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Abstract: Social Explainable AI (SAI) is a new direction in artificial intelligence that emphasises decentralisation,
transparency, social context, and focus on the human users. SAI research is still at an early stage, and
concentrates mainly on delivering the intended functionalities. At the same time, formal analysis and verification
of the proposed solutions is rare. In this paper, we present an approach to formal verification of SAI protocols
by means of temporal model checking. We use agent graphs to model benign as well as malicious behaviors of
the participants, branching-time logic formulas to express interesting properties of the protocol, and the state of
the art temporal model checker UPPAAL to verify those formulas. As usual in such cases, state-space explosion
and the resulting complexity of verification is a major problem. We show how to mitigate the complexity
through state abstraction, and demonstrate the advantages in practice by using a novel tool for user-friendly
abstractions EASYABSTRACT4UPPAAL.

1 INTRODUCTION

Artificial intelligence solutions have become ubiqui-
tous in daily life, including social media, car navi-
gation, recommendation algorithms, etc. Moreover,
AI provides back-end solutions to many business pro-
cesses, resulting in a huge societal and economic im-
pact. Social Explainable AI (SAI) is a new, power-
ful idea in artificial intelligence research (Social Ex-
plainable AI, CHIST-ERA, 24; Contucci et al., 2022).
SAI emphasises decentralisation, human-centricity,
and explainability, which is in line with the trend to
move away from classical, centralised machine learn-
ing. This is essential – not only for technical reasons
like scalability, but also to meet the more and more
stringent ethical requirements with respect to trans-
parency and trustworthiness of data storage and com-
putation (Drainakis et al., 2020; Ottun et al., 2022).
Even more importantly, SAI tries to put the human
user in the spotlight, and move the focus away from
the technological infrastructure (Conti and Passarella,
2018; Toprak et al., 2021; Fuchs et al., 2022).

Social Explainable AI is a new concept, and a sub-
ject of ongoing research. It remains to be seen if it will
deliver effective, transparent, and mindful AI solutions.
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SAI should be extensively studied, including formal
verification of relevant requirements. Importantly, this
should encompass the possible side effects of inter-
action that involves AI components and human users
in complex environments. In particular, one should
carefully analyse the possibilities of adversarial mis-
use and abuse of the interaction, e.g., by means of
impersonation or man-in-the-middle attacks (Dolev
and Yao, 1983; Gollmann, 2011). In those scenarios,
one or more nodes of the interaction network are taken
over by a malicious party that tries to disrupt commu-
nication, corrupt data, and/or spread false information.
The design of SAI must be resistant to such abuse; oth-
erwise it contains a vulnerability which will be sooner
or later exploited. While the topic of adversarial at-
tacks on machine learning algorithms is an established
topic of research (Goodfellow et al., 2018; Kianpour
and Wen, 2019; Kumar et al., 2020), the research on
SAI has mainly focused on its expected functionalities
and ideal environments of execution.1 This is proba-
bly because SAI environments are very complex: both
conceptually, computationally, and socially. Thus, a
realistic study of their possible unintended behaviors
is very challenging.

(Kurpiewski et al., 2023) proposed that SAI can
benefit from the use of formal methods to analyze
the behaviours that can possibly emerge. In particu-

1With the notable exception of (Kurpiewski et al., 2023).



lar, a SAI protocol can be seen as an example of a
multi-agent system (Weiss, 1999; Shoham and Leyton-
Brown, 2009) that includes human as well as artificial
agents interacting in a mixed social/computational en-
vironment. Consequently, one can use model check-
ing (Clarke et al., 2018), which is arguably the most
successful framework of formal verification, to specify,
visualise, and analyse SAI designs with respect to the
relevant properties. The study in (Kurpiewski et al.,
2023) concentrated on the verification of properties
related to strategic ability of agents and their groups to
achieve their goals (Bulling et al., 2015), using appro-
priate model checking tools, such as STV (Kurpiewski
et al., 2021).

The results were promising, but also showed that
the high computational complexity of verification for
strategic properties only allows for the analysis of
very simple models. In this paper, we propose to fo-
cus on temporal instead of strategic model checking.
This way, we lose some of the expressivity with re-
spect to which requirements can be analyzed, but we
gain on the feasibility of the verification process. We
use multi-agent graphs (Jamroga and Kim, 2023a)
to specify the agents and their interaction, and for-
mulas of branching-time temporal logic CTL (Emer-
son, 1990) to formalize the interesting properties. Fur-
ther, we apply the state of the art model checker UP-
PAAL (Behrmann et al., 2004) to automatically verify
those properties. Despite lower verification complex-
ity, the formal models of SAI still suffer from the so
called state space explosion (Clarke et al., 2018). To
mitigate it, we use the recent experimental model re-
duction tool EASYABSTRACT4UPPAAL (Jamroga and
Kim, 2023b) that clusters similar states of the formal
model in a provably correct and user-friendly way.

2 SOCIAL EXPLAINABLE AI (SAI)

SAI Social Explainable AI (Social Explainable AI,
CHIST-ERA, 24; Contucci et al., 2022; Fuchs et al.,
2022), SAI in short, is a powerful idea whose goal is
to address important drawbacks of the currently dom-
inant AI approaches. First and foremost, the current
machine learning-based systems are predominantly
centralised. The huge size of data collections used in
the learning process, as well as the complexity of the
resulting AI models (typically, deep neural networks),
make the resulting AI systems effectively black boxes,
i.e., systems that do their job remarkably well, but
resist deeper interpretation by users and even by ma-
chine learning experts. This naturally raises issues
of safety and trustworthiness. Moreover, that often
requires to store a large collection of sensitive data in

a single, central location, which in turn raises the ques-
tions of feasibility, privacy, data protection, as well
as compliance with legal regulations regarding data
ownership.

In contrast, SAI envisions novel machine learning-
based AI systems with the following foci:

Individuation. The main architecture is based on
“Personal AI Valets” (PAIVs) associated with hu-
man users, and each acting as the user’s proxy in a
complex ecosystem of interacting agents;

Personalisation. Each PAIV processes the data
through an explainable AI model tailored to the
specific characteristics of its user;

Purposeful interaction. The machine learning and
decision making in PAIVs is obtained through in-
teraction, starting from the local AI models and
making them interact with each other;

Human-centricity. AI algorithms and PAIV interac-
tions are driven by quantifiable models of the indi-
vidual and social behaviour of their human users;

Explainability by design. Machine Learning tech-
niques produce explainable AI models through
quantifiable human behavioural models and net-
work science analysis.

The current attempts at building SAI (Palmieri
et al., 2023a; Palmieri et al., 2023b) use gossip learn-
ing as the ML regime for PAIVs (Social AI gossip-
ing. Micro-project in Humane-AI-Net, 2022; Hegedüs
et al., 2019; Hegedüs et al., 2021). An experimental
simulation tool to assess the effectiveness of the pro-
cess and functionality of the resulting AI components
is available in (Lorenzo et al., 2022). In this paper, we
focus on modeling the multi-agent interaction in the
learning process, and formal verification of the inter-
action by model checking. We model the network of
PAIVs as an asynchronous multi-agent graph (Jamroga
and Kim, 2023a), MAS graph in short, and formalise
its properties as formulas of branching-time tempo-
ral logic CTL (Emerson, 1990). Then, we use the
state-of-art model checker UPPAAL (Behrmann et al.,
2004) to verify interesting properties of SAI, and the
recent experimental model reduction tool EASYAB-
STRACT4UPPAAL (Jamroga and Kim, 2023b) to miti-
gate the complexity of the verification process.

The formal framework is introduced in Section 3.
In Section 4, we present our MAS graphs for SAI,
including models of possible adversarial behaviors,
inspired by (Kurpiewski et al., 2023). In Section 5,
we formalise several properties and conduct model
checking experiments.



3 FORMAL FRAMEWORK

We will now present a brief overview of the formal
machinery used in the rest of the paper. For more
details and in-depth discussions, we refer the interested
reader to (Emerson, 1990; Jamroga and Kim, 2023a;
Jamroga and Kim, 2023b).

3.1 Agent Graphs and MAS Models

MAS graphs and templates. To specify the possible
behaviours of the system, we use MAS graphs (Jam-
roga and Kim, 2023a), based on standard models of
concurrency (Priese, 1983), and compatible with UP-
PAAL model specifications (Behrmann et al., 2004).

A MAS graph is a multiset of agent graphs that
can share a set of global variables. Each agent graph
includes finitely many locations and private variables
(with distinguished initial location and initial evalu-
ation that maps variables to initial values from their
domain) which, together, define its local state space.
Moreover, edges between locations determine the local
transition relation. Each edge can be labelled with a
randomized selection command (a pair of variable and
range, from which it can bound to a value), boolean
precondition (a condition over variables, which must
hold if the edge is to be taken), synchronisation com-
mand (the name of a synchronization channel followed
by ‘!’ for sending or ‘?’ for receiving), and/or a post-
condition updating the values of some variables. A
synchronizing edge can only be taken with a com-
plementary one in another agent. An example agent
graph is shown in Fig. 1. The locations are graphically
depicted as nodes, an initial location is marked with
double circle.

A MAS template treats each agent graph as a tem-
plate, and specifies the number of its instances that
occur in the verified system (each differing only by the
value of the special parameter variable id).
MAS Models. Every MAS graph G can be trans-
formed to its combined MAS graph representing the
behaviour of the system as a whole. Technically, the
combined MAS graph is a single agent graph comb(G)
given by the asynchronous product of the agent graphs
in G.2 Each location in comb(G) is a tuple of agents’
locations in G. Moreover, the set of variables in
comb(G) is the union of all variables occurring in G.
A global model of G is obtained from comb(G) by un-
folding it to the labelled transition system where states
are defined by combined locations and valuations of
all the variables. Such models are usually huge due to

2By construction, all synchronisation-type edge labels
are disposed of in combined MAS graph.

Figure 1: A template of AI agent in meta-configuration:
reversed-cascade-network, sharing via average, no attacker.

the well-known state-space explosion. Very often, this
is the main bottleneck of the verification procedure.

More formally, model M is a tuple (St, I,→,AP,L),
where St is the finite set of global states, I ⊆ St non-
empty set of initial states, →⊆ St ×St serial transition
relation, AP set of atomic propositions and L : St →
2AP labelling function. A path is an infinite sequence
of states λ = s0,s1, . . ., such that si ∈ St and si → si+1
for every i; by λ[i] = si and λ[i,∞] = si,si+1 . . . we
denote i-th state and suffix starting from i-th state in
λ respectively. A set of all paths in M that start from
state s is denoted by Paths(s).

3.2 Branching-Time Logic ACTL

To express requirements, we use the universal frag-
ment of the branching-time logic CTL (Emerson,
1990), denoted ACTL, with A (“for every path”) as
the only path quantifier. The syntax for ACTL is given
by the following grammar:

ϕ ::= true | false | p | ¬p | ϕ∧ϕ | ϕ∨ϕ | Aψ

ψ ::= Xϕ | ϕUϕ | ϕRϕ

where ϕ and ψ are state and path formulae respec-
tively, p is an atomic proposition, and X,U,R stand
respectively for “next,” “until,” and “release.”

Let M = (St, I,→,AP,L) be a model and p ∈ AP
be an atomic proposition. The semantics of ACTL is



given with respect to states s and paths λ in a model
M:
M,s |= p s iff p is on the list of labels L(s);
M,s |= ¬p iff p is not on the list of labels L(s);
M,s |= Aψ iff, for each λ ∈ Paths(s), we have M,λ |=

ϕ;
M,λ |= ϕ iff, M,λ[0] |= ϕ;
M,λ |= AXϕ iff, M,λ[1] |= ϕ;
M,λ |= ϕ1 Uϕ2 iff, there is i ≥ 0 with M,λ[i,∞] |= ϕ2,

and for all 0 ≤ j < i it holds M,λ[ j,∞] |= ϕ1;
M,λ |= ϕ1 Rϕ2 iff, for all i ≥ 0, we have M,λ[i,∞] |=

ϕ2 or exists j ≥ 0 such that M,λ[ j,∞] |= ϕ1 and
M,λ[k,∞] |= ϕ2 for all k ≤ j.

The clauses for Boolean connectives are standard. Ad-
ditional temporal operators “sometime” and “always”
can be defined as Fϕ ≡⊤Uϕ and Gϕ ≡ ϕR⊥ respec-
tively. Model M satisfies formula ϕ (written M |= ϕ)
iff M,s0 |= ϕ for all s0 ∈ I.

It must be noted that UPPAAL uses a nonstandard
interpretation of formulas using the AF combination
of quantifiers, as it admits non-maximal runs in the
interpretation of “for every path.” Fortunately, we have
come up with a fix that restores the standard semantics.
We present it in Section 5.

3.3 User-Friendly State Abstraction

To mitigate the impact of state-space explosion, we
use state abstraction, i.e., a method that reduces the
state space by clustering similar concrete states in
the MAS model into a single abstract state. In or-
der for the scheme to be practical, it must be easy to
use. Moreover, it has to avoid the generation of the
full concrete model, i.e., circumvent the complexity
bottleneck. This has been recently implemented in an
open-access tool EASYABSTRACT4UPPAAL (Jamroga
and Kim, 2023b) that employs the abstraction scheme
of (Jamroga and Kim, 2023a), and produces specifica-
tions of two abstract models: a may-abstraction (that
overapproximates the concrete states and transitions)
and a must-abstraction (that underapproximates them).
Consequently, if a universal CTL formula is true in the
may-abstraction, then it must be true in the concrete
model, and if it is false in the must-abstraction, then
it must be false in the concrete model (Jamroga and
Kim, 2023a).
Variable removal. The abstraction scheme behind
EASYABSTRACT4UPPAAL is based on the assumption
that the verifier gets a domain expert’s advice about
what information to remove from the MAS graph. The
most natural way is to select some model variables for
removal, or merge those variables into a new variable
containing less information than the original ones.

In the simplest variant, the abstraction concerns a
complete removal of some variables from the MAS
model. For example, one might remove completion,
mstatus from the agent graph in Fig. 1, i.e., the
agent’s memory of how much data was collected and
whether the learning went well. The abstraction pro-
cedure takes the combined MAS graph comb(G), for
each location ℓ (starting from ℓ0) computes an approx-
imation of the reachable values for the set of selected
variables V , and then processes the edges of comb(G)
by substituting the occurrences of v ∈V with the val-
ues u ∈ appr(v, ℓ) in the approximation set of the inci-
dent source location ℓ.3 If appr(v, ℓ) overapproximates
(resp. underapproximates) the actual reachable values
of v at ℓ, then the resulting model is a may (resp. must)-
abstraction of G.
Variable merge and scoping. More generally, a sub-
set of variables can be merged into a fresh variable by
means of a user-defined mapping function.

Additionally, the user can specify the scope of the
abstraction, i.e., a subset of locations in the MAS graph
where the abstraction will be applied.
Abstraction on MAS templates. In some cases, ap-
proximation of variable domains on the combined
MAS graph is computationally infeasible due to the
size of the combined MAS graph. Then, one can try
to compute the approximation directly on the MAS
template by the right approximation of the synchro-
nization edges. However, this might result with largely
suboptimal abstract models, i.e., ones more likely to
produce inconclusive verification results.

4 FORMAL MODELS OF SAI

In this section we describe our new formal models
of SAI. The models are aimed at representing both
the intended and adversarial behavior of PAIVs. The
former is modeled through so called “honest” AI
agents. For the latter, we use two kinds of mali-
cious AI agents: an “impersonator” and a “man-in-the-
middle” attacker. Our new models have been strongly
inspired by (Kurpiewski et al., 2023), where SAI were
specified using Asynchronous Multi-Agent Systems
(AMAS) and verified using the STV model checker.
In this work, we use MAS Graphs for the modelling
part, and the UPPAAL model checker for verification.
MAS Graphs allow for more flexibility than AMAS

3Internally, some linear order ≺ is defined over the vari-
able set Var. Intuitively, this allows to treat any variable
subset V ⊆ Var and its evaluation as vectors. Thus, a pair of
variables v,v′ ∈V , s.t. v ≺ v′, can be substituted with values
u and u′ iff {u,u′} ∈ appr({v,v′}, ℓ).



in the specification of the formal model. Moreover,
UPPAAL better avoids the state-space explosion than
STV. In consequence, we have been able to create and
verify richer and more sophisticated models of SAI
than (Kurpiewski et al., 2023), e.g., by considering
different topologies of sharing the machine learning
models between agents. Moreover, temporal verifi-
cation of MAS Graphs admits practical model reduc-
tions of (Jamroga and Kim, 2023a; Jamroga and Kim,
2023b), which we employ in this paper to mitigate the
complexity of the verification process.

A preliminary take on MAS Graph-based models
and abstraction for SAI was reported in (Jamroga and
Kim, 2023b), but that was only done to demonstrate
the functionality of the abstraction tool.

We begin with a high-level overview of the system
and AI agent behaviour. Then, we provide several vari-
ants for the lower-level specification, which will fur-
ther establish the scope for experiments in Section 5.

4.1 AI Agents

The system is composed of a number AI agents, each
having a unique identifier. An example agent graph
template for an AI agent is shown in Fig. 1.

The local model of an AI agent involves three sub-
sequent phases: data gathering, learning and sharing.
During the data gathering phase agent collects the
data required for the learning. The amount of data is
represented by a local variable data, which is incre-
mented by taking the corresponding transition multiple
times. When the gathering phase is finished, the data
gets processed and categorized as either incomplete,
complete or excessive. Next, in the learning phase,
the agent proceeds with training its machine learning
component (ML-component in short), based on the
previously acquired data. Depending on data com-
pleteness and the number of learning iterations, the
quality of the ML-component is adjusted. Notably,
the learning process does not affect the quality when
no data has been acquired, and overtraining generally
decreases the quality of the component.

It is also possible for an agent to completely skip
data gathering and/or learning phases.

Afterwards, in the sharing phase, the agent shares
its ML-component with other AI agents. Here we
assume the case of asymmetric exchange, where
the sender sends its ML-component and the receiver
merges it with its own component. Which pairs of
agents can communicate (and in which order) is spec-
ified by the network topology (see the examples in
Section 4.2). Finally, the agent can return to the learn-
ing phase, or refrain from doing so.

4.2 Scenarios

We consider several scenarios with different meta-
parameters: the network topology (ring, tree, reversed-
cascade), attacker type (none, man-in-the-middle, im-
personator), and the operator for computing the out-
come of sharing (minimum, average, maximum).
Topology. The network topology outlines the struc-
ture of communication between AI agents during the
sharing phase. Selected variants are described below
(see Fig. 2 for intuition):

• In the ring-network, each agent communicates
with the pair of adjacent agents. Without loss of
generality, we assume that agents with odd identi-
fiers first transmit their model quality and then pro-
ceed to receive incoming models (and conversely
for ones with odd identifiers).

• In the tree-network, messages are sent top down,
starting from a distinguished node, called the root.
Each node has a single parent and can have up to
n-children, where n denotes the arity. Here, we
assume the case of complete binary trees, where
all levels, except possibly the last, are filled.

• In the reversed-cascade-network, each node with
identifier i receives messages from those with id<
i and then can start sending to those with id> i.

Sharing method. When an agent receives a machine
learning component, it merges the component with
that of its own. We specify the merging outcome by
means of its effect on the resulting ML-component
quality, taking either the maximum, the average, or
the minimum of the original and the received model
quality.
Attacker. In addition to a scenario with no attacker,
where all agents are honest and follow the protocol
as expected, we analyse those with an attacker. Here,
we utilize two well-known types of adversary: man-
in-the-middle and impersonator. Of course, this does
not constitute a complete threat analysis, but already
shows the way towards the verification of resistance
against other, more sophisticated attacks.

• Man-in-the-middle attacker can intercept the com-
munication and re-direct it, but without any
changes on the message content. As such an at-
tacker may also abstain from interception, all exe-
cutions that were present in the meta-configuration
without an attacker will also be present here.

• Impersonator attacker acts in place of a selected AI
agent. It only participates in the sharing phase(s)
and exchanges messages as prescribed by its role.
However, in contrast to an honest AI agent, an
impersonator can forge an ML-component of any
chosen quality prior to each transfer.
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Figure 2: Informal illustration for possible message flow in (from left to right): ring, tree and reversed-cascade networks.

Altogether this gives 27 variants of MAS templates
(see Fig. 5 for a graphical illustration), each being pa-
rameterized by the number of AI agents. A collection
of instances from the same MAS template makes up
a family of models. We use terms meta-configuration
and t-configuration when referring to actual values
of meta-parameters and template-parameters respec-
tively.

5 EXPERIMENTS

We have performed a series of experiments with afore-
mentioned 27 families of SAI models. The exper-
iments were conducted using UPPAAL v4.1.24 and
EASYABSTRACT4UPPAAL on a machine with Intel i7-
8665U 2.11 GHz CPU, 16 GB RAM, running Ubuntu
22.04. The source code of the models (both concrete
and abstract), as well as detailed results, can be found
at https://tinyurl.com/sai-abstraction.

5.1 Requirement Specification

Deadlock-freeness. Deadlock occurs when neither
system component can proceed. In other words, it is
a global state with no outgoing transitions. Deadlock-
freeness is achieved when the system is guaranteed to
never reach a deadlock state. While some model check-
ers provide a special atomic proposition deadlock
dedicated for deadlock states, the property can be also
simulated within “vanilla” ACTL∗. For example, we
can select some agent’s location(s) and verify that it
gets visited infinitely many times via the following

formula:

ϕ1 ≡ AG(false⇒ AF
∨

i∈AI

waiti)

Note that location “wait” of the AI template in Fig. 1
has a self-loop, and thus it is guaranteed that there
will be at least one outgoing transition. The above is a
stronger requirement than AG¬deadlock; thus, when
the former holds the latter must hold as well.
Eventually-win. Suppose that we want to verify if
the SAI network is guaranteed to eventually reach
a “winning” state where the average ML-component
quality of the involved AI agents is greater than 0. This
can be formalized by

ϕ2 ≡ AF(avg(mquali)i∈AI > 0)

In other words, we check if the system guarantees
progress to a state better than the initial one. Clearly,
other interpretations of a “win” can be interesting too.
Similar queries can also facilitate the analysis of sys-
tem modifications and design improvements. In order
to force standard interpretation of AF formulas we
introduce a benign modification to the models (just
before verification) and appended each location with
an invariant over clock variable. Note, that doing had
no side effect on the state-space, and merely filtered
non-maximal paths.
Flawless-wins. In a multi-agents system the goals of
different agents (or their coalitions) are often conflict-
ing. Therefore, a guaranteed achievement of all the
goals (within every execution, no matter the chosen ac-
tion) seldom happens. One of the common approaches
is to reason about strategic abilities: whether there
exists a strategy for the coalition that secures a win.
Despite the limitation of UPPAAL that admits only ver-
ification of temporal properties, some results can still

https://tinyurl.com/sai-abstraction


Figure 3: A template of AI agent (left) and Attacker (right) in meta-configuration: ring-network, sharing via min, man-in-the-
middle attacker. Notably, the specification of man-in-the-middle attacker remains the same for all meta-configurations.

be obtained. For example, (Jamroga and Kim, 2023a)
showed that, if the winning condition is free of modal
operators, one can manually fix the candidate strategy,
and then using UPPAAL check if it enforces a win.
Here, instead of trying to guess the full strategy, we
verify whether the achievement of certain sub-goals
will ultimately guarantee winning. That is, we refine
a previously introduced property and narrow down
the scope of executions, where the winning state is
expected to eventually occur. The formula

AG(
∧

i∈AI

flawless-learneri ⇒ ϕ2)

says that if all AI agents performed the learning
phase perfectly then ϕ2 is eventually guaranteed.
For technical reasons, we also need to ignore runs,
where agents self-loop in “wait” location, and ex-
press “flawless-learning” by persistent evaluation of

mstatusi=2. These enhancements result in formula

ϕ3 ≡ AG((
∧

i∈AI′
mstatusi=2)⇒

AF((
∧

i∈AI′
mstatusi=2)⇒

(avg(mquali)i∈AI’ > 0)))

where AI′ = AI\{impersonated} in the meta-
configurations with impersonator, and AI′ = AI other-
wise.

5.2 Dealing with State-Space Explosion

We have utilised the open-source experimental abstrac-
tion tool EASYABSTRACT4UPPAAL4, which automat-
ically generates reduced formal models after applying
the specified variable-based abstractions. A notable
advantage of the tool is that it creates models that are
portable. The output models are specified in the very
same modular format as the input ones, and can be

4https://tinyurl.com/EasyAbstract4Uppaal

https://tinyurl.com/EasyAbstract4Uppaal


Figure 4: A template of AI agent (left) and Attacker (right) in meta-configuration: tree-network, sharing via max, impersonator
attacker. Note that specification of impersonator corresponds to sharing phase of AI agent in relevant meta-configuration.

Attacker

Topology

Sharing

Attacker

Topology

Sharing

Attacker

Topology
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Figure 5: Verification results for model checking (from left to right): ϕ1, ϕ2 and ϕ3. Nodes in the “cube” stand for possible meta-
configurations of SAI models, (x,y,z) where coordinates map to specific element of (none, man-in-the-middle, impersonator)×
(ring, tree, r-cascade)× (min, avg, max). Each node is denoted by: black-filled circle if given formula was satisfied on all
attempted t-configurations, half-filled circle if it is satisfied for some, and empty circle if satisfied on none of them.

therefore opened, inspected and further used in UP-
PAAL; there is no side effect backwards dependence
on a third-party tool afterwards.

We have employed the following abstractions:

A1. Removes variables completion and mstatus
from AI agent templates;

A2. Removes variables data, completion, mstatus

and info from AI agent templates;

We use the former for the verification of ϕ1 and the
latter for ϕ3. In both cases, overapproximating may-
abstractions were conclusive. 5

5Note, that attempting to verify ϕ1 on models from A2
produces inconclusive results.



#Ag Concrete Abstract A1 Abstract A2
#St t #St Reduct t #St Reduct t

2 5832 0.1 81 72 0 53 110.03 0
3 363 013 2.3 625 580.8 0 327 1110.1 0
4 25 216 704 213 4851 5198.2 0 1995 12 639.9 0
5 memout 37 790 – 0.2 12 014 – 0.1
6 memout 299 226 – 1.9 73 154 – 0.7
7 memout 2 374 295 – 23.7 443 593 – 5.9
8 memout 19 059 651 – 251.4 2 724 787 – 46.1
9 memout memout 16 672 836 – 329.1

10 memout memout memout

Table 1: Results of model checking ϕ3 on meta-configuration with ring-network, sharing via average, no attacker. The column
“#Ag” denotes the t-configuration (number of AI agents), “#St” number of states in global model, “t” avg. verification time
in seconds, and “Reduct” shows the level of reduction in the state space. For all reported cases, the time for computing an
abstraction itself was negligible (less than 1 sec) and thus we omit it from the details.

5.3 Results and Discussion

An aggregated view of the experimental results is
shown in Fig. 5. We have been able to perform the
verification of ϕ1 (resp. ϕ3) on concrete models with
up to 4 AI agents, and up to 8 (resp. 9) AI agents after
applying abstraction A1 (resp. A2). Notably, cases
when ϕ1 and ϕ2 were not satisfied arise only for the
t-configuration with one AI agent and only for meta-
configurations that involved the Impersonator attacker
or (in case of ϕ1) the tree topology of the SAI network.

The verification of ϕ2 resulted with “property not
satisfied” in all the studied cases, and the model
checker was able to quickly find and report a witness-
ing counter-example. Therefore, abstraction was not
needed for this instance of verification.

Reasoning whether the same result would hold for
a whole family of models (i.e., on every possible t-
configuration) is generally much more challenging if
feasible at all. To the best of our knowledge there
exists no universally applicable approach to achieve
that. Nonetheless, a common conjecture6 suggests
that often it suffices to look for a fairly small (violat-
ing) counter-examples. And whilst an absence of such
counter-examples does not provide complete assur-
ance, it does strengthen the confidence in the system
being compliant with the requirements.

6 CONCLUSIONS

In this paper, we have applied the formalism of MAS
graphs, together with branching-time specification of
requirements, to formally model and verify Social Ex-
plainable AI (SAI). We constructed and studied 27
variants of scalable model families, further parameter-

6For example, as in (Arapinis et al., 2016).

ized by the type and number of involved AI agents.
This way, we showed how certain important proper-
ties could be specified using temporal logic and then
verified in UPPAAL. Furthermore, we used a recently
proposed user-friendly tool for practical abstraction
EASYABSTRACT4UPPAAL to demonstrate how to mit-
igate the state-space explosion. The reported results
are very promising: in most cases we were able to
double the number of agents that can be handled by
the model checker before running out of memory.

In the future, we plan to conduct a more compre-
hensive analysis of the threats (e.g., consider other
types of attack models) as well as capture more nu-
anced formulas. For example, one can use temporal-
epistemic logic to express and verify starvation-
freeness, which is a much stronger requirement than
the basic notion of deadlock-freeness.
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