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Abstract. A well known (and often used) result by Marc Pauly states
that playable effectivity functions correspond to strategic games in a
precise sense. That is, for every playable effectivity function E there
exists a strategic game that assigns to coalitions exactly the same power
as E, and vice versa. While the latter direction of the correspondence
is correct, we show that the former does not always hold in the case of
infinite game models. We point out where the proof of correspondence
goes wrong, and we present examples of playable effectivity functions in
infinite models for which no equivalent strategic game exists. Then, we
characterize the ”truly playable” class, that does correspond to strategic
games. Moreover, we discuss a construction that transforms any playable
effectivity function into a truly playable one while preserving the power
of most (but not all!) coalitions.

1 Introduction

Several logics for reasoning about coalitional power have been proposed and stud-
ied in the last two decades. Eminent examples are: Alternating Time Temporal
Logic (ATL) [1], Coalition Logic (CL) [11], and Seeing To It That (STIT) [2],
used in computer science and philosophy to reason about properties of multi-
agent systems. A crucial feature of these logics is the correspondence between
their models and the game structures they are meant to reason about.

In particular, the connection between the semantics of Coalition Logic and
the games it is supposed to describe relies on Pauly’s representation theorem [11]
which states that playable effectivity functions correspond exactly to strategic
games. Moreover, the correspondence has been used when obtaining further re-
sults for CL: if the semantics can be defined equivalently in terms of strategic
games and playable effectivity functions, they can be used interchangeably when
proving properties of the logic. A similar remark applies to ATL and STIT,
connected to Coalition Logic by a number of simulation results [3,6,7].

The correspondence between strategic games and effectivity functions is im-
portant even without the logical context. Effectivity functions generalize basic



models of cooperative game theory, whereas strategic games are models of non-
cooperative game theory. Pauly’s result is relevant as, in its raw form, it puts
forward a characterization of coalitional games that can be implemented by strate-
gic games, therefore establishing a strong connection between the two families
of game models.

In this paper, we show that the representation theorem is not correct as it
stands. More precisely, we show that there are some playable effectivity func-
tions with no corresponding strategic games. We point out where Pauly’s proof
of correspondence goes wrong, and we present examples of playable effectivity
functions in infinite sets of outcomes, for which no equivalent strategic games
exist. Then, we define a more restricted class of effectivity functions (that we call
truly playable) and we show them to correspond precisely to strategic games. We
discuss several alternative characterizations of truly playable functions. More-
over, we present a construction that recovers the correspondence in the sense that
it transforms any playable function into a truly playable one while preserving
the power of most (but not all) coalitions.

2 Preliminaries

We start by introducing the game-theoretic notions of strategic game and effec-
tivity function, and discussing their relevant features.

2.1 Strategic Games

Strategic games (also: normal form games) are basic models of non-cooperative
game theory [10]. After [11], we focus on abstract game forms, where the effect of
strategic interaction between players is represented by abstract outcomes from
a given set and players’ preferences are not specified. For simplicity we refer to
them as strategic games.

Definition 1 (Strategic game). A strategic game G is a tuple (N, {Σi|i ∈
N}, o, S) that consists of a nonempty finite set of players N , a nonempty set
of strategies Σi for each player i ∈ N , a nonempty set of outcomes S, and an
outcome function o :

∏
i∈N Σi → S which associates an outcome with every

strategy profile.

The outcome function is often assumed to be a bijection and it is consequently
dispensed with [10]. Some works, mostly aiming at formalizing the condition of
non-imposedness in social choice theory [9],4 assume surjectivity. As different
scenarios may require different assumptions, we use the definition of strategic
game in its most general form, as done in [11].

Additionally, we follow [11] and define coalitional strategies σC in G as tuples
of individual strategies σi for i ∈ C, i.e., ΣC =

∏
i∈C Σi. Note that (regardless

4 The condition of non-imposedness is also referred to as citizen sovereignty and it
allows players to freely choose among all possible alternatives in a decision process.



of possible conceptual interpretations of the empty coalition ∅, cf. [4] for a dis-
cussion) this definition allows for only one strategy σ∅ of C = ∅, namely the
empty function.

2.2 Effectivity Functions

Effectivity functions have been introduced in cooperative game theory [9] to
provide an abstract representation of the powers of coalitions to influence the
outcome of the game.

Definition 2 (Effectivity function). An effectivity function is a function E :

2N → 22
S

, that associates a family of “outcome sets” of states from S with each
set of players.

Intuitively, elements of E(C) are choices available to coalition C: ifX ∈ E(C)
then by choosing X the coalition C can force the outcome of the game to be
in X. Effectivity functions are usually required to satisfy additional properties,
consistent with this interpretation. As far as we are concerned we will examine
the class of playable effectivity functions, as defined in [11].

Definition 3 (Playability [11]). An effectivity function E is playable if and
only if the following conditions hold:

Outcome Monotonicity X ∈ E(C) and X ⊆ Y implies Y ∈ E(C);
N-maximality X 6∈ E(∅) implies X ∈ E(N);
Liveness ∅ /∈ E(C);
Safety S ∈ E(C);
Superadditivity if C ∩ D = ∅, X ∈ E(C) and Y ∈ E(D), then X ∩ Y ∈

E(C ∪D).

Each strategic game G can be canonically associated with an effectivity func-
tion, called the α-effectivity function of G and denoted with EαG.

Definition 4 (α-Effectivity in Strategic Games). For a strategic game G,

its (coalitional) α-effectivity function EαG : 2N → 22
S

is defined as follows: X ∈
EαG(C) if and only if there exists σC such that for all σC we have o(σC , σC) ∈ X.

It is claimed in [11] that playable effectivity functions correspond to strategic
games. That is, for every effectivity function E there is a strategic game G such
that E = EαG, and vice versa [11, Theorem 2.27]. We will show further that this
claim is not correct.

2.3 Nonmonotonic Core of an Effectivity Function

The key notion on which our considerations rely is that of “nonmonotonic core”,
introduced in [11]. Looking at playable effectivity functions, we can observe that
their representation contains much redundancy. In particular, the fact that E(C)
is outcome monotonic suggests that we can succinctly represent the effectivity
function in terms of minimal sets, i.e., the elements of E(C) that form an an-
tichain under set inclusion. The nonmonotonic core is aimed to provide such a
representation.



Definition 5 (Nonmonotonic core). Let E be an effectivity function. The
nonmonotonic core Enc(C) for C ⊆ N is the set of minimal sets in E(C):

{X ∈ E(C) | ¬∃Y (Y ∈ E(C) and Y ( X)}.

We will show in Section 3.1 that not all effectivity functions have a nonempty
nonmonotonic core. Moreover, even when it is nonempty, not all sets in an ef-
fectivity function need to contain a subset in the nonmonotonic core (cf. Sec-
tion 4.3). Thus, Enc does not always behave well as a representation of the
effectivity function, unless it is “complete” in the following sense.

Definition 6 (Complete nonmonotonic core). The nonmonotonic core Enc(C)
is complete if for every X ∈ E(C) there exists Y ∈ Enc(C) such that Y ⊆ X.

Note that if E(C) has a complete nonmonotonic core then Enc(C) can be used
as a succinct representation of E(C). Complete nonmonotonic cores turn out to
be fundamental when establishing the proper correspondence between strategic
games and effectivity functions.

The nonmonotonic core of the empty coalition is of particular interest to us.
For it, the following holds.

Proposition 1. For every playable effectivity function E:

1. E(∅) is a filter. 5

2. Enc(∅) is either empty or a singleton.

Proof. (1) E(∅) is non empty by safety; it is closed under supersets by outcome
monotonicity, and under intersections by superadditivity (with respect to the
empty coalition).

(2) Suppose Enc(∅) is non-empty, and let X,Y ∈ Enc(∅). Then, coalition ∅ is
effective for each of X and Y , hence, by superadditivity, it is effective for X ∩Y .
By the definition of Enc(∅), it follows that X = X ∩ Y = Y .

Proposition 2. For every α-effectivity function EαG : 2N → 22
S

, the following
hold:

1. The nonmonotonic core of EαG(∅) is the singleton set {Z} where Z = {x ∈
S | x = o(σN ) for some σN}.

2. EαG(∅) is the principal6 filter generated by Z.

Proof. For both claims it suffices to observe that Z ∈ EαG(∅) and that Z ⊆ U
for every U ∈ EαG(∅). Therefore, Enc(∅) = {Z} for E = EαG and EαG(∅) is the
principal filter generated by Z.

5 A family F of subsets of Ω is a filter if and only if (1) Ω ∈ F , (2) ∅ 6∈ F (3) F is
closed under finite intersection, and (4) F is closed under supersets. These structures
are sometimes referred to as proper filters, to distinguish them from improper filters,
that do not satisfy condition (2) and consequently coincide with 2Ω (cf. e.g. [5]).

6 Filter F is principal if and only if there exists X ⊆ Ω such that F is the set of all
supersets of X. Then, F is said to be generated by X. Filters that are not principal
are referred to as non-principal.



3 Problem with Correspondence

In this section we show that the playability conditions are not sufficient in infinite
models to make effectivity functions correspond to strategic games.

3.1 A Counterexample to Representation Theorem

We begin by quoting the claim that we are going to dispute.

Theorem 1 (Pauly’s Representation Theorem [11]). A coalitional effec-
tivity function E α-corresponds to a nonempty strategic game if and only if E is
playable.

Thus, the theorem states that every playable effectivity function is equal to
the α-effectivity function of some game (Pauly calls this equivalence relation
α-correspondence), and that each game has an α-effectivity function that is
playable. While the latter claim is easily true, the former one turns out incorrect.

Proposition 3. There is a playable effectivity function E for which E 6= EαG
for all strategic games G.

Proof. Consider a coalitional frame with a single player a that has the set of
natural numbers N as the domain (i.e., N = {a}, S = N), and the effectivity
defined as follows:

– E({a}) = {X ⊆ N | X is infinite};
– E(∅) = {X ⊆ N | X is finite}.

In other words, the grand coalition {a} is effective for all infinite subsets of the
natural numbers, while the empty coalition can enforce all the cofinite subsets.

We claim that E is playable and that it does not correspond to any strategic
game. Let us first verify the playability conditions. Outcome monotonicity, N-
maximality, liveness and safety are straightforward to check. For superadditivity,
notice that we have only two cases to verify:

1. C = {a}, D = ∅. Superadditivity holds here because intersection of an infi-
nite and a cofinite set is infinite.

2. C = ∅, D = ∅. Superadditivity in this case holds because intersection of two
cofinite sets is cofinite.

On the other hand, Enc(∅) = ∅ because there are no minimal cofinite sets.
This implies, by Proposition 2, that E 6= EαG for all strategic games G.

3.2 Tracing the Problem

When showing that playable effectivity functions exactly correspond to strategic
games, the difficult direction is from effectivity functions to games. Below, we
summarize the relevant part of the proof of Theorem 2.27 from [11], and show
where it goes wrong. We outline the construction of a strategic game G given an
effectivity function E (Steps 1–4); then, the argument supposed to show that E
α-corresponds to G (Steps 5–6).



Step 1: the players and the domain remain the same. The game G = (N,S,Σi, o)
inherits the set of outcomes and the set of players as occurring in the effectivity
function E.

Step 2: coalitions choose a set from their effectivity function. Now, a family of
functions is defined:

Fi = {fi : Ci → 2S | for all C we have that fi(C) ∈ E(C)}

where Ci = {C ⊆ N | i ∈ C}. Each function fi assigns choices to all coalitions
of which i is a member. Fi simply collects all such assignments.

Step 3: coalitions are partitioned according to their choices. Let f = (fi)i∈N , fi ∈
Fi, be a tuple of such assignments, one per player. The next step is to define the
set P∞(f) which results from iterative partitioning of the set of players in the
coarsest possible way such that players in the same partition are assigned same
coalitional choices:

P0(f) = 〈N〉
P1(f) = P (f,N) = 〈C1

1 , . . . , C
1
k1〉

P2(f) = 〈P (f, C1
1 ), . . . , P (f, C1

k1)〉 = 〈C2
2 , . . . , C

2
k2〉

...

P∞(f) = Pr(f) such that Pi(f) = Pi+1(f) for all i ≥ r,

where each P (f, C) returns the coarsest partitioning 〈C1, . . . , Cm〉 of coalition
C such that for all l ≤ m and for all i, j ∈ Cl it holds that fi(C) = fj(C).

That is, a subset of C is part of the partition P (f, C) iff its members agree
modulo f .

Step 4: an outcome is chosen in the intersection of coalitional choices. Now,
strategy sets for each player and the outcome function are defined as follows.
Each player in N is given a set of strategies of the form (fi, ti, hi) where fi ∈ Fi
is an assignment of coalitional choices for player i (see point (ii)), ti is a player
(possibly different from i), and hi : 2S \ ∅ → S is a selector function that selects
an arbitrary element from each nonempty subset of S.

The outcome of strategy σN is now defined as:

o(σN ) = hi0
( k⋂
l=1

f(Cl)
)
,

where i0 is a uniquely chosen player, hi0 is the outcome selector from i0’s strategy,
and Cl are partitions from P∞(f).

This concludes the construction of a game G which should α-correspond to the
effectivity function E. Steps 5–6 are supposed to prove that E = EαG .



Step 5: choices are not removed by the construction. First, an attempt to prove
E(C) ⊆ EαG (C) for arbitrary coalition C is presented:

For the inclusion from left to right, assume that X ∈ E(C). Choose any
C-strategy σC = (fi, ti, hi)i∈C such that for all i ∈ C and for all C ′ ⊇ C
we have fi(C

′) = X.(*) By coalition monotonicity, such fi exists.(**)
Take now any C-strategy, σC = (fi, ti, hi)i∈C . We need to show that
o(σC , σC) ∈ X. To see this, note that C must be a subset of one of the

partitions Cl in P∞(f). Hence, o(σN ) = hi0(G(f)) = hi0
⋂k
l=1 f(Cl) ∈

X. [11, p.29]

The deduction of the last sentence is where the proof goes wrong. The prob-
lem is that, for C = ∅ the only available strategy is the empty strategy σ∅ which
vacuously satisfies condition (*). And, for any agent i, a choice assignment fi
satisfying the condition must exist. However, there is no guarantee that any i
will indeed choose fi in its strategy since the coalition C for which we can fix its
strategy does not include any players. In consequence, one cannot deduce that
hi0
(⋂k

l=1 f(Cl)
)
∈ X; this could be only concluded if the intersection contains

at least one player whose choice fi(Cl) is X (or a subset of X).

To see this more clearly, let us consider the effectivity function in the coun-
terexample from Section 3.1. Note that σC = σ{a} = (fa, a, ha) such that
fa({a}) ∈ E({a}). Let us now take X = N \ {1}, fa({a}) = N, and ha(N) = 1.
Now, o(σN ) = o(σ{a}) = 1 /∈ X, which invalidates the argument from [11] quoted
above.

Another case where the reasoning fails is C = N . Consider a state space S
with {x} /∈ S, and an effectivity function E such that {x} /∈ E(N). Now, let
strategy profile σN consist of σi = (fi, ti, hi) where everybody assumes choosing
the whole state space in all circumstances (i.e., fi(C) = S for all i and C) and
applies the same selector hi such that hi(S) = x. Now we get that o(σN ) = x,
so {x} ∈ EαG (N), and hence E(N) 6= EαG (N).

Step 6: choices are not added by the construction. The proof of the other direc-
tion (EαG (C) ⊆ E(C)) fails too, because in order to establish the inclusion for
C = N , it is reduced to inclusion in step 5 for C = ∅, and we have just shown
that it does not necessarily hold.

This concludes our analysis of the proof of Pauly’s representation theorem
in [11]. The construction of the strategic game corresponding to a given effec-
tivity function fails because the game might endow the empty coalition and the
grand coalition of players with inappropriate powers. We consider this analysis
important for two reasons. First, we have identified precisely what was wrong
with the construction of the proof. Second, we will reuse the sound parts of the
original construction when proving a revised version of the correspondence in
Section 4.2 and to obtain some additional results in Section 4.4.



3.3 A Look at Consequences

We have observed that playability conditions are not sufficient to characterize
strategic games. This raises some relevant issues for studying game models and
logics for reasoning about games:

1. What are the “truly playable” effectivity functions that really correspond
to strategic games? How can we characterize these functions in an abstract
way? This issue is discussed in Section 4.

2. Conversely, how can we generalize the counterexample from Section 3.1 in
order to characterize the class of playable but not truly playable effectivity
functions? Section 4.3 deals with this question.

3. Is it possible to “reconstruct” playable effectivity functions into truly playable
ones, without modifying the coalitional abilities much? We propose such a
procedure in Section 4.4, and show that it preserves the powers of most
coalitions.

4. Finally, what is the impact on strategic logics, Coalition Logic in particu-
lar? Does changing from playable to truly playable models yield a different
notion of validity or semantic consequence? Are axiomatizations from [11,7]
sound and complete for truly playable models? What logical constructs are
needed to distinguish between playable and truly playable structures? These
questions will be treated in a subsequent work.

4 Truly Playable Effectivity Functions

In this section we introduce an additional constraint on playable effectivity func-
tions, that will enable us to prove the correspondence with strategic games.

4.1 Characterizing True Playability

The subset of playable effectivity functions that α-correspond to strategic games
can be characterized in terms of the nonmonotonic core of the empty coalition.
Alternatively, it can be characterized in terms of effectivity of the grand coalition
of all the agents.

Definition 7. An effectivity function E is truly playable iff it is playable and
E(∅) has a complete nonmonotonic core.

We will formally prove the correspondence between strategic games and truly
playable functions in Section 4.2.

Several equivalent characterizations of truly playable effectivity functions are
given in Proposition 4. For one of them, we will need the additional notion of a
crown. Intuitively, an effectivity function is a crown if every choice of the agents
in the grand coalition includes at least one state that the grand coalition can
enforce precisely. Formally, this means that N can only force some singleton sets
and all their supersets. By forming an anti-chain of singletons and drawing the
cones we obtain a “crown” as in Figure 1, hence the term.



{x} {y} {z}

{x, y} {x, z} {y, z}

{x, y, z}

Fig. 1. A crown

Definition 8. An effectivity function E : 2N → 22
S

is a crown if and only if
X ∈ E(N) implies {x} ∈ E(N) for some x ∈ X.

Proposition 4. The following are equivalent for every playable effectivity func-

tion E : 2N → 22
S

.

1. E is truly playable.
2. E(∅) has a non-empty nonmonotonic core.
3. Enc(∅) is a singleton and E(∅) is a principal filter, generated by Enc(∅).
4. E is a crown.

Proof.
(1) ⇒ (2): immediate, by safety.
(2) ⇒ (3): Let Z ∈ Enc(∅) and let X ∈ E(∅). Then, by superadditivity,

Z ∩X ∈ E(∅), and Z ∩X ⊆ Z, hence Z ∩X = Z by definition of Enc(∅). Thus,
Z ⊆ X. So, E(∅) is the principal filter generated by Z, hence Enc(∅) = {Z}.

(3) ⇒ (1): immediate from the definitions.
(3) ⇒ (4): Let Enc(∅) = {Z} and suppose {x} /∈ E(N) for all x ∈ X for

some X ⊆ S. Then, by N-maximality, S \ {x} ∈ E(∅), i.e. Z ⊆ S \ {x} for
every x ∈ X. Then Z ⊆ S \X, hence S \X ∈ E(∅). Therefore, X /∈ E(N) by
superaditivity and liveness. By contraposition, E is a crown.

(4) ⇒ (3): Let Z = {z | {z} ∈ E(N)} and let X ∈ E(∅). Take any z ∈ Z,
which is nonempty by liveness and the fact that E is a crown. By superadditivity
we obtain that {z}∩X ∈ E(∅), hence z ∈ X by liveness. Thus, Z ⊆ X. Moreover,
Z ∈ E(∅), for else S \ Z ∈ E(N) by N-maximality, hence {x} ∈ E(N) for some
x ∈ S \Z, which contradicts the definition of Z. Therefore, E(∅) is the principal
filter generated by Z, hence Enc(∅) = {Z}.

We also observe that on finite domains playability and true playability coin-
cide.

Corollary 1. Every playable effectivity function E : 2N → 22
S

on a finite do-
main S is truly playable.

Proof. Straightforward, by Proposition 4.3 and the fact that every filter on a
finite set is principal.



Finally, note that in a truly playable function the nonmonotonic core for
coalitions different from ∅, N does not have to be complete, and neither does it
have to be nonempty, as Example 1 demonstrates.

Example 1. Consider the following effectivity function for N = {a, b}, S = N:

– E(∅) = {N},
– E({a}) = E({b}) = all cofinite subsets of N,
– E({a, b}) = 2N \ ∅.

It is easy to see that E is truly playable, but the nonmonotonic core of E({a})
is empty, and hence also not complete.

4.2 Truly Playable Functions Correspond to Strategic Games

The proof of Theorem 2.27 from [11] fails when we consider the effectivity func-
tion of the empty coalition (resp. of the grand coalition). However the proof is
correct for the other cases. We will now show that the additional condition of
true playability yields correctness of the original construction from [11].

Theorem 2. A coalitional effectivity function E α-corresponds to a strategic
game if and only if E is truly playable.

Proof. By Propositions 2 and 4, for any strategic game G its α-effectivity func-
tion EαG is truly playable.

For the other direction, given a truly playable effectivity function E, we
slightly change Pauly’s procedure outlined in Section 3.2 (Steps 1–4). We impose
an additional constraint on players’ strategies σi = (fi, ti, hi), namely, we require
that hi(X) = x for some {x} ∈ E(N). In other words, the selector functions only
select the “jewels” in the crown. Note that for C /∈ {∅, N} the new procedure
yields game G′ with exactly the same Eα(C) as the original construction G
from [11] because:

– We do not add any new choice sets to EαG (C). Indeed, that could only happen
because the selectors chosen by agents outside C are restricted to {x | {x} ∈
E(N)}, and hence we can have that X ∩ {x | {x} ∈ E(N)} ∈ EαG′(C) in
the new construction for some X ∈ EαG (C) from the previous construction.
However, by true playability of E and Proposition 4 we have that {x | {x} ∈
E(N)} ∈ E(∅), and thus by superadditivity all the states y /∈ {x | {x} ∈
E(N)} can be removed from C’s strategies that yielded X in G. But then

these states will also be removed from the intersection
⋂k
l=1 f(Cl), and so

X ∩ {x | {x} ∈ E(N)} ∈ EαG (C) already in the previous construction.
– We do not remove any choice sets from EαG (C). Indeed, that could only

happen because of removing an X ∈ EαG (C) which contains “superfluous”
elements and replacing it with X ∩ {x | {x} ∈ E(N)}. But then, X must
also be in EαG′(C) because EαG′(C) is closed under supersets.



It remains now to show that the procedure constructs a strategic game G
such that E(C) = EαG (C) for all C ⊆ N , that is, to show that steps 5 and 6 work
well in case of truly playable structures.

Ad. Step 5. We show that E(C) ⊆ EαG (C) for C = ∅ and C = N , the only
cases in which the original proof failed for playable structures.

Assume that X ∈ E(∅). We need to prove that X ∈ EαG (∅). By true playa-
bility we know that there exists Y ∈ Enc(∅) such that Y ⊆ X. By Propo-
sition 4, Enc(∅) = {Y } and E(∅) = {Z | Y ⊆ Z}. We will show now that
Y = {x | {x} ∈ E(N)} (*). First, suppose that x ∈ Y and {x} /∈ E(N), then
by N -maximality S \ {x} ∈ E(∅), a contradiction. Second, let {x} ∈ E(N) and
x /∈ Y , then by superadditivity ∅ ∈ E(N) which contradicts liveness.

Now, consider any strategy profile σN . We have o(σN ) = hi0
(⋂k

l=1 f(Cl)
)
∈

Y because every hi returns only elements in Y by construction.
For the case C = N , assume that X ∈ E(N). We need to prove that X ∈

EαG (N). By true playability we have that there exists x ∈ X such that {x} ∈
E(N). Now, let σN consist of strategies σi = (fi, ti, hi) such that fi(N) = x
for every i. It is easy to see that o(σN ) = x, and hence {x} ∈ EαG (N). Thus,
X ∈ EαG (N) because EαG (N) is closed under supersets.

Ad. Step 6. Dually to Step 5, we show that EαG (C) ⊆ E(C). That is, assuming
X 6∈ E(C) we show that X 6∈ EαG (N). We do it by a slight modification of the
original proof from [11].

Suppose first that C = N . Then, X ∈ E(∅) by N -maximality, and by Step 5
we have X ∈ EαG (∅). Since EαG is truly playable, we have also that X 6∈ EαG (N).

Assume now that C 6= N , and let j0 ∈ C. Let σC be any strategy for coalition
C. We must show that there is a strategy σC such that o(σC , σC) 6∈ X. To show
this, we take σC = (fi, ti, hi)i∈C such that for all C ′ ⊇ C and for all i ∈ C we
have fi(C

′) = S. We also choose tj0 such that ((t1 + . . .+ tn) mod n) + 1 = j0.
Note that C must be an element of one of the partitions Cl in P∞(f), say
Cl0 . Moreover, there must be a partitioning 〈C1, . . . , Ck〉 of N \ Cl0 such that

G(f) = f(Cl0) ∩
⋂k
l=1 f(Cl) =

⋂k
l=1 f(Cl). Since f(Cl) ∈ E(Cl) we get that

G(f) ∈ N \ Cl0 by superadditivity. By coalition-monotonicity and the fact that
N \ Cl0 ⊆ C, we also have G(f) ∈ E(C). Finally, by (*) and superadditivity we
obtain G(f) ∩ {x | {x} ∈ E(N)} ∈ E(C).

Since X 6∈ E(C) and E(C) is closed under supersets, it must hold that
G(f)∩{x | {x} ∈ E(N)} 6⊆ X. Thus, there is some s0 ∈ S such that: s0 ∈ G(f),
{s0} ∈ E(N), and s0 /∈ X. Now we fix hj0 so that hj0(G(f)) = s0. Then,
o(σC , σC) = hj0(G(f)) = s0 6∈ X which concludes the proof.

4.3 Non-Truly Playable Structures

In this section we focus on the class of playable but not truly playable effectivity
functions, hereafter called “non-truly playable”. From Proposition 4 we know
that a playable effectivity function E is truly playable if and only if the filter
E(∅) is principal and generated by Enc(∅). Hence, playability and true playability
coincide on finite domains. There exist, however, non-truly playable effectivity



functions on infinite domains, and we have already discussed an example of such
a function in Section 3.1.

Non-truly playable effectivity functions have a simple abstract characteriza-
tion, following from Proposition 4:

Proposition 5. Effectivity function E : 2N → 22
S

is non-truly playable if and
only if it is playable and E(∅) is a non-principal filter.

To see a more generic class of examples, consider an infinite domain S, and
let F be any non-principal filter on S. Then we define an effectivity function EF
on S as follows.

– EF (∅) = F .
– EF (N) = {X | X 6∈ F}
– For each C with ∅ ( C ( N take EF (C) to be any set of sets such that
EF (∅) ⊆ EF (C) ⊆ EF (N) that is closed under outcome monotonicity and
that are pairwise closed under regularity and superadditivity.

Proposition 6. EF is playable but not truly playable.

Proof. That EF is not truly playable follows by the fact that EF (∅) is a non-
principal filter. In order to check that EF is playable we only need to check
superaddivity for ∅ and N , as the other conditions follow by construction.

Assume X ∈ EF (∅) and Y ∈ EF (N). We have to prove that X ∩ Y ∈
EF (N). Suppose that X ∩ Y 6∈ EF (N). But then, by definition of EF (N) we
have that X ∩ Y ∈ EF (∅). By de Morgan’s law we have that X ∪ Y ∈ EF (∅).
But as Y ∈ EF (N) we know that Y 6∈ EF (∅). However EF (∅) is a filter so
X ∩ (X ∪ Y ) ∈ EF (∅). From this follows that Y ∈ EF (∅). Contradiction.

Here are some examples of non-principal filters on N:

– For any k ∈ N let Ek(∅) = {X ⊆ N | X is cofinite in N and k ∈ X}.
– More generally, for any K ⊆ N which is not cofinite in N let EK(∅) = {X ⊆

N | X is cofinite in N and K ⊆ X}.

In the case of single player, N = {a}, the construction above immediately
extends these filters to non-truly playable effectivity functions on N:

– Ek({a}) = {X ⊆ N | X is infinite or k ∈ X},
– EK({a}) = {X ⊆ N | X is infinite or K ∩X 6= ∅},

We know from the proof of proposition 4 that for all playable E, if the
nonmonotonic core of E(∅) is nonempty, then it must be complete. The above
examples show that this does not have to be the case for other coalitions. For
instance, observe that the nonmonotonic core of E1({a}) is Enc1 ({a}) = {{1}};
still, {1} 6⊆ Even ∈ E1({a}). Similarly, we can show that even infinite nonmono-
tonic core does not guarantee its completeness. Indeed, it is easy to see that
EncEven({a}) = {{k} | k ∈ Even} while we also have Odd ∈ EEven({a}). Thus, a
playable effectivity function can have its nonmonotonic core for the grand coali-
tion nonempty and consisting entirely of singletons, and yet not be a crown –
hence remaining non-truly playable.



4.4 From Playable to Truly Playable Effectivity Functions

In this section we show that one can reconstruct a non-truly playable effectivity
function into a truly playable one with “minimal” modifications. To do so, we in-
terpret choices of the grand coalition containing multiple outcome states as ones
that involve inherent nondeterminism. That is, we interpret {x1, x2, . . . } ∈ E(N)
as a choice where no agent has control over which state out of x1, x2, . . . will
become the outcome; as a consequence any of these states can possibly be en-
countered in the next moment. Under such assumption, it is possible to recover
true playability by a simple extension of Pauly’s procedure. The extension con-
sists in adding an extra player d (the “decider”) who settles the nondeterminism
and decides which of x1, x2, . . . is going to become the next state.

Proposition 7. Let E : 2N → 22
S

be a playable effectivity function. There

exists a truly playable effectivity function E′ : 2N∪{d} → 22
S

with additional
player d 6∈ N , such that:

– E′(C) = E(C) for every C ⊆ N,C 6= ∅,
– E′(∅) = {S}, and
– E′(N ∪ {d}) = 2S \ {∅}.

Proof. Given a playable E, we construct a strategic game whose α-effectivity
function satisfies the properties above. Then, existence of a truly playable effec-
tivity function follows immediately. The idea is to take the construction from
the proof of Theorem 2.27 in [11] and reassign selection of the outcome state to
the additional player d.

Let h : 2S\{∅} → S be any selector function that selects an arbitrary element
from the argument set. In our case, h will designate the “default” outcome for
each subset of S. Now, the game G is constructed as follows:

– N ′ = N ∪ {d};
– Strategies of player i 6= d are simply the player’s assignments of coalitional

choice, i.e., Σi = Fi;
– Strategies of the decider are state selections: Σd = S;
– The transition function is based on the same partitioning of N as before,

that yields 〈C1, . . . , Ck〉. Then, the game proceeds to the state selected by
the decider if his choice is consistent with the choices of the others, otherwise
it proceeds to the appropriate “default” outcome:

o(σN , s) =

{
s if s ∈

⋂k
i=1 f(Cl)

h(
⋂k
i=1 f(Cl)) else.

Now, it is easy to see that for every ∅ ( C ( N indeed EαG (C) = E(C)
because that was the case in the original construction, and the only difference
now is that d “took over” the selection of a state in

⋂k
i=1 f(Cl) from a collective

choice of N . For C = N , we also have EαG (N) = E(N) since for every σN

we get by superadditivity that
⋂k
i=1 f(Cl) ∈ E(N), and every state from the

intersection can be potentially selected by d. Moreover, {s} ∈ EαG (N ∪ {d}) for



every s ∈ S because {s} is enforced by σN∪{d} = 〈f1, . . . , f|N |, s〉 such that fi =
S for all i ∈ N . Thus, by outcome monotonicity, EαG (N∪{d}) = 2S \{∅}. Finally,
by true playability of EαG , we have EαG (∅) = {{s | {s} ∈ EαG (N ∪ {d})}} = {S}.
We observe additionally that EαG (d) = {{s} ∪ {h(X) | X ∈ EαG(d) and s /∈ X} |
s ∈ S}.

5 Conclusions

In this paper, we revisit the correspondence between two classes of abstract
game forms: strategic games from noncooperative game theory on one hand, and
effectivity functions from cooperative game theory on the other. Our contribu-
tion is twofold. First, we correct a well-known result from [11] relating strategic
games and playable effectivity functions. We show that strategic games do not
correspond to all playable functions, but to a strict subset of the class, which
we call truly playable effectivity functions. Second, we provide several abstract
characterizations of truly playable functions, most notably in terms of princi-
pal filters. We also show that the remaining playable effectivity functions (that
we call non-truly playable) are induced by non-principal filters, and hence only
scenarios with infinitely many possible outcomes can fall in that class.

The importance of our work is mainly theoretical. Essentially, it implies that
all the claims that have been proved using Pauly’s correspondence between
playable effectivity functions and games should be revisited and possibly re-
interpreted in the light of the results presented here. Example of such issues
include: axiomatization for Coalition Logic in the class of multi-player game
models, axiomatization of ATL in coalitional effectivity models, and the respec-
tive finite model properties.7 In practical terms, this also means that, whenever
a decision procedure is built on those theoretical results, the designer should be
aware of the correct correspondence between the two classes of game models,
which is especially relevant for satisfiability-checking algorithms. Tableaus for
extensions of Coalition Logic, like the one for a combination of CL and descrip-
tion logic ALC from [8], are good examples of such procedures.
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