := pre(M,A,Q1) ∩Q2 od;
return Q1

end case

function pre(M,A,Q).

Auxiliary function; returns the exact set of states Q′ such that, when the system is in
a state q ∈ Q′, agents A can cooperate and enforce the next state to be in Q.

return {q ∣ ∃�A∀�Agt∖A o(q, �A, �Agt∖A) ∈ Q}

Fig. 8. The ATL model checking algorithm from [4]

Proof. The upper bound follows from the fact that CL is a sublanguage of ATL.
We show P-hardness by the following adaption of the reduction of And-Or-Graph
reachability from [4]. Firstly, we observe that if a state y is reachable from x in
graph G then it is also reachable via a path whose length is bounded by the
number n of states in the graph. Like in the proof of Theorem 7, we take G to
be a turn-based CGS in which player 1 “owns” all the Or-states and player 2
“owns” all the And-states. We also label node y with a special proposition y, and
replace all the transitions outgoing from y with a deterministic loop. Now, we
have that y is reachable from x in G iff G, x ∣= ⟨⟨1⟩⟩X . . . ⟨⟨1⟩⟩X︸ ︷︷ ︸

n-times

y. The reduction

uses only logarithmic space. ⊓⊔

It is worth pointing out, however, that checking strategic properties in one-
step games is somewhat easier. We recall that AC0 is the class corresponding to
constant-depth, unbounded-fanin, polynomial-size Boolean circuits with AND,
OR, and NOT gates [31]. We call a formula flat if it contains no nested cooper-
ation modalities. Moreover, a formula is simple if it is flat and does not include
Boolean connectives. For example, the language of “simple CL” consists only of
formulae p and ⟨⟨A⟩⟩Xp, for p ∈ PV and A ⊆ Agt.



Theorem 9 (Simple CLIr and CLIR [64]). Model checking “Simple CLIr”
and “Simple CLIR” with respect to the number of transitions in the model and
the length of the formula is in AC0.

Proof (Sketch). For M, q ∣= ⟨⟨A⟩⟩Xp, we construct a 3-level circuit [64]. On the
first level, we assign one AND gate for every possible coalition B and B’s collec-
tive choice �B .5 The output of the gate is “true” iff �B leads to a state satisfying
p for every response of Agt ∖ B. On the second level, there is one OR gate per
possible coalition B that connects all the B’s gates from the first level and out-
puts “true” iff there is any successful strategy for B. On the third level, there is
a single AND gate that selects the right output (i.e., the one for coalition A). ⊓⊔

5.2 Model Checking ATL and CL: Imperfect Information

In contrast to the perfect information setting, analogous fixpoint characteriza-
tions need not hold for the incomplete information semantics over ATL. This is
because the choice of a particular action at a state q has non-local consequences:
it automatically fixes agent i’s choices at all states q′ indistinguishable from q
for i. Note that, for two different members of coalition A, uniformity of their
parts of the coalitional strategy imposes different constraints on their choices if
their epistemic relations are not exactly the same. Moreover, the agents’ ability
to identify a strategy as winning also varies throughout the game in an arbitrary
way (agents can learn as well as forget). This suggests that winning strategies
cannot be synthesized incrementally. Note that, in order to check M, q ∣= ⟨⟨A⟩⟩
(where  includes no nested cooperation modalities), the following procedure
suffices. Firstly, we guess a uniform strategy sA of team A (by calling an NP
oracle), and then verify the strategy by pruning M accordingly (removing all
the transitions that are not going to be executed according to sA) and model-
checking the CTL-formula A in the resulting model. For nested cooperation
modalities, we proceed recursively (bottom up). Since model checking CTL can
be done in polynomial deterministic time, the procedure runs in polynomial de-
terministic time with calls to an NP oracle, which demonstrates the inclusion
in ΔP

2 = PNP [88]. As it turns out, a more efficient procedure does not exist,
which is confirmed by the following result.

Theorem 10 (ATLir [88, 53]). Model checking ATLir is ΔP
2 -complete in the

number of transitions in the model and the length of the formula.

Proof (Sketch). The discussion above proves the membership in ΔP
2 . ΔP

2 -hardness
was shown in [53] through a reduction of sequential satisfiability (SNSAT2), a
standard ΔP

2 -complete problem [65]. The idea is that there are two agents where
one agent tries to verify a (nested) propositional formula and a second agent tries
to refute it. A winning strategy of the “verifier agent” corresponds to a satisfying

5 The number of coalitions is exponential in the number of agents, but polynomial in
the size of the input (provided that p ≥ 2) because there are at least 2∣Agt∣ transitions
in the model.



function mcℎeck(M, q, ').

Model checking CL formulae of type ' ≡ ⟨⟨a1, a2⟩⟩Xp.

Let Q = [q]∼A and D = da1(q)× da2(q);
while there is still a collective action (�1, �2) in D do:

■ fix �1 for a1 in [q]∼a1
and �2 for a2 in [q]∼a2

.
■ for every state in [q]∼A there is at most one agent in A for whom the action has not

been fixed. if ai’s action is not fixed for q′, q′′ such that q′ ∼ai q′′ then collapse
q′, q′′ into a single state (taking the union of the outgoing transitions). repeat
iteratively;

■ if in the resulting perfect information CEGS A have a one-step strategy to enforce
p in the next state then return true else remove (�1, �2) from D and revert to
the original model M ;

if the loop ended with no success (i.e., there are no more available actions) then return
false.

Fig. 9. Model checking Coalition Logic for small teams and imperfect information

valuation of the formula. Uniformity of the verifier’s strategy is needed to ensure
that identical proposition symbols, occurring at different places in the formula,
are assigned the same truth values. ⊓⊔

Now we consider the incomplete information setting for Coalition Logic. It
is easy to see that the iR- and ir-sematics are equivalent for CL since X is the
only temporal operator, and thus only the first action in a strategy matters. As
a consequence, whenever there is a successful iR-strategy for agents A to enforce
X', then there is also an ir -strategy for A to obtain the same. Perfect recall of
the history does not matter in one-step games. Surprisingly, what matters is the
size of teams that are allowed to cooperate.

Theorem 11 (CLir and CLiR [11]). Model checking CLir and CLiR for for-
mulae that include only strategic operators ⟨⟨A⟩⟩ with ∣A∣ ≤ 2 is P-complete wrt
the number of transitions in the model and the length of the formula, and can be
done in time O(∣M ∣ ⋅ ∣'∣).

Proof. The P-hardness follows from Theorem 8 (perfect information CGS’s can
be seen as a special kind of CEGS where the indistinguishability relations contain
only the reflexive loops).

To obtain the upper bound, we use the algorithm in Figure 9 to model check
M, q ∣= ⟨⟨A⟩⟩Xp (with A = {a1, a2}). It is easy to see that the algorithm never
processes the same transition twice. For ⟨⟨A⟩⟩X' with nested cooperation modal-
ities, we proceed recursively (bottom up). ⊓⊔

Theorem 12 (CLir and CLiR [11]). Model checking CLir and CLiR for ∣A∣ ≥
3 is between NP and ΔP

2 wrt the number of transitions in the model and the
length of the formula. It is conjectured to be ΔP

2 -complete.
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Proof. The upper bound is obtained by the following algorithm. To check M, q ∣=
⟨⟨A⟩⟩Xp, we guess a one-step strategy of A, remove from M the irrelevant transi-
tions and states outside [q]∼A

, and check if p holds for all the remaining “next”
states. For ⟨⟨A⟩⟩X' with nested cooperation modalities, we proceed recursively
(bottom up).

For the lower bound, we use a reduction of the Boolean satisfiability problem
(SAT). Given a Boolean formula � in CNF, we construct a 3-agent CEGS M� as

follows. Each literal l from clause  in � is associated with a state q l . At state

q l , player 1 indicates a literal from  , and player 2 decides on the valuation of
the underlying Boolean variable. If 1 indicated a “wrong” literal l′ ∕= l then the
system proceeds to state q⊤ where proposition yes holds. The same happens if 1
indicated the “right” literal (l) and 2 selected the valuation that makes l true.
Otherwise the system proceeds to the “sink” state q⊥.

Player 1 must select literals uniformly within clauses, so q l ∼1 q
 ′

l′ iff  =  ′.

Player 2 is to select uniform valuations of variables, i.e., q l ∼2 q
 ′

l′ iff var(l) =
var(l′) where var(l) is the variable contained in l. Finally, all states except
q⊤, q⊥ are indistinguishable for 3. An example of the construction is presented
in Figure 10.

Then, � is satisfiable iff M�, q ∣= ⟨⟨1, 2, 3⟩⟩Xyes where q is an arbitrary “lit-
eral” state. ⊓⊔

The last possibility for defining the semantics of ATL is to assume imperfect
information and perfect recall of agents. The problem has been recently proved
undecidable in [21].

Theorem 13 (ATLiR [21]). Model checking ATLiR is undecidable.

Proof (Sketch). The proof follows by a reduction of the non-halting problem for
nondeterministic Turing machines. Given a machine T , we construct a CEGS
M such that the evolution of the configuration of T is simulated by the tree



of computations in M . That is, subsequent configurations of T are represented
by subsequent levels in the tree unfolding of M . There are 3 agents in M : the
proponents (agents 1 and 2) who “move” the head of the tape in T , and the
opponent (agent 3) who takes care of splitting the branches (i.e., adding new
symbols to the tape whenever they are needed). The indistinguishability relations
for 1 and 2 are constructed so that moving the head (and possibly changing the
current state of T ) proceeds uniformly; 1 takes care of the left-hand side of the
head, and 2 of the right-hand side. Special proposition ok labels elements of
configurations from which T has to proceed further. Thus, we get that T does
not terminate iff M, q0 ∣= ⟨⟨1, 2⟩⟩Gok.

For more details, we refer to the technical construction in [21]. ⊓⊔

Remark 1. The theorem is well aligned with the tradition of previous undecid-
ability results [78, 77, 80, 100, 91, 90]. However, contrary to what most people had
thought, it did not follow from those results.

In the papers [78, 77], solving games with imperfect information, perfect recall
and multiple proponents is proved undecidable, but those games are defined
by Turing machines. In case of ATLiR models can be seen as Büchi automata
with simple acceptance conditions (reachability or safety). We note that, for
games defined by Turing machines, more sophisticated “winning conditions”
can be specified, e.g., we can imagine a game in which the protagonist agents
must count specific actions of the opponent in order to win. As a more precise
example, imagine a game in which team T1 = {a1, a2} is playing against the
“environment” agent a0 in the following way: first, the opponent (a0) throws
in any finite number of ⃝ symbols onto the tape, and then agents a1, a2 can
write a number of #’s, before they decide to “call”. After that, a0 checks if the
amounts of ⃝’s and #’s are the same: if so, team T1 wins, otherwise it loses the
game. Clearly, such a winning condition cannot be specified through a CEGS
model with a subset of states marked as “winning” states, because the language
{⃝n#n�! ∣ n ∈ ℕ} is not !-regular. Moreover, using a Turing Machine allows to
define more sophisticated rules of how the game proceeds, e.g. the protagonists
can be allowed to put another symbol □ on the tape only when they have already
put as many #’s as there are ⃝’s left by the opposition.

The paper [80] shows that that the LTL realizability problem for distributed
systems is undecidable. In fact, this implies that model checking of ATL∗iR is
undecidable, but it does not carry over to “vanilla” ATLiR. This is because
“winning conditions” in [80] are defined through LTL specifications, so we have
winning paths rather than states. Moreover, the reduction of the halting problem
to the realizability problem employs LTL formulae that are not expressible in
CTL and ATL (cf. [27]).

Finally, the paper [100] shows undecidability of model checking LTL with
perfect recall and common knowledge, and [91, 90] gives analogous results for
CTL. However, ATLiR does not allow for expressing common knowledge with
perfect recall.

It is worth pointing out that for single-agent coalitions the model checking
problem is decidable – more precisely, EXPTIME-complete [22]. The decidabil-



ity follows also from a more general result in [35] stating that model checking
abilities of coalitions with unrestricted communication is decidable.

5.3 Model Checking ATL∗

We now turn to model checking for the broader logic ATL∗.

Theorem 14 (ATL∗IR [4]). Model checking ATL∗IR is 2EXPTIME-complete
in the number of transitions in the model and the length of the formula.

Proof (Sketch). Let M be a CGS and ⟨⟨A⟩⟩ be an ATL∗-formula (where we
assume that  is an LTL-formula). Given a strategy sA of A and a state q
in M the model can be unfolded into a q-rooted tree representing all possible
behaviors with agents A following their strategy sA. This structure can be seen
as the tree induced by out(q, sA) and we will refer to it as a (q, A)-execution tree.
Note that every strategy profile for A may result in a different execution tree.
Now, a Büchi tree automaton AM,q,A can be constructed that accepts exactly
the (q, A)-execution trees [4].

Secondly, it was shown that one can construct a Rabin tree automaton which
accepts all trees that satisfy the CTL∗-formula A [26]. Hence, the ATL∗-formula
⟨⟨A⟩⟩ is satisfied in M, q if there is a tree accepted by AM,q,A (i.e., it is a (q, A)-
execution tree) and by A (i.e., it is a model of A ).

The lower bound is shown by a reduction of the 2EXPTIME-complete
problem of the realizability of LTL-formulae [79, 85, 4]. ⊓⊔

On the other hand, model checking ATL∗ with memoryless strategies is no
worse than for LTL and CTL∗ with perfect as well as imperfect information.

Theorem 15 (ATL∗ir and ATL∗Ir [88]). Model checking ATL∗ir and ATL∗Ir is
PSPACE-complete in the number of transitions in the model and the length of
the formula.

Proof (Sketch). ATL∗ embeds LTL (every LTL formula ' is equivalent to the
ATL∗ formula ⟨⟨∅⟩⟩') which renders model checking ATL∗ with memoryless
strategies to be PSPACE-hard.

On the other hand, there is a PSPACE algorithm for model checking ATL∗

with memoryless strategies (for perfect as well as imperfect information). Con-
sider the formula ⟨⟨A⟩⟩ where  is an LTL-formula. Then, an ir -strategy sA
for A is guessed and the model is “trimmed” according to sA, i.e. all transi-
tions which cannot occur by following sA are removed. Note that a memoryless
strategy can be guessed in polynomially many steps, and hence also using only
polynomially many memory cells. In the new model the CTL∗-formula A is
checked. This procedure can be performed in NPPSPACE, which renders the

complexity of the whole language to be in PNPPSPACE

= PSPACE. ⊓⊔
The following is an immediate consequence of Theorem 13.

Theorem 16 (ATL∗iR). Model checking ATL∗iR is undecidable.

Figure 11 presents an overview of the model checking complexity results for
explicit models.
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Fig. 11. Overview of the model checking complexity results for explicit models. All
results except for “Simple CL” are completeness results. Each cell represents the logic
over the language given in the row using the semantics given in the column. † The
problem is P-complete for formulae including only small coalitions (of at most 2 agents)
and between NP and ΔP

2 in general. We conjecture that it is ΔP
2 -complete in the latter

case.

5.4 Complexity for Compact Representation of Transitions

In this section we consider the complexity of the model checking problem with
respect to the number of states, agents, and an implicitly encoded transition
function rather than the (explicit) number of transitions. It is easy to see that, for
CGS’s, the number of transitions can be exponential in the number of states and
agents. Therefore, all the algorithms presented in Sections 5.1-5.3 give us only
exponential time bounds provided that the encoding of the transition function
is sufficiently small.

Proposition 1 ([51, 4]). Let n be the number of states in a concurrent game
structure M , let k denote the number of agents, and d the maximal number of
available decisions (moves) per agent per state. Then, the number of transitions
m = O(ndk). Therefore the ATLIR/ATLIr model checking algorithm from [4]
runs in time O(ndkl) where l is the length of the formula, and hence its com-
plexity is exponential if the number of agents is a parameter of the problem.

In comparison, for an unlabeled transition system with n states and m tran-
sitions, we have that m = O(n2). This means that CTL model checking is in
P also with respect to the number of states in the model and the length of
the formula. The following theorem is an immediate corollary of the fact (and
Theorem 1).

Theorem 17. CTL model checking over unlabeled transition systems is P-complete
in the number of states and the length of the formula, and can be done in time
O(n2l).

For ATL and concurrent game structures, however, the situation is different.
In the following we make precise what we mean by a compressed transition
function.

Implicit concurrent game structures (called this way first in [64], but already
present in the ISPL modeling language behind MCMAS [82, 81]) are defined
similarly to CGS’s but the transition function is encoded in a more compact
way by a sequence

(('r0, q
r
0), . . . , ('rtr , q

r
tr ))r=1,...,∣Q∣



where tr ∈ ℕ0, qri ∈ St and each 'ri is a Boolean combination of propositions
execj� where j ∈ Agt, � ∈ Act, i = 1, . . . , t and r = 1, . . . , ∣Q∣. It is required
that 'rtr = true. The term execj� stands for “agent j executes action �”. We
use '[�1, . . . , �k] to refer to the Boolean formula over {true, false} obtained by
replacing exec

aj
� with true (resp. false) if �j = � (resp. �j ∕= �). The encoding

defines a transition function ô as follows:

ô(qi, �1, . . . , �k) = qij where j = min{� ∣ 'i�[�1, . . . , �k] ≡ true}

That is, ô(qi, �1, . . . , �k) returns the state belonging to the formula 'i� (as-
sociated with state qi) with the minimal index � that evaluates to “true” given
the actions �1, . . . , �k. Note that the function is well defined as the last formula
in each sequence is given by true: no deadlock can occur. The size of ô is defined
as ∣ô∣ =

∑
r=1,...,∣Q∣

∑
j=1,...,tr

∣'rj ∣, that is, the sum of the sizes of all formulae.

Hence, the size of an implicit CGS is given by ∣St∣+ ∣Agt∣+ ∣ô∣. Recall that the
size of an explicit CGS is ∣St∣+ ∣Agt∣+m where m is the number of transitions.

Remark 2. Note that if the transition function is given by an array that explicitly
enumerates all transitions then the complexity is trivially linear (or even lower)
in the size of the input which includes the representation of the transition func-
tion. However, enumerating the exponentially many transitions is not feasible in
all but the simplest models.

Theorem 18 ([64, 51, 53]). Model checking ATLIR and ATLIr over implicit
CGS’s is ΔP

3 -complete with respect to the size of the model (defined by the num-
ber of states, agents, and implicit transitions) and the length of the formula.

Proof (Sketch). The idea of the proof for the lower bound is clear if we reformu-
late the model checking of M, q ∣= ⟨⟨a1, . . . , ar⟩⟩X' as

∃(�1, . . . , �r)∀(�r+1, . . . , �k) M,o(q, �1, . . . , �k) ∣= ',

which closely resembles QSAT2, a typical ΣP
2 -complete problem. A reduction

of this problem to our model checking problem is straightforward. For each
instance of QSAT2, we create a model where the values of propositional variables
p1, . . . , pr are “declared” by agents A and the values of pr+1, . . . , pk by Agt ∖A.
The subsequent transition leads to a state labeled by proposition yes iff the
given Boolean formula holds for the underlying valuation of p1, . . . , pk. Then,
QSAT2 reduces to model checking formula ⟨⟨a1, . . . , ar⟩⟩Xyes [51]. In order to
obtain ΔP

3 -hardness, the above schema is combined with nested cooperation
modalities, which yields a rather technical reduction of the SNSAT3 problem
that can be found in [64].

For the upper bound, we consider the following algorithm for checking M, q ∣=
⟨⟨A⟩⟩ with no nested cooperation modalities. Firstly, guess a strategy sA of the
proponents and fix A’s actions to the ones described by sA. Then check if A
is true in state q of the resulting model by asking an oracle about the existence
of a counterstrategy sĀ for Agt ∖ A that falsifies  and reverting the oracle’s



answer. The evaluation takes place by calculating ô (which takes polynomially
many steps) regarding the actions prescribed by (sA, sĀ) at most ∣St∣ times. For
nested cooperation modalities, we proceed recursively (bottom-up). ⊓⊔

Surprisingly, the imperfect information variant of ATL is no harder than the
perfect information one under this measure:

Theorem 19 ([53]). Model checking ATLir over implicit CGS’s is ΔP
3 -complete

with respect to the size of the model and the length of the formula. This is the
same complexity as for model checking ATLIr and ATLIR.

Proof (Sketch). For the upper bound, we use the same algorithm as in checking
ATLIr. For the lower bound, we observe that ATLIr can be embedded in ATLir by
explicitly assuming perfect information of agents (through the minimal reflexive
indistinguishability relations). ⊓⊔

The ΔP
3 -hardness proof in Theorem 18 uses the “nexttime” and “until” tem-

poral operators in the construction of an ATL formula that simulates SNSAT3 [64].
However, the proof can be modified so that only the “nexttime” sublanguage of
ATL is used. We obtain thus an analogous result for coalition logic. Details of
the new construction can be found in [8].

Theorem 20. Model checking CLIR, CLIr, CLir, and CLiR over implicit CGS’s
is ΔP

3 -complete with respect to the size of the model and the length of the formula.

It is worth mentioning that model checking “Positive ATL” (i.e., the fragment
of ATL where negation is allowed only on the level of literals) is ΣP

2 -complete
with respect to the size of implicit CGS’s, and the length of formulae for the
IR, Ir , and ir -semantics [53]. The same applies to “Positive CL”, the analogous
variant of coalition logic.

5.5 CTL and ATL∗ Revisited

Theorem 21 ([9]). Model checking CTL over implicit CGS’s is ΔP
2 -complete

with respect to the size of the model and the length of the formula.

Proof (Sketch). For the upper bound, we observe thatM, q ∣=CTL E iffM, q ∣=ATLIR

⟨⟨Agt⟩⟩ which is in turn equivalent to M, q ∣=ATLIr ⟨⟨Agt⟩⟩. In other words, E
holds iff the grand coalition has a memoryless strategy to achieve . Thus, we
can verify M, q ∣=CTL E (with no nested path quantifiers) as follows: we guess
a strategy sAgt for Agt (in polynomially many steps), then we construct the
resulting model M ′ by asking ô which transitions are enabled by following the
strategy sA and check if M ′, q ∣=CTL E and return the answer. Note that M ′ is
an unlabeled transition system, so constructing M ′ and checking M ′, q ∣=CTL E
can be done in polynomial time. For nested modalities, we proceed recursively.

For the lower bound, we sketch a reduction of SAT to model checking CTL-
formulae with only one path quantifier. For propositional variables p1, . . . , pk and
boolean formula ', we construct an implicit CGS where the values of p1, . . . , pk
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Fig. 12. Overview of the model checking complexity results for implicit CGS. All results
are completeness results. Each cell represents the logic over the language given in the
row using the semantics given in the column.

are “declared” by agents Agt = {a1, . . . , ak} (in parallel). The subsequent transi-
tion leads to a state labeled by proposition yes iff ' holds for the underlying val-
uation of p1, . . . , pk. Then, SAT reduces to model checking formula ⟨⟨Agt⟩⟩Xyes.
The reduction of SNSAT2 (to model checking CTL-formulae with nested path
quantifiers) is an extension of the SAT reduction, analogous to the one in [52,
53]. ⊓⊔

Theorem 22. Model checking ATL∗Ir and ATL∗ir over implicit CGS’s is PSPACE-
complete with respect to the size of the model and the length of the formula.

Proof. We observe that every explicit CGS can be encoded as an implicit CGS
with no blowup in size. In consequence, the lower bound follows from Theo-
rem 15.

For the upper bound, we model-check M, q ∣= ⟨⟨A⟩⟩ by guessing a memory-
less strategy sA for coalition A, then we guess a perfect information memoryless
counterstrategy sĀ of the opponents. Having a complete strategy profile, we pro-
ceed as in the proof of Theorem 21 and check the LTL path formula  on the
resulting (polynomial model) M ′ which can be done in polynomial space (The-
orem 15). For nested cooperation modalities, we proceed recursively. ⊓⊔

Theorem 23 ([64]). Model checking ATL∗IR over implicit CGS’s is 2EXPTIME-
complete with respect to the size of the model and the length of the formula.

Proof. Again, the lower bound follows from Theorem 14. For the upper bound,
we have to modify the algorithm given in the proof of Theorem 14 so that it is
capable of dealing with implicit models. More precisely, we need to modify the
construction of the Büchi automaton AM,q,A that is used to accept the (q,A)-
execution trees. Before, we simply checked all the moves of A in polynomial time
and calculated the set of states A is effective for (as the moves are bounded by the
number of transitions). Here, we have to incrementally generate all these moves
from A using ô. This may take exponential time (as there can be exponentially
many moves in terms of the number of states and agents). However, as this can
be done independently of the non-emptiness check, the overall runtime of the
algorithm is still double exponential. ⊓⊔

A summary of complexity results for the alternative representation of tran-
sitions is presented in Figure 12.



5.6 Higher-Order Representations of Models

Explicit models of realistic systems are prohibitively large, both in their size
of state spaces and numbers of transitions. Thus, for practical verification, the
model of a system must be given in a more compact way, for instance by gen-
erating the state space as valuations of some discrete-valued attributes, and
defining transitions through their pre- and postconditions. In this section, we
summarize very briefly the results for such high-level representations of multi-
agent systems (e.g., concurrent programs, reactive modules, modular interpreted
systems etc.). It is easy to see that unfolding a compact representation to an
explicit model involves usually an exponential blowup in its size. Consider, for
example, a system whose state space is defined by r boolean variables (binary
attributes). Obviously, the number of global states in the system is n = 2r. A
more general approach is presented in [63], where the “high-level description” is
defined in terms of concurrent programs, that can be used for simulating Boolean
variables, but also for processes or agents acting in parallel.

A concurrent program P is composed of k concurrent processes, each de-
scribed by a labeled transition system Pi = ⟨Sti, Acti,→i,PVi, Vi⟩, where Sti
is the set of local states of process i, Acti is the set of local actions, →i⊆
Sti × Acti × Sti is a local transition relation, and PVi, Vi are the set of lo-
cal propositions and their valuation. The behavior of program P is given by
the product automaton of P1, . . . , Pk under the assumption that processes work
asynchronously, actions are interleaved, and synchronization is obtained through
common action names.

Theorem 24 ([63]). Model checking CTL in concurrent programs is PSPACE-
complete with respect to the number of local states and agents (processes), and
the length of the formula.

Analogous results have been proved for compact representations of repeated
games.

Theorem 25 ([96, 48]). Model checking ATLIr and ATLIR in simple reactive
modules [96] and modular interpreted systems [50, 48] is EXPTIME-complete
with respect to the number of local states and agents, and the length of the for-
mula.

The real surprise, however, comes to light when we study the model checking
complexity for imperfect information agents.

Theorem 26 ([50, 48]). Model checking ATLir in modular interpreted systems
is PSPACE-complete with respect to the number of local states and agents, and
the length of the formula.

Thus, model checking in modular interpreted systems seems to be easier
for imperfect rather than perfect information strategies (while it appears to
be distinctly harder for explicit models, cf. Sections 5.1-5.2). There are two
reasons for that. The more immediate is that agents with limited information



have fewer available strategies than if they had perfect information about the
current (global) state of the game. Generally, the difference is exponential in the
number of agents. More precisely, the number of perfect information strategies
is double exponential with respect to the number of agents and their local states,
while there are “only” exponentially many uniform strategies – and that settles
the results in favor of imperfect information.

The other reason is more methodological. While model checking imperfect
information is easier when we are given a particular mis, modular interpreted
systems may provide more compact representation to systems where all the
agents have perfect information by definition. In particular, the most compact
mis representation of a given CEGS M can be exponentially larger than the most
compact mis representation of M with the epistemic relations removed. This is
because in the former case, the mis must encode the epistemic relations explicitly
(like in standard interpreted systems where epistemic relations are generated by
local state spaces, cf. Section 2.5). In the latter case, the epistemic aspect is
ignored, which gives some extra room for encoding the transition relation more
efficiently.

On the other hand, it should be noted that for systems of agents with “rea-
sonably imperfect information”, i.e., ones where the number of each agent’s
local states is logarithmic in the number of global states of the system, the op-
timal mis encodings for perfect and imperfect information are the same. Still,
model checking ATLIR is EXPTIME-complete and model checking ATLir is
PSPACE-complete, which suggests that imperfect information can be beneficial
in practical verification.

Finally, we report two results that are straightforward extensions of Theo-
rem 20 and Theorem 26, respectively.

Theorem 27. Model checking CLIR, CLIr, CLir, and CLiR is ΔP
3 -complete

with respect to the number of local states and agents in the modular interpreted
system and the length of the formula. Moreover, it is ΣP

2 -complete for the “sim-
ple” variants of CL.

Theorem 28. Model checking ATL∗ir in modular interpreted systems is PSPACE-
complete with respect to the number of local states and agents, and the length of
the formula.

Despite the pessimistic complexity results, several techniques have been pro-
posed for practical model checking of knowledge, time, and strategies. We discuss
them in the next section.

References: Our exposition of verification complexity for different variants of
ATL follows mostly [9], though it was revised and updated with new results from
e.g. [21, 11].



6 Practical Model Checking

In this section we discuss how model checking of CTLK can be made more fea-
sible. We present approaches based on a translation to Ordered Binary Decision
Diagrams, as well as ones that use a translation to Boolean satisfiability (so called
Bounded Model Checking and Unbounded Model Checking). Finally, we look at
Unbounded Model Checking for ATEL. We start with a short introduction to
OBDDs and SAT solving.

6.1 Introduction to OBDDs

OBDDs (Ordered Binary Decision Diagrams) are used for succinct representa-
tion of Boolean functions. Model checking problem for CTLK can be efficiently
encoded into operations on OBDDs. Consider a Boolean function:

f : {0, 1}n −→ {0, 1}

Such a function can be represented by the results of all the valuations of some
propositional formula over n propositional variables. For example the function
f(x1, x2) = x1 ∗x2 is represented by the formula p1 ∧ p2. Each Boolean function
can be represented by an OBDD. The size of the BDD is determined both by
the function being represented and the chosen ordering of the variables. For a
boolean function f(x1, . . . , xn) then depending upon the ordering of the variables
we would end up getting a graph whose number of nodes would be linear (in n)
at the best and exponential at the worst case.

Let us consider the Boolean function f(x1, . . . , x2n) = x1x2 + x3x4 + ⋅ ⋅ ⋅ +
x2n−1x2n. Using the variable ordering x1 < x3 < ⋅ ⋅ ⋅ < x2n−1 < x2 < x4 < ⋅ ⋅ ⋅ <
x2n, the BDD needs 2n+1, nodes to represent the function. Using the ordering
x1 < x2 < x3 < x4 < ⋅ ⋅ ⋅ < x2n−1 < x2n, the BDD consists of 2n nodes.

The following operations can be implemented by polynomial-time graph ma-
nipulation algorithms: disjunction, conjunction, negation, implication, equiva-
lence, existential abstraction, and universal abstraction.

6.2 Introduction to SAT

This part of the section aims at explaining the main principles followed by propo-
sitional SAT-solvers, i.e., algorithms testing satisfiability of propositional formu-
las. Our presentation is based on [6, 70].

Assume we are given a propositional formula '. The aim of a SAT-solver is to
find a satisfying assignment for ' if it exists, or return “unsatisfiable” otherwise.
It is well known that the problem of establishing whether a formula is satisfiable
or not (known as a SAT-problem) is NP-complete. Therefore, in general, one
cannot expect that a SAT-solver will return a result in polynomial time. We
should be aware of the fact that a SAT-solver is heuristics only, but it can be
very “clever”. Modern SAT-solvers can decide formulas composed of hundreds of



thousands of propositional variables in a reasonable time. Typically, SAT-solvers
accept formulas in conjunctive normal form (CNF), i.e., a conjunction of clauses,
where a clause is a disjunction of literals. Such a form is quite useful for checking
satisfiability, as any valuation, which makes at least one literal of each clause
satisfied, makes the whole formula satisfied.

Every propositional formula ' can be translated to a CNF formula in two
ways. Either the resulting CNF formula preserves only satisfiability of ' or it is
logically equivalent to '. Clearly, the former translation is much easier than the
latter and it is used for checking satisfiability of '. If we need to operate further
on ', then an equivalence-preserving translation is necessary.

There are several approaches used to check satisfiability of propositional for-
mulas. They can be based on St̊almarck’s method [89], use methods of soft com-
puting (Monte Carlo, evolutionary algorithms) or exploit the theory of resolution
[30]. Here, we discuss the algorithm proposed by Davis and Putnam [18] and later
improved by Davis, Logemann and Loveland [17], known as DPLL. The solution
is based on a backtracking search algorithm through the space of possible assign-
ments of a CNF formula. The algorithm uses the methods of boolean constraint
propagation (BCP), conflict-based learning (CBL), and variable selection (VS).

References. Our presentation is based on [6, 70] and [76].

6.3 OBBD-Based Model Checking for CTLK

The algorithms from Section 3 (computing, for each formula ', the set of states
J'K in which ' holds) can operate on the OBDD representations of the states.
This requires to encode the states and the transition relation of a model M by
propositional formulas, and then to represent these formulas by OBDDs.

The model checking problem M, s0 ∣= ' is translated to checking whether
s0 ∈ J'K. So, we need to verify whether OBDD({s0}) ∧ OBDD(J'K) is not
equal to OBDD(∅), where OBDD(S) denotes the OBDD representing the set
of states S.

6.4 Unbounded versus Bounded Model Checking

So far we have discussed model checking approaches that consist in checking a
given formula over the whole model. We will refer to a symbolic version of this
approach as to the unbounded model checking (UMC, for short). When the model
we are dealing with is too large to be (even) symbolically encoded, one can apply
the alternative approach, called bounded model checking (BMC, for short). In
this case only an existential subset of the logic can be verified. BMC consists
in translating the model checking problem of an existential modal formula (a
formula containing only existential modalities) into the problem of satisfiability
of a propositional formula6. In particular, the BMC algorithm checks for a finite
witness among all (possibly infinite) paths of the system satisfying a given exis-
tential modal formula. Below, we discuss the above approaches in more detail.

6 Alternativley, a BDD-based approach can be used



6.5 SAT-Based Approaches to Model Checking for CTLK

We extend CTLK with past operators to the logic CTLpK. The reason is
twofold: to extend expressivness and to easily define unbounded model checking
for CTLK.

– AH' - always in the past ' holds,
– AY' - for all the predecessor states ' holds,
– EP' - for some state in the the past ' holds,
– EY' - for some predecessor state ' holds.

The logic ACTLpK is the restriction of CTLpK such that it consists of the for-
mulas of the form: AX�, AY�, A(�U�), AG�, AH�, Ki�, EA�, DA�, CA�. So,
the formulas are only in the universal form (no negation applied to modalities).
The language of ECTLpK is defined as: {¬' ∣ ' ∈ ACTLpK}.

After ’pushing’ negation down the formula, we have the formulas only in the
existential form (no negation applied to modalities): EX�, EY�, E(�U�), EG�,
EP�, EA�, DA�, CA�.

Idea of Bounded Model Checking (BMC). The idea consists in proving
that an ECTLpK formula holds or that an ACTLpK formula does not hold
in M . Consider a formula '. If ' ∈ ACTLpK, then as ' we take its negation.
So, we can assume that ' ∈ ECTLpK. Next, we consider a fragment M ′ of the
model M , preserving ', i.e., such that M ′ ∣= ' implies M ∣= '. Consequently,
we translate the model checking problem M ′ ∣= ' to the problem of satisfiability
of the propositional formula [M ′]∧ [']M ′ , where [M ′] is a propositional encoding
of M ′ and [']M ′ is a propositional encoding of ' interpreted in M ′. So, we
have M ′ ∣= ' iff [M ′] ∧ [']M ′ is satisfiable. Next, we check the satisfiability of
[M ′] ∧ [']M ′ with a SAT-solver. If [M

′
] ∧ [']M ′ is satisfiable, then M ∣= '.

Algorithm BMC for an ECTLpK formula '. Typically, a fragment M ′ of
the full model M is taken as an unfolding of M up to some depth k, called the
k-model. Below, we define the k-model and the function loop, which is used to
check whether a finite path of length k (called a k-path) is a loop, i.e., represents
an infinite path.

Definition 1 (k−model). Let M = (St,R,∼1, . . . ,∼n, V ) be a model and
� ∈ St be the initial state. For simplicity, we assume that all the states St
are reachable from �, but this assumption can easily be dropped. The k−model
for M is a structure Mk = (St, Pk,∼1, . . . ,∼n, V ), where St is the set of the
global states, and Pk with k ∈ IN+ is the set of all the k-paths of M . The func-
tion loop: Pk → 2IN is defined as follows: loop(�) = {l ∣ 0 ≤ l ≤ k and
(�(k), �(l)) ∈→}.

Satisfaction for the temporal formulas EG� in the bounded case depends on
whether or not the k-computation � defines a loop, i.e., whether loop(�) ∕= ∅.



Bounded semantics for ECTLpK. A propositional translation of an ECTLpK
formula is based on the bounded semantics, which uses k-paths instead of infi-
nite paths like in the standard semantics. Let s ∈ St and Mk be the k-model for
some k ∈ IN+.

s ∣= EX� iff there is a k-path � ∈ Pk s.t. �(0) = s and �(1) ∣= �,
s ∣= EG� iff there is a k-path � ∈ Pk s.t. �(0) = s and

∀0≤j≤k�(j) ∣= � ∧ loop(�) ∕= ∅,
s ∣= E(�U�) iff there is a k-path � ∈ Pk s.t. �(0) = s and

∃0≤j≤k
(
�(j) ∣= � and ∀0≤i<j�(i) ∣= �

)
.

s ∣= EY� iff there is a k-path � ∈ Pk s.t. �(k) = s and �(k − 1) ∣= �,
s ∣= EP� iff there is a k-path � ∈ Pk s.t. �(k) = s and ∃0≤j≤k�(j) ∣= �,
s ∣= Ki� iff there is a k-path � ∈ Pk s.t. �(0) = � and

∃0≤j≤k(s ∼i �(j) and �(j) ∣= �),
s ∣= EA� iff there is a k-path � ∈ Pk s.t. �(0) = � and

∃0≤j≤k((∃i ∈ A) li(s) = li(�(j)) and �(j) ∣= �)
)
,

s ∣= DA� iff there is a k-path � ∈ Pk s.t. �(0) = � and
∃0≤j≤k((∀i ∈ A) li(s) = li(�(j)) and �(j) ∣= �)

)
,

s ∣= CA� iff s ∣=
⋁
i≤k(EA)i�.

Intuitively, the bounded semantics for s ∣= Ki� says that there is a k-path �,
which starts at the beginning state �, one of its states satisfies � and shares the
same i-local state with s.
Several translations into boolean formulas can be defined that are directly based
on the bounded semantics.

Computing the size of submodels of Mk. The function fk is used for
computing a sufficient number of k-paths in a submodel of Mk over which the
formula is to be checked. Define the function fk : ECTLpK → IN as follows:

– fk(p) = fk(¬p) = 0, where p ∈ PV,
– fk(� ∨ �) = max{fk(�), fk(�)},
– fk(� ∧ �) = fk(�) + fk(�),
– fk(Z�) = fk(�) + 1, for Z ∈ {EX,EY,EP,Ki,DA,EA},
– fk(CA�) = fk(�) + k,
– fk(EG�) = (k + 1) ⋅ fk(�) + 1,
– fk(E(�U�)) = k ⋅ fk(�) + fk(�) + 1.

BMC Algorithm for ECTLpK.

– Let ' be an ECTLpK formula,
– Iterate for k := 1 to ∣M ∣,
– Select the k−model Mk (of the k-paths),
– Select the fk(')-submodels of Mk (of fk(') k-paths),
– Translate the transition relation of the k−paths of Mk to a propositional

formula [M',�]k, where � is the initial state,
– Translate ' over all the fk(')-submodels to a propositional formula [']Mk

,
– Check the satisfiability of [M,']k := [M',�]k ∧ [']Mk

.



Unbounded Model Checking (UMC) for CTLpK. The method of UMC
differs from BMC in the encoding of the formulas, while it shares with BMC the
encoding of the states and the transition relation of the model. UMC exploits the
characterisation of the basic modalities in Quantified Boolean Formulas (QBF)
and algorithms that translate QBF and fixed point equations over QBF to propo-
sitional formulas.

M ∣= ' iff ['](w) ∧ I�(w) is satisfiable.

– w - a vector of propositional variables to encode the global states,
– ['](w) - a propositional encoding of the states of M in which ' holds,
– I�(w) - a symbolic encoding of the initial state �.

In what follows R(u, v) encodes the next step relation R, while Ri(u, v) encodes
the relation∼i, where u, v are vectors of propositional variables used for encoding
the global states. UMC exploits three basic procedures:

1. forall(v, ⋅) is applied to formulas Z� s.t. Z ∈ {AX,AY,Ki,DA,EA}, where
as before v is a vector of propositional variables to encode the global states.
This procedure eliminates the universal quantifier from a QBF formula rep-
resenting the formula Z� and returns the result in CNF.

2. gfpZ(�) is applied to formulas Z� s.t. Z ∈ {AG,AH,CA}.
3. lfpU(�, �) is applied to formulas A(�U�).

For 2 and 3 the procedures use the fixed point characterisation of the formu-
las. Operationally, one works outward from the most nested sub-formulas. To
compute [Z�](w), where Z is a modality, we work under the assumption of
already having computed [�](w). The formula [AX�](w) is equivalent to the
QBF formula ∀v.(R(w, v) ⇒ [�](v)). Similar equivalences can be obtained for
the formulas AY�,Ki�,DA�, and EA�. To calculate the actual translations we
use either the fixed point or the QBF characterisation of the CTLpK formulas
together with the three basic algorithms forall(), gfp(), and lfp().

Procedure forall(). This procdeure eliminates the universal quantifiers from
a QBF formula representing a modal formula. It is based on the Davis-Putnam-
Logemann-Loveland approach.

Procedures gfp - the simplest versions (no optimizations).

procedure gfpAG([�](w)), (* where � is a CTLpK formula *)

Q(w) := [true](w), Z(w) := [�](w)
while ¬(Q(w)⇒ Z(w)) is satisfiable

Q(w) := Z(w),
Z(w) :=forall(v, (R(w, v)⇒ Z(v))) ∧ [�](w)

return Q(w)



procedure gfpCA([�](w)), (* where � is an CTLpK formula *)

Q(w) := [true](w),

Z(w) = forall
(
v, ((

⋁
i∈ARi(w, v))⇒ [�](v))

)
;

while ¬(Q(w)⇒ Z(w)) is satisfiable

Q(w) := Z(w),

Z(w) = forall(v, ((
⋁
i∈ARi(w, v))⇒ (Z(v) ∧ [�](v)))),

return Q(w)

Procedure lfp - the simplest version (no optimizations).

procedure lfpAU ([�](w), [�](w)), (* where �, � are CTLpK formulas *)

Q(w) := [false](w), Z(w) := [�](w)
while ¬(Z(w)⇒ Q(w)) is satisfiable

Q(w) := Q(w) ∨ Z(w),
Z(w) :=forall(v, (R(w, v)⇒ Q(v))) ∧ [�](w)

return Q(w)

6.6 UMC for ATEL

Unbounded Model Checking can be also defined for ATL and, in fact, for the
straightforward combination of ATL and the epistemic logic (ATEL). Let us
assume that all the actions are represented in terms of their pre and post condi-
tions, i.e., pre(a) is a set of all the states from which the action a can be executed
and post(a) is a set of all states which can be reached after the execution of a.
This means that the action a can be executed at any state in pre(a) and takes
to any state in post(a). Moreover, by Acti we mean the set of all the actions
available to the agent i, where i ∈ Agt.

Next, we assume St ⊆ {0, 1}m, where m = ⌈log2(∣St∣)⌉, i.e., every state is
represented by a sequence consisting of 0’s and 1’s. Let � be a set of fresh
propositional variables such that � ∩ PV = ∅, F� be a set of propositional
formulas over �, and lit : {0, 1} × � → F� be a function defined as follows:
lit(0, p) = ¬p and lit(1, p) = p. Furthermore, let w = (w[1], . . . , w[m]) be a global
state variable, where w[i] ∈ � for each i = 1, . . . ,m. We use elements of St as
valuations7 of global states variables in formulas of F� . For example w[1]∧w[2]
evaluates to true for the valuation q = (1, . . . , 1), and it evaluates to false for
the valuation q = (0, . . . , 0).

Now, the idea consists in using propositional formulas of F� to encode sets
of states of St. For example, the formula w[1] ∧ . . . ∧ w[m] encodes the state
represented by (1, . . . , 1), whereas the formula w[1] encodes all the states, the
first bit of which is equal to 1.

7 We identify 1 with true and 0 with false.



The following propositional formulas are defined:

– Iq(w) :=
⋀m
i=1 lit(q[i], w[i]),

this formula encodes the state q = (q[1], . . . , q[m]), i.e., q[i] = 1 is encoded
by w[i], and q[i] = 0 is encoded by ¬w[i]; notice that q = (q[1], . . . , q[m])
is the only valuation of the global state variable w = (w[1], . . . , w[m]) that
satisfies Iq(w),

– prea(w) and posta(w) for every a ∈
∪
i∈AgtActi,

prea(w) is a formula which is true for a valuation q = (q[1], . . . , q[m]) of
w = (w[1], . . . , w[m]) iff q ∈ pre(a) and posta(w) is a formula which is true
for a valuation q = (q[1], . . . , q[m]) of w = (w[1], . . . , w[m]) iff q ∈ post(a).

The key element of the method is to translate ATL formulas into propositional
formulas. Specifically, for a given ATL formula � we compute a corresponding
propositional formula [�](w) which is satisfied by a valuation q = (q[1], . . . , q[m])
of w = (w[1], . . . , w[m]) iff s ∣= �. In so doing we obtain a formula [�](w) such
that � is valid in the model iff the conjunction [�](w)∧I�(w) is satisfiable. Notice
that [�](w) ∧ I�(w) is satisfiable only if [�](w) is valid for the valuation implied
by the initial state �. Operationally, we work outwards from the most nested
subformulas, i.e., to compute [O�](w), where O is a modality, we work under
the assumption of already having computed [�](w).

Given an ATEL formula ', the propositional translation ['](w) is inductively
defined as follows:

– let A = {i1, .., it} ⊆ Agt and B = {j1, .., jq} = Agt∖A,

[⟨⟨A⟩⟩X�](w) :=
⋁
ci1∈Acti1 ,..,cit∈Actit

(⋀t
i′=1 precii′

(w)∧forall
(
v,
⋀
cj1∈Actj1 ,

..,cjq∈Actjq (
⋀q
j′=1 precjj′

(w)∧
⋀q
j=1 postcjj′

(v)∧
⋀t
i′=1 postcii′

(v)⇒ [�](v))
))

,

– [Ki�](w) := forall
(
v, (Ri(w, v) ⇒ [�](v))

)
,

– [EA�](w) := forall
(
v, ((

⋁
i∈ARi(w, v))⇒ [�](v))

)
,

– [DA�](w) := forall
(
v, ((

⋀
i∈ARi(w, v))⇒ [�](v))

)
,

– [⟨⟨A⟩⟩G�](w) := gfpA([�](w)),
– [⟨⟨A⟩⟩�U�](w) := lfpA([�](w), [�](w)),
– [CA�](w) := gfpCA

([�](w)).

The algorithms gfp and lfp are based on the standard procedures computing
fixed points and are given below. In order to simplify the subsequent nota-
tion, we use [⟨⟨A⟩⟩XZ(w)](w) to denote the formula:

⋁
ci1∈Acti1 ,..,cit∈Actit

(⋀t
i′=1

preci
i′

(w)∧forall
(
v,
⋀
cj1∈Actj1 , ..,cjq∈Actjq

(
⋀q
j′=1 precjj′

(w)∧
⋀q
j=1 postcjj′

(v)∧⋀t
i′=1 postcii′

(v) ⇒ Z(v))
))

, where Z(v) is a propositional formula over the
global variable v encoding a subset of St.

procedure gfpA([�](w)), (* where � is an ATEL formula *)



Q(w) := [true](w), Z(w) := [�](w)

while ¬(Q(w)⇒ Z(w)) is satisfiable

Q(w) := Z(w),

Z(w) := [⟨⟨A⟩⟩XZ(w)](w) ∧ [�](w)

return Q(w)

procedure lfpA([�](w), [�](w)), (*where �, � are ATEL formulas *)

Q(w) := [false](w), Z(w) := [�](w)

while ¬(Z(w)⇒ Q(w)) is satisfiable

Q(w) := Q(w) ∨ Z(w),

Z(w) := [⟨⟨A⟩⟩X Q(w)](w) ∧ [�](w)

return Q(w)

References: Our presentation is based on the following papers:

– OBBD approach for CTLK - [83, 69],
– BMC approach for CTLK - [74, 75],
– BMC approach for CTLpK - [58],
– UMC approach for CTLK - [59, 56, 57],
– UMC approach for ATEL - [61].

For further reading, consult [68]. More details about the VerICS model checker
can be found in [20, 60].



7 Final Remarks

In these materials we surveyed several important logics for specification of multi-
agent systems, and the related approaches to automatic verification for MAS.
We paired specification languages with complexity results on their model check-
ing problems with different representations of systems. Moreover, we discussed
several model checking algorithms for temporal-epistemic and strategic logics,
starting from ones working directly on Kripke models, to those exploiting op-
erations on Binary Decision Diagrams and efficient SAT-solvers. Bounded and
unbounded model checking approaches have been identified and discussed as
well.

We would like to emphasize that specification and verification of multi agent
systems is a very rapidly developing area of computer science. Therefore, even
at the time of writing these materials new methods are emerging. In order to
become acquainted with them we refer the interested reader to the proceedings
of conferences AAMAS, IJCAI, ICSOC, ICEFM, MoChart, ATVA, etc. Below
we hesitantly list some open problems within the area, expecting that – at the
time this chapter gets to the reader – some of them may have been already
solved, and certainly many more research questions will have emerged:

– Logics for specification of MAS with perfect information are relatively well
studied. However, many issues regarding modeling, analysis, and reasoning
about systems with incomplete information are barely touched. This regards
e.g. axiomatization of ATL with imperfect information (some preliminary
results have been obtained in [35] but the research is far from complete).
Moreover, to our best knowledge, no satisfiability-checking algorithms for
any variant of ATL with imperfect information have been proposed;

– Model checking of strategies with incomplete information is largely left un-
touched (besides the theoretical complexity results that we presented in Sec-
tion 5);

– The coordination issue: the ATL formula ⟨⟨A⟩⟩ only requires that there
exists a winning strategy for A to achieve . However, the agents in A may
not be able to successfully coordinate if there are multiple joint strategies
with that property. Some work on this issue has been reported in [40] but
the research is still preliminary;

– Correspondence between abstract and concrete models of agents’ strategic
play is becoming to attract interest again. The issue is relatively well studied
for one-step games (cf. [73, 33]) but only begun to be investigated for multi-
step games where paths rather than states are outcomes [32];

– The connection between strategic logics and mainstream game theory is still
weak in the sense that game theory uses much more sophisticated models of
agents’ incentives and concepts of agents’ rationality. There have been several
attempts at characterizing game-theoretic solution concepts in modal logics
(e.g., [39, 38, 95, 103, 12]) but none of them satisfactory. In particular, none
of the proposals match the elegance and simplicity of models and concept
definitions in game theory;



– There are also open problems more closely related to practical verification of
multi-agent systems. Mainly, they concern applications of methods known
for verification of temporal logics, but not yet for logics of MAS. These
are bounded model checking for ATL, a combination of SAT- and BDD-
based verification methods for CTLK and ATL, verification of parametric
versions of epistemic and strategy logics and symbolic verification of hybrid
and probabilistic real-time epistemic logics.
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