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Abstract. A hierarchy of beliefs for an agent has been proposed in [3]. The aim of
this paper is to investigate the performance of such ’multi-model’ agents with some
experiments in the simplest possible case. The experiments consist of the agent’s
interactions with simulated agents, acting as customers of an imaginary Internet
banking service.
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1 Introduction

A software agent may clearly benefit from having an up-to-date model of her
environment of activity. The model may, for example, include actual users’
profiles or some assumptions being accepted by default. However, the agent
doesn’t have to stick to one model only, she can possess a set of complemen-
tary beliefs, both learned and assumed. The agent may then switch to the
most appropriate one when making her decisions, or even combine several
models under certain assumptions [3]. The aim of this paper is to investigate
the performance of such ’multi-model’ agents in the simplest possible case,
i.e. in the case of an agent using exactly two alternative models of reality. The
output of such a hybrid agent can be then compared with the performance
of both ’single-model’ agents alone to see if (and when) a software agent can
really benefit from using a more complicated belief structure and decision
making scheme.

The controversy between normative models (like non-cooperative equilib-
ria from Game Theory) and adaptive models (obtained through some kind
of learning) has been another inspiration for this paper. The adaptive solu-
tions are more useful when the domain is cooperative or neutral; they also
allow the agent to exploit deficiencies of her adversaries. The ’best defense’
assumptions are still tempting, though, in a situation when the agent risks
real money. Even one opponent who plays his optimal strategy persistently
can be dangerous then. This paper presents another attempt to integrate
both approaches. The main model used by the agent in the experiments is a
profile of the user; the other model is based on the maxmin equilibrium.

1.1 The Game and the Agent

The experiments were inspired by the following scenario: a software agent is
designed to interact with users on behalf of an Internet banking service; she
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can make an offer to a user, and the user’s response determines her output
at this step of interaction. In the actual experiments the agent has had 3
possible offers at hand: the ’risky offer’, the ’normal offer’ and the ’safe offer’,
and the customer could respond with: ’accept honestly’, ’cheat’ or ’skip’. The
complete table of payoffs for the game is given below. The ’risky offer’, for
example, can prove very profitable when accepted honestly by the user, but
the agent will lose much if the customer decides to cheat; as the user skips
an offer, the bank still gains some profit from the advertisements etc.

accept cheat skip

risky offer 30 -100 0.5
normal offer 10 -30 0.5
safe offer 0.5 0 0.5

The banking agent is a 1-level agent, i.e. an agent that models other
agents as stochastic (0-level) agents. The user is simulated as a random 0-
level agent – in other words, his behavior can be described with a random
probabilistic policy. The agent estimates the user’s policy p with a relative
frequency distribution p̂, counting the user’s responses. At the same time
the agent computes a confidence value C for the profile acquired so far. The
default model is defined in the Game Theory fashion: the user is assumed an
enemy who always cheats.

profile

default

C

Fig. 1. The simplest hierarchy: two models of reality

The motivation behind the confidence C is the following: if a numerical
evaluation can be computed for every decision with respect to a particular
model (the expected payoff, for instance), then the agent’s decision may be
based on a linear combination of the evaluations, with the confidence provid-
ing weights. If the agent trusts the user’s profile in, say, 70% – the final eval-
uation may depend on the profile in 70%, and the remaining 30% can be de-
rived from the default model: eval(a) = C evalprofile(a)+(1−C) evaldefault(a).
In consequence, the decision is based on both models at the same time, al-
though in different proportions – weighting the partial evaluations with the
confidence the agent has in them [3].

2 Confidence

In order to provide the agent with a way of computing her ’self-confidence’,
two measures are combined: the log-loss based confidence [4] and the datasize-
related measure proposed by Wang [9].
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Let p̂i(·|a) be the model of the user at his ith response to a, and b∗i – his
actual response at that step. To detect changes in the pattern of the user’s
behavior, a confidence measure based on the log-loss function [7] can be used.
The one-step loss is defined as li = − log2 p̂i(b

∗
i |a), and the confidence is based

on the average deviation of the actual loss from the expected optimal loss in n
steps, re-scaled with respect to the minimal and maximal possible deviation
value [4]. To implement a simple forgetting scheme, temporal decay with a
decay rate of λ ∈ [0, 1] is introduced to make the recent loss values matter
more than the old ones [5,6,4]:
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It is easy to prove that if p̂i(·|a) are frequency distributions and p̂1(·|a)
is uniform, then for every n > 1: Cλ

log is defined and 0.5 ≤ Cλ
log ≤ 1.

Cλ
log helps to detect changes in the user’s policy, but it’s unreliable when

the number observations is small. This disadvantage can be tackled, though,
with a very simple (but efficient) measure: CWang = n/(n + 1) [9,2]. Now, the
agent is confident in her knowledge if she has enough data and she detects no
irregularities in the user’s behavior: C = min(Cλ

log,CWang). The decay rate λ

was set to 0.9 throughout the experiments.

3 The Simulations

To investigate performance of the hybrid agent, several series of experiments
were run. The agent played with various kinds of simulated ’users’, i.e. pro-
cesses displaying different dynamics and randomness. Those included:

• static (or stationary) 0-level user with a random policy,
• ’linear’ user: a dynamic 0-level agent with the initial and the final prefer-

ences p0, p100 generated at random, and the rest evolving in a linear way:
pi = p0 + (p100 − p0)/100,

• ’stepping’ user: same as the ’linear’ one except that the preferences change
after every 30 steps: pi(b) = p0(b) + (i div 30)(p100(b) − p0(b))/3,

• ’cheater’: a user that chooses the action ’cheat’ with probability of 1.0,
• ’malicious’: an adversary 0-level user with a stationary random policy for

the first 30 rounds, then switching to the ’cheater’ policy.
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Fig. 2. Hybrid agents vs. single-model agents: the average payoffs for single-minded
users

1000000 independent random interactions (a sequence of 100 rounds each)
have been simulated for every particular setting; the average results are pre-
sented in the following subsections.
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3.1 Playing Against Single-Minded Users

The user has been assumed rather simple-minded in the first series of ex-
periments, in order to get rid of the exploration/exploitation tradeoff. Thus,
it has been assumed that the user’s response doesn’t depend on the actual
offer being made: p(cheat), p(accept) and p(skip) are the same regardless of the
offer (if he’s dishonest, he cheats for a small reward as well as a big one, for
instance). In consequence, no specific exploration strategy is necessary – ev-
ery action the agent can choose will reveal exactly the same about the user’s
policy – so the agent can just maximize eval(a) when making her decisions.
The results for various types of users are presented on figure 2. The hybrid
agent is almost never worse than the agent using only the user’s profile (even
for the static user), and in the most risky moments she plays much safer than
the latter. At the same time, she has the potential to play positively better
than the ’default model’ agent. Some simulations were also run for a modified
version of the banking game (representing a situation in which the agent’s
decisions involve less risk) with similar results (see figure 3).

The ’single-mindedness’ assumption looks like a rough simplification. On
the other hand, the preferences of a particular user (with respect to different
offers) are hardly uncorrelated in the real world. For most human agents the
situation seems to be somewhere between both extremes: if the user tends to
cheat, he may cheat in many cases (although not all by any means); if the user
is generally honest, he’ll rather not cheat (although the temptation can be
too strong if the reward for cheating is very high). Therefore the assumption
that the user has the same policy for all the agent’s offers may be also seen
as the simplest way of collaborative modeling [10]. Section 3.3 gives some
more rationale for this kind of assumption, while in the next section users
with multi-dimensional (uncorrelated) policies are studied to complete the
picture.

3.2 Experiments for Users with More Complex Policies

In this section users are simulated with no restriction on the relation between
their conditional policies p(·|safe), p(·|normal) and p(·|risky). Boltzmann explo-
ration strategy is used to deal with the exploration-exploitation problem: the
agent chooses action a with probability P (a) = eeval(a)/T /

∑

a′
eeval(a′)/T [1].

As the possible rewards span a relatively large interval (we are using the
first payoff table again), the initial temperature parameter is relatively high:
T0 = 100, and the decay factor is 0.8. Thus Ti = T0 ∗ (0.8)i. The results on
figure 4 show that the double-model agent has some problems with efficient
exploration – in consequence, she plays too safe against a stationary user.
On the other hand, she is much better protected from sudden changes in the
user’s behavior. Moreover, the double-model agent plays much better against
a ’cheater’: she loses 86.9 less than the profile-based agent in the first 15 steps
(after that both agents fare almost the same).
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acpt. cht. skip

risky 30 -30 0.5

norm. 10 -9 0.5

safe 0.5 0 0.5
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Fig. 3. Results for the modified game

-8

-6

-4

-2

0

0 20 40 60 80 100

profile only - 'stepping' user

profile+default - 'stepping' user

profile only - 'malicious' user

profile+default - 'malicious' user

-8

-6

-4

-2

0

0 20 40 60 80

profile only - static user

profile+default - static user

default model only

-8.7 -8.6 -11.7

Fig. 4. Playing against non-singleminded users

3.3 Matrix Games with No Pure Equilibrium

Let us go back to section 3.1 and to the assumption that the user’s response
doesn’t depend on the actual action from the agent. Note that the assumption
makes perfect sense when the user simply cannot know the agent’s action in
advance. This is the case, for instance, when the negotiation process is longer
and consists of multiple steps, or when some hidden policy of the bank is con-
cerned (instead of particular ’offers’). The game is a matrix game then, and
the ’default’ strategy pair (safe offer,cheat) is the maxmin equilibrium [8].
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The games from section 3.1 are somewhat special since they have their
equilibria within the set of pure strategies (i.e. single decisions of the agents).
For most matrix games that’s not the case. However, every game has its
maxmin equilibrium within the set of mixed strategies (i.e. probabilistic poli-
cies). The set is infinite, but in principle only a finite subset really matters: if
the agent can guess the opponent’s current (mixed) strategy approximately,
then there is a pure strategy with the best expected payoff; otherwise, the
agent should choose her maxmin. An example of such game is presented be-
low. The agent’s maxmin strategy for this game is SD = [0.4, 0.4, 0.2]. If any
of the players plays his/her maxmin, the expected output of the game is 0.

b1 b2 b3

a1 -1 2 0
a2 0 -2 5
a3 2 0 -10

Note that in the case of mixed strategies, the strategies can be combined
directly instead of combining the evaluations. Thus in the experiments the
hybrid agent has been choosing the strategy S = C Sprofile + (1 − C) SD

where Sprofile is the strategy with the best estimated payoff. A different way
of decision making calls for a modified confidence measure: the confidence is
now C′ = C for C ≤ 0.4, and C ′ = max(0.4, 3C − 1.9) otherwise. The results
(figure 5) reveal that the hybrid agent is again too cautious when the user
is random and stationary. However, the bottom line in the game is drawn
by a user who can guess the agent’s current strategy S somehow (it must a
2-level agent rather than 0-level, since the banking agent is a 1-level one).
The ’malicious’ user here is defined this way: he uses a random policy for
the first 30 steps, and after that starts choosing the most dangerous action
(the one with the minimal payoff), ’guessing’ the agent’s strategy in advance.
Playing against a user who chooses the most dangerous action all the time,
the hybrid agent was 93.6 better off than the profile-based agent after the
first 50 steps.

4 Conclusions

The experiments presented in this paper suggest that a software agent can
combine machine learning with Game Theory solutions to display more prof-
itable (or at least safer) performance in many cases. The confidence measure
used here is not perfect, and it shows in the results of the simulations. Fur-
ther experiments should include also agents using more sophisticated learning
methods.
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