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Abstract A well-known result in the logical analysis of cooperative games states
that the so-called playable effectivity functions exactly correspond to strategic
games. More precisely, this result states that for every playable effectivity function
E there exists a strategic game that assigns to coalitions of players exactly the same
power as E, and every strategic game generates a playable effectivity function.
While the latter direction of the correspondence is correct, we show that the former
does not hold for a number of infinite state games. We point out where the original
proof of correspondence goes wrong, and we present examples of playable effectivity
functions for which no equivalent strategic game exists. Then, we characterize
the class of truly playable effectivity functions, that do correspond to strategic
games. Moreover, we discuss a construction that transforms any playable effectivity
function into a truly playable one while preserving the power of most (but not all)
coalitions. We also show that Coalition Logic, a formalism used to reason about
effectivity functions, is not expressive enough to distinguish between playable and
truly playable effectivity functions, and we extend it to a logic that can make that
distinction while still enjoying the good meta-logical properties of Coalition Logic,
such as finite axiomatization and decidability via finite model property.
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1 Introduction

Several logics for reasoning about coalitional power have been proposed and stud-
ied in the last two decades. Eminent examples are: Alternating-time Temporal
Logic (ATL) [1], Coalition Logic (CL) [16], and Seeing To It That (STIT) [2], used
in computer science and philosophy to reason about properties of multi-agent sys-
tems. A crucial feature of these logics is their capacity to reason not only about
abstract cooperative games but also about strategic games, that are models of
non-cooperative behaviour.

In particular, the connection between the semantics of Coalition Logic and
strategic form games relies on Pauly’s representation theorem [16] which states that
for every playable effectivity function E there exists a strategic game that assigns
to coalitions of players exactly the same power as E, and every strategic game
generates a playable effectivity function. The correspondence has been used to ob-
tain further results for CL: if the semantics can be defined equivalently in terms of
strategic games and playable effectivity functions, they can be used interchange-
ably when proving properties of the logic. A similar remark applies to ATL and
STIT, related to Coalition Logic by a number of simulation results [4, 7, 10].

The relevance of Pauly’s result goes beyond the logical analysis of interac-
tion as it puts forward a characterization of strategic games in terms of coalitional

games, therefore establishing a connection between the two families of game mod-
els. In this paper, we show that the representation theorem fails in certain cases.
More precisely, we show that there are some playable effectivity functions with no
corresponding strategic games. We point out where the original proof of correspon-
dence goes wrong and present examples of playable effectivity functions for which
no equivalent strategic game exists. Then, we define a more restricted class of
effectivity functions, that we call truly playable, and show that it corresponds pre-
cisely to strategic games. Further, we present a construction that partly recovers
the original correspondence in the sense that it transforms any playable function
into a truly playable one while preserving the power of most (but not all) coali-
tions. Finally, we discuss the ramifications for the above mentioned logics. On the
one hand we show that the complete axiomatization of Coalition Logic from [16]
is not affected if we change the class of models from playable to truly playable.
On the other hand, we propose more expressive languages that can characterize
the property of true playability, thus drawing a logical distinction with Pauly’s
original notion of playability.

The paper is structured as follows: in Section 2 we introduce basic definitions
and results. In Section 3 we point out the problems with Pauly’s representation
theorem, and in Section 4 we provide a new representation theorem based on truly
playable effectivity functions. In Section 5 we discuss axiomatizations of Coalition
Logic and some of its extensions with respect to truly playable models. Section 6
wraps up the paper with concluding remarks and some possible consequences of
our result.

Preliminary versions of this work appeared in [8, 9]. This article extends them
with detailed proofs, examples and discussion.
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B s1 s2
S s2 s3

Fig. 1 Battle of Sexes. In the standard account outcomes are associated with vectors of
payoffs. Here we consider strategic game forms, that abstract away from players’ preferences.

2 Preliminaries

We begin by introducing the game-theoretic and logical notions used in the paper,
discussing their relevant features.

2.1 Strategic Games

Strategic games (also: normal form games) are basic models of non-cooperative
game theory [15]. Following [16], we focus on abstract game forms, where the
effect of strategic interaction between players is represented by abstract outcomes
from a given set and players’ preferences are not specified. For simplicity we refer
to them as strategic games.

Definition 1 (Strategic game) A strategic game G is a tuple (N, {Σi|i ∈ N}, o, S)
that consists of a nonempty finite set of players N , a nonempty set of strategies
Σi for each player i ∈ N , a nonempty set of outcomes S, and an outcome function
o :
∏
i∈N Σi → S which associates an outcome with every strategy profile.

Example 1 The well-known Battle of Sexes/Bach or Stravinsky scenario can be
modeled by the game in Figure 1. Normally, the following payoffs are also assigned:
pay1(s1) = pay2(s3) = 2, pay1(s3) = pay2(s1) = 1, and pay1(s2) = pay2(s2) = 0.
Alternatively, one can specify the players’ preferences as s2 <1 s3 <1 s1 and
s2 <2 s1 <2 s3. As in [16], the definition of strategic game that we use includes
only the bare strategic structure, without payoffs or preference relations.

For games where payoffs are given, the outcome function is often assumed a
bijection and consequently dispensed with [15]. Some works, mostly aiming at
formalizing the condition of non-imposedness in social choice theory [14],1 assume
surjectivity. As different scenarios may require different assumptions, we consider
games with arbitrary outcome functions, as done in [16].

Additionally, we follow [16] and define coalitional strategies σC in G as tuples
of individual strategies σi for i ∈ C, i.e., ΣC =

∏
i∈C Σi. Note that (regardless of

possible conceptual interpretations of the empty coalition ∅, cf. [5] for a discussion)
this definition allows for only one strategy σ∅ when C = ∅, namely the empty
function.

1 The condition of non-imposedness is also referred to as citizen sovereignty and it allows
players to freely choose among all possible alternatives in a decision process.
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E({1, 2}) = {{s1}, {s2}, {s3}, {s1, s2}, {s1, s3}, {s2, s3}, {s1, s2, s3}}
E({1}) = E({2}) = {{s1, s2}, {s2, s3}, {s1, s2, s3}}

E(∅) = {{s1, s2, s3}}

Fig. 2 Battle of Sexes in a cooperative twist. The effectivity function captures what players
can achieve together.

2.2 Effectivity Functions

Effectivity functions have been introduced in cooperative game theory [14] to pro-
vide an abstract representation of the powers of coalitions to influence the outcome
of the game.

Definition 2 (Effectivity function) An effectivity function is a function

E : 2N → 22S

that associates a family of sets of states from S with each set of players.

Intuitively, elements of E(C) are choices available to coalition C: if X ∈ E(C)
then by choosing X the coalition C can force the outcome of the game to be
in X. Effectivity functions are usually required to satisfy additional properties,
consistent with this interpretation.

Definition 3 (Playability [16]) An effectivity function E is playable iff the fol-
lowing conditions hold:

Outcome monotonicity: X ∈ E(C) and X ⊆ Y implies Y ∈ E(C);
N-maximality: X 6∈ E(∅) implies X ∈ E(N);
Liveness: ∅ /∈ E(C);
Safety: S ∈ E(C);
Superadditivity: if C ∩D = ∅, X ∈ E(C) and Y ∈ E(D), then X ∩ Y ∈ E(C ∪D).

Intuitively, outcome monotonicity specifies that the effectivity function rep-
resents agents’ power in a “negative” sense: C having choice X means that the
coalition can make sure that no state outside X will be the outcome of the game.
Thus, if X ⊆ Y and C is effective for X then it must be also effective for Y . N-
maximality assumes that the game is determined for the grand coalition of players
N . Liveness and safety impose two kinds of seriality (every choice leads to an out-
come state, and every coalition has at least one choice). Superadditivity expresses
the assumption that disjoint coalitions can combine their choices freely. Note that
E does not have to be additive, i.e., C ∪D can have more power than follows from
separate abilities of C and D.

Example 2 The effectivity function in Figure 2 formalizes powers of coalitions in
the Battle of Sexes scenario. It is easy to check that the function is playable.

2.2.1 Nonmonotonic Core

Looking at playable effectivity functions, we can observe that their representation
contains some redundancy. In particular, the fact that E(C) is outcome monotonic
suggests that one could succinctly represent it in terms of minimal sets, i.e., the
elements of E(C) that form an antichain under set inclusion. The nonmonotonic
core is aimed at providing such a representation.
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Fig. 3 A choice set E(C) and its nonmonotonic core. The thick rectangles indicate the choices
at the coalition disposal that are not minimal, while the dashed rectangles indicate the minimal
ones. As each set X ∈ E(C) is superset of some dashed rectangle, the nonmonotonic core of
E(C) is also complete.

Definition 4 (Nonmonotonic core [16]) Let E be an effectivity function. The
nonmonotonic core Enc(C) for C ⊆ N is the set of minimal sets in E(C):

Enc(C) = {X ∈ E(C) | ¬∃Y (Y ∈ E(C) and Y ( X)}.

Example 3 The nonmonotonic core of the effectivity function from Example 2 looks
as follows: Enc({1, 2}) = {{s1}, {s2}, {s3}}, Enc({1}) = Enc({2}) = {{s1, s2}, {s2, s3}},
Enc(∅) = {{s1, s2, s3}}.

We will show in Section 3.1 that not all effectivity functions have a nonempty
nonmonotonic core. Moreover, even when it is nonempty, not all sets in an effec-
tivity function need to contain a set from the nonmonotonic core (cf. Section 4.3).
Thus, Enc does not always behave well as a representation of the effectivity func-
tion, unless it is complete in the following sense.

Definition 5 (Complete nonmonotonic core) The nonmonotonic core Enc(C)
is complete iff for every X ∈ E(C) there exists Y ∈ Enc(C) such that Y ⊆ X.

Note that, as illustrated in Figure 3, if E(C) has a complete nonmonotonic core
then Enc(C) can be used as a succinct representation of E(C). Complete non-
monotonic cores turn out to be fundamental when establishing the proper corre-
spondence between strategic games and effectivity functions.

The nonmonotonic core of the empty coalition is of particular interest to us.
For it, the following holds.

Proposition 1 For every playable effectivity function E:

1. E(∅) is a filter.2

2 A family F of subsets of Ω is a filter if and only if (1) Ω ∈ F , (2) ∅ 6∈ F (3) F is closed
under finite intersection, and (4) F is closed under supersets. These structures are sometimes
referred to as proper filters, to distinguish them from improper filters, that do not satisfy
condition (2) and consequently coincide with 2Ω (cf. e.g. [6]).
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2. Enc(∅) is either empty or a singleton.

Proof (1) E(∅) is non-empty by safety; closed under supersets by outcome mono-
tonicity, and under intersections by superadditivity (with respect to the empty
coalition). Moreover, ∅ /∈ E(∅) by liveness.

(2) Suppose Enc(∅) is non-empty, and let X,Y ∈ Enc(∅). Then, coalition ∅ is
effective for each of X and Y , hence, by superadditivity, it is effective for X ∩ Y .
By the definition of Enc(∅), it follows that X = X ∩ Y = Y .

2.2.2 α-Effectivity

Each strategic game G can be canonically associated with an effectivity function,
called the α-effectivity function of G and denoted with EαG.

Definition 6 (α-Effectivity in Strategic Games) For a strategic game G, the

(coalitional) α-effectivity function EαG : 2N → 22S is defined as follows: X ∈ EαG(C)
if and only if there exists σC such that for all σC we have o(σC , σC) ∈ X.

Example 4 The effectivity function in Figure 2 is exactly the α-effectivity function
of the strategic game in Figure 1.

Proposition 2 For every α-effectivity function EαG : 2N → 22S , the following hold:

1. The nonmonotonic core of EαG(∅) is the singleton set {Z} where Z = {x ∈ S | x =
o(σN ) for some σN}.

2. EαG(∅) is the principal3 filter generated by Z.

Proof For both claims it suffices to observe that Z ∈ EαG(∅) and that Z ⊆ U for
every U ∈ EαG(∅). Therefore, Enc(∅) = {Z} for E = EαG and EαG(∅) is the principal
filter generated by Z.

2.3 Modal Logic

We assume that the reader has basic familiarity with modal logic.4 As for the lan-
guages to reason about strategic interaction we will use throughout the following
terminology. A formula φ of a modal language ∆:

– holds at a state w of a Kripke model M whenever M,w |= φ;
– is valid in a Kripke model M , denoted |=M φ, if and only if M,w |= φ for every
w ∈W , where W is the domain of M ;

– is valid in a class of Kripke models M, denoted |=M φ, if and only if it is valid
in every M ∈M;

– is valid in a Kripke frame F , denoted |=F φ, if and only if for every valuation
V we have that |=(F,V ) φ;

– is valid in a class of Kripke frames F , denoted |=F φ, if and only if it is valid in
every F ∈ F .

3 Filter F on domain Ω is principal iff there exists X ⊆ Ω such that F is the set of all
supersets of X. Then, F is said to be generated by X. Filters that are not principal are referred
to as non-principal.

4 For a more systematic exposition of basics of modal logic see e.g. [6, 3].
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Given a Kripke model M and a formula φ, we denote

φM = {w ∈M |M,w |= φ}

The set of formulas of ∆ that are valid in a class of models M is denoted ∆M
(for frames the denotation is ∆F ). For a set of formulas Σ, we write M,w |= Σ to
say that M,w |= σ, for all σ ∈ Σ.

We say that a set of formulas Σ semantically entails a formula φ denoted
Σ |= φ, if for every model M and a state w ∈ M , we have that M,w |= Σ implies
M,w |= φ.

A modal rule

φ1, ..., φn
ψ

(1)

is sound in a class of models M if φ1, ..., φn |=M ψ.

Let us recall, following [6], that a modal logic ∆ is called classical if it satisfies
the rule of equivalence, i.e. for each � in the language ∆ we have:

φ↔ ψ

�φ↔ �ψ
(2)

It is called monotonic if it is classical and it moreover satisfies the rule of
monotonicity, i.e. for each � in the language ∆ we have:

φ→ ψ

�φ→ �ψ
(3)

It is called normal if it is monotonic and it moreover satisfies the modal gener-
alization rule and the K axiom, i.e. for each � in the language ∆ we have

φ

�φ
(4)

and �(φ→ ψ)→ (�φ→ �ψ).

2.4 Coalition Logic

The logical language used to reason about effectivity functions is Coalition Logic
[16]. Coalition Logic is multimodal language, where modalities are of the form
[C]φ and represent the fact that a certain coalition C can force a certain formula
φ to be true. The language of Coalition Logic is denoted LCL and it is made by
formulas that are defined as follows:

φ ::= p | ¬φ | φ ∧ φ | [C]φ

where p ranges over Prop and C ranges over the subsets of N . The other boolean
connectives are defined as usual.

The modalities are interpreted in neighbourhood structures [6] induced by the
effectivity functions.
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Fig. 4 Coalition Models. The modalities are interpreted in dynamic effectivity functions that
specify the neighbourhood relation. In the picture the effectivity function Enc(w0)(N) =
{{w2, w1}, {w3}} — as usual the minimal sets are represented by the dashed lines — and the
valuation function V (p) = {w1, w2} — represented by the atomic proposition assigned to the
worlds where it is satisfied —make sure that the following statements hold: M,w0 |= [N ]p, i.e.
at w0 coalition N can achieve p and M,w0 |= [N ]¬p, i.e. at w0 coalition N can achieve ¬p.

Definition 7 (Coalition Models) A Coalition Model is a triple

(W,E, V )

where:

– W is a nonempty set of states;

– E : W −→ (2N −→ 22W ) is a dynamic effectivity function [16], that associates
an effectivity function to each state;

– V : W −→ 2Prop is a valuation function.

The satisfaction relation of the formulas of the form [C]φ with respect to a pair
M,w is defined as follows:

M,w |= [C]φ iff φM ∈ E(w)(C)

where, φM = {w ∈ W | M,w |= φ}. As outcome monotonicity is taken to be a
property of all effectivity functions, the rule of monotonicity is valid in Coalition
Logic, which is therefore a monotonic modal logic [11]. Figure 4 gives an example
of Coalition Model.

The rule of monotonicity takes this form for each C ⊆ N :

φ→ ψ

[C]φ→ [C]ψ
(5)

As usual with neighbourhood structures, relations between set theoretical and
logical properties are fairly immediate to spot. Standard correspondence results
between class of frames and neighbourhood relations [6] can be automatically used
for Coalition Logic.

Proposition 3 Let F = (W,E) be a coalition frame, and C,C′ arbitrary coalitions.

The following equivalences hold:
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– |=F [C]> if and only if for all w ∈W , E(w)(C) has safety;

– |=F ¬[∅]¬φ→ [N ]φ if and only if for all w ∈W , E(w) is N-maximal;

– |=F ¬[C]⊥ if and only if for all w ∈W , E(w)(C) has liveness;

– |=F [C′]φ ∧ [C′′]ψ → [C′ ∪ C′′](φ ∧ ψ) if and only if for all w ∈ W , E(w) is

superadditive;

– φ→ ψ |=F [C]φ→ [C]ψ if and only if for all w ∈W , E(w) is outcome monotonic.

Proof The proof is standard and given in [16].

3 Problem with the Correspondence Result

The representation theorem given in [16][Theorem 2.27], known as Pauly’s Rep-
resentation Theorem, states that an effectivity function is playable if and only if
it corresponds to a strategic game. It is a generalization of already existing corre-
spondence results in [14, 17] for strategic games with arbitrary outcome functions.
Its claim is the following:

Claim A coalitional effectivity function E is playable if and only if there exists a
strategic game G such that EαG = E.

Specifically, the correspondence (called α-correspondence [16]) is formulated in
two directions:

– every playable effectivity function is the α-effectivity function of some strategic
game,

– each strategic game has an α-effectivity function that is playable.

While the proof of the latter claim is an easy check of the definitions, the
former turns out not be correct.

3.1 A Counterexample to Pauly’s Representation Theorem

We will now show a counterexample to Pauly’s Representation Theorem, obtained
by constructing an effectivity function that is playable but cannot correspond to
any strategic game.

Proposition 4 There is a playable effectivity function E for which E 6= EαG for all

strategic games G.

Proof Consider a coalitional game frame with a single player ‘a’ that has the set
of natural numbers N as the domain (i.e., N = {a},W = N), and the effectivity
defined as follows:

– E({a}) = {X ⊆ N | X is infinite};
– E(∅) = {X ⊆ N | X is finite}.

In other words, the grand coalition {a} is effective for all infinite subsets of the
natural numbers, while the empty coalition can enforce all its cofinite subsets.

E is playable and it does not correspond to any strategic game. To see this
let us first verify the playability conditions. Outcome monotonicity, N-maximality,
liveness and safety are straightforward to check. For superadditivity, notice that
we only have two cases to verify:
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1. C = {a}, C′ = ∅;
2. C = ∅, C′ = ∅.

For the first case, consider a set X ∈ E({a}) and a set Y ∈ E(∅). To show that
X ∩Y ∈ E({a}∪ ∅) = E({a}) we only need to observe that X = (X ∩Y )∪ (X ∩Y ).
As X ∩ Y is a finite set and Y cofinite, we must have that X ∩ Y is infinite, so
X ∩Y ∈ E({a}). For the second case it is sufficient to note that the intersection of
two cofinite sets is cofinite.

On the other hand, Enc(∅) = ∅ because there are no minimal cofinite sets. This
implies, by Proposition 2, that E 6= EαG for all strategic games G.

The counterexample constructs a playable effectivity function that assigns no
minimal set to the empty coalition. Using Proposition 2, that states that α-
effectivity functions have a minimal set, we are able to conclude that there are
playable effectivity functions that do not correspond to any strategic games.

Given this fact, it is to be expected that the rather technical argument pro-
vided in [16] fails at some point. As its proof will be readapted for an alternative
characterization result, it is useful to have a look at it.

3.2 Tracing the Problem

When showing that playable effectivity functions exactly correspond to strategic
games, the difficult direction is from effectivity functions to games. Below, we
summarize the relevant part of the proof of Theorem 2.27 from [16], and show
where it goes wrong. We first outline the construction of a strategic game G given
a playable effectivity function E (Steps 1–4); then, the argument is supposed to
show that E α-corresponds to G (Steps 5–6).

Step 1: the players and the domain remain the same. The game G = (N,S,Σi, o)
inherits the set of outcomes and the set of players as in the effectivity function E.

Step 2: coalitions choose a set from their effectivity function. Now, for each
i ∈ N a family of functions Fi is defined:

Fi = {fi : Ci → 2S | fi(C) ∈ E(C) for all C ∈ Ci}

where Ci = {C ⊆ N | i ∈ C}. Each function fi assigns choices to all coalitions of
which i is a member. Fi simply collects all such assignments.

Step 3: coalitions are partitioned according to their choices. Let f = (fi)i∈N ,
be a tuple of such assignments, one per player, where fi ∈ Fi for each i ∈ N . The
next step is to define the set P∞(f) which is the fixed point of iterative partitioning
of the set of players in a coarsest possible way 5 such that players in the same part
are assigned same coalitional choices. The partitioning goes along the following

5 A partition P (X) of a set X is a coarsest partition of X satisfying property P if it has some
cardinality n and there is no partition of X with cardinality less than n satisfying P. Notice
that in our case the coarsest partition of a coalition, given a choice function f , is unique.
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procedure:

P0(f) := 〈N〉
P1(f) := P (f,N) = 〈C1

1 , . . . , C
1
k1〉

P2(f) := 〈P (f, C1
1 ), . . . , P (f, C1

k1)〉 = 〈C2
2 , . . . , C

2
k2〉

...

P∞(f) := Pr(f) where r is the least index such that Pr(f) = Pr+1(f),

where each P (f, C) returns the coarsest partitioning 〈C1, . . . , Cm〉 of coalition C

such that for all l ≤ m and for all i, j ∈ Cl it holds that fi(C) = fj(C). That is, a
subset of C belongs to the partition P (f, C) iff its members agree on their choices
for C.

Step 4: an outcome is chosen in the intersection of coalitional choices. Let
P∞(f) = 〈C1, . . . , Ck〉. Strategies and the outcome function are defined as follows.
Each player in N is given a set of strategies of the form (fi, ti, hi) where fi ∈ Fi is
an assignment of coalitional choices for player i (see Step 2), ti ∈ N points out to
a player (possibly different from i), and hi : 2S \ ∅ → S is a selector function that
picks up an arbitrary element from each nonempty subset of S.

The outcome of strategy σN is now defined as:

o(σN ) = hi0(G(f))

where:

– G(f) =
⋂k
l=1 f(Cl), (note that G(f) 6= ∅ due to superadditivity and liveness of

E.)
– i0 = ((t1 + · · ·+ t|N |) mod |N |) + 1 is a unique choice of a player that depends

on all ti’s, and
– hi0 is the outcome selector from i0’s strategy.

This concludes the construction of a game G which is claimed to α-correspond to
the effectivity function E. Steps 5–6 are to prove that E = EαG .

Step 5: choices are not removed by the construction. First, an attempt to
prove E(C) ⊆ EαG (C) for arbitrary coalition C is presented:

For the inclusion from left to right, assume that X ∈ E(C). Choose any
C-strategy σC = (fi, ti, hi)i∈C such that for all i ∈ C and for all C′ ⊇ C we
have fi(C

′) = X. (*)
By coalition monotonicity, such fi exists.(**) Take now any C-strategy,
σC = (fi, ti, hi)i∈C . We need to show that o(σC , σC) ∈ X. To see this,
note that C must be a subset of one of the partitions Cl in P∞(f). Hence,

o(σN ) = hi0(G(f)) = hi0

(⋂k
l=1 f(Cl)

)
∈ X [16, p.29].6

The deduction of the last sentence is where the proof goes wrong. The problem
is that, for C = ∅, the only available strategy is the empty strategy σ∅ which vacu-
ously satisfies condition (*). And, for any agent i, a choice assignment fi satisfying
the condition must exist. However, there is no guarantee that any i will indeed choose

6 Technically speaking, no nonempty coalition can be a subset of a partition of N , as the
first is a subset of N and the latter is a subset of 2N .
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fi as its strategy since the coalition C for which we can fix its strategy does not
include any players. In consequence, one cannot deduce that hi0

(⋂k
l=1 f(Cl)

)
∈ X;

this could be only concluded if the intersection contains at least one player whose
choice fi(Cl) is X (or a subset of X). To see this more clearly, let us consider the ef-
fectivity function from the proof of Proposition 4. Note that σC = σ{a} = (fa, a, ha)
such that fa({a}) ∈ E({a}). Let us now take X = N \ {1}, fa({a}) = N, and
ha(N) = 1. Now, o(σN ) = o(σ{a}) = 1 /∈ X, which invalidates the argument
from [16] quoted above.

Step 6: choices are not added by the construction. The proof of the other
direction (EαG (C) ⊆ E(C)) fails too, because in order to establish the inclusion for
C = N , it is reduced to inclusion in step 5 for C = ∅. In fact, a direct argument
shows that, too. Consider a state space S with x ∈ S, and an effectivity function
E such that {x} /∈ E(N). Now, let strategy profile σN consist of σi = (fi, ti, hi)
where everybody assumes choosing the whole state space in all circumstances (i.e.,
fi(C) = S for all i and C) and applies the same selector hi such that hi(S) = x.
Now we get that o(σN ) = x, so {x} ∈ EαG (N), and hence E(N) 6= EαG (N).

This concludes our analysis of the proof of Pauly’s representation theorem
in [16]. The construction of the strategic game corresponding to a given effectivity
function fails because the game might endow the empty coalition and the grand
coalition of players with inappropriate powers. We consider the analysis impor-
tant for two reasons. First, we have identified precisely what was wrong with the
construction of the proof. Second, we will reuse the sound parts of the original
construction when proving a revised version of the correspondence in Section 4.2
and to obtain some additional results in Section 4.4.

3.3 A Look at Consequences

We have seen that playability conditions are not sufficient to characterize strategic
games. This raises some relevant issues for studying game models and logics for
reasoning about games:

1. What are the “truly playable” effectivity functions that really correspond to
strategic games? How can we characterize these functions in an abstract way?
This issue is discussed in Section 4.

2. Conversely, how can we generalize the counterexample from Section 3.1 in order
to characterize the class of playable but not truly playable effectivity functions?
Section 4.3 deals with this question.

3. Is it possible to “reconstruct” playable effectivity functions into truly playable
ones, without modifying the coalitional abilities much? We propose such a pro-
cedure in Section 4.4, and show that it preserves the powers of most coalitions.

4. Finally, what is the impact on logics for strategic ability, Coalition Logic in
particular? Does changing from playable to truly playable models yields a dif-
ferent notion of validity? Are axiomatizations from [16, 10] sound and complete
for truly playable models? What logical constructs are needed to distinguish
between playable and truly playable structures? These questions are addressed
in Section 5.
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{w, x} {x, y} {w, x, y}{w, y} {x, z} {w, x, z} {w, z} {y, z} {w, y, z}

{w, x, y, z}

Fig. 5 A crown

4 Truly Playable Effectivity Functions

In this section we introduce an additional constraint on playable effectivity func-
tions, that will enable us to restore the correspondence with strategic games in
Section 4.2.

4.1 Characterizing True Playability

The subset of playable effectivity functions that α-correspond to strategic games
can be characterized in terms of the nonmonotonic core of the empty coalition.
Alternatively, it can be characterized in terms of effectivity of the grand coalition
of all the agents.

Definition 8 An effectivity function E is truly playable iff it is playable and E(∅)
has a complete nonmonotonic core.

We will formally prove the correspondence between strategic games and truly
playable functions in Section 4.2.

Several equivalent characterizations of truly playable effectivity functions are
given in Proposition 5. For one of them, we will need the additional notion of a
crown. Intuitively, an effectivity function is a crown if every choice of the agents in
the grand coalition includes at least one state that the grand coalition can enforce
precisely. Formally, this means that N can only force some singleton sets and all
their supersets. By forming a set of singleton outcomes and drawing the cones we
obtain a “crown” as in Figure 5, hence the term.

Definition 9 An effectivity function E : 2N → 22S is a crown iff X ∈ E(N) implies
{x} ∈ E(N) for some x ∈ X.

Proposition 5 The following are equivalent for every playable effectivity function

E : 2N → 22S .

1. E is truly playable.

2. E(∅) has a non-empty nonmonotonic core.

3. Enc(∅) is a singleton and E(∅) is a principal filter, generated by Enc(∅).

4. E is a crown.

Proof (1) ⇒ (2): immediate, by safety.
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(2) ⇒ (3): Let Z ∈ Enc(∅) and let X ∈ E(∅). Then, by superadditivity, Z ∩X ∈
E(∅), and Z ∩X ⊆ Z, hence Z ∩X = Z by definition of Enc(∅). Thus, Z ⊆ X. So,
E(∅) is the principal filter generated by Z, hence Enc(∅) = {Z}.
(3) ⇒ (1): immediate from the definitions.

(3) ⇒ (4): Let Enc(∅) = {Z} and suppose {x} /∈ E(N) for all x ∈ X for some
X ∈ E(∅). Then, by N-maximality, S \{x} ∈ E(∅), i.e. Z ⊆ S \{x} for every x ∈ X.
Then Z ⊆ S \X, hence S \X ∈ E(∅). Therefore, X /∈ E(N) by superaditivity and
liveness. By contraposition, E is a crown.

(4) ⇒ (3): Let Z = {z | {z} ∈ E(N)} and let X ∈ E(∅). Take any z ∈ Z, which is
nonempty by liveness and the fact that E is a crown. By superadditivity we obtain
that {z} ∩X ∈ E(∅), hence z ∈ X by liveness. Thus, Z ⊆ X. Moreover, Z ∈ E(∅),
for else S\Z ∈ E(N) by N-maximality, hence {x} ∈ E(N) for some x ∈ S\Z, which
contradicts the definition of Z. Therefore, E(∅) is the principal filter generated by
Z, hence Enc(∅) = {Z}.

We also observe that on finite domains playability and true playability coincide.

Proposition 6 Every playable effectivity function E : 2N → 22S on a finite domain

S is truly playable.

Proof Straightforward, by Proposition 5.3 and the fact that every filter on a finite
set is principal.

Finally, note that in a truly playable function the nonmonotonic core for coali-
tions different from ∅, N does not have to be complete, and neither does it have to
be nonempty, as Example 5 demonstrates.

Example 5 Consider the following effectivity function for N = {a, b}, S = N:

– E(∅) = {N},
– E({a}) = E({b}) = all cofinite subsets of N,
– E({a, b}) = 2N \ ∅.

It is easy to see that E is truly playable, but the nonmonotonic core of E({a})
is empty, and hence also not complete.

Remark 1 Out of the 4 alternative characterizations of true playability, condition
(4) is perhaps most revealing conceptually. It says that, whenever the grand coali-
tion N can enforce the outcome state to be in X, they can do it by singling out
a particular state from X. Note that choices in effectivity functions have slightly
“negative” flavor: X ∈ E(A) means that A have the power to rule out all states
from S \X. However, it does not say which states from X can be actually achieved
in the next moment. This can be attributed to either imprecision of the game
description or inherent nondeterminism of the game. The “crown” condition im-
poses that, for every enforceable property, N can achieve it by selecting the right
outcome precisely and with no nondeterminism. By Proposition 6, we know that
the playability conditions from [16] rule out imprecision and/or nondeterminism
of N ’s choices in case of finite games. However, those conditions prove too weak
for infinite games (Proposition 4).
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Game models are usually deterministic. It is often claimed that this is not a
conceptual limitation because one can always add an extra player (be it chance,
nature, or Some External Modeler) whose choices are used to resolve the non-
determinism (cf. for instance the discussion in [1]). We will use the idea for our
reconstruction of playable – but not truly playable – effectivity functions in Sec-
tion 4.4.

4.2 Truly Playable Functions Correspond to Strategic Games

The proof of Theorem 2.27 from [16] fails when we consider the effectivity function
of the empty coalition or the grand coalition. However the proof is correct for the
other cases. We will now show that the additional condition of true playability
yields correctness of the original construction from [16].

Theorem 1 A coalitional effectivity function E α-corresponds to a strategic game if

and only if E is truly playable.

Proof By Propositions 2 and 5, for any strategic game G its α-effectivity function
EαG is truly playable.

For the other direction, given a truly playable effectivity function E, we slightly
change Pauly’s procedure outlined in Section 3.2 (Steps 1–4). We impose an ad-
ditional constraint on players’ strategies σi = (fi, ti, hi), namely, we require that
hi(X) = x for some {x} ∈ E(N). In other words, the selector functions only select
from the “jewels” in the crown. Note that for C /∈ {∅, N} the new procedure yields
game G with exactly the same Eα(C) as the original construction G′ from [16]
because:

1. We do not add any new choice sets to EαG′(C). Indeed, that could only happen
because the selectors chosen by agents outside C are restricted to {x | {x} ∈
E(N)}, and hence we can have that X ∩ {x | {x} ∈ E(N)} ∈ EαG (C) in the new
construction for some X ∈ EαG′(C) from the previous construction. However, by
true playability of E and Proposition 5 we have that {x | {x} ∈ E(N)} ∈ E(∅),
and thus by superadditivity all the states y /∈ {x | {x} ∈ E(N)} can be removed
from C’s strategies that yielded X in G′. But then these states will also be
removed from the intersection

⋂k
l=1 f(Cl), and so X ∩ {x | {x} ∈ E(N)} ∈

EαG′(C) already in the previous construction.
2. We do not remove any choice sets from EαG′(C). Indeed, that could only happen

because of removing an X ∈ EαG′(C) which contains “superfluous” elements and
replacing it with X ∩ {x | {x} ∈ E(N)}. But then, X must also be in EαG (C)
because EαG (C) is closed under supersets.

It remains now to show that the procedure constructs a strategic game G such
that E(C) = EαG (C) for C = ∅ and C = N , that is, to show that steps 5 and 6
work well for these coalitions in truly playable structures.

Additional Step 5. We show that E(C) ⊆ EαG (C) for C = ∅ and C = N , the only
cases in which the original proof failed for playable structures.

Assume that X ∈ E(∅). We need to prove that X ∈ EαG (∅). By true playability
we know that there exists Y ∈ Enc(∅) such that Y ⊆ X. By Proposition 5, Enc(∅) =
{Y } and E(∅) = {Z | Y ⊆ Z}. We will show now that Y = {x | {x} ∈ E(N)} (*).
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First, suppose that x ∈ Y and {x} /∈ E(N), then by N-maximality S \{x} ∈ E(∅), a
contradiction. Second, let {x} ∈ E(N) and x /∈ Y , then by superadditivity ∅ ∈ E(N)
which contradicts liveness.

Now, consider any strategy profile σN . We have o(σN ) = hi0
(⋂k

l=1 f(Cl)
)
∈ Y

because every hi returns only elements in Y by construction.

For the case C = N , assume that X ∈ E(N). We need to prove that X ∈ EαG (N).
By true playability, there exists x ∈ X such that {x} ∈ E(N). Now, let σN consist
of strategies σi = (fi, ti, hi) such that fi(N) = {x} for every i. It is easy to see that
o(σN ) = x, and hence {x} ∈ EαG (N). Thus, X ∈ EαG (N) because EαG (N) is closed
under supersets.

Additional Step 6. Dually to Step 5, we show that EαG (C) ⊆ E(C) for C = ∅ and
C = N . That is, assuming X 6∈ E(C) we show that X 6∈ EαG (C). We do it by a
slight modification of the original proof from [16].

Suppose first that C = N . Then, X /∈ E(N) implies that X ∈ E(∅) by N-
maximality, and by Step 5 we have X ∈ EαG (∅). Since EαG is truly playable, we have
also that X 6∈ EαG (N).

Now, for C = ∅ (and in fact for every C 6= N), we choose an arbitrary j0 ∈ C.
Let σC be any strategy for coalition C. We must show that there is a strategy
σC such that o(σC , σC) 6∈ X. To show this, we take σC = (fi, ti, hi)i∈C such that

for all C′ ⊇ C and for all i ∈ C we have fi(C
′) = S. We also choose tj0 such that

((t1+. . .+tn) mod n)+1 = j0. Note that C must be a subset of one of the partitions
Cl in P∞(f), say Cl0 . Moreover, there must be a partitioning 〈C1, . . . , Ck〉 of N \Cl0
such that G(f) = f(Cl0) ∩

⋂k
l=1 f(Cl) =

⋂k
l=1 f(Cl). Since f(Cl) ∈ E(Cl) we get

that G(f) ∈ E(N) \Cl0 by superadditivity. By coalition-monotonicity and the fact
that N \ Cl0 ⊆ C, we also have G(f) ∈ E(C). Finally, by (*) and superadditivity
we obtain G(f) ∩ {x | {x} ∈ E(N)} ∈ E(C).

Since X 6∈ E(C) and E(C) is closed under supersets, it must hold that G(f)∩{x |
{x} ∈ E(N)} 6⊆ X. Thus, there is some s0 ∈ S such that: s0 ∈ G(f), {s0} ∈ E(N),
and s0 /∈ X. Now we fix hj0 so that hj0(G(f)) = s0. Then, o(σC , σC) = hj0(G(f)) =
s0 6∈ X which concludes the proof.

4.3 Non-Truly Playable Structures

In this section we focus on the class of playable but not truly playable effectivity
functions, hereafter called “non-truly playable”. From Proposition 5 we know that
a playable effectivity function E is truly playable if and only if the filter E(∅) is
principal and generated by Enc(∅). Hence, playability and true playability coincide
on finite domains. There exist, however, non-truly playable effectivity functions on
infinite domains, and we have already discussed an example of such a function in
Section 3.1.

Non-truly playable effectivity functions have a simple abstract characterization:

Proposition 7 Effectivity function E : 2N → 22S is non-truly playable if and only if

it is playable and E(∅) is a non-principal filter.

Proof Straightforward, by Proposition 5.
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For a generic class of examples, consider an infinite domain S, and let F be
any non-principal filter on S. Then we define an effectivity function EF on S as
follows.

– EF (∅) = F .
– EF (N) = {X | X 6∈ F}
– For each C with ∅ ( C ( N take EF (C) to be any set of sets such that
EF (∅) ⊆ EF (C) ⊆ EF (N) that is closed under outcome monotonicity and that
are pairwise closed under regularity and superadditivity.

Proposition 8 EF is playable but not truly playable.

Proof That EF is not truly playable follows by the fact that EF (∅) is a non-
principal filter. In order to check that EF is playable we only need to check su-
peraddivity for ∅ and N , as the other conditions follow by construction. Assume
X ∈ EF (∅) and Y ∈ EF (N). We have to prove that X ∩ Y ∈ EF (N). Suppose that
X ∩ Y 6∈ EF (N). But then, by definition of EF (N) we have that X ∩ Y ∈ EF (∅).
By de Morgan’s law we have that X∪Y ∈ EF (∅). But as Y ∈ EF (N) we know that
Y 6∈ EF (∅). However EF (∅) is a filter so X ∩ (X ∪ Y ) ∈ EF (∅). From this follows
that Y ∈ EF (∅). Contradiction.

Here are some examples of non-principal filters on N:

– For any k ∈ N let Ek(∅) = {X ⊆ N | X is cofinite in N and k ∈ X}.
– More generally, for any K ⊆ N which is not cofinite in N let EK(∅) = {X ⊆ N |
X is cofinite in N and K ⊆ X}.

In the case of single player, N = {a}, the construction above immediately
extends these filters to non-truly playable effectivity functions on N:

– Ek({a}) = {X ⊆ N | X is infinite or k ∈ X},
– EK({a}) = {X ⊆ N | X is infinite or K ∩X 6= ∅},

We know from the proof of Proposition 5 that for all playable E, if the non-
monotonic core of E(∅) is nonempty, then it must be complete. The above examples
show that this does not have to be the case for other coalitions. For instance, ob-
serve that the nonmonotonic core of E1({a}) is non-empty: Enc1 ({a}) = {{1}}. Still,
the set Even of even natural numbers is in E1({a}) but {1} 6⊆ Even. Similarly, we
can show that even infinite nonmonotonic core does not guarantee its complete-
ness. Indeed, it is easy to see that EncEven({a}) = {{k} | k ∈ Even} while we also
have Odd ∈ EEven({a}) where Odd is the (infinite) set of odd natural numbers.
Thus, a playable effectivity function can have its nonmonotonic core for the grand
coalition nonempty and consisting entirely of singletons, and yet not be a crown
– hence remaining non-truly playable.

We conclude this section with a scenario that motivates our interest in non-
truly playable functions on a more practical level.

Example 6 Consider two agents a and b acting in an environment with countably
many configurations (labeled by natural numbers). We assume that each agent
alone can only prevent a finite number of configurations. Also, there are some
uncontrollable configurations – more specifically, the configurations in set Ka ⊆ N
are uncontrollable by a, and those in Kb ⊆ N cannot be prevented by b. For
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instance, if Ka = {3, 5, 12, 13} then a can play so that none of 1, 2, 4 is the next
state of the environment, but he cannot play to prevent 1, 2, 3. Finally, the system
is nondeterministic with infinite branching, i.e., the grand coalition {a, b} cannot
narrow down possible next states to a finite set. This scenario can be modeled
with an effectivity function similar to the previous examples:

– E({a, b}) consists of all infinite subsets of N;
– E({a}) consists of all cofinite subsets of N that subsume Ka;
– E({b}) consists of all cofinite subsets of N that subsume Kb;
– E(∅) consists of all cofinite subsets of N that subsume Ka ∪Kb.

It is easy to check that E is non-truly playable. As a consequence, by Theo-
rem 1, it cannot be implemented as a strategic game with two players. However,
there exists a game with three players so that {a}, {b}, and {a, b} have exactly the
power assigned to them in the above scenario. We will present the construction of
such a game in Section 4.4.

4.4 From Playable to Truly Playable Effectivity Functions

In this section we show that one can reconstruct a non-truly playable effectivity
function into a truly playable one with “minimal” modifications. To do so, we
interpret choices of the grand coalition containing multiple outcome states as ones
that involve inherent nondeterminism. That is, we interpret {x1, x2, . . . } ∈ E(N) as
a choice where no agent has control over which state out of x1, x2, . . . will become
the outcome; as a consequence any of these states can possibly be encountered in
the next moment. Under such assumption, it is possible to recover true playability
(and hence the correspondence to strategic games) by a simple extension of Pauly’s
procedure. The extension consists in adding an extra player d (the “decider”) who
settles the nondeterminism and decides which of x1, x2, . . . is going to become the
next state.

Proposition 9 Let E : 2N → 22S be a playable effectivity function. There exists a

truly playable effectivity function E′ : 2N∪{d} → 22S with additional player d 6∈ N ,

such that:

– E′(C) = E(C) for every C ⊆ N,C 6= ∅,
– E′(∅) = {S}, and

– E′(N ∪ {d}) = 2S \ {∅}.

Proof Given a playable E, we construct a strategic game whose α-effectivity func-
tion satisfies the properties above. Then, existence of a truly playable effectivity
function follows immediately. The idea is to take the construction from the proof of
Theorem 2.27 in [16] and reassign selection of the outcome state to the additional
player d.

Let h : 2S \ {∅} → S be any selector function that selects an arbitrary element
from the argument set. In our case, h will designate the “default” outcome for
each subset of S. Now, the game G is constructed as follows:

– N ′ = N ∪ {d};
– The strategies of each player i 6= d are simply the player’s assignments of

coalitional choice, i.e., Σi = Fi, as in section 3.2;
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– The strategies of d are state selections: Σd = S;
– The transition function is based on the same partitioning of N as before, that

yields 〈C1, . . . , Ck〉. Then, the game proceeds to the state selected by the de-
cider if his choice is consistent with the choices of the others, otherwise it
proceeds to the appropriate “default” outcome:

o(σN , s) =

{
s if s ∈

⋂k
i=1 f(Cl)

h(
⋂k
i=1 f(Cl)) else.

Now, it is easy to see that for every ∅ ( C ( N indeed EαG (C) = E(C) because
that was the case in the original construction, and the only difference now is
that d “took over” the selection of a state in

⋂k
i=1 f(Cl) from a collective choice

of N . For C = N , we also have EαG (N) = E(N) since for every σN we get by

superadditivity that
⋂k
i=1 f(Cl) ∈ E(N), and every state from the intersection can

be potentially selected by d. Moreover, {s} ∈ EαG (N ∪{d}) for every s ∈ S because
{s} is enforced by σN∪{d} = 〈f1, . . . , f|N |, s〉 such that fi = S for all i ∈ N . Thus,

by outcome monotonicity, EαG (N ∪ {d}) = 2S \ {∅}. Finally, by true playability of
EαG , we have EαG (∅) = {{s | {s} ∈ EαG (N ∪ {d})}} = {S}. We observe additionally
that EαG (d) = {{s} ∪ {h(X) | X ∈ EαG(d) and s /∈ X} | s ∈ S}.

5 Strategic Logics and True Playability

In this section, we investigate the impact of true playability on logics of coalitional
ability. We begin by indicating that the validities of Coalition Logic do not change
if we restrict models to truly playable. As a consequence, CL (and even ATL)
cannot distinguish between playable and truly playable models. Then, we discuss
two extensions of CL that can discern the two classes of structures.

5.1 Coalition Logic and True Playability

The previous part of the paper analyzed the specific features of coalitional ability
in strategic games, providing an alternative representation result to the one orig-
inally given in [16]. We can immediately observe that this new relation between
effectivity functions and strategic games has no repercussions on the semantics of
Coalition Logic and the soundness and completeness results for that logic. The
axiomatization of Coalition Logic presented in [16] extends the axiomatization of
the classical propositional logic with formulas and rules characterizing playability
listed in Proposition 3. In [16] it is proved that this axiomatization is sound and
complete with respect to playable coalition models. The following result can be
carried over.

Corollary 1 The axiomatization of playable Coalition Logic from [16] is sound and

complete wrt truly playable coalition models (and hence also wrt strategic game models).

Proof To see this, let us formally define Play to be the class of playable coalitional
models, and TrulyPlay as the class of models based on truly playable effectivity
functions. Since TrulyPlay ⊂ Play, every Coalition Logic formula valid in Play is
valid in TrulyPlay, too. To see the converse, one can use the finite model property
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of Coalition Logic with respect to Play and the fact that it coincides with TrulyPlay

on finite models.

These results show that Coalition Logic describes strategic interaction at a
very abstract level and its expressiveness is insufficient to distinguish playability
from true playability. In the next sections we extend the language to make this
distinction possible.

Remark 2 The semantics based on effectivity functions can be extended to ATL
(see e.g., [7]; also, cf. [16] for the fragment of ATL without “until”, called Extended

Coalition Logic). Again, it can be shown that Play and TrulyPlay determine the same
sets of validities for ATL, by checking the soundness of the axiomatization for ATL
given in [10] for Play, and using the completeness result for ATL with respect to
strategic game models (equivalently, TrulyPlay) proved in the same paper.

5.2 CL with Infinite Disjunctions

One possible extension of CL that can tell apart the classes Play and TrulyPlay

involves infinite disjunctions of formulas. The idea is that in truly playable models,
every choice of the grand coalition can be narrowed down to a singleton. The
infinitary disjunction

∨
i∈I for a set of indices I has the natural interpretation:

M,w |=
∨
i∈I

φi if and only if M,w |= φi for some i ∈ I.

Proposition 10 For any cardinal number7 κ, let Playκ (resp. TrulyPlayκ) denote the

class of playable (resp. truly playable) coalition models with the domain of outcomes W

of cardinality at most κ and let {pι}ι∈κ be a set of different propositional letters. Then

the following hold:

1. Playκ 6|= [N ]
∨
ι∈κ pι ↔

∨
ι∈κ[N ]pι;

2. TrulyPlayκ |= [N ]
∨
ι∈κ pι ↔

∨
ι∈κ[N ]pι.

Proof For (1) simply check the example in Section 3.1 with the set S being κ and
every state ι associated with a designating atomic proposition pι. Claim (2) follows
from Proposition 5.

The above scheme actually characterizes the class of truly playable effectivity
frames on domains of bounded cardinality:

Proposition 11 For every playable effectivity frame F over domain S of cardinality at

most κ, we have that F is truly playable if and only if F |= [N ]
∨
ι∈κ pι ↔

∨
ι∈κ[N ]pι.

Proof By Proposition 10, if F is truly playable then the formula above is valid in F .
Conversely, if F = (S,E) is playable but not truly playable then, for some w ∈ S,
E(w)(N) is not a crown, i.e. there is X ∈ E(w)(N) such that {x} 6∈ E(w)(N) for
all x ∈ X. Consider now a model M = (S,E, V ) based on F such that V assigns to
each x ∈ X a designating atom that we indicate with px. This is possible because
there are enough propositional letters available. Then M |= [N ]

∨
ι∈κ pι, while

M 6|=
∨
ι∈κ[N ]pι, hence M 6|= [N ]

∨
ι∈κ pι ↔

∨
ι∈κ[N ]pι.

7 We regard cardinals as (special) ordinals in von Neumann sense: any ordinal is the set of
all smaller ordinals.
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5.3 “Outcome Selector” Modality: Semantic Approach

Adding infinitary operators to a logical language makes its practical applicability
unfeasible. This is why we look for other extensions of Coalition Logic that allow
to distinguish the two classes of models and/or frames while preserving finiteness
of formulae. To this end, we propose another (in fact, very simple) extension of
CL, by adding a new modality 〈O〉, with a dual [O], called “outcome selector”.
The informal reading of 〈O〉φ should be “there is an outcome state, enforceable
by the grand coalition and satisfying φ”. The dual operator is, as usual, defined
by [O]φ ≡ ¬〈O〉¬φ. We will call the extended logic CLO (“Coalition Logic with
Outcome selector”), and refer to its language as LCLO.

The semantics of CL modalities remains as before, and we add the following
clause to interpret the new modality:

M,w |= 〈O〉φ iff ∃v.({v} ∈ E(w)(N)&M, v |= φ).

Now, the scheme [N ]φ ↔ 〈O〉φ can be used to discern between playable and
truly playable structures in the following sense.

Proposition 12 For every playable effectivity frame F , we have that F is truly playable

if and only if F |= [N ]φ↔ 〈O〉φ.

Proof Straightforward.

That is, we add the new modality 〈O〉 to indicate outcomes over which the

grand coalition N has complete and precise control. Then, F |= [N ]φ↔ 〈O〉φ requires
that every enforceable property can be obtained by a precise choice, and hence
the effectivity of N in F must be represented by a crown.

5.4 CL with “Outcome Selector”: Axiomatic Approach

In order to characterize true playability axiomatically, we need to redefine the
semantics of 〈O〉 as a normal modality with a standard Kripke semantics. First, we
expand coalition models to what we call extended coalition models with an additional
“outcome enforceability” relation R. Then, we use axioms to impose the right
behavior of R.

Definition 10 (Extended coalition frames) An extended (playable) coalition frame

is a neighbourhood frame F = (W,E,R) where W is a set of outcomes, E a playable
effectivity function and R a binary relation on W .

An extended coalition model, pictured in Figure 6, is an extended coalition
frame endowed with a valuation function. Given an extended coalition model M =
(W,E,R, V ), the modality 〈O〉 has a standard Kripke semantics with respect to R:

M,w |= 〈O〉φ if and only if wRs and M, s |= φ for some s ∈W.

That is, 〈O〉 has standard Kripke semantics with respect to the outcome enforce-
ability relation R. Note that extended coalition models do not require any in-
teraction between the effectivity function and the relation R. However, given the
intuitive reading of the relation R, the interaction suggests itself, and the following
definition accounts for that.
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Fig. 6 Extended Coalition Models. The relation R is not dependent on the dynamic effectivity
function. There can be outcomes that reachable from w0 via R but that are not available choices
at w0.
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Fig. 7 Standard Coalition Models. The relation R is now dependent on the dynamic effectivity
function: each reachable outcome is an available choice and each single outcome choice is also
reachable.

Definition 11 (Standard coalition frames) A standard coalition frame is an ex-
tended coalition frame such that, for all w, v ∈ W , we have wRv if and only if
{v} ∈ E(w)(N).

A standard coalition model, illustrated in Figure 7 is a standard coalition frame
with a valuation function. Depending on the properties of the underlying effectivity
functions we call extended coalition frames and models playable or truly playable.

The following is straightforward:

Proposition 13 Let M be a standard coalition model, and w a state in it. Then,

M,w |= 〈O〉φ iff there exists v such that {v} ∈ E(w)(N) and M, v |= φ. That is,

the new semantics of 〈O〉 on standard models coincides with the one introduced in

Section 5.3.
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5.5 Characterizing Standard Truly Playable Coalition Frames

We begin by showing that the scheme from Section 5.3 ([N ]φ↔ 〈O〉φ) can be used
to characterize standard truly playable frames.

Proposition 14 An extended coalition frame F is standard and truly playable if and

only if F |= [N ]p↔ 〈O〉p, where p is any propositional variable.

Proof Left to right: Assume that F is standard and truly playable. Assume first
that (F, V ), w |= [N ]p for any V and w ∈ W . By definition of E we have that
pM ∈ E(w)(N). As F is truly playable, E is a crown, therefore there is v ∈ pM
with {v} ∈ E(w)(N). However F is also standard so wRv. But this means that
(F, V ), w |= 〈O〉p. Conversely, if (F, V ), w |= 〈O〉p then wRv for some v ∈ pM . F
being standard we have that {v} ∈ E(w)(N). By outcome monotonicity pM ∈
E(w)(N), i.e. (F, V ), w |= [N ]p.

Right to left: Assume that F |= [N ]p ↔ 〈O〉p. Let us first prove that F is
standard. Suppose wRv for some w, v ∈ W . Let V be a valuation that assigns the
proposition p only to v. We have that M,w |= 〈O〉p. Then, by the assumptions we
also have M,w |= [N ]p, which means that {v} ∈ E(w)(N). Conversely, suppose now
that {v} ∈ E(w)(N). For the same valuation V we must have that M,w |= [N ]p
and by assumption that 〈O〉p, which means that wRv. Thus, F is standard. To
prove that F is truly playable, assume that for some X ⊆ W , X ∈ E(w)(N) and
let now V be a valuation function such that pF,V = X. By definition of E we have
that (F, V ), w |= [N ]p, hence by assumption, that (F, V ), w |= 〈O〉p, which means
that wRv for some v ∈ p(F,V ). Then, F being standard, {v} ∈ E(w)(N).

5.6 Standard Truly Playable Models: Axioms

We propose the following axiomatic system TPCL for the class of standard truly
playable coalition models TrulyPlay, extending Pauly’s axiomatization of CL. The
axioms include enough propositional tautologies plus the following schemes, where
C,D ⊆ N are any coalitions of agents.

1. [N ]>
2. ¬[C]⊥
3. ¬[∅]φ→ [N ]¬φ
4. [C]φ ∧ [D]ψ → [C ∪D](φ ∧ ψ) for any disjoint C,D ⊆ N
5. [O](φ→ ψ)→ ([O]φ→ [O]ψ).
6. [N ]φ↔ 〈O〉φ

The inference rules are: Modus Ponens, plus the Monotonicity rule MON:

φ→ ψ

[C]φ→ [C]ψ

for any coalition C, and the necessitation rule NEC[O]:

φ

[O]φ
.

We denote derivability of a formula φ in TPCL by `TPCL φ.
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It is worth pointing out that both Axiom 5 and rule NEC[O] are derivable from
the rest of TPCL. We have included them in the axiomatic system TPCL only to
emphasize the fact that [O] is a normal modality.

To derive the rule NEC[O], let `TPCL φ. Then `TPCL > → φ, hence `TPCL
¬φ → ¬>. Therefore, `TPCL [N ]¬φ → [N ]¬> by MON, hence `TPCL ¬[N ]¬> →
¬[N ]¬φ. Moreover, `TPCL ¬[N ]⊥ by Axiom 2, and `TPCL ¬> ↔ ⊥. Thus, `TPCL
¬[N ]¬>. Therefore, `TPCL ¬[N ]¬φ by Modus Ponens. By Axiom 6, it follows that
`TPCL [O]φ.

To derive Axiom 5 from the rest of TPCL, first note that Axiom 6 makes
Axiom 5 propositionally equivalent to ¬[N ]¬(φ → ψ) → (¬[N ]¬φ → ¬[N ]¬ψ),
which is propositionally equivalent to (¬[N ]¬(φ→ ψ)∧ [N ]¬ψ)→ [N ]¬φ. To derive
the latter formula, first note that `TPCL ¬[N ]¬(φ→ ψ)→ [∅](φ→ ψ) by Axiom 2.
Now, by Axiom 3 we obtain that `TPCL ([∅](φ→ ψ)∧[N ]¬ψ)→ [N ](¬ψ∧(φ→ ψ)).
Given that (¬ψ ∧ (φ→ ψ))→ ¬φ is a propositional tautology, we obtain, by using
MON, that `TPCL [N ](¬ψ ∧ (φ→ ψ))→ [N ]¬φ. Thus, by propositional deduction
we obtain in the long run that `TPCL (¬[N ]¬(φ→ ψ) ∧ [N ]¬ψ)→ [N ]¬φ, whence
the derivation of Axiom 5 follows.

Remark 3 Despite what the above may suggest, we emphasize that Axiom 6 does
not define 〈O〉 in terms of [N ] and does not render it redundant. On the contrary,
the two modalities have intrinsically different semantics: the coalitional modality
[N ] has neighbourhood semantics, while [O] has normal Kripke semantics (it is in
fact the only modality with normal semantics in TPCL). It is only on truly playable
frames that their semantics coincide, hence we can use Axiom 6 to rule out frames
which are not truly playable. Indeed, as shown in Proposition 14, relating [N ] and
[O] by Axiom 6 suffices to enforce the true playability of the underlying frames.

Furthermore, we claim that the outcome modality has an extremely natural
semantics, selecting the possible outcomes of the collective actions of the grand
coalition. We believe it is somewhat curious that such modality has not been
introduced earlier, in the very early studies of coalition logics.

5.7 Soundness and completeness for TPCL

The proof of the following soundness claim is routine and we omit the details.

Proposition 15 TPCL is sound for the class TrulyPlay: every formula derivable in

TPCL is valid in TrulyPlay.

Now we will establish the following completeness result:

Theorem 2 (Completeness theorem) Every formula consistent in TPCL is satis-

fiable in TrulyPlay. Consequently, the logic TPCL is complete for the class TrulyPlay.

We will prove the completeness using a canonical model construction followed
by filtration for monotonic modal logics (for that, we partly reuse constructions
from [6] and [16]). This way, we will also obtain finite model property for TPCL.
Here we only sketch the standard canonical model construction and refer the reader
for further details to [6] and [16].

To construct the canonical model M•, we start with a formula δ which is
consistent in TPCL. By a well-known argument, it is contained in some maximal
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TPCL-consistent set. We take W • to be the set of maximally consistent sets, and
define for every formula φ the canonical extension of φ, also called proof set [6], as
φ∗ = {s ∈W • | φ ∈ s}.

Definition 12 (Canonical Model) The canonical model for TPCL is
M• = (W •, E•, R•, V •) where:

w ∈ V •(p) iff p ∈ w
X ∈ E•(w)(C) iff ∃ψ∗ ⊆ X : [C]ψ ∈ w for C 6= N

X ∈ E•(w)(C) iff ∀ψ∗ such that X ⊆ ψ∗ : [N ]ψ ∈ w, for C = N

wR•v iff ∀ψ, if ψ ∈ v then 〈O〉ψ ∈ w

Some remarks:

– That E• is playable and well-defined is proved in [16].
– The canonical relation for N is defined in [16] in the following equivalent way:
X ∈ E•(w)(N) if and only if [∅]ψ 6∈ w for all ψ∗ such that ψ∗ ⊆ X. The
equivalence follows easily from the fact that `TPCL [N ]φ↔ ¬[∅]¬φ.

– The canonical relation for 〈O〉 is defined as a canonical relation for normal
modal logics [6].

Proposition 16 (Truth Lemma) For any w ∈ W • we have that M•, w |= φ if and

only if φ ∈ w.

Proof By induction on the length of φ: standard for atomic propositions, boolean
formulas, and formulas of the form 〈O〉ψ; proved in [16] for formulas of the form
[C]ψ.

The canonical model is an extended coalition model; however, it is neither stan-
dard nor truly playable. The reason is that, assuming that for all ψ ∈ LCLO, ψ ∈
v implies that [N ]ψ ∈ w is not sufficient to conclude that {v} ∈ E•(w)(N) as states
are not characterized by unique formulas of the language of CLO. In order to ob-
tain a standard and truly playable model satisfying the given LCLO-consistent
formula δ we are going to filter the canonical model with the set Σ(δ), obtained
by taking all subformulae of δ and closing under boolean operators. That set is
finite up to propositional equivalence.

5.8 Filtrations

First, we define a general notion of filtration for extended coalition models and then
a special filtration construction that preserves playability. Filtrations of coalition
models are introduced, e.g., in [12] for the purpose of axiomatizing Nash-consistent
Coalition Logic. Here we only add the filtration for the relation corresponding to
the modality 〈O〉.

Let M = (W,E,R, V ) be an extended coalition model and Σ a subformula-
closed set of formulas from LCLO. The equivalence classes induced by Σ on M are
defined as follows:

v ≡Σ w ⇔ for all φ ∈ Σ : M, v |= φ if and only if M,w |= φ.

We denote the equivalence class to which v belongs by |v| and the set {|v| | v ∈
X} by |X| for any v ∈W and X ⊆W .
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Definition 13 (Filtration) Let M = (W,E,R, V ) be an extended coalition model
and Σ be a subformula closed set of formulas from LCLO. An extended coali-
tion model Mf

Σ = (W f
Σ , E

f
Σ , R

f
Σ , V

f
Σ) is a filtration of M through Σ whenever the

following conditions are satisfied:

1. W f
Σ = |W |.

2. For all C ⊆ N and φ ∈ Σ, φM ∈ E(w)(C) implies {|v| | M, v |= φ} ∈
EfΣ(|w|)(C).

3. For all C ⊆ N and Y ⊆ |W |: Y ∈ EfΣ(|w|)(C) implies that for all φ ∈ Σ if

φM ⊆ {v | |v| ∈ Y } then φM ∈ E(w)(C).

4. If wRv then |w|RfΣ |v|.
5. If |w|RfΣ |v| then for all 〈O〉φ ∈ Σ, if M, v |= φ then M,w |= 〈O〉φ.

6. V fΣ(p) = |V (p)| for all atoms p ∈ Σ.

Intuitively, the first item says that the set of worlds W f
Σ are given by the

equivalence classes of worlds in W that agree in the evaluation of the formulas in
Σ. The second item shows how from the effectivity function in the original model
is carried over in the filtered model, modulo Σ. The third item instead goes the
other way round: if a set Y can be forced by a coalition in the filtered model, then
all the sets of the form φM , such that φ ∈ Σ and is a subset of the set of members
of equivalence classes in Y , can be forced in the original model. The next items
describe the two way relation between the original model and the filtered model
for the R relation in an analogous way to what done for the coalitional relation.
The fourth one says that if two worlds are connected by the R relation in the
original model then their counterparts are also connected by the correspondent
relation in the filtered model. The fifth one goes the other way round and says
that if two worlds are connected by the RfΣ relation in the filtered model then their
corresponding counterparts in the original model respect the modal valuation of
formulas in Σ. The last item constructs the valuation function in the filtered model,
which should agree with the one in the original model as for the atoms in Σ. The
conditions above are needed to ensure the following Filtration Lemma, as showed
in [12] for the neighbourhood relations and e.g. in [6] for the binary relation.

Proposition 17 (Filtration Lemma) If Mf
Σ = (W f

Σ , E
f
Σ , R

f
Σ , V

f
Σ) is a filtration of

M through Σ then for all φ ∈ Σ we have that M,w |= φ if and only if Mf
Σ , |w| |= φ.

Definition 14 (Playable Filtration) Let M = (W,E,R, V ) be an extended coali-
tion model and Σ(δ) the boolean closure (modulo propositional equivalence) of
the set of subformulas of δ, such that δ ∈ LCLO. A coalition model MF

Σ(δ) =

(WF
Σ(δ), E

F
Σ(δ), R

F
Σ(δ), V

F
Σ(δ)) is a playable filtration of M through Σ(δ) whenever the

following conditions are satisfied:

1. WF
Σ(δ) = |W |.

2. For all C ( N and Y ⊆ |W |: Y ∈ EFΣ(δ)(|w|)(C) if and only if there exists

φ ∈ Σ(δ) such that φM ⊆ {v | |v| ∈ Y } and φM ∈ E(w)(C).
3. For all Y ⊆ |W |: Y ∈ EFΣ(δ)(|w|)(N) if and only if Y 6∈ EFΣ(δ)(|w|)(∅).
4. |w|RFΣ(δ)|v| if and only if there exists w′ ∈ |w|, ∃v′ ∈ |v| such that w′Rv′.

5. V FΣ(δ)(p) = |V (p)| for all atoms p ∈ Σ(δ).
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Intuitively the definition constructs a filtration that preserves playability, in the
same fashion of Definition 13. The first item constructs the set of states, this time
considering the boolean closure of subformulas of δ. The second item deals with
the effectivity function of coalitions that do not involve all the players, similarly
to what done in item 2 and 3 of Definition 13. The third item specifically deals
with the effectivity function of the grand coalition relating it to that of the empty
coalition, in a way that preserves N-maximality. The fourth item constructs the
filtered relation RFΣ(δ) making use of the minimal possible filtration and the fifth
item deals with the valuation function in the same way of Definition 13.

That MF
Σ(δ) is a filtration in the sense of Definition 13 is proved in [12] for the

coalitional modalities. We have added to that a minimal filtration for the modality
〈O〉. So MF

Σ(δ) is a filtration in the sense of Definition 13. In [12] it is also shown

that playability is preserved by that filtration and that every subset of WF
Σ(δ) is

definable by a formula of Σ(δ) as follows. First, for every state |w| ∈ |W | we define

χFΣ(δ)(|w|) :=
∧
{φ ∈ Σ(δ) |MF

Σ(δ), |w| |= φ}.

Then, for every Y ⊆ |W | we put

χFΣ(δ)(Y ) :=
∨
{χFΣ(δ)(|w|) | |w| ∈ Y }.

It is straightforward to show, using the filtration lemma, that for every Y ⊆ |W |:

MF
Σ(δ), |w| |= χFΣ(δ)(Y ) if and only if |w| ∈ Y,

that is, χFΣ(δ)(Y ) indeed characterizes the set y in MF
Σ(δ).

Proposition 18 M•,FΣ(δ) is standard and truly playable.

Proof To prove that M•,FΣ(δ) is standard we have to show that for each w, v ∈ W ,

|v|R•,FΣ(δ)|w| if and only if {|v|} ∈ E•,FΣ(δ)(|w|)(N). From right to left it is straightfor-

ward. For the other direction, suppose |v|R•,FΣ(δ)|w|. ThenM•,FΣ(δ), |v| |= 〈O〉χ
F
Σ(δ)(|w|)

by definition of R•,FΣ(δ) and by the properties of filtrations. By the fact that R•,FΣ(δ)

is a minimal filtration we have that ∃w′ ∈ |w|, ∃v′ ∈ |v| such that v′R•w′. By defi-
nition of R• and the Truth Lemma we have that M•, v′ |= 〈O〉χFΣ(δ)(|w|). By the

axioms of TPCL and the Truth Lemma we have M•, v′ |= [N ]χFΣ(δ)(|w|), hence

M•, v′ |= ¬[∅]¬χFΣ(δ)(|w|). Then (¬χFΣ(δ)(|w|))
M• 6∈ E•(v′)(∅) by the definition

of E•. But, by Definition 13 {(¬χFΣ(δ)(|w|))
M•,FΣ(δ)} 6∈ E•,FΣ(δ)(|v|)(∅) and in turn

{(χFΣ(δ)(|w|))
M•,FΣ(δ)} ∈ E•,FΣ(δ)(|v|)(N). Recall now that (χFΣ(δ)(|w|))

M•,FΣ(δ) = |w|.
Now, to prove that M•,FΣ(δ) is truly playable, assume Y ∈ E•,FΣ(δ)(|w|)(N). Then,

(¬χFΣ(δ)(Y ))M
•,F
Σ(δ) 6∈ E•(w)(∅) by the definition of filtration, which means that

for all φ ∈ Σ(δ), if {v | |v| ∈ (¬χFΣ(δ)(Y ))M
•,F
Σ(δ)} ⊆ φM then φM 6∈ E•(w)(∅).

In particular (¬χFΣ(δ)(Y ))M
•
6∈ E•(w)(∅). By the definition of E• we have that

[∅]¬χFΣ(δ)(Y ) 6∈ w and by true playability that 〈O〉χFΣ(δ)(Y ) ∈ w. By the definition
of canonical relation for 〈O〉 we have that there exists v with wR•v such that
χFΣ(δ)(Y ) ∈ v. By definition of filtration |w|R•,FΣ(δ)|v| and by the Filtration Lemma

M•,FΣ(δ), |v| |= χFΣ(δ)(Y ). Finally, {|v|} ∈ E•,FΣ(δ)(|w|)(N) since M•,FΣ(δ) is standard.
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This completes the proof of the Completeness theorem 2.

Corollary 2 (Finite Model Property) The logic TPCL has the finite model prop-

erty with respect to the class of models TrulyPlay.

6 Conclusions

In this paper, we have revisited the correspondence between two classes of abstract
game forms: strategic games from non-cooperative game theory on the one hand,
and effectivity functions from cooperative game theory on the other. We consider
our contribution as threefold. First, we have corrected a well-known and often
used result from [16] relating strategic games and playable effectivity functions.
We showed that strategic games do not correspond to all playable functions, but to
a strict subset of the class, which we call truly playable effectivity functions. Second,
we have provided several abstract characterizations of truly playable functions. We
also showed that the remaining playable effectivity functions (that we call non-
truly playable) are induced by non-principal filters, and hence only scenarios with
infinitely many possible outcomes can fall in that class.

Third, we have pointed out that Coalition Logic is not expressive enough to
characterize true playability. On the other hand, CL can be extended in a simple
way to obtain such a characterization. To this aim we have proposed an extension
of Coalition Logic with a normal outcome selector modality, and called the result-
ing logic TPCL (Truly Playable Coalition Logic). We established a correspondence
between formulas of TPCL and truly playable models (that is, coalitional models
truly corresponding to strategic game models). Thus, while bare CL is not suf-
ficient to distinguish between truly playable and playable models, the “outcome
selector” modality enhances it with just enough extra expressive power to make
that distinction possible.

The importance of our work is mainly theoretical. Essentially, it implies that all
the claims that have been proved using Pauly’s correspondence between playable
effectivity functions and games should be revisited and possibly re-interpreted in
the light of the results presented here. Example of such issues, already addressed
here, include: axiomatization for Coalition Logic in the class of multi-player game
models, axiomatization of ATL in coalitional effectivity models, and the respective
finite model properties. In practical terms, this also means that, whenever a deci-
sion procedure is built on those theoretical results, the designer should be aware
of the correct correspondence between the two classes of game models, which is
especially relevant for satisfiability-checking algorithms. Tableaux for extensions
of Coalition Logic, like the one for a combination of CL and description logic ALC
from [13], are examples of such procedures.
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