
Verification of Multi-Agent Properties
in Electronic Voting: A Case Study

Damian Kurpiewski1,3, Wojciech Jamroga1,2, Lukasz Maśko1

 Lukasz Mikulski3,1, Witold Pazderski1

Wojciech Penczek1, and Teofil Sidoruk1,4 ∗

1 Institute of Computer Science, Polish Academy of Sciences
ul. Jana Kazimierza 5, 01-248 Warsaw, Poland

2 Interdisciplinary Centre for Security, Reliability, and Trust, SnT, University of
Luxembourg

29 Av. John F. Kennedy, 1855 Luxembourg, Luxembourg
3 Faculty of Mathematics and Computer Science, Nicolaus Copernicus Univeristy

ul. Chopina 12/18, 87-100 Toruń, Poland
4 Faculty of Mathematics and Information Science, Warsaw University of

Technology
ul. Koszykowa 75, 00-662 Warsaw, Poland

Abstract

Formal verification of multi-agent systems is hard, both theoretically and in prac-
tice. In particular, studies that use a single verification technique typically show
limited efficiency, and allow to verify only toy examples. Here, we propose some
new techniques and combine them with several recently developed ones to see what
progress can be achieved for a real-life scenario. Namely, we use fixpoint approxima-
tion, domination-based strategy search, partial order reduction, and parallelization
to verify heterogeneous scalable models of the Selene e-voting protocol. The ex-
perimental results show that the combination allows to verify requirements for much
more sophisticated models than previously.

Keywords: multi-agent systems, formal verification, e-voting.

1 Introduction

Multi-agent systems (MAS) provide models and methodologies for analysis of
systems that feature interaction of multiple autonomous components [64,69,71].
Formal specification and verification of such systems becomes essential due to

∗ The authors acknowledge the support of the National Centre for Research and
Development, Poland (NCBR), and the Luxembourg National Research Fund (FNR), under
the PolLux/FNR-CORE project STV (POLLUX-VII/1/2019). W. Penczek and T. Sidoruk
acknowledge the support of CNRS/PAS under the project MOSART.

epist
Pływające pole tekstowe
Erratum: In this version, a small glitch in the treatment of epsilon-transitions (Definition 2.5) has been corrected.

2 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

the dynamic development of AI solutions that enter practical applications [4,5].
In particular, it is crucial to assess requirements that refer to strategic abilities
of agents and their groups, such as the ability of a passenger to leave an au-
tonomous cab (preferably alive), or the inability of an intruder to take remote
control of the cab.

Specification and verification of MAS. Properties of this kind can be
conveniently specified in modal logics of strategic ability, of which alternating-
time temporal logic ATL∗ [7,8] is probably the most popular. Logic-based
methods for MAS are relatively well studied from the theoretical perspec-
tive [21,25,26,34], including theories of agents and agency [10,11,19,60,70] se-
mantic issues [2,3,23,31,42,63], meta-logical properties [14,32], and the com-
plexity of model checking [13,24,32,63,67]. There is even a number of model
checking approaches and tools. Unfortunately, they only admit temporal prop-
erties [9,22,44,45,49], deal with the less practical case of perfect information
strategies [6,17,46,47,48], treat imperfect information with limited interest and
effectiveness [54], or have restricted verification capabilities [5,50,52]. No less
importantly, attempts to verify actual requirements on realistic agent systems
have been scarce.

In this paper, we combine and extend some of the recent advances in model
checking of modal specifications for MAS [37,39,51], and apply them to see how
far we can get with the verification of an existing e-voting protocol. Anony-
mous, coercion-resistant, and verifiable e-voting procedures have been proposed
and studied for over 10 years now [16,27,43,62], including implementations and
their use in real-life elections [1,15,20]. This makes e-voting a great case for
testing verification algorithms and tools, being developed for MAS.

Contribution. Verification for modal logics of strategic ability is hard, both
theoretically and in practice. Likely, no single technique suffices to deal with
it alone. Here, we try the “all out” approach, and combine several techniques,
developed recently by our team, to verify properties of the Selene e-voting
protocol [61]. We use the algorithms of fixpoint approximation [37], depth-
first and domination-based strategy search [51], as well as partial order reduc-
tion [40,41]. To apply the latter, we extend it to handle strategic-epistemic
properties, and prove the correctness of the extension. We also propose and
study a distributed variant of the depth-first and domination-based synthesis.
We evaluate the power of the combined approach on a new model of Selene,
consisting of voters, coercers, and the election infrastructure. While our model
does not yet match the complexity of a real-life election, it goes beyond typi-
cally used examples.

Related work. Formal verification of voting protocols typically focuses on
their cryptographic aspects. The multi-agent and social interaction in the
models is limited, and the verification restricts to temporal and bisimulation-
based properties. Examples include the automated analysis of Selene [12] and
Electryo [72] using the Tamarin prover for security protocols. Theorem proving
in first-order logic was also used to capture some socio-technical factors of Helios

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 3

q10

q11

voted1,1

q11,g

voted1,1

q11,n

voted1,1

q11,s

voted1,1

q12

voted1,2

q12,g

voted1,2

q12,n

voted1,2

q12,s

voted1,2

vo
te 1
,1

gv
1,
1 n

g
1

pun1
npun1

pun1

npun1

vote
1,2

gv
1,2n

g 1

pun1
npun1

pun1

npun1

qc0

qcg qcn

qcg,p

punished1

qcg,n qcn,p

punished1

qcn,n

gv1,1
gv1,2
ng1

pun1 npun1 pun1 npun1

Fig. 1. ASV2
1: agents Voter1 (left) and Coercer (right)

in [56]. Similarly, the interactive theorem prover Coq for higher-order logic was
used in [29,33].

A slightly more detailed multi-agent model of the Prêt à Voter protocol
was used in [35], but the verification concerned only simple temporal formulas
of CTL. In [38], strategic abilities in Prêt à Voter were considered, but the
strategies were hand-crafted rather than synthesized in the verification process.
A preliminary formalization of receipt-freeness and coercion resistance using
ATL was shown in [65], but no verification was proposed. Perhaps the closest
work to the present one was our previous attempt to model and verify Selene
in [36], but the model used there was extremely simple, and the performance
results were underwhelming.

2 Preliminaries

We first recall the models of asynchronous interaction in MAS, defined in [40]
and inspired by [53,59].

2.1 Models of Asynchronous Interaction

Definition 2.1 [Asynchronous MAS] An asynchronous multi-agent system
(AMAS) S consists of n agents A = {1, . . . , n}, each associated with a
tuple Ai = (Li,Evt i, Ri, Ti, PVi, Vi) including a set of local states Li =
{l1i , l2i , . . . , l

ni
i }, a nonempty finite set of events Evt i = {α1

i , α
2
i , . . . , α

mi
i }, and

a repertoire of choices Ri : Li → 22
Evti

. For each li ∈ Li, Ri(li) = {E1, . . . ,Em}
is a nonempty list of nonempty choices available to i at li. If the agent chooses
Ej = {α1, α2, . . .}, then only an event in Ej can be executed at li within the
agent’s module. Moreover, Ti : Li × Evt i ⇀ Li is a (partial) local transition
function such that Ti(li, α) is defined iff α ∈

⋃
Ri(li).

Agents are endowed with mutually disjoint, finite and possibly empty sets of
local propositions PVi, and their valuations Vi : Li → 2PVi . Evt =

⋃
i∈A Evt i

is the set of all events, and Agent(α) = {i ∈ A | α ∈ Evt i} the set of agents
who have access to event α. PV =

⋃
i∈A PVi is the set of all propositions.

4 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

Note that each agent “owns” the events affecting its state, but some of the
events may be shared with other agents. Such events can only be executed syn-
chronously by all the involved parties. This way, the agent can influence how
the states of the other agents evolve. Moreover, the agent’s strategic choices are
restricted by its repertoire function. Assigning sets rather than single events
in Ri, which subsequently determines the type of strategy functions in Sec-
tion 2.2, is a deliberate decision, allowing to avoid certain semantic issues that
fall outside the scope of this paper. We refer the reader to [40] for the details.

The following example demonstrates a simple AMAS, while also introducing
some key concepts that will be expanded upon in our model of the real-world
protocol Selene (discussed in Section 3). In particular, there is a coercer
agent, whose goal is to ensure that the voter(s) select a particular candidate.
To that end, the coercer may threaten them with punishment, e.g. if they
refuse to cooperate by not sharing the ballot, or openly defy by voting for
another candidate.

Example 2.2 [Asynchronous Simple Voting] Consider a simple voting system
ASVkn with n+ 1 agents (n voters and 1 coercer). Each Voteri agent can cast
her vote for a candidate {1, . . . , k}, and decide whether to share her vote re-
ceipt with the Coercer agent. The coercer can choose to punish the voter or
refrain from it. A graphical representation of the agents for n = 1, k = 2 is
shown in Fig. 1. We assume that the coercer only registers if the voter hands
in a receipt for candidate 1 or not. The repertoire of the coercer is defined as
Rc(q

c
0) = {{gv1,1, gv1,2, ng1}} and Rc(q

c
g) = Rc(q

c
n) = {{pun1}, {npun1}}, i.e.,

the coercer first receives the voter’s decision regarding the receipt, and then
controls whether the voter is punished or not. Analogously, the voter’s reper-
toire is given by: R1(q

1
0) = {{vote1,1}, {vote1,2}}, R1(q

1
j) = {{gv1,j}, {ng1}} for

j = 1, 2, and R1(q
1
1,g) = R1(q

1
1,n) = R1(q

1
2,g) = R1(q

1
2,n) = {{pun1, npun1}}.

Notice that the coercer cannot determine which of the events gv1,1, gv1,2, ng1
will occur; this is entirely under the voter’s control. This way we model the
situation where it is the decision of the voter to show her vote or not. Sim-
ilarly, the voter cannot avoid punishment by choosing the strategy allowing
only npun1, because the choice {npun1} is not in the voter’s repertoire. She
can only execute {pun1, npun1}, and await the decision of the coercer.

The execution semantics is based on interleaving with synchronization on
shared events. Note that for a shared event to be executed, it must be done
jointly by all agents who have it in their repertoires.

Definition 2.3 [Interleaved interpreted systems] Let S be an AMAS with n
agents, and let I ⊆ L1 × . . . × Ln. The full model IIS(S, I) extends S with:
(i) the set of initial states I; (ii) the set of global states St ⊆ L1 × . . . × Ln
that collects all the configurations of local states, reachable from I by T (see
below); (iii) the (partial) global transition function T : St× Evt ⇀ St, defined
by T (g1, α) = g2 iff Ti(g

i
1, α) = g i2 for all i ∈ Agent(α) and g i1 = g i2 for all

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 5

i ∈ A \ Agent(α); 1 (iv) the global valuation of propositions V : St → 2PV ,
defined as V (l1, . . . , ln) =

⋃
i∈A Vi(li).

We will sometimes write g1
α−→ g2 instead of T (g1, α) = g2.

Definition 2.4 [Enabled events] Event α ∈ Evt is enabled at g ∈ St if g
α−→ g ′

for some g ′ ∈ St, i.e., T (g , α) = g ′. The set of such events is denoted by
enabled(g).

Let A = {a1, . . . , ak} ⊆ A = {1, . . . , n} and −→
E A = (Ea1 , . . . ,Eak) for some

k ≤ n, such that Ei ∈ Ri(g
i) for every i ∈ A. Event β ∈ Evt is enabled by

the vector of choices −→
E A at g ∈ St iff, for every i ∈ Agent(β) ∩ A, we have

β ∈ Ei, and for every i ∈ Agent(β) \ A, it holds that β ∈
⋃
Ri(g

i). That is,
the “owners” of β in A have selected choices that admit β, while all the other
“owners” of β might select choices that do the same. We denote the set of such
events by enabled(g ,−→E A). Clearly, enabled(g ,

−→
E A) ⊆ enabled(g).

Some combinations of choices enable no events. To account for this, the
models of AMAS are augmented with “silent” ϵ-loops, added when no “real”
event can occur.

Definition 2.5 [Undeadlocked IIS] Let S be an AMAS, and assume that no
agent in S has ϵ in its alphabet of events. The undeadlocked model of S, denoted
IISϵ(S, I), extends the model IIS(S, I) as follows:

• EvtIISϵ(S,I) = EvtIIS(S,I) ∪ {ϵ}, where Agent(ϵ) = ∅;

• For each g ∈ St, we add the transition g
ϵ−→ g iff there is a selec-

tion of all agents’ choices −→
E A = (E1, . . . ,En), such that Ei ∈ Ri(g

i)
and enabledIIS(S,I)(g ,

−→
E A) = ∅. Then, for every A ⊆ A, we also fix

enabledIISϵ(S,I)(g ,
−→
E A) = enabledIISϵ(S,I)(g ,

−→
E A) ∪ {ϵ}.

In other words, an ϵ-loop is enabled whenever EA allows the grand coalition
to collectively block the execution of any “real” event.

We use the term model to refer to subgraphs of IIS(S, I) as well as
IISϵ(S, I).

Example 2.6 The undeadlocked model of ASV2
1 is shown in Figure 2. Note

that it contains no ϵ-transitions, since no choices of the voter and the coercer
can cause a deadlock.

2.2 Reasoning About Strategies and Knowledge

Let PV be a set of propositions and A the set of all agents. The syntax of
alternating-time logic ATL∗ [8,63] is given by:

φ ::= p | ¬φ | φ ∧ φ | ⟨⟨A⟩⟩γ, γ ::= φ | ¬γ | γ ∧ γ | X γ | γU γ,
where p ∈ PV , A ⊆ A, X stands for “next”, U for “until”, and ⟨⟨A⟩⟩γ for
“agent coalition A has a strategy to enforce γ”. Temporal operators F (“even-
tually”) and G (“always”), Boolean connectives, and constants are defined as
usual.

1 gi denotes agent i’s state in g = (l1, . . . , ln), i.e., gi = li.

6 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

q10q
c
0

q11q
c
0

voted1,1

q11,gq
c
g

voted1,1

q11,nq
c
n

voted1,1

q11,sq
c
g,n

voted1,1

q11,sq
c
g,p

voted1,1
punished1

q12q
c
0

voted1,2

q12,gq
c
n

voted1,2

q12,nq
c
n

voted1,2

q12,sq
c
n,n

voted1,2

q12,sq
c
n,p

voted1,2
punished1

vo
te1

,1

gv
1,
1 n

g
1

npun1 pun1

npun1

pun1

vote
1,2

gv
1,2n

g 1

npun1pun1

npun1

pun1

Fig. 2. The undeadlocked model IISϵ(ASV 2
1)

Example 2.7 Coercion feasibility against voter i can be expressed by formula
⟨⟨Coercer⟩⟩F punishedi (the coercer can ensure that the voter is eventually pun-
ished).

Strategic ability of agents. Following [40], a positional imperfect informa-
tion strategy (ir-strategy) for agent i is defined by a function σi : Li → 2Evti ,
such that σi(l) ∈ Ri(l) for each l ∈ Li. Note that σi is uniform by construc-
tion, as it is based on local, and not global states. The set of such strate-
gies is denoted by Σir

i . Joint strategies Σir
A for A = {a1, . . . , ak} ⊆ A are

defined as usual, i.e., as tuples of strategies σi, one for each agent i ∈ A. By
σA(g) = (σa1(g), . . . , σak(g)), we denote the joint choice of coalition A at global
state g . An infinite sequence of global states and events π = g0α0g1α1g2 . . . is

called a path if gj
αj−→ gj+1 for every j ≥ 0. The set of all paths in model M

starting at state g is denoted by ΠM (g).

Definition 2.8 [Standard outcome] Let A ⊆ A. The standard outcome of
strategy σA ∈ Σir

A in state g of model M is the set outStdM (g , σA) ⊆ ΠM (g) such
that π = g0α0g1α1 · · · ∈ outM (g , σA) iff g0 = g , and for each m ≥ 0 we have
that αm ∈ enabledM (gm, σA(gm)).

Definition 2.9 [Reactive outcome] The reactive outcome is the set
outReact

M (g , σA) ⊆ outStdM (g , σA) such that π = g0α0g1α1 · · · ∈ outReact
M (g , σA)

iff αm = ϵ implies enabledM (gm, σA(gm)) = {ϵ}.

Intuitively, the standard outcome collects all the paths where agents in A
follow σA, while the others freely choose from their repertoires. The reactive
outcome includes only those outcome paths where the opponents cannot mis-
coordinate on shared events. Let x ∈ {Std,React}. The ir-semantics of ⟨⟨A⟩⟩γ
in asynchronous MAS [8,63,40] is defined by the clause:

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 7

M , g |=x ⟨⟨A⟩⟩γ iff there is a strategy σA∈Σir
A such that for all π∈outxM (g , σA)

we have M , π |=x γ.

Adding knowledge operators. The following relations capture the notion of
indistinguishability between states, needed to define semantics for the epistemic
modality.

Definition 2.10 [Indistinguishable states] For each i ∈ A, the relation ∼i=
{(g , g ′) ∈ St× St | g i = g ′i} denotes that states g , g ′ are indistinguishable for
agent i. The relation ∼J=

⋂
j∈J ∼j extends it to the distributed knowledge of

a group of agents J ⊆ A.

By ATL∗K, we denote the extension of ATL∗ with knowledge operators
Ki where Kiψ means “agent i knows that ψ”. Note that temporal and strategic
operators cannot be nested inside ψ. The semantics of Kiψ can be defined by
the clause [26,68]:

M , g |= Kiψ iff M , g ′ |= ψ for every g ′ such that g ′ ∼i g .
In e-voting, epistemic properties arise due to information exchanged by

cryptographic protocols, but also published in plaintext, e.g., on the Web Bul-
letin Board.

Subjective ability. The asynchronous semantics of ⟨⟨A⟩⟩γ in [40] is based
on the notion of “objective” ability, i.e., it suffices that there exists a strategy
σA which enforces γ on outcome paths from the objective starting point g of
the model. The more popular notion of “subjective” ability requires that σA
succeeds on all outcome paths from the states that A might consider as possible
starting points, cf. [14] for an in-depth discussion. The “subjective” semantics
of strategic operators can be defined as:

M , g |=xS ⟨⟨A⟩⟩γ iff there is a strategy σA ∈ Σir
A such that, for each π ∈⋃

i∈A
⋃

g′∼ig
outxM (g ′, σA), we have M , π |=xS γ.

Example 2.11 Let M = IISϵ(ASV kn , {g0}) where g0 = (q10 , . . . , q
n
0 , q

c
0). That

is, M is the undeadlocked model of the AMAS in Example 2.2 with g0 as its
sole initial state. Note that the Std and React semantics coincide on M , as it
includes no ϵ-transitions. Clearly, M, g0 |= ⟨⟨Coercer⟩⟩F punishedi for both the
objective and subjective semantics. On the other hand, the stronger require-
ment ⟨⟨Coercer⟩⟩FKipunishedi does not hold in (M, g0).

In this paper, we focus on the (more popular) subjective semantics. More-
over, we only use formulas with no next step operators X and no nested strate-
gic modalities, which is essential for the application of partial-order reduction.
The corresponding “simple” subset of ATL∗ (resp. ATL∗K) is denoted by
sATL∗ (resp. sATL∗K). The restriction is less prohibitive than it seems at
a glance. First, the X operator is of little value for asynchronous systems.
Secondly, nested strategic modalities would only allow us to express an agent’s
ability to endow another agent with ability (or deprive the other agent of abil-
ity). Such properties are sometimes interesting, e.g., one may want to require
that ⟨⟨Voter1 ⟩⟩G¬⟨⟨Coercer⟩⟩F punished1 (the voter can keep the coercer unable

8 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

to punish the voter). Still, simpler properties like ⟨⟨Voter1 ⟩⟩G¬punished1 and
⟨⟨Voter1 ⟩⟩G

∧
j=1,...,k ¬KCoercervoted1,j are usually of more immediate interest.

Finally, we remark that, for subjective ability, epistemic operators are defin-
able with strategic operators, since Kiφ ≡ ⟨⟨i⟩⟩⊥Uφ. Moreover, M, g |= ⟨⟨i⟩⟩γ
always implies M, g |= Ki⟨⟨i⟩⟩γ in the subjective semantics.

3 How to Specify Voters and Coercers

To keep the paper self-contained, in this section we provide a short description
of the Selene voting protocol and its formal specification.

3.1 Short Description of Selene

Selene [61] is an electronic voting protocol aimed to provide an effective mech-
anism for voter verifiability and coercion resistance. On the one hand, the voter
receives a piece of evidence that allows to check if her vote has been registered
correctly. On the other hand, she can present a fake vote evidence to the
coercer, thus convincing him that she voted according to the coercer’s request.

The protocol proceeds as follows. Before the election, the Election Author-
ity (EA) sets up the system, generating the election keys used for the encryption
and decryption of the votes and preparing the vote trackers, one per voter. The
trackers are then encrypted and mixed to break any link between the voter and
her tracker, and published on the Web Bulletin Board (WBB).

In the voting phase, each voter fills in, encrypts, and signs her vote, and
sends it to the system. After several intermediate steps, a pair (Votev , trv),
consisting of the decrypted ballot and the tracker of v , is published on the
WBB for each v ∈ Voters. At this stage, no voters know their trackers. All the
votes are presented in plaintext on the WBB. Thus, the tally of the election is
open to a public audit.

At the final stage, the voters receive their trackers by an independent chan-
nel (e.g., sms). If the voter has not been coerced, then she requests the special
term αv , which allows for obtaining the correct tracker trv . If she was coerced
to fill her ballot in a certain way, she sends a description of the requested vote
to the election server. After such a request, a fake term α′

v is sent to the voter,
which can be presented to the coercer. The α′

v token, together with the public
commitment of the voter, reveals a tracker pointing out to a vote compatible
with the coercer’s demand.

Selene uses the ElGamal key encryption scheme, and relies on multiplica-
tive homomorphism and non-interactive zero-knowledge proofs of knowledge
that accompany all the transformations of data presented in WBB. In this
work we abstract away from the cryptography and focus on the interaction
between the involved agents.

3.2 Asynchronous MAS for Selene

In our model of Selene, we concentrate on the non-cryptographic interaction
between the agents. In this sense, the present model is similar to [36], with
three important differences.

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 9

First, the new modeling is fully modular and scalable. To this end, we use
AMAS as input (rather than concurrent game structures or concurrent inter-
preted systems). Secondly, we have defined a flexible specification language for
AMAS, based on asynchronous agent templates similar to those of Uppaal [9],
and implemented an interpreter for it. Besides modularity and scalability, this
allowed us to adapt and use partial order reduction for our models. Thirdly,
our specifications include much more details of the Selene procedure than the
skeletal model in [36].

3.3 Agents

There are 4 templates for agents in the modeling: the Election Authority (EA)
that handles the generation and distribution of trackers and provides the Web
Bulletin Board for voters and coercers, the Coercer, the standard Voter, and
the Coerced Voter interacting with a coercer. The templates are written in a
simple specification language created to provide the input for our algorithms.
Each template consists of the name of the agent, the number of instances of
that template in the model (e.g., the number of voters), the initial state, the
list of transitions, and the agent’s repertoire of choices (called “PROTOCOL”
here). The Coerced Voter and Coercer templates for an election with 2 can-
didates are shown in Figures 3 and 4. The full specification is available at
github.com/blackbat13/stv/blob/master/models/Selene.txt.

A template always begins with the keyword Agent, the agent’s name, and
the number of instances. The next line specifies the initial state, followed by
the list of local transitions. Each transition starts with an event name, option-
ally preceded by the keyword shared if the event is shared with another agent.
Then, the source and the target states are given. Optionally, the transition
specification can also include a precondition (in the form of a simple Boolean
formula) and/or a postcondition (via a list of updates specifying propositions
and their new values). These conditions are only a technical shortcut that al-
lows us to write clearer and shorter specifications. The keyword aID represents
the ID of the current agent and is automatically replaced when preparing local
models of agents. For example, the template VoterC[2] would produce two
agents, VoterC1 and VoterC2 . Then, each instance of the keyword aID will
be replaced with VoterC1 for the first coerced voter, and with VoterC2 for the
second one.

Consider the template in Figure 3. The first step of the coerced voter
is her interaction with the coercer who can request the vote for a particular
candidate (events coerce1 VoterC1 and coerce2 VoterC1). The next step is the
event start voting synchronized with the EA. When the election has begun,
the voter can create her commitment, fill in the vote, encrypt it, and send it to
the EA. After that, she waits for the publication of votes, which is controlled
by the EA. When the votes are published on the WBB, the voter can decide
to compute the false alpha term and the false tracker using publicly available
data, or she can just wait for her real tracker. The last few steps for the VoterC
agent consist of checking the WBB, verifying the vote, and interacting with the

https://github.com/blackbat13/stv/blob/master/models/Selene.txt

10 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

1 Agent VoterC [1] :
2 i n i t s t a r t
3 shared coerce1 aID : s t a r t => coerced [a ID requ i red =1]
4 shared coerce2 aID : s t a r t => coerced [a ID requ i red =2]
5 s e l e c t v o t e 1 : coerced => prepared [aID vote=1, aID prep vote=1]
6 s e l e c t v o t e 2 : coerced => prepared [aID vote=2, aID prep vote=2]
7 shared i s r e ady : prepared => ready
8 shared s t a r t v o t i n g : ready => vot ing
9 shared aID vote : vot ing => vote [Coercer1 aID vote=?aID vote , Coercer1 aID revote=?

aID revote]
10 shared send vote aID : vote => send
11 r evo t e vo t e 1 : send =[a ID revote==1]> vot ing [aID vote=?aID required , aID revote =2]
12 s k i p r e v o t e 1 : send =[a ID revote==1]> vo t ing f
13 r evo t e vo t e 2 : send =[a ID revote==2]> vot ing [aID vote=?aID required , aID revote =3]
14 s k i p r e v o t e 2 : send =[a ID revote==2]> vo t ing f
15 f i n a l v o t e : send =[a ID revote==3]> vo t ing f [aID vote=?aID prep vote]
16 s k i p f i n a l : send =[a ID revote==3]> vo t ing f
17 shared send fvote a ID : vo t i ng f => sendf
18 shared f i n i s h v o t i n g : sendf => f i n i s h
19 shared send t racker a ID : f i n i s h => t r a cke r
20 shared f i n i s h s e n d i n g t r a c k e r s : t r a cke r => t r a c k e r s s e n t
21 shared give1 aID : t r a c k e r s s e n t => i n t e r a c t [Coerce r1 a ID tracker =1]
22 shared give2 aID : t r a c k e r s s e n t => i n t e r a c t [Coerce r1 a ID tracker =2]
23 shared not g ive a ID : t r a c k e r s s e n t => i n t e r a c t [Coerce r1 a ID tracker =0]
24 shared punish aID : i n t e r a c t => ckeck [aID punish=true]
25 shared not punish aID : i n t e r a c t => check [aID punish=f a l s e]
26 shared check t racker1 a ID : check => end
27 shared check t racker2 a ID : check => end
28 PROTOCOL: [[coerce1 aID , coerce2 aID] , [punish , not punish]]

.

Fig. 3. Voter template

1 Agent Coercer [1] :
2 i n i t coe rce
3 shared coerce1 VoterC1 : coe rce => coe rce [aID VoterC1 required=1]
4 shared coerce2 VoterC1 : coe rce => coe rce [aID VoterC1 required=2]
5 shared s t a r t v o t i n g : coe rce => vot ing
6 shared VoterC1 vote : vot ing => vot ing
7 shared f i n i s h v o t i n g : vot ing => f i n i s h
8 shared f i n i s h s e n d i n g t r a c k e r s : f i n i s h => t r a c k e r s s e n t
9 shared give1 VoterC1 : t r a c k e r s s e n t => t r a c k e r s s e n t

10 shared give2 VoterC1 : t r a c k e r s s e n t => t r a c k e r s s e n t
11 shared not g ive VoterC1 : t r a c k e r s s e n t => t r a c k e r s s e n t
12 to check : t r a c k e r s s e n t => check
13 shared check t racke r1 Coerce r1 : check => check
14 shared check t racke r2 Coerce r1 : check => check
15 t o i n t e r a c t : check => i n t e r a c t
16 shared punish VoterC1 : i n t e r a c t => i n t e r a c t
17 shared not punish VoterC1 : i n t e r a c t => i n t e r a c t
18 f i n i s h : i n t e r a c t => end [a ID f i n i s h =1]
19 PROTOCOL: [[give1 VoterC1 , give2 VoterC1 , not g ive VoterC1]]

.

Fig. 4. Coercer template

coercer again. The voter can show one of her trackers (the false one or the real
one) to the coercer, who then either punishes her or does not.

Additionally, the voter can do revoting, i.e., cast her vote multiple times,
which is a well-known technique to counter in-house coercion by family mem-
bers.

3.4 Specification of Properties

To specify interesting properties of the voting system, we use simple formulas of
ATL∗K. In the experiments, we will concentrate on the property of coercion-
vulnerability, using the following formula:

φvuln,i,k ≡
⟨⟨Coercer⟩⟩G((end ∧ revotev1 = k ∧ votedv1 = i) → KCoercervotedv1 = i)

Formula φvuln,i says that the coercer has a strategy so that, at the end of the
election, if the voter has effectively voted for candidate i, the coercer knows

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 11

about it. This can be seen as the opposite of receipt-freeness and coercion-
resistance formalizations in [43,65]. Note that the formula is parameterized by
the name i of the preferred candidate of the coercer, as well as the number k of
revoting rounds that the coercer is able to observe and learn the value of the
cast vote. Proposition revotev1 corresponds to the number of revoting rounds
performed by the first voter.

We will use the above models and formulas in our verification experiments
in Section 6.

3.5 Model definition

Model file consists of definitions of agents templates and various properties.
Empty lines and Lines starting with % are comments lines and are ignored by
the parser. Properties that can be defined in the model file are described below.
Each proposition starts with uppercase property name followed by a colon.

PERSISTENT List of propositions names that should be considered as per-
sistent when generating the model. Persistent proposition retains its value after
it was set. Non-persistent propositions are present only in the state that is the
result of the transition that created this proposition.

REDUCTION List of propositions names used for the partial-order reduction
method.

FORMULA ATL formula to be verified.

SHOW EPISTEMIC Boolean value used only in the graphical interface. If
set to true links of the epistemic relations will be displayed in the model view.

3.6 Agent definition

Agent definition consists of a set of non-empty lines specifying the local model
of the agent. Each agent definition is a template that can be used to generate
multiple agents of a given type. Individual definitions are explained below.

Header The first line should specify the name of the agent template
and number of agents of this type, given in the following format: Agent

AgentName[count]:. For example, in case of Agent Voter[3]: three agents
will be generated: Voter1, Voter2 and Voter3.

init First line of the agent specification, name of the initial state.

Local transition Transition is defined in format:
actionName: state1 -[preCondition]> state2 [propositions].
Propositions are given in a form of a comma-separated list of variable defini-
tions, i.e. [prop1=true, prop2=false, prop3=2]. Precondition can be any
boolean formula that can be evaluated in Python.

Shared transition Shared transitions are defined similarly to local transitions,
but are prefixed with shared keyword.

Dynamic names In order to simplify the specification dynamic names can be
used. Every occurence of the keyword aID in the agent template specification
will be replaced with the name of the computed agent.

12 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

4 Verification Algorithms

Model checking strategic ability under imperfect information is hard, both
theoretically and in practice. In this section, we present two recently developed
techniques that we use to tackle the high complexity of verification: fixpoint
approximation and dominance-based depth-first strategy search (Sections 4.1
and 4.3). We also propose a novel approach based on distributed strategy
synthesis for sATL∗K (Section 4.4).

4.1 Verification by Fixpoint Approximation

The main idea of the fixpoint approximations method presented in [37] is that
sometimes, instead of the exact model-checking, it suffices to provide a lower
and an upper bound for the output. In particular, given a formula ϕ, we
construct two translations trL(ϕ) and trU (ϕ), such that trL(ϕ) ⇒ ϕ⇒ trU (ϕ).
In other words, if the lower bound translation trL(ϕ) evaluates to true, then
the original formula ϕ must hold in the model. Similarly, if the upper bound
translation trU (ϕ) is verified as false, then ϕ is also false.

The approximations are built on fixpoint-definable properties. For the up-
per bound translation we just compute the given formula under the perfect
information assumption. For the lower bound we rely on translations that
map the formula of ATL∗

ir to an appropriate variant of alternating µ-calculus,
see [37] for more details.

4.2 Depth-First Strategy Search

Further, we have implemented a depth-first search algorithm for strategy syn-
thesis. The typical recursive DFS-based approach needed to be adapted due
to the presence of epistemic classes and the nondeterministic outcome of the
coalition’s actions. In case of nondeterminism due to multiple possible transi-
tions, it is possible that decisions taken in one of the branches may determine
some choices in the other branches. If such a decision leads to a locally winning
strategy, it may need to be changed since decisions in nodes being members
of the same epistemic class can influence the outcome of transitions in other
branches. The proposed algorithm allows to backtrack and change locally win-
ning strategy when no winning strategy is found in another branch.

Clearly, even for relatively small models with hundreds of states, the space of
strategies is too big to perform a full search. To address this, we used our DFS
algorithm as the backbone for implementing more refined methods, namely
Domino DFS and two variants of parallel model checking, see Sections 4.3
and 4.4.

4.3 Domination-Based Strategy Search

The strategy space grows exponentially with respect to the number of states
and transitions in the model (on top of the state space explosion). However, in
reality it often suffices to only check a subset of possible strategies. This idea
was used in the Domino DFS algorithm [51]. In that method, a notion of
strategy dominance was proposed, according to which the dominated strategies
are omitted during the search. Although in the worst case scenario all the

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 13

strategies in the model need to be checked, the experimental results in [51]
showed that in some cases the method achieves significant improvement in
performance.

4.4 Parallel Implementation

The verification process itself has exponential nature with complexity of O(kn)
for a single agent (where k is the number of possible actions and n is the number
of states in the model). To reduce the search time, parallel computation can be
used. As a basis and a reference, we used a sequential version of the recursive
DFS-based strategy search. The biggest advantage of the recursive approach is
its ability to perform multiple, independent searches at a time. Such a solution
may be very effective for distributed computing architectures, when the search
space can be divided independently and distributed between computing nodes
with separate memory spaces. The downside is that all the nodes obtain copies
of the same model, but then they all may compute independently looking for
different solutions.

We have defined and implemented two different approaches to parallelizing
depth-first strategy search.

Distributed Strategy Search: Simple Branching. The simple approach
tries to concurrently execute a number of instances of sequential search, but
assuming different strategy prefixes (i.e., such sequences of actions starting at
a starting state, which correspond to deterministic paths in a graph – except
for the last one, where there may be a branch). To achieve this, the algorithm
first executes a breadth-first search to determine a set of potential different
strategy prefixes up to a number equal to a value given as parameter. Due to
the way in which the prefixes are selected, they correspond to single paths and
they can be identified with single states. The algorithm tries to expand the
prefixes by performing a BFS graph traversal.

Similarly to most BFS-based algorithms, a queue of pending prefixes is used.
Initially, this queue contains an empty prefix denoting only one process to be
executed. In each step of the algorithm, the first pending prefix is selected.
The algorithm tries to expand this prefix by adding actions available in a state
to which this prefix leads. For every deterministic action in such state, a new
prefix is generated by appending this action to the current prefix. So obtained
new prefix is added to the pending queue for further expansion. If the action is
nondeterministic, the prefix obtained by appending this action to the current
prefix is added to the set of resulting prefixes and is not expanded any more.
The current prefix is then discarded. The loop stops when either there are no
more pending prefixes or the number of prefixes in both the result set and the
pending queue exceeds the given parameter. In the latter case, all the pending
prefixes are copied to the resulting set.

After a set of prefixes is determined, the main process spawns a number of
children processes. Each subprocess tries to find a winning strategy using the
sequential algorithm, assuming that the strategy starts with actions from its
assigned prefix. The main process waits for the results from its children; if any

14 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

of them reports that a winning solution has been found, all the other children
are terminated and the search ends.

Distributed Strategy Search: Flexible Version. Our second approach
uses concurrent execution to examine parallel branches of a single strategy in a
flexible way. To this end, it directly expands the single–threaded DFS method.
In this approach, parallel threads cooperate in building the same subgraph of
the model that corresponds to the outcome of the candidate strategy. The
initial master thread spawns new worker threads whenever it finds a state
in which selection of the same action leads to multiple states. A sequential
algorithm in such case would try to recursively build a substrategy considering
all the possible targets one by one. In the concurrent version, an additional
worker thread is created for each possible outcome of the same action.

In order to ease the synchronization between threads, only the main thread
is allowed to spawn new threads due to parallel branches. It is also assumed
that only one parallel thread is allowed to select actions for states from any
epistemic class. If any worker thread reaches a state in such a class, it must wait
until the master thread fixes the action for this class. Synchronization is also
needed when one thread meets a node which is already examined by another
thread – since the nodes cooperate, it is not necessary to redo the same work,
therefore the second node is suspended until the node is checked by the first
one. The main thread is allowed to intercept the work already performed by a
worker thread.

5 Taming State Space Explosion

The main obstacle in model checking of MAS logics is the prohibitive com-
plexity of models, in particular due to the state-space explosion. Partial order
reduction (POR) is a well-known technique for state space reduction, dating
back more than three decades [30,57,66]. The idea is to restrict the set of all
enabled transitions to a representative (i.e. provably sufficient) subset, based
on some underlying notion of equivalence. Crucially, this occurs while generat-
ing the unfolding of the system, so the full model, which may be far too large,
is never created.

POR has been defined for variants of LTL and CTL, including temporal-
epistemic logics [53]. Furthermore, the reduction for LTL was recently adapted
(notably, at the same computational cost) to the much more expressive logic
sATL∗ [39,41], allowing to leverage the existing algorithms and tools for the
verification of strategic abilities. In [40], POR for sATL∗ was shown to still
work under an improved execution semantics for AMAS, which we also adopt
in this paper. Note, however, that our formalization of coercion-vulnerability
in Section 3.4 is a strategic-epistemic property, and hence those results do not
cover this case. Moreover, the reductions in [39,40,41] are not correct if we
allow for nested modalities. The question is: can we adapt the scheme so that
it works if we only allow to nest epistemic operators?

In this section, we prove that the answer is affirmative. We also show that
the reduction is correct for the subjective semantics of ability, whereas the

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 15

previous works used the less intuitive (and less popular) objective semantics.

5.1 Conceptual Machinery

We first recall the concept of stuttering equivalence. Intuitively, two paths are
stuttering equivalent if they can be divided into corresponding finite segments,
each satisfying exactly the same propositions. If all states in corresponding
segments are also indistinguishable for agents i ∈ J , then we say the paths are
J− stuttering equivalent.

Definition 5.1 [(J-)stuttering equivalence] Paths π, π′ ∈ ΠM (g) are stuttering
equivalent, denoted π ≡s π′, if there exists a partition B0 = (π[0], . . . , π[i1 −
1]), B1 = (π[i1], . . . , π[i2−1]), . . . of the states of π, and an analogous partition
B′

0, B
′
1, . . . of the states of π

′, such that for each j ≥ 0 : Bj and B
′
j are nonempty

and finite, and V (g) ∩ PV = V (g ′) ∩ PV for every g ∈ Bj and g ′ ∈ B′
j .

If π ≡s π′, and additionally it holds that ∀j > 0 ∀g ∈ Bj , g
′ ∈ B′

j :

g ∼J g ′, then paths π and π′ are J-stuttering equivalent, denoted π ≡Js π′.

States g and g ′ are stuttering path equivalent (resp. J-stuttering path equiv-
alent), denoted g ≡s g ′ (resp. g ≡Js g ′), iff for every path π starting from g ,
there is a path π′ starting from g ′ such that π′ ≡s π (resp. π′ ≡Js π), and
for every path π′ starting from g ′, there is a path π starting from g such that
π ≡s π′ (resp. π ≡Js π′).

Models M and M ′ ⊆ M are stuttering path equivalent (resp. J-stuttering
path equivalent), denoted M ≡s M ′ (resp. M ≡Js M ′), iff they have the same
initial states, and for each initial state ιi ∈ I and each path π ∈ ΠM (ιi), there
is a path π′ ∈ ΠM ′(ιi) such that π ≡s π′ (resp. π ≡Js π′).

The POR algorithm uses the notions of invisible and independent events.
Intuitively, an event is invisible iff it does not change the valuations of the
propositions. 2 Two events are independent iff at least one is invisible and
they are not in the same agent’s repertoire. We designate a subset of agents
A ⊆ A whose events are visible by definition.

Definition 5.2 [Invisibility and independence of events] Let M = IISϵ(S, I),
and A ⊆ A. An event α ∈ Evt is invisible wrt. A and PV if Agent(α) ∩ A =

∅ and for each two global states g , g ′ ∈ St we have that g
α−→ g ′ implies

V (g) ∩ PV = V (g ′) ∩ PV . The set of all invisible events for A,PV is denoted
by InvisA,PV , and its closure, i.e. the set of visible events, by V isA,PV =
Evt \ InvisA,PV .

The notion of independence IndA,PV ⊆ Evt×Evt is defined as: IndA,PV =
{(α, α′) ∈ Evt × Evt | Agent(α) ∩ Agent(α′) = ∅} \ (V isA,PV × V isA,PV).
Events α, α′ ∈ Evt are called dependent if (α, α′) ̸∈ IndA,PV . If it is clear
from the context, we omit the subscript PV . 3 Note that ϵ events are always

2 This technical concept of invisibility is not connected to any agent’s view, unlike in [55].
3 The sets of agents’ local propositions PV i are explicitly disjoint in our model (cf. Definition
2.1), allowing for simpler checking of event independence in the actual implementation of

16 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

invisible and independent from others, since they do not modify propositions
and we have that Agent(ϵ) = ∅ (by Definition 2.5).

The reduced model (or submodel) M ′ ⊆ M obtained with POR extends the
same AMAS S as M = IISϵ(S, I). In particular, we have St′ ⊆ St, I = I ′,
T is an extension of T ′, and V ′ = V |St′ . Note that, for each g ∈ St′, it holds
that ΠM ′(g) ⊆ ΠM (g).

M ′ is generated by modifying the standard DFS [28], so that for each g ,

the successor state g1 such that g
α→ g1 is selected from E(g) ∪ {ϵ} such that

E(g) ⊆ enabled(g) \ {ϵ}. That is, the algorithm always selects ϵ, plus a subset
of the enabled events at g . This modified DFS is called for each initial state of
the model, and we have ΠM ′ =

⋃
g∈I ΠM ′(g). The conditions on the heuristic

selection of E(g) given below are inspired by [18,41,58].

C1 Along each path π in M that starts at g , each event that is dependent on
an event in E(g) cannot be executed in π without an event in E(g) being
executed first in π. Formally, ∀π ∈ ΠM (g) such that π = g0α0g1α1 . . . with
g0 = g , and ∀b ∈ Evt such that (b, c) /∈ IndA for some c ∈ E(g), if αi = b for
some i ≥ 0, then αj ∈ E(g) for some j < i.

C2 If E(g) ̸= enabled(g) \ {ϵ}, then E(g) ⊆ InvisA.

C3 For every cycle in M ′ containing no ϵ-transitions, there is at least one node
g in the cycle for which E(g) = enabled(g) \ {ϵ}, i.e., all the successors of g
are expanded.

Submodel M ′ ⊆ M generated with this algorithm satisfies property AEA
[40]: ∀ σA∈Σir

A ∀ ιi∈I ∀ π∈outxM (ιi, σA) ∃ π′∈outxM ′(ιi, σA) : π≡sπ′,
where x ∈ {Std,React}.

5.2 POR for sATL∗K

We will show that the reduction algorithm for sATL∗ [41,40] can be applied also
to formulas that include the knowledge operator (in subformulas of the form
Kiφ), provided that J ⊆ A. That is, any agents in these epistemic subformulas
are added to the set A ⊆ A that parametrises the relations of invisibility and
independence.

Theorem 5.3 Let S be an AMAS, J ⊆ A ⊆ A, M = IISϵ(S, I), and let
M ′ ⊆ M be the reduced model generated by DFS with the choice of E(g ′) for
g ′ ∈ St′ given by conditions C1-C3. Then, for any starting state ιi ∈ I and
any sATL∗K formula φ over PV that refers only to coalitions Â ⊆ A, we have
that M , ιi |= φ iff M ′, ιi |= φ.

Proof. First, note that conditions C1-C3 remain unchanged from the reduc-
tion algorithm for sATL∗ [40]. Thus, by [40, Theorems A.8 and A.9], 4 we
have that:

POR.
4 The conference paper [40] does not include a technical appendix with proofs of Theorems
A.8 and A.9, so we refer to its extended arXiv manuscript here.

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 17

(*) M and M ′ are stuttering path equivalent. For each path π = g0α0g1α1 . . .
with g0 = ιi in M , there is a stuttering equivalent path π′ = g ′0α

′
0g

′
1α

′
1 . . .

with g ′0 = ιi in M ′ such that Evt(π)|V isA = Evt(π′)|V isA , i.e., π and π′ have
the same maximal sequence of visible events for A.

(**) M and M ′ satisfy structural condition AEA.

That is, we have M , ιi |= φ iff M ′, ιi |= φ for all non-epistemic φ. To
extend the reasoning to any sATL∗K formula, we first show that the full and
reduced model are also J-stuttering equivalent, which then allows to prove
that epistemic subformulas are preserved in the reduced model M ′. Finally, we
show that these subformulas can be replaced with equivalent new propositions,
effectively reducing the problem to the previously proven case for sATL∗.

Because J ⊆ A (and so all transitions of the agents in group J are visible), it
follows directly from C2 that if E(g) ̸= enabled(g)\{ϵ}, then Agent(α)∩J = ∅
for any event α ∈ E(g). This is a direct analogue of the extra condition CJ
from [53]. Together with (*), this implies that the full and reduced model are
also J-stuttering equivalent:

(***) M ≡Js M ′.

Consider any subformula φ = Kiψ. As per the syntax of sATL∗K, temporal
operators and strategic modalities cannot be nested inside Ki, so φ is a purely
epistemic formula that only contains knowledge operator(s) and propositional
variables with Boolean connectives. Now, we will show it follows from (***)
that epistemic subformulas are preserved in the reduced model, i.e., for any
state g such that g ≡Js g ′, we have M , g |= φ iff M ′, g ′ |= φ:

(⇒) Assume that M , g |= Kiψ. Let Stψ = {gψ ∈ St | g ∼i gψ}, and take g ′ψ
such that g ′ ∼i g ′ψ. We need to show that M ′, g ′ψ |= ψ. From g ≡Js g ′ and by
transitivity of relation ∼i, we have that g ′ψ ∈ Stψ. So, clearly M , g ′ψ |= ψ. As

gψ ≡Js g ′ψ, it follows from the inductive assumption that M ′, g ′ψ |= ψ. Hence,
M ′, g ′ |= Kiψ.

(⇐) Assume that M ′, g ′ |= Kiψ. Let St′ψ = {g ′ψ ∈ St′ | g ′ ∼i g ′ψ}, and
take gψ such that g ∼i gψ. We need to show that M , gψ |= ψ. Consider a path
π ∈ M that contains gψ. From (***), there is a path π′ ∈ M ′, which contains a
state g ′′ψ ∈ St′, such that gψ ≡Js g ′′ψ. By transitivity of ∼i, we get that g ′′ψ ∈ St′ψ,

and thus M ′, g ′′ψ |= ψ. As gψ ≡Js g ′′ψ, it follows from the inductive assumption
that M , gψ |= ψ. Hence, M , g |= Kiψ.

From the above we get that any epistemic subformula Kiψ holds in the
reduced model M ′ iff it holds in the corresponding state of the (J-stuttering
equivalent) full model M . Now, we introduce auxiliary propositional variables
to replace epistemic subformulas, including nested ones.

Consider subformulas φ0, φ1, . . . , where φ0 = φ, and for all i > 0, φi is
an epistemic subformula nested in φi−1. Note that in the reduced model M ′,
one can add a set of new propositional variables PV ′ =

⋃
i{satφi} to PV , and

extend the valuation function accordingly, so that we have V ′ : St′ → 2PV ∪PV ′
,

18 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

and satφi is true in state g ′ ∈ St′ iff M ′, g ′ |= φi. That is, for each epistemic
(sub)formula φi, a new proposition satφi is added, whose valuation in each
state g ′ ∈ St′ corresponds to the satisfaction of φi in that state of M ′. Then,
for the formula φ′ = satφ0 , it clearly holds that M ′, g ′ |= φ′ iff M ′, g ′ |= φ.
Furthermore, since epistemic subformulas only refer to agents i ∈ J and we
have that J ⊆ A, it follows that V isA,PV = V isA,PV ∪PV ′ and IndA,PV =
IndA,PV ∪PV ′ . That is, replacing epistemic subformulas with new propositions
in this manner does not affect the visibility or independence of events wrt. A
and PV . Hence, we also have M ′, g ′ |= φ′ iff M , g |= φ, from (*) and (**)
and by [40, Theorems A.8 and A.9], as φ′ is a sATL∗ formula. But from
the construction of φ′, we have M ′, g ′ |= φ′ iff M ′, g ′ |= φ, so it also holds
that M , g |= φ iff M ′, g ′ |= φ for any sATL∗K formula φ, both for standard
outcomes [40, Theorem A.8] and under the opponent reactivity condition [40,
Theorem A.9]. Thus, in particular we have that M , ιi |= φ iff M ′, ιi |= φ,
QED. 2

5.3 POR for Subjective Semantics of Ability

Recall the subjective semantics of strategic ability in Section 2.2. We will show
that the reduction scheme remains applicable in this setting, i.e., when the set
of initial states is comprised of previously designated subset I ⊆ St, plus all
states indistinguishable from those in I for coalition agents.

Theorem 5.4 Let x ∈ {Std,React}, Â ⊆ A and IÂ = I ∪
{g ∈ St | ∃ιi∈I∃j∈Â : g ∼j ιi}. Let M = IIS (S, IÂ), and let M ′ be the reduction
of M generated by POR using conditions C1-C3 for the choice of ample sets.
Then, for any initial state ιi ∈ IÂ and any sATL∗K formula φ that refers only

to coalition Â, we have that M , ιi |=xS φ iff M ′, ιi |=xS φ.
Proof. [Proof sketch] For each ιi ∈ IÂ, take Mi constructed by DFS starting
from ιi (i.e., with a single initial state), and let M ′

i be the reduction of Mi

generated by POR.
Take any path π ∈ ΠM . Clearly, π ∈ ΠMi

for some i > 0. By Theorem 5.3,
we have Mi ≡Js M ′

i , so there is a J-stuttering equivalent path π′ ∈ ΠM ′
i
. From

the construction by DFS, ΠM ′ =
⋃
i∈IÂ

ΠM ′
i
. Hence, π′ ∈ ΠM ′ , which implies

that M ≡Js M ′. (*)
Take any joint strategy σÂ. The subjective outcome of σÂ in M (resp. M ′)

is the sum of objective outcomes of σÂ in Mi (resp. M ′
i). But from AEA,

outxMi
(ιi, σÂ) ≡s outxM ′

i
(ιi, σÂ). So, analogously to the reasoning for (*), it

follows that
⋃
i∈IÂ

outxMi
(ιi, σÂ) ≡s

⋃
i∈IÂ

outxM ′
i
(ιi, σÂ). Hence, M and M ′

also satisfy AEA. (**)
Since (*) and (**), the thesis follows from Theorem 5.3, as in the case for

objective semantics of strategic ability. 2

6 Experiments and Results

In this section, we give a brief summary of the experimental results.

Models and formulas. The scalable class of models has been described

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 19

#A #R
Full Model Reduced Model

Result
#st #tr Seq. Par. Appr. #st #tr Seq. Par. Appr.

4 3 3.63e4 7.46e4 0.003 0.009 1.121 2.60e4 5.99e4 0.001 0.002 0.184 True
4 5 5.62e4 1.15e5 0.004 0.003 0.345 4.01e4 9.26e4 0.002 0.002 0.283 True
4 10 1.06e5 2.18e5 0.009 0.005 0.691 7.55e4 1.74e5 0.004 0.002 0.563 True
5 3 1.55e6 5.91e6 0.158 0.004 14.78 1.09e6 4.65e6 0.112 0.021 12.99 True
6 3 7.61e7 4.98e8 0.524 0.051 41.24 5.34e7 3.82e8 0.427 0.042 37.35 True
7 3 model generation timeout model generation timeout -

Table 1
Verification of φvuln,i,k for the first candidate (i = 1) and k = #R revotes

#Ag #R
Full Model Reduced Model

Result
#st #tr Seq. Par. Appr. #st #tr Seq. Par. Appr.

4 3 3.63e4 7.46e4 0.003 0.010 1.103 2.60e4 5.99e4 0.002 0.003 0.166 True
4 5 5.62e4 1.15e5 0.004 0.005 0.348 4.01e4 9.26e4 0.003 0.003 0.280 True
4 10 1.06e5 2.18e5 0.008 0.009 0.700 7.55e4 1.74e5 0.005 0.004 0.567 True
5 3 1.55e6 5.91e6 0.160 0.055 14.03 1.09e6 4.65e6 0.112 0.053 12.49 True
6 3 7.61e7 4.98e8 0.602 0.083 42.44 5.34e7 3.82e8 0.501 0.057 38.20 True
7 3 model generation timeout model generation timeout -

Table 2
Verification of φvuln,i,k for the last candidate (i = #C) and k = #R revotes

#Ag #R
Full Model Reduced Model

Result
#st #tr Seq. Par. Appr. #st #tr Seq. Par. Appr.

4 3 3.63e4 7.46e4 0.303 0.317 1.128 2.60e4 5.99e4 0.202 0.205 0.179 False
4 5 5.62e4 1.15e5 0.524 0.592 0.325 4.01e4 9.26e4 0.411 0.503 0.280 False
4 10 1.06e5 2.18e5 0.721 0.668 0.459 7.55e4 1.74e5 0.525 0.512 0.364 False
5 3 1.55e6 5.91e6 2.146 1.257 0.981 1.09e6 4.65e6 1.513 1.003 0.583 False
6 3 7.61e7 4.98e8 5.232 3.228 1.892 5.34e7 3.82e8 4.986 2.427 1.092 False
7 3 model generation timeout model generation timeout -

Table 3
Verification of φvuln,i,k for the first candidate (i = 1) and k = #R− 1 revotes

#Ag #R
Full Model Reduced Model

Result
#st #tr Seq. Par. Appr. #st #tr Seq. Par. Appr.

4 3 3.63e4 7.46e4 0.302 0.311 0.180 2.60e4 5.99e4 0.201 0.213 0.126 False
4 5 5.62e4 1.15e5 0.519 0.584 0.310 4.01e4 9.26e4 0.410 0.475 0.283 False
4 10 1.06e5 2.18e5 0.742 0.627 0.462 7.55e4 1.74e5 0.558 0.544 0.370 False
5 3 1.55e6 5.91e6 2.160 1.358 0.942 1.09e6 4.65e6 1.621 1.009 0.519 False
6 3 7.61e7 4.98e8 5.504 3.516 1.903 5.34e7 3.82e8 5.110 2.380 1.112 False
7 3 model generation timeout model generation timeout -

Table 4
Verification of φvuln,i,k for the last candidate (i = #C) and k = #R− 1 revotes

4 5 6
100

101

102

103

104

105

#Agents

T
im

e
in

se
co
n
d
s

Full Model
Reduced Model

Fig. 5. Model generation times for 3 candidates 3 revotes

in detail in Section 3. They can be configured using four parameters: the
number of voters (V), the number of coerced voters (CV), the number of
candidates (C) and the number of revoting turns (R). In all experiments we

20 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

use configurations with one coerced voter and three candidates. We also use
the coercion-vulnerability formula

φvuln,i,k ≡
⟨⟨Coercer⟩⟩G((end ∧ revotev1 = k ∧ votedv1 = i) → KCoercervotedv1 = i)

saying that the coercer has a strategy so that, at the end of the election, if
the voter has effectively voted for candidate i, then the coercer knows about
it. This can be seen as the opposite of receipt-freeness and coercion-resistance
formalizations in [43,65], see Section 3.4 for more details.

Configuration of the experiments. The test platform was a server
equipped with ninety-six 2.40 GHz Intel Xeon Platinum 8260 CPUs, 991
GB RAM, and 64-bit Linux. All times are given in seconds. The algo-
rithms have been implemented in C++. The code is available on github:
github.com/blackbat13/ATLFormulaCheckerC.

Results. We present the verification results in the Tables 1-4 and model
generation times in the Figure 5. All times are given in seconds and the timeout
for verification was set to 1 hour and 20 hours for model generation. Model
generation times are presented using a logarithmic scale. We present the size
of the model and the verification times both for the full and the reduced model.
We have compared time results for four verification methods, as described in
Section 4: the sequential strategy synthesis (Seq.), the parallelized version
(Par.) and the fixpoint approximation (Appr.).

Results: Domino DFS and flexible distributed algorithm. We omit
the results for the Domino DFS algorithm, as it performed much slower than
other algorithms. The reason is that in this scenario there is no redundancy in
the strategy space, and hence no room for elimination of dominated strategies.
In consequence, no gain is achieved compared to the standard DFS strategy
synthesis.

The same applies to the flexible distributed algorithm proposed in Sec-
tion 4.4. Apparently, cloning the model and synchronization between the
threads grossly outweighs the benefits of using parallel computation.

Discussion of the results. As the results show, the simple parallel verifica-
tion performs quite well in most cases. Only for relatively small models the
sequential algorithm achieves better performance than the parallel algorithm,
which is the result of a overhead associated with the parallelization. As various
experiments have shown, the performance of the parallel algorithm is heavily
dependent on the structure of the model. Depending on the amount of branch-
ing and loops in the model, it can result in a timeout even for small models.
The reason for this behavior seems simple: the space of all strategies is too big
to manage. As the strategy is generated from top to bottom, less branching
means less configurations to check.

The fixpoint approximation algorithm performs well in cases where no strat-
egy can be found, as it quickly reaches the fixpoint. On the other hand, when

https://github.com/blackbat13/ATLFormulaCheckerC

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 21

the formula is satisfied, multiple loops maybe required before reaching the fix-
point, with each loop adding more states to the computation set.

Challenges and lessons learned. When conducting the experiments, we
have encountered two main difficulties: high memory usage and slow model
generation. The first one results in a memout for ordinary computers. The
second one results in a timeout for more powerful machines with hundreds
of gigabytes of RAM. Before moving to better computers, we have tried to
overcome the memory usage problem by implementing a communication with
an external database engine. The idea was to store parts of the model during
the generation in the database. That, in theory, allows to shift some part of
the memory requirements to other parts of the system. Unfortunately, this also
heavily impacted generation times, resulting in approximately 10 times slower
computation, which lead us to abandoning this idea.

To overcome the high model generation times one can also try to parallelize
the generation of models. Our experiments have shown that the parallel al-
gorithm, if implemented in a clever way, can greatly reduce the computation
times. The model generation procedure works similarly to the DFS algorithm,
which suggests that its parallel version can be as effective.

7 Conclusions

Modal logics for MAS, and the related verification problems, have been studied
for many years. Unfortunately, they are characterized by high computational
complexity, both in theory and in practice. On the other hand, it is necessary to
try and verify real-life scenarios, with all their complexity, to make substantial
progress in the field.

In this paper, we propose a hands-on case study in verification of a genuine
protocol for secure voting. We use the “all out” approach, implementing multi-
ple existing techniques (depth-first strategy search, domination-based strategy
synthesis, fixpoint approximation) as well as proposing novel adaptations of
others (partial-order reduction, distributed strategy search). Of those, partial
order reduction, simple DFS, simple distributed DFS, and fixpoint approxi-
mation show very promising performance. Moreover, they produce significant
gains in some of the tested configurations. On the other hand, the domination-
based synthesis and flexible distributed turn out rather ill-fitted to the model
checking task at hand. Overall, the experimental results are promising, and
suggest that the time is ripe for the community to engage more in realistic
application of the algorithms that we develop.

We also emphasize that the extension of partial order reduction, presented
here, is a nontrivial technical result in its own right, as it is the first POR
algorithm that handles the nesting of epistemic modalities in the context of
strategic ability.

22 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

References

[1] Adida, B., Helios: web-based open-audit voting, in: Proceedings of the 17th conference
on Security symposium, SS’08 (2008), pp. 335–348.

[2] Agotnes, T., A note on syntactic characterization of incomplete information in ATEL,
in: Procedings of Workshop on Knowledge and Games, 2004, pp. 34–42.

[3] Agotnes, T., V. Goranko, W. Jamroga and M. Wooldridge, Knowledge and ability, in:
H. van Ditmarsch, J. Halpern, W. van der Hoek and B. Kooi, editors, Handbook of
Epistemic Logic, College Publications, 2015 pp. 543–589.

[4] Akintunde, M. E., E. Botoeva, P. Kouvaros and A. Lomuscio, Formal verification
of neural agents in non-deterministic environments, in: Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent Systems AAMAS,
2020, pp. 25–33.

[5] Akintunde, M. E., E. Botoeva, P. Kouvaros and A. Lomuscio, Verifying strategic
abilities of neural-symbolic multi-agent systems, in: Proceedings of the 17th International
Conference on Principles of Knowledge Representation and Reasoning KR, 2020, pp.
22–32.

[6] Alur, R., L. de Alfaro, T. A. Henzinger, S. Krishnan, F. Mang, S. Qadeer, S. Rajamani
and S. Tasiran, MOCHA: Modularity in model checking, Technical report, University of
Berkeley (2000).

[7] Alur, R., T. A. Henzinger and O. Kupferman, Alternating-time Temporal Logic, in:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS) (1997), pp. 100–109.

[8] Alur, R., T. A. Henzinger and O. Kupferman, Alternating-time Temporal Logic, Journal
of the ACM 49 (2002), pp. 672–713.

[9] Behrmann, G., A. David and K. Larsen, A tutorial on uppaal, in: Formal Methods for
the Design of Real-Time Systems: SFM-RT, number 3185 in LNCS (2004), pp. 200–236.

[10] Broersen, J., M. Dastani, Z. Huang and L. van der Torre, The BOID architecture:
conflicts between beliefs, obligations, intentions and desires, in: J. Müller, E. Andre,
S. Sen and C. Frasson, editors, Proceedings of the Fifth International Conference on
Autonomous Agents (2001), pp. 9–16.

[11] Broersen, J., A. Herzig and N. Troquard, Embedding Alternating-time Temporal Logic in
Strategic STIT logic of agency, Journal of Logic and Computation 16 (2006), pp. 559–
578.

[12] Bruni, A., E. Drewsen and C. Schürmann, Towards a mechanized proof of Selene receipt-
freeness and vote-privacy, in: Proceedings of E-Vote-ID, Lecture Notes in Computer
Science 10615 (2017), pp. 110–126.

[13] Bulling, N., J. Dix and W. Jamroga, Model checking logics of strategic ability:
Complexity, in: M. Dastani, K. Hindriks and J.-J. Meyer, editors, Specification and
Verification of Multi-Agent Systems, Springer, 2010 pp. 125–159.

[14] Bulling, N. and W. Jamroga, Comparing variants of strategic ability: How uncertainty
and memory influence general properties of games, Journal of Autonomous Agents and
Multi-Agent Systems 28 (2014), pp. 474–518.

[15] Chaum, D., R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. Rivest, P. Ryan, E. Shen,
A. Sherman and P. Vora, Scantegrity II: end-to-end verifiability by voters of optical scan
elections through confirmation codes, Trans. Info. For. Sec. 4 (2009), pp. 611–627.

[16] Chaum, D., P. Y. A. Ryan and S. A. Schneider, A practical voter-verifiable election
scheme, in: Proceedings of ESORICS, 2005, pp. 118–139.

[17] Chen, T., V. Forejt, M. Kwiatkowska, D. Parker and A. Simaitis, PRISM-games: A model
checker for stochastic multi-player games, in: Proceedings of Tools and Algorithms for
Construction and Analysis of Systems (TACAS), Lecture Notes in Computer Science
7795 (2013), pp. 185–191.

[18] Clarke, E. M., O. Grumberg and D. A. Peled, “Model Checking,” The MIT Press,
Cambridge, Massachusetts, 1999.

[19] Cohen, P. and H. Levesque, Intention is choice with commitment, Artificial Intelligence
42 (1990), pp. 213–261.

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 23

[20] Culnane, C., P. Ryan, S. Schneider and V. Teague, vvote: A verifiable voting system,
ACM Trans. Inf. Syst. Secur. 18 (2015), pp. 3:1–3:30.

[21] Dastani, M., K. Hindriks and J. Meyer, editors, “Specification and Verification of Multi-
Agent Systems,” Springer, 2010.

[22] Dembiński, P., A. Janowska, P. Janowski, W. Penczek, A. Pó lrola, M. Szreter, B. Woźna
and A. Zbrzezny, VerICS: A tool for verifying timed automata and Estelle specifications,
in: Proceedings of the of the 9th Int. Conf. on Tools and Algorithms for Construction and
Analysis of Systems (TACAS’03), Lecture Notes in Computer Science 2619, Springer,
2003 pp. 278–283.

[23] Dima, C., C. Enea and D. Guelev, Model-checking an alternating-time temporal logic
with knowledge, imperfect information, perfect recall and communicating coalitions, in:
Proceedings of Games, Automata, Logics and Formal Verification (GandALF), 2010,
pp. 103–117.

[24] Dima, C. and F. Tiplea, Model-checking ATL under imperfect information and perfect
recall semantics is undecidable, CoRR abs/1102.4225 (2011).

[25] Emerson, E. A., Temporal and modal logic, in: J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, Elsevier and
MIT Press, 1990 pp. 995–1072.

[26] Fagin, R., J. Y. Halpern, Y. Moses and M. Y. Vardi, “Reasoning about Knowledge,”
MIT Press, 1995.

[27] Gardner, R. W., S. Garera and A. D. Rubin, Coercion resistant end-to-end voting, in:
R. Dingledine and P. Golle, editors, Financial Cryptography and Data Security, Lecture
Notes in Computer Science 5628, Springer Berlin Heidelberg, 2009 pp. 344–361.

[28] Gerth, R., R. Kuiper, D. Peled and W. Penczek, A partial order approach to branching
time logic model checking, Information and Computation 150 (1999), pp. 132–152.

[29] Ghale, M., R. Goré, D. Pattinson and M. Tiwari, Modular formalisation and verification
of STV algorithms, in: Proceedings of E-Vote-ID, Lecture Notes in Computer Science
11143 (2018), pp. 51–66.

[30] Godefroid, P., “Partial-Order Methods for the Verification of Concurrent Systems: An
Approach to the State-Explosion Problem,” Springer-Verlag, Berlin, Heidelberg, 1996.

[31] Guelev, D. and C. Dima, Epistemic ATL with perfect recall, past and strategy contexts,
in: Proceedings of Computational Logic in Multi-Agent Systems (CLIMA), Lecture Notes
in Computer Science 7486 (2012), pp. 77–93.

[32] Guelev, D., C. Dima and C. Enea, An alternating-time temporal logic with knowledge,
perfect recall and past: axiomatisation and model-checking, Journal of Applied Non-
Classical Logics 21 (2011), pp. 93–131.

[33] Haines, T., R. Goré and M. Tiwari, Verified verifiers for verifying elections, in:
Proceedings of CCS (2019), pp. 685–702.

[34] Jamroga, W., “Logical Methods for Specification and Verification of Multi-Agent
Systems,” ICS PAS Publishing House, 2015.

[35] Jamroga, W., Y. Kim, D. Kurpiewski and P. Y. A. Ryan, Towards model checking of
voting protocols in uppaal, in: Proceedings of E-Vote-ID, Lecture Notes in Computer
Science 12455 (2020), pp. 129–146.

[36] Jamroga, W., M. Knapik and D. Kurpiewski, Model checking the SELENE e-voting
protocol in multi-agent logics, in: Proceedings of the 3rd International Joint Conference
on Electronic Voting (E-VOTE-ID), Lecture Notes in Computer Science 11143 (2018),
pp. 100–116.

[37] Jamroga, W., M. Knapik, D. Kurpiewski and L. Mikulski, Approximate verification of
strategic abilities under imperfect information, Artificial Intelligence 277 (2019).

[38] Jamroga, W., D. Kurpiewski and V. Malvone, Natural strategic abilities in voting
protocols, CoRR abs/2007.12424 (2020).

[39] Jamroga, W., W. Penczek, P. Dembiński and A. Mazurkiewicz, Towards partial order
reductions for strategic ability, in: Proceedings of the 17th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (2018), pp. 156–165.

[40] Jamroga, W., W. Penczek and T. Sidoruk, Strategic abilities of asynchronous agents:
Semantic side effects and how to tame them, in: Proceedings of KR 2021, 2021, pp.
368–378.

24 Verification of Multi-Agent Propertiesin Electronic Voting: A Case Study

[41] Jamroga, W., W. Penczek, T. Sidoruk, P. Dembiński and A. Mazurkiewicz, Towards
partial order reductions for strategic ability, Journal of Artificial Intelligence Research
68 (2020), pp. 817–850.

[42] Jamroga, W. and W. van der Hoek, Agents that know how to play, Fundamenta
Informaticae 63 (2004), pp. 185–219.

[43] Juels, A., D. Catalano and M. Jakobsson, Coercion-resistant electronic elections, in:
Proceedings of the 2005 ACM workshop on Privacy in the electronic society, ACM,
2005, pp. 61–70.

[44] Kacprzak, M., A. Lomuscio and W. Penczek, From bounded to unbounded model checking
for temporal epistemic logic, Fundamenta Informaticae 63 (2004), pp. 221–240.

[45] Kacprzak, M., W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, M. Szreter,
B. Wozna and A. Zbrzezny, VerICS 2007 - a model checker for knowledge and real-
time, Fundamenta Informaticae 85 (2008), pp. 313–328.

[46] Kacprzak, M. and W. Penczek, Unbounded model checking for alternating-time temporal
logic, in: 3rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), 19-23 August 2004, New York, NY, USA (2004), pp. 646–653.

[47] Kacprzak, M. and W. Penczek, Fully symbolic unbounded model checking for alternating-
time temporal logic, Autonomous Agents and Multi-Agent Systems 11 (2005), pp. 69–89.

[48] Kanski, M., A. Niewiadomski, M. Kacprzak, W. Penczek and W. Nabialek, SMT-based
unbounded model checking for ATL, in: A. Nouri, W. Wu, K. Barkaoui and Z. Li,
editors, Verification and Evaluation of Computer and Communication Systems - 15th
International Conference, VECoS 2021, Virtual Event, November 22-23, 2021, Revised
Selected Papers, Lecture Notes in Computer Science 13187 (2021), pp. 43–58.

[49] Kant, G., A. Laarman, J. Meijer, J. van de Pol, S. Blom and T. van Dijk, LTSmin:
High-performance language-independent model checking, in: Tools and Algorithms for
the Construction and Analysis of Systems. Proceedings of TACAS, Lecture Notes in
Computer Science 9035 (2015), pp. 692–707.

[50] Kurpiewski, D., W. Jamroga and M. Knapik, STV: Model checking for strategies
under imperfect information, in: Proceedings of the 18th International Conference on
Autonomous Agents and Multiagent Systems AAMAS 2019 (2019), pp. 2372–2374.

[51] Kurpiewski, D., M. Knapik and W. Jamroga, On domination and control in strategic
ability, in: Proceedings of the 18th International Conference on Autonomous Agents and
Multiagent Systems AAMAS 2019 (2019), pp. 197–205.

[52] Kurpiewski, D., W. Pazderski, W. Jamroga and Y. Kim, STV+Reductions: Towards
practical verification of strategic ability using model reductions, in: Proceedings of
AAMAS (2021), pp. 1770–1772.

[53] Lomuscio, A., W. Penczek and H. Qu, Partial order reductions for model
checking temporal-epistemic logics over interleaved multi-agent systems, Fundamenta
Informaticae 101 (2010), pp. 71–90.

[54] Lomuscio, A., H. Qu and F. Raimondi, MCMAS: An open-source model checker for
the verification of multi-agent systems, International Journal on Software Tools for
Technology Transfer 19 (2017), pp. 9–30.

[55] Malvone, V., A. Murano and L. Sorrentino, Hiding actions in multi-player games, in:
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, 2017, pp. 1205–1213.

[56] Martimiano, T., E. D. Santos, M. Olembo and J. Martina, Ceremony analysis meets
verifiable voting: Individual verifiability in Helios, in: SECURWARE, 2015, pp. 195–
204.

[57] Peled, D., All from one, one for all: on model checking using representatives, in:
C. Courcoubetis, editor, Computer Aided Verification (1993), pp. 409–423.

[58] Peled, D., Combining partial order reductions with on-the-fly model-checking, in:
Proceedings of the 6th International Conference on Computer Aided Verification, LNCS
818 (1994), pp. 377–390.

[59] Priese, L., Automata and concurrency, Theoretical Computer Science 25 (1983), pp. 221–
265.

Kurpiewski, Jamroga, Maśko, Mikulski, Pazderski, Penczek and Sidoruk 25

[60] Rao, A. and M. Georgeff, Modeling rational agents within a BDI-architecture,
in: Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning, 1991, pp. 473–484.

[61] Ryan, P., P. Rønne and V. Iovino, Selene: Voting with transparent verifiability and
coercion-mitigation, in: Financial Cryptography and Data Security: Proceedings of FC
2016. Revised Selected Papers, Lecture Notes in Computer Science 9604 (2016), pp.
176–192.

[62] Ryan, P. Y. A., S. A. Schneider and V. Teague, End-to-end verifiability in voting systems,
from theory to practice, IEEE Security & Privacy 13 (2015), pp. 59–62.

[63] Schobbens, P. Y., Alternating-time logic with imperfect recall, Electronic Notes in
Theoretical Computer Science 85 (2004), pp. 82–93.

[64] Shoham, Y. and K. Leyton-Brown, “Multiagent Systems - Algorithmic, Game-Theoretic,
and Logical Foundations,” Cambridge University Press, 2009.

[65] Tabatabaei, M., W. Jamroga and P. Y. A. Ryan, Expressing receipt-freeness and
coercion-resistance in logics of strategic ability: Preliminary attempt, in: Proceedings
of the 1st International Workshop on AI for Privacy and Security, PrAISe@ECAI 2016
(2016), pp. 1:1–1:8.

[66] Valmari, A., Stubborn sets for reduced state space generation, in: G. Rozenberg, editor,
Advances in Petri Nets 1990 (1991), pp. 491–515.

[67] van der Hoek, W., A. Lomuscio and M. Wooldridge, On the complexity of practical
ATL model checking, in: Proceedings of International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS) (2006), pp. 201–208.

[68] van der Hoek, W. and M. Wooldridge, Tractable multiagent planning for epistemic goals,
in: C. Castelfranchi and W. Johnson, editors, Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-02) (2002), pp.
1167–1174.

[69] Weiss, G., editor, “Multiagent Systems. A Modern Approach to Distributed Artificial
Intelligence,” MIT Press: Cambridge, Mass, 1999.

[70] Wooldridge, M., “Reasoning about Rational Agents,” MIT Press : Cambridge, Mass,
2000.

[71] Wooldridge, M., “An Introduction to Multi Agent Systems,” John Wiley & Sons, 2002.
[72] Zollinger, M., P. Roenne and P. Ryan, Mechanized proofs of verifiability and privacy in

a paper-based e-voting scheme, in: Proceedings of 5th Workshop on Advances in Secure
Electronic Voting, 2020.

	Introduction
	Preliminaries
	Models of Asynchronous Interaction
	Reasoning About Strategies and Knowledge

	How to Specify Voters and Coercers
	Short Description of Selene
	Asynchronous MAS for Selene
	Agents
	Specification of Properties
	Model definition
	Agent definition

	Verification Algorithms
	Verification by Fixpoint Approximation
	Depth-First Strategy Search
	Domination-Based Strategy Search
	Parallel Implementation

	Taming State Space Explosion
	Conceptual Machinery
	POR for sATL*K
	POR for Subjective Semantics of Ability

	Experiments and Results
	Conclusions
	References

