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Abstract
In this paper a confidence measure is considered for an
agent who tries to keep a probabilistic model of her envi-
ronment of action. The measure is meant to capture only
one factor of the agent’s doubt – namely, the issue whether
the agent has been able to collect a sufficient number of
observations. In this case stability of the agent’s current
knowledge may give some clue about the trust she can put
in the model – indeed, some researchers from the field of
probability theory suggest that such confidence should be
based on the variance of the model (over time).

In this paper two different measures are proposed, both
based on aggregate variance of the estimator provided by
the learning process. The way the measures work is in-
vestigated through some simple experiments with simulated
software agents. It turns out that an agent can benefit from
using such measures as means for ’self-reflection’. The
simulations suggest that the agent’s confidence should re-
flect the deviation of her knowledge from the reality. They
also show that it can be sometimes captured using very sim-
ple methods: a measure proposed by Wang is tested in this
context, and it works seldom worse than the variance-based
measures, although it seems completely ad hoc and not well
suited for this particular setting of experiments at the first
sight.

Keywords: multiagent systems, confidence measure,
uncertainty, machine learning, user modeling

1 Introduction
There are roughly two possible sources of doubt for
a learning agent. First, the agent may have collected
too little data. For instance, when the agent starts in-
teraction with a completely new user, her knowledge
about the user is virtually none. However, the knowl-
edge is utilized in the same way by most algorithms,
regardless of the number of learning steps that have
been taken so far.

Next, the environment might have changed consid-
erably, so the data do not reflect its current shape.

The knowledge produced by a learning algorithm is
often no more than a working hypothesis. It’s nec-
essary for the agent that she can make her decisions;
however, trusting the knowledge blindly implies some
additional assumptions which are not true in most real-
life situations. It’s good for the agent to have some
measure of uncertainty in her own knowledge – to
minimize the risk of a decision, especially in the case

when she has several alternative models to choose
among or combine.

This paper is focused on the first source of the
agent’s uncertainty: how much confidence can she
have in her knowledge when there is not enough data
to support it? The problem is analyzed in a very sim-
ple setting: the agent is assumed to be a 1-level agent
– i.e. an agent that models other agents as stochas-
tic agents (Sen and Weiss, 1999) – and the users are
0-level agents with probabilistic policies. The rein-
forcement is known beforehand for every decision of
the agent, given a response from the user, and the do-
main of action is stateless (or at least the agent’s per-
ception doesn’t let her distinguish between different
states of the environment). The agent tries to estimate
the actual policy of the user calculating a frequency
distribution, which can be further used to find the de-
cision with the maximal expected reward. The aim of
the confidence is to represent meta-(un)certainty about
the agent’s knowledge, so when she has several alter-
native models available she can choose among them or
combine their output. Thus, the actual confidence val-
ues should range from 0 (complete distrust) to 1 (full
confidence).

2 The Learning Method: Counting with
Decay

Assume an autonomous software agent A who inter-
acts with some other agent B (for example, A may be
an agent representing a bank and B may be a potential
customer – a user of an Internet banking service). The
interaction with the ’user’ is sequential and it consists
of subsequent turns: first A chooses to proceed with an
action a∗ from a finite set ActA, then B replies with
some b∗ ∈ ActB, then A does a′ ∈ ActA and so on.
Let pB(b|a) ≡ pB(a, b) denote the current probability
of agent B choosing action b as a response to A’s ac-
tion a. A tries to estimate the policy with a relative
frequency distribution p̂B:

p̂(b|a) ←

��� �� p̂(b|a)N(a)·λ+1
N(a)·λ+1

a = a∗, b = b∗

p̂(b|a)N(a)·λ
N(a)·λ+1

a = a∗, b 6= b∗

p̂(b|a) else

(1)

N(a) ← � N(a) · λ + 1 a = a∗

N(a) else (2)

where λ ∈ [0, 1] is the decay rate implementing the
way A ’forgets’ older observations in favor of the more



recent ones to model users that may change their pref-
erences dynamically (Kumar, 1998) (Koychev, 2000)
(Koychev, 2001). N(a) represents the data size after
collecting n observations. Since the older observations
are used only partially (the first one with weight λn−1,
the second: λn−2 etc.), the real quantity of data we use
is

N(a) =
n�

i=1

λn−i = � 1−λn

1−λ
for 0 < λ < 1

n for λ = 1

The nil distribution 0(b|a) = 0 is used as the ini-
tial one. If the decay rate is allowed to vary then
N(a) =

∑n
i=1

∏n
j=i+1 λj , where λ1, ..., λn denote the

actual decay rates at the moments when the subsequent
observations and updates were made.

Note that p̂(b|a) is basically a sample mean of a
Bernoulli variable Resp(b|a), although it’s a mean with
decay:

p̂n(b|a) = Mλ1..n
(Respi=1,...,n(b|a)), (3)

where Resp(b|a) = � 1 if b is the user’s response to a

0 otherwise (4)

Mλ1..n
(Xi=1,...,n) = � n

i=1( � n
j=i+1 λj)Xi� n

i=1 � n
j=i+1 λj

(5)

Note also that for λ = 1 we obtain an ordinary fre-
quency distribution with no temporal decay.
Mλ has some standard properties of a mean (the proofs
are straightforward):

Mλ1..n
(X + Y ) = Mλ1..n

(X) + Mλ=1..n(Y ) (6)

Mλ1..n
(aX) = aMλ1..n

(X) (7)�
b

Mλ1..n
(pi=1..n(b)) = 1 if pi are probability functions (8)

3 Self-Confidence with Insufficient Data
It is often assumed that the (un)certainty an agent
can have about her knowledge is nothing but a meta-
probability or meta-likelihood – cf. (Draper, 1995)
for instance. On the other hand, there are researchers
who argue against it (Kyburg, 1988; Wang, 2001).
This seems to reflect the assumption that the meta-
uncertainty should refer to the usability of the model.
Indeed, meta-probability isn’t very useful in this case:
even if we know for sure that the model is slightly
different from the reality (in consequence, its meta-
probability is exactly 0), it does matter whether it’s
close to the real situation or not (Wang, 2001). This
is also the perspective adopted in this paper. In this
respect, some authors propose approaches based on
some notion of error or fitting obtained through a pos-
terior verification of the model (Hochreiter and Mozer,
2001; Spiegelhalter et al., 1998; Marshall and Spiegel-
halter, 1999). However, the disconfidence studied here
is a priori not a posteriori by definition – therefore
any posterior reasoning can do no good here. In con-
sequence, purely practical solutions may be very use-
ful and work surprisingly well in particular situations
(Kumar, 1998; Wang, 2001).

It has been suggested that, when the model is a prob-
ability distribution, the agent’s self-confidence may be
defined using the variance of the distribution treated as
a random quantity itself (Pearl, 1987; Kyburg, 1988).
Thus, the confidence measures being proposed and
studied in this paper are based on the notion of aggre-
gate variance of the estimator provided by the learning
process.

3.1 Binding the Variance of Sampling
Handbooks on statistics like (Berry and Lindgren,
1996) suggest a way to determine whether an amount
of data is enough to estimate the population mean
EX with a sample mean X̄: we assume some accept-
able error level ε and as soon as the sampling devia-
tion (standard deviation, for instance) gets below this
value: σ(X̄) ≤ ε, we feel satisfied with the estimation
itself. Since the real deviation value is usually hard to
obtain, an upper bound or an estimation can be used
instead.

If we want the ’satisfaction measure’ to be continu-
ous, it seems natural that the satisfaction is full 1 when
the condition holds for ε = 0, and it decreases towards
0 as the dispersion grows. It is proposed here that
the confidence for a frequency distribution p̂(·|a) can
be somehow proportional to 1 −

∑
b disp(b|a), and the

variance var(p̂(b|a)) is used to express the dispersion
disp(b|a). The reason for choosing the variance is that
0 ≤

∑
b var(p̂(b|a)) ≤ 1 in our case, while the same

is not true for the standard deviation σ as well as the
mean deviation m.a.d.

We assume that the old observations are appropri-
ate only partially with respect to the (cumulative) data
decay encountered so far. Let n ≥ 1 be an arbi-
trary number. By the properties of the variance and
given that Resp1(b|a), ..., Respn(b|a) represent a ran-
dom sampling of the user’s responses:

var(p̂n(b|a)) = var 	 Mλ(Respi=1..n(b|a)) 
 =

= var 	 � n
i=1 Respi(b|a)λn−i� n

i=1 λn−i

 =

= � n
i=1 var(Respi(b|a))λ2(n−i)

( � n
i=1 λn−i)2

var(Respi(b|a)) is a population variance at the mo-
ment when the ith observation was made. If pi(b|a)
was the real probability of user responding with action
b at that particular moment, then:

var(Respi(b|a)) = pi(b|a)− p2
i (b|a)�

b

var(p̂n(b|a)) = � n
i=1 λ2(n−i) 	 � b pi(b|a) − � b p2

i (b|a) 

( � n

i=1 λn−i)2

∑
b p2

i (b|a) is minimal for the uniform distribution
pi(b|a) = 1

|ActB| , so:�
b

var(p̂n(b|a)) ≤ � n
i=1 λ2(n−i)

( � n
i=1 λn−i)2

(1−
1

|ActB|
) (9)



Let

dispb(a) = � n
i=1 λ2(n−i)

( � n
i=1 λn−i)2

(1 −
1

|ActB|
) (10)

Cbound(a) = 1− dispb(a) (11)

Now the confidence is never higher than it can be –
the agent is playing it safe:

Cbound(a) ≤ 1−
�

b

var(p̂n(b|a)) (12)

Note also that dispb(a) is a decreasing function of
λ for λ ∈ (0, 1], so its value is always between (1 −

1
|ActB|)/n (the value for λ = 1), and 1 − 1

|ActB| (which
is limλ→0 dispb(a)). Thus also

0 ≤
1

|ActB|
≤ Cbound(a) ≤

n− 1

n
+

1

n|ActB|
≤ 1 (13)

In the more general case when λ is variable:�
b

var(p̂n(b|a)) = var 	 Mλ=1..n(Respi=1..n(b|a)) 
 =

= � b � n
i=1( � n

j=i+1 λj)2var(Respi(b|a))

( � n
i=1 � n

j=i+1 λj)2

≤ � n
i=1( � n

j=i+1 λj)
2

( � n
i=1 � n

j=i+1 λj)2
(1 −

1

|ActB|
)

It is possible to compute

Lsqrn =
n�

i=1

(
n�

j=i+1

λj)
2 = λ2

nLsqrn−1 + 1

and Ln =
n�

i=1

n�
j=i+1

λj = λnLn−1 + 1

in an incremental way. Then the confidence can be
defined as

Cbound(a) = 1−
Lsqrn

(Ln)2
(1−

1

|ActB|
) (14)

which is never greater than 1 −
∑

b var(p̂n(b|a)).

3.2 Adjusting the Confidence Value
The value of dispb(a) proposed above can give some
idea of the uncertainty the agent should have in p̂(·|a).
The most straightforward solution: Cbound(a) = 1 −
dispb(a) may not always work well for practical rea-
sons, though. The agent can use a ’magnifying glass’
parameter m to sharpen her judgment:

Cbound(a) = (1− dispb(a)) � (15)

Since different learning methods show different dy-
namics of knowledge evolution, m offers the agent an
opportunity to ’tune’ her confidence measure to the ac-
tual learning algorithm.

3.3 Forward-Oriented Distrust
In a perfect case we would be interested in the real
variation of the sampling made so far – to have some

clue about the expected (real) deviation from the esti-
mation p̂n obtained through the sampling. This value
can be approached through its upper bound – as pro-
posed in section 3.1. Alternatively we can try to ap-
proximate the variability we may expect from our esti-
mator in the future (possibly with temporal discount).

It is worth noting that insufficient data can be seen
as generating ’future oriented distrust’: even if the
agent’s knowledge doesn’t change much during the
first few steps (e.g. the corresponding user’s responses
are identical) it may change fast in the very next mo-
ment. When the evidence is larger, the model of the re-
ality being produced gets more stable and it can hardly
be changed by a single observation. If we assume that
the learning algorithm is correct – i.e. the model con-
verges to the true user characteristics as the number
of input data increases – then the agent can base her
self-assessment on the possible future-oriented disper-
sion (possibly with a temporal discount Λ – to make
the closer entries matter more than the farther ones):

CsizeΛ(a) = (1− fdispΛ(a)) � (16)

fdispΛ(a) = lim
k→∞

E fdispk
Λ(a) =

= lim
k→∞

E 	 �
b

VΛ(p̂n+k(b|a), ..., p̂n(b|a)) 
 (17)

where p̂ is the agent’s current model of the user, ev-
ery p̂n+i(·|a), i = 1..k is obtained from p̂n+i−1(·|a)
through response b∗i , and the mean is taken over all the
response sequences (b∗1, ..., b

∗
k). The sample variance

with discount/decay can be defined in a natural way
as:

VΛ(X) = MΛ(X −MΛX)2 (18)

By properties (6), (7): VΛ(X) = MΛ(X2) − M2
Λ(X).

Assuming uniform a priori likelihood for all the possi-
ble sequences, the expected value can be approximated
with simple averaging:

avg(b∗
i=1..k

) fdispk
Λ(a) =

1

|ActB|k

�
(b∗

i=1..k
)

fdispk
Λ(a) (19)

The limit in (17) can be then approximated iter-
atively for the generalized frequency counting pre-
sented in section 2. Let:

Mpsqrk(a) ≡ avg(b∗
i=1..k

)

�
b

MΛ(p̂2
n+k(b|a), ..., p̂2

n(b|a))

Msqrk(a) ≡ avg(b∗
i=1..k

)

�
b

M2
Λ(p̂n+k(b|a), ..., p̂n(b|a))

MP k(a) ≡ avg(b∗
i=1..k

)

�
b

p̂n+k(b|a)MΛ(p̂n+k(b|a), ..., p̂n(b|a))

Psqrk(a) ≡ avg(b∗
i=1..k

)

�
b

p̂2
n+k(b|a)

Then for 0 < Λ < 1

avg(b∗
i=1..k

) fdispk
Λ(a) = Mpsqrk(a) −Msqrk(a)

Mpsqrk(a) =
1− Λk

1− Λk+1
Mpsqrk−1(a) +

(1− Λ)Λk

1− Λk+1
Psqrk(a)

Msqrk(a) =
(1 − Λk)2

(1− Λk+1)2
Msqrk−1(a) +

2(1 − Λ)Λk

1− Λk+1
MP k(a)

−
Λ2k(1− Λ)2

(1 − Λk+1)2
Psqrk(a)



fdisp (p̂, a, Λ, λ, N , precision);
Iterative approximation of fdispΛ(a). Returns the approximate value of

the average future-oriented temporally-discounted dispersion (with tem-
poral discount 0 < Λ < 1). λ is the current temporal decay rate on the
observation level, N represents the number of observations collected so far
that takes into account the cumulative time decay; p̂ is the current model
of the user.

Mpsqr, Msqr,MP, Psqr← � b p̂2(b|a); /* initial values */
k← 0;
V ← 0;
repeat

Vold ← V ;
k← k + 1;
N ← Nλ + 1;

Psqr← 	 N−1
N


 2
Psqr +

2(N−1)

|ActB|N2 + 1
N2 ;

MP ← (1−Λk)(N−1)

(1−Λk+1)N
MP+ (1−Λ)Λk

1−Λk+1 Psqr+ 1−Λk

|ActB|(1−Λk+1)N
;

Msqr← (1−Λk)2

(1−Λk+1)2
Msqr +

2(1−Λ)Λk

1−Λk+1 MP −
Λ2k(1−Λ)2

(1−Λk+1)2
Psqr;

Mpsqr← 1−Λk

1−Λk+1 Mpsqr +
(1−Λ)Λk

1−Λk+1 Psqr;
V ← Mpsqr−Msqr;

until |V − Vold| ≤ precision;
return(V );

Figure 1: The algorithm for iterative approximation of
fdisp(a).

MP k(a) =
(1− Λk)(Nk − 1)

(1− Λk+1)Nk

MP k−1(a) +

(1− Λ)Λk

1− Λk+1
Psqrk(a) +

1− Λk

|ActB|(1− Λk+1)Nk

Psqrk(a) = 	 Nk − 1

Nk


 2
Psqrk−1(a) +

2(Nk − 1)

|ActB|N2
k

+
1

N2
k

where Nk = Nλk +
∑k−1

i=0 λi, and N =
∑n

i=1 λi is the
actual (decayed) data size; λ = λn is the current obser-
vation decay rate. The resulting algorithm is shown on
figure 3.3. Moreover, the limit can be proved to exist,
so the algorithm is convergent.

Proof: to prove the convergence of the sequence V k =

avg(b∗
i=1..k

) fdispk
Λ(a), we will find an (ak) such that

|V k−V k−1| ≤ ak for every k, and
∑k

i=1 ai forms a con-
vergent series. Then the series

∑k
i=1(V

i −V i−1) = V k

is also convergent.
Note that:

|V k − V k−1| = |Mpsqrk −Mpsqrk−1 + Msqrk−1 −Msqrk| =

= |(
1− Λk

1− Λk+1
− 1)Mpsqrk−1 + (1 −

(1− Λk)2

(1 − Λk+1)2
)Msqrk−1

+
(1− Λ)Λk

1− Λk+1
Psqrk −

2(1 − Λ)Λk

1− Λk+1
MP k +

Λ2k(1− Λ)2

(1 − Λk+1)2
Psqrk|

≤ |
Λk(Λ− 1)

1− Λk+1
Mpsqrk−1|+ |

Λk(2− 2Λ− Λk + Λk+2)

(1− Λk+1)2
Msqrk−1|

+|
(1− Λ)Λk

1− Λk+1
Psqrk|+ |

2(1 − Λ)Λk

1− Λk+1
MP k|+ |

Λ2k(1− Λ)2

(1 − Λk+1)2
Psqrk|

≤
Λk(1− Λ)

1− Λk+1
+

Λk(1 − Λ)(2 − Λk(1 + Λ))

(1 − Λk+1)2
+

+
Λk(1− Λ)

1− Λk+1
+

2Λk(1− Λ)

1− Λk+1
+

Λ2k(1− Λ)2

(1 − Λk+1)2

because 0 ≤ Mpsqr, Msqr, MP, Psqr ≤ 1 by (8). Thus

|V k − V k−1| ≤
Λk(1− Λ)

(1− Λk+1)2
+ 2

Λk(1 − Λ)

(1− Λk+1)2
+

Λk(1− Λ)

(1 − Λk+1)2

+2
Λk(1− Λ)

(1 − Λk+1)2
+

Λk(1− Λ)

(1 − Λk+1)2
≤

≤ 7
Λk(1 − Λ)

(1− Λk+1)2
≤ 7

Λk(1 − Λ)

(1 − Λ)2
=

7

1− Λ
Λk,

QED. 
Note also that, for every k, V k ≥ 0 (because it’s

a sum of nonnegative elements); on the other hand
V k ≤ 1 (because V k = Mpsqrk − Msqrk, and 0 ≤
Mpsqrk, Msqrk ≤ 1). In consequence:

0 ≤ CsizeΛ(a) ≤ 1 (20)

The way both measures work has been studied
through some experiments in section 4.

4 Simulations
The experiments were inspired by the following sce-
nario: a software agent is designed to interact with
users on behalf of an Internet banking service; she can
make an offer to a user, and the user’s response de-
termines her output at this step of interaction. The
banking agent is a 1-level agent, i.e. an agent that
models other agents as stochastic (0-level) agents. The
user is simulated as a random 0-level agent – in other
words, his behavior can be described with a random
probabilistic policy. The agent estimates the user’s
policy with a relative frequency distribution, count-
ing the user’s responses; at the same time she com-
putes a confidence value for the profile acquired so far.
1000000 independent interactions (a sequence of 100
rounds each) with a random user process have been
simulated; the average results are presented on the fol-
lowing charts.1

In the actual experiments the agent has had 3 possi-
ble offers at hand: the ’risky offer’, the ’normal offer’
and the ’safe offer’, and the customer could respond
with: ’accept honestly’, ’cheat’ or ’skip’. The com-
plete table of payoffs for the game is given below. The
’risky offer’, for example, can prove very profitable
when accepted honestly by the user, but the agent will
lose much if the customer decides to cheat; as the user
skips an offer, the bank still gains some profit from the
advertisements etc.

accept cheat skip
risky offer 30 -100 1
normal offer 6 -20 1
safe offer 1.5 -1 1

Figures 2 and 3 show how the confidence values
evolve for a static user (a user whose policy does

1 only the output of the first 40 rounds is presented on most
charts to emphasize the part where the main differences lie. The
results for rounds 41− 100 were more or less the same.



0%

20%

40%

60%

80%

100%

0 10 20 30 40

1-expdev

Csize, =0.99, m=10+N

Csize, =0.8, m=10+N

Csize, =0.8, m=5

L

L

L

1.5

1.5

Figure 2: Confidence vs. accurateness: Csize
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Figure 4: Wang’s confidence for k = 1 and 2

not change throughout the experiment) and decay rate
λ = 1, while figure 4 show the characteristics of the
Wang’s confidence Cwang = N/(N + k). The confi-
dence values are compared against the expected abso-
lute deviation of the learned profile from the real pol-
icy of the user: expdev =

∑
b |p̂(b) − p(b)| · p(b), or

rather the ’accurateness’ of the profile, i.e. 1− expdev.
The motivation behind the measures proposed here

is that an agent can use several alternative models to

make her decisions. If a numerical evaluation can be
computed for every decision with respect to a partic-
ular model (the expected payoff, for instance), then
the agent’s decision may be based on a linear com-
bination of the evaluations, with the confidence val-
ues providing weights. For example, the agent can use
two models: the user’s profile (frequency distribution
computed from available data) and some default user
model. If the agent trusts the user’s profile in, say,
70% – the final evaluation may depend on the pro-
file in 70%, and the remaining 30% can be derived
from the default model. In consequence, the decision
is based on both models at the same time, although
in different proportions – weighting the partial evalua-
tions with the confidence she has in them.
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Figure 5: Hybrid agents vs. single-model agents: the
average payoffs
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Figure 6: Hybrid agents vs. single-model agents: the
average payoffs continued

The user’s profile is computed as a plain frequency
distribution. The default model, on the other hand,
is defined in the Game Theory fashion: the user
is assumed an enemy who always cheats. To get
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Figure 7: Hybrid agents vs. single-model agents: the
average payoffs continued

rid of the exploration/exploitation tradeoff we assume
also that the user is rather simple-minded and his re-
sponse doesn’t depend on the actual offer being made:
p(cheat), p(accept) and p(skip) are the same regardless
of the offer (if he’s dishonest, he cheats for a small
reward as well as a big one, for instance). Now the
agent can evaluate her actions with their expected pay-
offs. She computes the evaluation based on the user’s
profile: ep(a), and the evaluation based on the default
model as well: ed(a); then she chooses the action with
maximal value of C · ep(a) + (1 − C) · ed(a). In con-
sequence – as the charts show – the agent doesn’t lose
money at the beginning of an interaction (because C
is low and therefore she’s using mostly the default
model). On the other hand, the confidence is almost
1 by the time the acquired knowledge becomes more
accurate so the agent can start using the user profile
successfully.

Figures 5, 6 and 7 show that an agent using such
a hybrid model of the reality can be better off than
an agent using either the profiles or the default user
model alone.2 Cwang (for k = 1) and Cbound (for m =

2) give best results, while Csize fares slightly worse
despite quite complicated parameters setting (Λ = 0.8

and variable m = 10 + N 1.5). Experiments with other
payoff tables gave similar results.

The measures presented here are primarily designed
to tackle lack of data, not the user’s dynamics. How-
ever, some experiments with dynamic users have also
been run. Figure 8 presents the confidence evolution
for a dynamic user and λ = 0.95. Figure 9 shows
the results of the ’banking game’ in the dynamic case.
Here, the hybrid agent using Cbound fares best, with
other hybrid agents close behind. Most notably, the
Cbound agent is never worse than both single-model
agents. The agent using only the default model is omit-
ted on the chart to make it clearer: as before, her aver-
age payoff has been about 0.5 per round all the time.3

2 unfortunately, it isn’t possible to present all the results on
a single chart because the chart would be completely unreadable
then.

3 a similar chart for λ = 1 shows the same regularities,
although the payoffs are generally worse because the learning
method is less flexible.
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Figure 8: Confidence: interaction with a dynamic user,
λ = 0.95
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Figure 9: Hybrid agents vs. single-model agents:
playing with a dynamic opponent, λ = 0.95

It should be obvious that the confidence needed
to combine alternative models in the manner pre-
sented here is neither meta-probability nor meta-
likelihood. The simulations suggest that the practical
uncertainty concerned here is rather related to the dis-
tance/deviation of the model from the reality in a way.



Interestingly, an agent using 1 − expdev as her confi-
dence measure gets positively best payoff in the initial
phase of the interaction (and after that plays slightly
worse) – see figures 7 and 9. Perhaps the expected
absolute deviation isn’t the best deviation measure for
this purpose but it seems a close shot at least.

One issue should be made clear at the end, namely
the way the dynamic users were simulated. It wasn’t
easy, because human users are hardly random with re-
spect to their policies. True, humans’ preferences drift
– and the drift is never completely predictable – but
neither is it completely chaotic. Real users are usu-
ally committed to their preferences somehow, so the
preferences drift more or less inertly (the drift changes
its direction in a long rather than short run). Here,
random initial and final policies p0, p100 were gener-
ated for every simulation, and the user was chang-
ing his preferences from p0 to p100 in a linear way:
pi(b) = p0(b) + i

100 (p100(b)− p0(b)). It should be noted
that the learning method used in the experiments (i.e.
counting with decay) is not linear, so it’s not true that
this particular type of user simulation dynamics was
chosen to suit the learning algorithm.

5 Conclusions
The experiments showed that the confidence measures
can be useful – at least in some settings. Two mea-
sures have been proposed: Cbound and Csize, both
based on the variance of the potential model evolu-
tion. In the simulations the agent using Cbound re-
ceived slightly better results, especially for ’magni-
fying glass’ parameter m = 2 (as long as the pay-
off was concerned). Moreover, the experiments with
Csize revealed its important deficiency: in most cases a
fixed m proved too mild so the agent’s confidence was
reaching 1 almost at once (which is usually too fast).
In consequence, the agent whose strategy was based
upon Csize had to employ quite complicated ’tuning’
scheme (m = 10 + N 1.5) plus an additional parame-
ter Λ, while the agent using Cbound took (almost) the
raw value of the bound. This suggests that the agent
using Csize may expect serious problems with success-
ful tuning of the confidence value in any real-life ap-
plication, where the dynamics of the environment is
changing, and the tuning process itself can hardly be
cost-free.

The results of the simulations suggest that such
practical uncertainty measure can be somehow based
upon the estimated deviation of the model from the
real state of affairs instead of the meta-probability of
the model correctness or even the (potential) model
variability over time. They show also that it may
be captured approximately using very simple means:
Cwang = N/(N + 1) for instance – in many domains
of application.

The author would like to thank Mannes Poel for the

discussions and all his suggestions.
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