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2 Reasoning about Abilities of AgentsModal logis of strategi ability [1, 2℄ form one of the �elds where logi and gametheory an suessfully meet. The logis have lear possible worlds semantis, areaxiomatizable, and have some interesting omputational properties. Moreover,they are underpinned by intuitively appealing oneptual mahinery for model-ing and reasoning about systems that involve multiple autonomous agents.2.1 Atl: Ability in Perfet Information GamesAlternating-time Temporal Logi (atl) [1, 2℄ an be seen as a logi for sys-tems involving multiple agents, that allows one to reason about what agents anahieve in game-like senarios. Sine atl does not inlude inomplete informa-tion in its sope, it an be seen as a logi for reasoning about agents who alwayshave perfet information about the urrent state of a�airs. Formula 〈〈A〉〉ϕ,where A is a oalition of agents, expresses that A have a olletive strategy toenfore ϕ. Atl formulae inlude temporal operators: � g� (�in the next state�),
� (�always from now on�) and U (�until�). Operator ♦ (�now or sometime in thefuture�) an be de�ned as ♦ϕ ≡ ⊤U ϕ. Like in tl, every ourrene of a tem-poral operator is preeded by exatly one ooperation modality 〈〈A〉〉.1 Formally,the reursive de�nition of atl formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕA number of semantis have been de�ned for atl, most of them equivalent [3℄.In this paper, we use a variant of onurrent game strutures,
M = 〈Agt, St,Π, π,Act, d, o〉,whih inludes a nonempty �nite set of all agents Agt = {1, ..., k}, a nonemptyset of states St, a set of atomi propositions Π , a valuation of propositions π :

Π → P(St), and a nonempty set of (atomi) ations Act. Funtion d : Agt×St→
P(Act) de�nes ations available to an agent in a state, and o is a deterministitransition funtion that assigns an outome state q′ = o(q, α1, . . . , αk) to state q,and a tuple of ations 〈α1, . . . , αk〉 that an be exeuted by Agt in q. A strategyof agent a is a onditional plan that spei�es what a is going to do for everypossible situation (sa : St→ Act suh that sa(q) ∈ d(a, q)). A olletive strategy(alled also a strategy pro�le) SA for a group of agents A is a tuple of strategies
Sa, one per agent a ∈ A. A path Λ inM is an in�nite sequene of states that anbe e�eted by subsequent transitions, and refers to a possible ourse of ation(or a possible omputation) that may our in the system; by Λ[i], we denotethe ith position on path Λ. Funtion out(q, SA) returns the set of all paths thatmay result from agents A exeuting strategy SA from state q onward:1 The logi to whih suh a syntati restrition applies is sometimes alled �vanilla�atl (resp. �vanilla� tl et.).



out(q, SA) = {λ = q0q1q2... | q0 = q and for every i = 1, 2, ... there exists atuple of ations 〈αi−1
1 , ..., αi−1

k 〉 suh that αi−1
a = Sa(qi−1) for eah a ∈ A,

αi−1
a ∈ d(a, qi−1) for eah a /∈ A, and o(qi−1, α

i−1
1 , ..., αi−1

k ) = qi}.Now, the semantis of atl formulae an be given via the following lauses:
M, q |= p i� q ∈ π(p) (where p ∈ Π);
M, q |= ¬ϕ i� M, q 6|= ϕ;
M, q |= ϕ ∧ ψ i� M, q |= ϕ and M, q |= ψ;
M, q |= 〈〈A〉〉 gϕ i� there is a olletive strategy SA suh that, for every Λ ∈

out(q, SA), we have M,Λ[1] |= ϕ;
M, q |= 〈〈A〉〉�ϕ i� there exists SA suh that, for every Λ ∈ out(q, SA), we have

M,Λ[i] for every i ≥ 0;
M, q |= 〈〈A〉〉ϕU ψ i� there is SA st. for every Λ ∈ out(q, SA) there is i ≥ 0, forwhih M,Λ[i] |= ψ, and M,Λ[j] |= ϕ for every 0 ≤ j < i.2.2 Strategi Ability and Inomplete InformationAtl is unrealisti in a sense: real-life agents seldom possess omplete informa-tion about the urrent state of the world. Alternating-time Temporal EpistemiLogi (atel) [12℄ enrihes the piture with an epistemi omponent, adding toatl operators for representing agents' knowledge: Kaϕ reads as �agent a knowsthat ϕ�. Additional operators EAϕ, CAϕ, and DAϕ refer to mutual knowledge(�everybody knows�), ommon knowledge, and distributed knowledge among theagents from A. Models for atel extend onurrent game strutures with epis-temi aessibility relations ∼1, ...,∼k⊆ Q × Q (one per agent) for modelingagents' unertainty; the relations are assumed to be equivalenes. We will allsuh models onurrent epistemi game strutures (egs) in the rest of the pa-per. Agent a's epistemi relation is meant to enode a's inability to distinguishbetween the (global) system states: q ∼a q′ means that, while the system is instate q, agent a annot determine whether it is not in q′. Then:
M, q |= Kaϕ i� ϕ holds for every q′ suh that q ∼a q′.Relations ∼EA, ∼CA and ∼DA , used to model group epistemis, are derived fromthe individual relations of agents from A. First, ∼EA is the union of relations ∼a,
a ∈ A. Next, ∼CA is de�ned as the transitive losure of ∼EA. Finally, ∼DA is theintersetion of all the ∼a, a ∈ A. The semantis of group knowledge an bede�ned as below (for K = C,E,D):
M, q |= KAϕ i� ϕ holds for every q′ suh that q ∼K

A q
′.Example 1. (Gambling Robots) Two robots (a and b) play a simple ardgame. The dek onsists of Ae, King and Queen (A,K,Q); it is assumed that

A beats K, K beats Q, but Q beats A. First, the �environment� agent env dealsa random ard to both robots (fae down), so that eah player an see his ownhand, but he does not know the ard of the other player. Then robot a anexhange his ard for the one remaining in the dek (ation exch), or he an
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Fig. 1. Gambling Robots game. Arrows represent possible transitions of the system (la-beled with tuples of agents' ations); dashed lines onnet states that are indiserniblefor partiular agents.keep the urrent one (keep). At the same time, robot b an hange the prioritiesof the ards, so that A beomes better than Q (ation chg) or he an do nothing(nop). If a has a better ard than b after that, then a win is sored, otherwisethe game ends in a �losing� state. A egs for the game is shown in Figure 1;we will refer to the model as M0 throughout the rest of the paper. Note that
M0, q0 |= 〈〈a〉〉♦win (and even M0, q0 |= Ka〈〈a〉〉♦win), although, intuitively, a hasno feasible way of ensuring a win. This is a fundamental problem with atel,whih we disuss brie�y below.It was pointed out in several plaes that the meaning of atel formulae issomewhat ounterintuitive [5, 6, 10℄. Most importantly, one would expet thatan agent's ability to ahieve property ϕ should imply that the agent has enoughontrol and knowledge to identify and exeute a strategy that enfores ϕ (f.also [11℄). This problem is losely related to the well known distintion betweenknowledge de re and knowledge de dito.A number of frameworks were proposed to overome this problem [5, 6, 11,10, 13, 4℄, yet none of them seems the ultimate de�nitive solution. Most of thesolutions agree that only uniform strategies (i.e., strategies that speify the samehoies in indistinguishable states) are really exeutable. However, in order toidentify a suessful strategy, the agents must onsider not only the ourses ofation, starting from the urrent state of the system, but also from states thatare indistinguishable from the urrent one. There are many ases here, espeiallywhen group epistemis is onerned: the agents may have ommon, ordinary ordistributed knowledge about a strategy being suessful, or they may be hintedthe right strategy by a distinguished member (the �boss�), a subgroup (�head-quarters ommittee�) or even another group of agents (�onsulting ompany�).Most existing solutions [11, 13, 4℄ treat only some of the ases (albeit rather in an



elegant way), while others [6, 10℄ o�er a more general treatment of the problemat the expense of an overblown logial language (whih is by no means elegant).Reently, a new, non-standard semantis for ability under inomplete infor-mation has been proposed in [8, 9℄, whih we believe to be both intuitive, generaland elegant. We summarize the proposal in the next setion, as we will use itfurther to apture strategi abilities of agents.2.3 An Intuitive Semantis for Ability and KnowledgeIn [8, 9℄, a non-standard semantis for the logi of strategi ability and inompleteinformation has been proposed, whih we believe to be �nally satisfying. In thesemantis, formulae are interpreted over sets of states rather than single states.Moreover, we introdue �onstrutive knowledge� operators Ka, one for eahagent a, that yield the set of states, indistinguishable from the urrent statefrom a's perspetive. Construtive ommon, mutual, and distributed knowledgeis formalized via operators CA,EA, and DA. The language, whih we tentativelyall Construtive Strategi Logi (sl) here, is de�ned as follows:
ϕ ::= p | ¬ϕ | ∼ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ | CAϕ | EAϕ | DAϕ |

CAϕ | EAϕ | DAϕ.Individual knowledge operators an be derived as: Kaϕ ≡ E{a}ϕ and Kaϕ ≡
E{a}ϕ. Moreover, we de�ne ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), and ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.The models are onurrent epistemi game strutures again, and we onsideronly memoryless uniform strategies. Let img(q,R) be the image of state q withrespet to relationR, i.e. the set of all states q′ suh that qRq′. Moreover, we use
out(Q,SA) as a shorthand for ∪q∈Qout(q, SA), and img(Q,R) as a shorthandfor ∪q∈Qimg(q,R). The notion of a formula ϕ being satis�ed by a set of states
Q ⊆ St in a model M is given through the following lauses.
M,Q |= p i� q ∈ π(p) for every q ∈ Q;
M,Q |= ¬ϕ i� M,Q 6|= ϕ;
M,Q |=∼ϕ i� M, q 6|= ϕ for every q ∈ Q;
M,Q |= ϕ ∧ ψ i� M,Q |= ϕ and M,Q |= ψ;
M,Q |= 〈〈A〉〉 gϕ i� there exists SA suh that, for every Λ ∈ out(Q,SA), wehave that M, {Λ[1]} |= ϕ;
M,Q |= 〈〈A〉〉�ϕ i� there exists SA suh that, for every Λ ∈ out(Q,SA) and

i ≥ 0, we have M, {Λ[i]} |= ϕ;
M,Q |= 〈〈A〉〉ϕU ψ i� there exists SA suh that, for every Λ ∈ out(Q,SA), thereis i ≥ 0 for whihM, {Λ[i]} |= ψ andM, {Λ[j]} |= ϕ for every

0 ≤ j < i;
M,Q |= KAϕ i� M, q |= ϕ for every q ∈ img(Q,∼K

A) (where K = C,E,D);
M,Q |= K̂Aϕ i� M, img(Q,∼K

A) |= ϕ (where K̂ = C,E,D and K = C,E,D,respetively).We will also write M, q |= ϕ as a shorthand for M, {q} |= ϕ, and this is thenotion of satisfation (in single states) that we are ultimately interested in � butthat notion is de�ned in terms of the satisfation in sets of states.



Now, Ka〈〈a〉〉ϕ expresses the fat that a has a single strategy that enfores ϕfrom all states indisernible from the urrent state, instead of stating that ϕ anbe ahieved from every suh state separately (what Ka〈〈a〉〉ϕ says, whih is verymuh in the spirit of standard epistemi logi). More generally, the �rst kindof formulae refer to having a strategy �de re� (i.e. having a suessful strategyand knowing the strategy), while the latter refer to having a strategy �de dito�(i.e. only knowing that some suessful strategy is available; f. [6℄). Note alsothat the property of having a winning strategy in the urrent state (but notneessarily even knowing about it) is simply expressed with 〈〈a〉〉ϕ. Capturingdi�erent ability levels of oalitions is analogous, with various �epistemi modes�of olletive reognizing the right strategy.Example 2. Robot a has no winning strategy in the starting state of the game:
M0, q0 |= ¬〈〈a〉〉♦win, whih implies that it has neither a strategy �de re� nor �dedito� (M0, q0 |= ¬Ka〈〈a〉〉♦win ∧ ¬Ka〈〈a〉〉♦win). On the other hand, he has asuessful strategy in qAK (just play keep) and he knows he has one (beauseanother ation, exch, is bound to win in qAQ); still, the knowledge is not on-strutive, sine a does not know whih strategy is the right one in the urrentsituation:M0, qAK |= 〈〈a〉〉 gwin∧Ka〈〈a〉〉 gwin∧¬Ka〈〈a〉〉 gwin. Also, b's playing
chg enfores a transition to qw for both qAQ, qKQ, so M0, qAQ |= Kb〈〈b〉〉 gwin(robot b has a strategy �de re� to enfore a win from qAQ).Finally, qQK |= 〈〈a, b〉〉♦win ∧ E{a,b}〈〈a, b〉〉♦win ∧ C{a,b}〈〈a, b〉〉♦win
∧¬E{a,b}〈〈a, b〉〉♦win∧D{a,b}〈〈a, b〉〉♦win: in qQK , the robots have a olletive strat-egy to enfore a win, and they all know it (they even have ommon knowledgeabout it); on the other hand, they annot identify the right strategy as a team� they an only see one if they share knowledge at the beginning (i.e., in qQK).3 Epistemi Temporal Strategi LogiA very interesting variation on the theme of ombining strategi, epistemi andtemporal aspets of a multi-agent system was proposed in [13℄. Epistemi Tem-poral Strategi Logi (etsl) digs deeper in the repository of game theory, andfouses on the onept of undominated strategies. Thus, its variant of oopera-tion modalities has a di�erent �avor than the ones from atl, atel, sl et. Ina way, formula 〈〈A〉〉ϕ in etsl an be summarized as:�If A play rationally to ahieve ϕ (meaning: they never play a dominatedstrategy), they will ahieve ϕ�.Etsl an be treated as a logi that desribes the outome of rational play underinomplete information,2 in the same way as sl an be seen as a logi that ap-tures agents' strategi abilities (regardless of whether the agents play rationally2 We emphasize that this is a spei� notion of rationality (i.e., agents are assumedto play only undominated strategies). Game theory proposes several other rational-ity riteria as well, based e.g. on Nash equilibrium, dominant strategies, or Paretoe�ieny. In fat, it is easy to imagine etsl-like logis based on these notions instead.



or not). The main laim we propose in this paper is that a rational player knowsthat he will sueed if, and only if, he has a strategy �de re� to sueed � whilethe same is not true for rational oalitions of players. However, before we presentand disuss the laim formally in Setion 4, we must re-write the semantis ofetsl in several respets.First, the original semantis of etsl is de�ned only for �nite turn-basedayli game models with epistemi aessibility relations, and we will general-ize the semantis to onurrent epistemi game strutures. Next, the semantisomes with a plethora of auxiliary funtions and de�nitions (and a ouple ofomissions), whih makes it rather hard to read. In fat, this is probably thereason why the logi never reeived the attention it deserves, and it is de�nitelyworth trying to make the semantis more ompat. Finally, the authors of [13℄propose that a model should inlude also a �grand strategy pro�le� SAgt, de�ningthe atual strategies of all agents (or at least onstraining them in some way,sine non-deterministi strategies are allowed in etsl). While the idea seemsinteresting in itself (a similar idea was later exploited e.g. in [7℄ to allow forexpliit analysis of strategies and reasoning about strategy revision), we willshow that it does not introdue a �ner-grained analysis of �vanilla� etsl formu-las: if a formula holds in M, q for one strategy pro�le, it holds in M, q for allthe other strategy pro�les, too. Moreover, it an be proved that the semantisof ooperation modalities 〈〈A〉〉 is the same regardless of whether we onsidernon-deterministi strategies or not. In onsequene, we will be able to showa �vanilla� etsl semantis expressed entirely in terms of onurrent epistemigame strutures and their states.3.1 The Semantis Made Easier to ReadFormulae of etsl ome with no restrition wrt grouping of temporal operators:
ϕ := p | ¬ϕ | ϕ ∧ ψ | 〈〈A〉〉ϕ | gϕ | �ϕ | ϕU ψ | Kaϕ.After some re-writing (and having it generalized to general game strutures,not only turn-based trees), the semantis an be given as follows. Strategies areallowed to be non-deterministi, i.e. Sa : St → P(Act).3 We require strategiesto be uniform, although [13℄ does not do it expliitly (we take it as a simpleomission, beause otherwise many laims in that paper seem to be false). Aolletive strategy (strategy pro�le) SA is a tuple of strategies, one per agent from

A. S0
a is the �neutral strategy� with no restrition on a's ations (S0

a(q) = Act foreah q ∈ St), and strategy pro�le S0
A assigns neutral strategies to agents from A.Moreover, we generalize funtion out(q, SA) to handle nondeterministi strategiestoo; in out′(q, SA), �αi−1

a = Sa(qi−1)� is replaed with αi−1
a ∈ Sa(qi−1).Now, the semantis an be given through the following lauses (the semantisfor p, ¬ϕ and ϕ ∧ ψ is analogous to the one presented in Setion 2.1):3 To preserve seriality (�time �ows forever�), we assume that Sa(q) 6= ∅ for all q ∈ St.



M,SAgt, q |= 〈〈A〉〉ϕ i� for all strategies TA, undominated wrt q, ϕ, we have
M, (TA, S

0
Agt\A), q |= ϕ;

M,SAgt, q |= gϕ i� for every Λ ∈ out′(q, SAgt) we have M,SAgt, Λ[1] |= ϕ;
M,SAgt, q |= �ϕ i� for every Λ ∈ out′(q, SAgt) and i ≥ 0 we have

M,SAgt, Λ[i] |= ϕ;
M,SAgt, q |= ϕU ψ i� for every Λ ∈ out′(q, SAgt) there is i ≥ 0 suh that

M,SAgt, Λ[i] |= ψ and for all j suh that 0 ≤ j < i wehave M,SAgt, Λ[j] |= ϕ;
M,SAgt, q |= Kaϕ i� for all q ∼a q′ we have M, (SAgt(a), S

0
Agt\{a}), q

′ |= ϕ.De�nition 1. Strategy SA dominates TA with respet to formula ϕ, model M ,and state q, if SA ahieves ϕ better then TA, i.e. i�:1. for every q′ suh that q ∼A q′: if M, (TA, S
0
Agt\A), q′ |= ϕ then also

M, (SA, S
0
Agt\A), q′ |= ϕ, and2. there exists q′ suh that q ∼A q′, and M, (SA, S

0
Agt\A), q′ |= ϕ, and

M, (TA, S
0
Agt\A), q 2 ϕ.Remark 1. De�nition 1 uses epistemi relation ∼A. However, epistemi aessi-bility relations are de�ned only for individual agents in [13℄, whih is perhapsanother omission. In this study, we take the liberty to �x ∼A as ∼EA.We also point out that etsl an be extended with olletive epistemi oper-ators EA, CA, DA in a straightforward manner.Example 3. Consider the gambling robots again. Robot a has two undominatedstrategies wrt gwin,M, qAK : namely, to play exch in both qAK , qAQ, or to play

keep in both (other hoies do not matter). Sine playing exch fails in qAK ,so: M0, qAK 6|= 〈〈a〉〉 gwin. Furthermore, playing keep is the only undominatedstrategy in qKQ and qKA (and it sueeds only in qKQ). Thus, M0, qKQ |=
〈〈a〉〉 gwin, and M0, qKA 6|= 〈〈a〉〉 gwin. Hene, M0, qKQ 6|= Ka〈〈a〉〉 gwin.3.2 A Few PropertiesIn this setion, we present several properties of etsl formulae that will allow usto give an even simpler semanti de�nition of �vanilla� etsl.Proposition 1. For every �vanilla� ETSL formula ϕ, onurrent epistemi gamestruture M , and state q in M : M,SAgt, q |= ϕ i� M,S′

Agt, q |= ϕ for any pairof �grand� strategy pro�les SAgt, S
′
Agt.Proof. By indution on the struture of ϕ. Note that it is su�ient to prove theimpliation one way, as the hoie of SAgt, S

′
Agt is ompletely arbitrary.Case ϕ ≡ p: M,SAgt, q |= p, so q ∈ π(q), so M,S′

Agt, q |= p.Case ϕ ≡ ¬ψ: M,SAgt, q |= ¬ψ, so M,SAgt, q 6|= ψ, so (by indution hypoth-esis) M,S′
Agt, q 6|= ψ, so M,S′

Agt, q |= ¬ψ. (As the hoie of SAgt, S
′
Agt wasompletely arbitrary, the impliation holds the other way too.)



Case ϕ ≡ ψ1 ∧ ψ2: analogous.Case ϕ ≡ 〈〈A〉〉 gψ: M,SAgt, q |= 〈〈A〉〉 gψ i� M, (TA, S
0
Agt\A), Λ[1] |= ϕ for allundominated TA and Λ ∈ out′(q, (TA, S

0
Agt\A)). Note that the latter ondi-tion does not refer to SAgt, so M,S′

Agt, q |= 〈〈A〉〉 gψ too.Cases ϕ ≡ 〈〈A〉〉�ψ and ϕ ≡ 〈〈A〉〉ψ1 U ψ2: analogous.Case ϕ ≡ Kaψ: M,SAgt, q |= Kaψ, soM, (SAgt(a), S
0
Agt\{a}), q

′ |= ψ for all q ∼a
q′. By indution hypothesis, also M, (S′

Agt(a), S
0
Agt\{a}), q

′ |= ψ for all q ∼a
q′, so M,S′

Agt, q |= Kaψ.Remark 2. We point out that restriting the sope of Proposition 1 to �vanilla�etsl formulae is important. In partiular, the epistemi opertor Ka has a non-standard interpretation when the full language of etsl is onsidered.Proposition 2. Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etslformulae. Moreover, let |Φ| denote the set of paths for whih Φ holds; formally,
| gψ| = {Λ |M,Λ[1] |= ψ}, |�ψ| = {Λ | ∀iM,Λ[i] |= ψ}, and
|ψ1 U ψ2| = {Λ | ∃i(M,Λ[i] |= ψ2 ∧ ∀0≤j<iM,Λ[j] |= ψ1}.Then, SA dominates TA wrt Φ,M , and q i�:1. for every q′, q ∼EA q′: if out(q′, TA) ⊆ |Φ| then also out(q′, SA) ⊆ |Φ|, and2. there exists q′, q ∼EA q′, suh that out(q′, SA) ⊆ |Φ| and out(q′, TA) 6⊆ |Φ|.Proof. Straightforward from the de�nition.Remark 3. Note that dominane an be haraterized in an even more ompatway. Let succq,Φ(SA) = {q ∈ img(q,∼EA) | out(q, SA) ⊆ |Φ|} be the set of statesfrom img(q,∼EA), for whih sa sueeds to enfore Φ. Now, SA dominates TA wrt
Φ,M, q i� succq,Φ(TA)  succq,Φ(SA).Proposition 3. Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etslformulae. Strategy TA is dominated wrt Φ,M, q by a strategy SA i� it is domi-nated wrt Φ,M, q by a deterministi strategy S′

A.Proof. ⇒: Let TA be dominated by SA (wrt ϕ,M, q). We onstrut the de-terministi strategy S′
A by �xing arbitrary (uniform) hoies out of SA. For-mally, for every agent a ∈ A and abstration lass img(q′,∼a) ⊆ St suh that

Sa(q
′) = {α, α′, ...}, we �x S′

a(q
′′) = α for all q′′ ∈ img(q′,∼a). (By uniformity of

SA, we have α ∈ Sa(q
′′) for all q′′ ∈ img(q′,∼a), so S′

A is a valid strategy.) First,this enfores uniformity of S′
A. Seond, out(q̄, S′

A) ⊆ out(q̄, SA) for all q̄ ∈ St (byde�nition of out). Thus, we an use Proposition 2 to show that S′
A dominates

TA, whih onludes the proof.
⇐: Straightforward.Proposition 4. Let Φ be as above. Then, M,SAgt, q |= 〈〈A〉〉Φ i� for all deter-ministi strategies TA, undominated wrt Φ, we have M, (TA, S

0
Agt\A), q |= Φ.



Proof. ⇒: Straightforward.
⇐: Assume thatM, (TA, S

0
Agt\A), q |= Φ for all deterministi strategies TA, un-dominated wrt Φ, and suppose that there is a nondeterministi undominated SAsuh thatM, (SA, S

0
Agt\A), q 6|= Φ. Let us �x a deterministi uniform strategy S′

Aout of SA in a similar way as in Proposition 3. Now, out(q̄, S′
A) ⊆ out(q̄, SA) forall q̄ ∈ St, so out(q′, SA) ⊆ |Φ| implies out(q′, S′

A) ⊆ |Φ| (S′
A is never worse than

SA wrt Φ). Moreover, out(q, S′
A) ⊆ |Φ| and out(q, SA) 6⊆ |Φ|. By Proposition 2,

S′
A dominates SA, so SA is dominated � a ontradition.3.3 Etsl in Terms of Conurrent Epistemi Game StruturesWe have shown that, for �vanilla� etsl, strategies do not have to be referredexpliitly in the interpretation of formulae (Propositions 1 and 2). Moreover, wean restrit the set of onsidered strategies to deterministi strategies (Proposi-tions 3 and 4). In onsequene, we an express the semantis of �vanilla� etslequivalently in atl-like fashion:

M, q |= 〈〈A〉〉 gϕ i� for every strategy SA, undominated wrt q, gϕ, and every
Λ ∈ out(q, SA), we have that M,Λ[1] |= ϕ;

M, q |= 〈〈A〉〉�ϕ i� for every strategy SA, undominated wrt q,�ϕ, and every
Λ ∈ out(q, SA) and i ≥ 0 we have M,Λ[i] |= ϕ;

M, q |= 〈〈A〉〉ϕU ψ i� for every strategy SA, undominated wrt q, ϕU ψ, and every
Λ ∈ out(q, SA), there is i ≥ 0 suh that M,Λ[i] |= ψ and forall j suh that 0 ≤ j < i we have M,Λ[j] |= ϕ.Only uniform deterministi strategies are taken into aount. The semantisof p, ¬ϕ, ϕ ∧ ψ, and the epistemi operators is the same as for atl and atel.4 Playing Rationally vs. Knowing how to PlayWe an �nally present the main result of this paper, namely, that a rationalplayer knows that he will sueed if, and only if, he has a strategy �de re� tosueed. The result holds under the assumption that the model is �nite,4 or moregenerally, that it inludes at least one undominated strategy.Moreover, we show that having ommon knowledge how to sueed is, ingeneral, a stronger property than knowing that one will sueed for rationaloalitions of players. That is, if rational agents have ommon knowledge abouta winning strategy, then they have ommon knowledge that they will sueed �but the onverse is not true any more. Surprisingly enough, it turns out that therelationship is stritly reverse for distributed knowledge: if a rational oalitionhas distributed knowledge that it will sueed, then it has distributed knowledgeabout a winning strategy � but not neessarily the other way around. For mutualknowledge, the relationship holds neither way.In what follows, we use |=etsl and |=sl to denote the etsl and sl satis-fation relation, respetively.4 We use the term ��nite model� to denote a egs with a �nite set of states St.



4.1 Rational Play of Individual AgentsWe begin with two important lemmas.Lemma 1. Given a �nite model M , state q in M , formula Φ and agent a, thereis a strategy sa whih is undominated wrt M, q, Φ.Proof. First, we onsider the simpler ase when the set of ations Act is �nite.In suh a ase, the set of strategies is also �nite, and the dominane relationis transitive and antire�exive. Suppose that every strategy is dominated; then,there must be a strategy whih is dominated by itself � a ontradition.We sketh the proof for in�nite Act as follows. We partition the in�nite set ofstrategies into equivalene lasses, suh that strategies in the same lass have thesame outome paths for every state q (i.e., sa ≈ ta i� ∀qout(q, sa) = out(q, ta)).Obviously, if sa dominates ta, then all strategies s′a ≈ sa dominate ta too. Now,at every state q (and therefore at every point on a path from out(q′, sa)) there is a�nite number of possible sets of suessor states (the atual set being determinedby the hoie sa(q)). Moreover, the same hoie must be taken at every furtherourrene of the same state q on a path, sine sa is a memoryless strategy. Inonsequene, there is only a �nite number of di�erent sets of outome paths, andhene a �nite number of the equivalene lasses. Again, dominane is transitiveand antire�exive, so an undominated strategy must exist.Remark 4. Note that the result in Lemma 1 does not extend to egs with in�nitestate spaes. Consider the game of �Fuzzy Blakjak� (alled so all the morebeause our robots play it usually after having onsumed too muh mahineoil). Only a single player is neessary, and we use positive real numbers as statesand ations (i.e., St = Act = R+). When the player hooses a number in state
q, the number is added to the state: o(q, α) = q + α. The values below 1 arethe winning ones, i.e. π(win) = (0, 1) (it should be 21, but this would makethe game too ompliated for a drunken robot). Moreover, the robot annotdistinguish between the states below 1: q ∼a q

′ for all q, q′ ∈ (0, 1). Now, thereis no undominated strategy wrt 0.5, gwin.To prove this, suppose that a strategy sa is undominated. The strategy isuniform, so sa(q) = α for some α ∈ R+ and all q ∈ (0, 1). Obviously, α ∈ (0, 1),beause else sa never sueeds. Now, the set of states in whih sa is suessfulis: succ0.5, gwin(sa) = (0, 1− α). Let ta(q) = q + α/2. Now, succ0.5, gwin(ta) =

(0, 1 − α/2) ! succ0.5,Φ(sa) � a ontradition. Note also that:� If we replae R+ with the set of positive rational numbers, the result is thesame. So, there may be no undominated strategies even when we restrit Stand Act to ountable sets.� In order to show the same for ountable St and �nite Act, it is su�ientto modify the example so that Act = {0, 1, call}, and the initial state andevery subsequent ation α = 0, 1 are simply stored in the resulting state.Now o(q, call) takes the initial state q0 and the string of 0s and 1s α1, ..., αnstored in q, and returns q′ = q0 + (0.α1...αn1)2. For suh a game, there is noundominated strategy wrt 0.5,♦win.



Lemma 2. Given M, q, Φ, a, if there is an undominated strategy wrt M, q, Φ,then there is also an undominated strategy wrtM, q′, Φ for every q′ ∈ img(q,∼a).Proof. Take any sa undominated wrt M, q, Φ (*). Suppose now that sa is domi-nated by some strategy ta wrt another state q′ ∈ img(q,∼a) (**).1. By (*) and Prop. 2: ∀q′′∈img(q,∼a) (out(q′′, ta) ⊆ |Φ| ⇒ out(q′′, sa) ⊆ |Φ|).2. By (**) and Prop. 2: ∃q′′∈img(q′,∼a) (out(q′′, ta) ⊆ |Φ| ∧ out(q′′, sa) 6⊆ |Φ|).Moreover, img(q,∼a) = img(q′,∼a) beause is ∼a is an equivalene relation �whih gives a ontradition between (1) and (2).Remark 5. We note that Lemma 2 may hold even for indistinguishability re-lations that are not equivalenes. In fat, it is su�ient to require that ∼ais transitive. In that ase, q′ ∈ img(q,∼a) and q′′ ∈ img(q′,∼a) implies that
q′′ ∈ img(q,∼a), and we also get the ontradition.We are ready to prove the main laim of this paper now.Theorem 1. Let us onsider only �nite models, and formulae Φ ≡ gψ,�ψ, or
ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etsl formulae. An agent has a strategy �dere� to enfore Φ if, and only if, he knows that his rational play will bring about
Φ. Formally, for every �nite M and state q in M :

M, q |=etsl Ka〈〈a〉〉Φ i� M, q |=sl Ka〈〈a〉〉Φ.Proof. Indution on the struture of Φ. We prove the theorem for the ase Φ ≡
�ψ. Other ases are analogous.
⇒: Let M, q |=etsl Ka〈〈a〉〉�ψ. Then, ∀q′∈img(q,∼a)M, q′ |=etsl 〈〈a〉〉�ψ, andhene M, q |=etsl 〈〈a〉〉�ψ in partiular. By Lemmas 1 and 2, there is a strategy
sa, undominated wrt M, q′,�ψ for every q′ ∈ img(q,∼a).Then: ∀q′∈img(q,∼a)∀Λ∈out(q′,sa)∀iM,Λ[i] |=etsl �ψ. By the indution hypothe-sis, also ∀q′∈img(q,∼a)∀Λ∈out(q′,sa)∀iM,Λ[i] |=sl ψ. Thus, ∀Λ∈out(img(q,∼a),sa)∀i
M,Λ[i] |=sl ψ and so M, img(q,∼a) |=sl 〈〈a〉〉�ψ, and �nally M, q |=sl
Ka〈〈a〉〉�ψ.
⇐: Let M, q |=sl Ka〈〈a〉〉�ψ, i.e. M, img(q,∼a) |=sl 〈〈a〉〉�ψ. Consider q′ ∈
img(q,∼a). By transitivity of ∼a, we have img(q′,∼a) ⊆ img(q,∼a), so also
∀q′∈img(q,∼a)M, img(q′,∼a) |=sl 〈〈a〉〉�ψ. Then, for every q′ ∈ img(q,∼a), theremust be sa suh that ∀q′′∈img(q′,∼a)∀Λ∈out(q′′,sa)∀iM,Λ[i] |=sl ψ, and hene (byindution) ∀q′′∈img(q′,∼a)∀Λ∈out(q′′,sa)∀iM,Λ[i] |=etsl ψ. So, succq′,�ψ(sa) =
img(q′,∼a), and therefore succq′,�ψ(ta) = img(q′,∼a) for every other undomi-nated strategy ta (otherwise ta would be dominated by sa). Thus, M, q′ |=etsl
〈〈a〉〉�ψ for every q′ ∈ img(q,∼a), and �nally M, q |=etsl Ka〈〈a〉〉�ψ.Theorem 2. More generally, for every Φ as above, and M, q suh that thereexists an undominated strategy wrtM, q, Φ: M, q |=etsl Ka〈〈a〉〉Φ i�M, q |=sl
Ka〈〈a〉〉Φ.



4.2 Rational Coalitions Are at DisadvantageBeside some philosophial insight into the nature of knowledge and rationalplay, Theorems 1 and 2 provide us with an alternative way of deomposingstrategi abilities under inomplete information into a strategi and epistemipart. The de�nition of the strategi dimension is more sophistiated and lessstraightforward than usually; on the other hand, we do not pay the prie of a non-standard satisfation relation. Unfortunately, suh deomposition is not validany more when abilities of olletive agents are onerned. Now, the relationshipis muh more limited: if a oalition has ommon knowledge how to play, thenit has also ommon knowledge that rational play will be suessful; the samedoes not hold for other types of olletive knowledge. Moreover, the onverserelationship is guaranteed for distributed knowledge, but not for ommon normutual knowledge.Theorem 3. Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etslformulae. Then, if a oalition has ommon knowledge how to play, then it hasommon knowledge that rational play will be suessful:if M, q |=sl CA〈〈A〉〉Φ then M, q |=etsl CA〈〈A〉〉Φ.The same holds for neither mutual nor distributed knowledge.Proof. Common knowledge: Let M, q |=sl KA〈〈A〉〉�ψ, i.e. M, img(q,∼CA)
|=sl 〈〈A〉〉�ψ. Consider q′ ∈ img(q,∼CA). We have img(q′,∼EA) ⊆ img(q′,∼CA) ⊆
img(q,∼CA), so also ∀q′∈img(q,∼C

A
)M, img(q′,∼EA) |=sl 〈〈A〉〉�ψ. Then, for every

q′ ∈ img(q,∼CA), there must be SA suh that ∀q′′∈img(q′,∼E

A
)∀Λ∈out(q′′,SA)∀iM,Λ[i]

|=sl ψ, and hene (by indution) ∀q′′∈img(q′,∼E

A
)∀Λ∈out(q′′,SA)∀iM,Λ[i] |=etsl

ψ. So, succq′,�ψ(SA) = img(q′,∼EA), and therefore succq′,�ψ(TA) = img(q′,∼EA)for every other undominated strategy TA (otherwise TA would be dominatedby SA). Thus, M, q′ |=etsl 〈〈A〉〉�ψ for every q′ ∈ img(q,∼CA), and �nally
M, q |=etsl CA〈〈A〉〉�ψ.Mutual knowledge: for a ounterexample, onsider a modi�ation of the gamefrom Figure 1, in whih a third robot c is introdued. The robot an only exeute
nop, and its epistemi relation ∼c= {(q, q) | q ∈ St}∪{(qKQ, qKA), (qKA, qKQ)},i.e. c an distinguish all states exept qKQ, qKA. Moreover, the transition funtionis slightly hanged: now, o(qKA, keep, nop) = qw. For the resulting systemM1, wehave thatM1, qAQ |=sl E{b,c}〈〈b, c〉〉 gwin, but at the same timeM1, qAQ 6|=etsl
E{a,c}〈〈a, c〉〉 gwin beause M1, qKQ 6|=etsl 〈〈a, c〉〉 gwin.Distributed knowledge: analogously, M1, qKQ |=sl D{b,c}〈〈b, c〉〉 gwin, yet
M1, qKQ 6|=etsl D{a,c}〈〈a, c〉〉 gwin beause M1, qKQ 6|=etsl 〈〈a, c〉〉 gwin.Theorem 4. Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etslformulae, and let M be a �nite egs.5 Then, if A have distributed knowledge5 Alternatively, we an request that A have at least one undominated strategy forevery relevant state.
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Fig. 2. (A) Model M2: four agents a, b, c, d, epistemi relations shown with the dashedlines, Act = {1, 2, 3, 4}. Transitions: o(qi, j, j, j, j) = qw for j 6= i, otherwise the systemproeeds to the �losing� state ql; (B) Model M3: two agents a, b, two ations 1, 2.The tuples of ations that are absent in the graph lead to ql.that rational play will bring about Φ, then they have distributed knowledge howto play to bring about Φ. Formally:if M, q |=etsl DA〈〈A〉〉Φ then M, q |=sl DA〈〈A〉〉Φ.The same holds for neither mutual nor ommon knowledge.Proof. (sketh) Distributed knowledge: the proof is analogous to the proofsof Lemma 2 and Theorem 1 (part ⇒), as we an exploit the fat that ∼DA istransitive, and img(q,∼DA ) ⊆ img(q,∼EA).Mutual knowledge: for a ounterexample, onsider modelM2 from Figure 2A.Let q denote the state �opposite� to q, i.e. q1 = q3, q2 = q4 et. Furthermore,let Si
Agt denote the strategy of playing 〈i, i, i, i〉 in all states. Now, Si

Agt is theonly undominated strategy wrt qi, gwin for i = 1, ..., 4, and S1
Agt, ..., S

4
Agt areexatly the strategies undominated wrt q0, gwin. So, M2, qi |=etsl 〈〈Agt〉〉 gwinfor every i = 0, 1, ..., 4, and therefore M2, q0 |=etsl EAgt〈〈Agt〉〉 gwin. On theother hand, there is no single strategy that sueeds for all q0, q1, ..., q4.Common knowledge: onsider model M3 from Figure 2B. Let S{a,b} be thestrategy �play 〈1, 1〉 everywhere�, and T{a,b} be �play 〈2, 2〉 everywhere�. Notethat S{a,b} is the only undominated strategy wrt q, gwin for q = q0, q1, and T{a,b}is the only undominated strategy wrt q, gwin for q = q2, q3. Thus, for every q =

q0, ..., q3: M3, q |=etsl 〈〈a, b〉〉 gwin, and hene M3, q1 |=etsl C{a,b}〈〈a, b〉〉 gwin.On the other hand, M3, q1 6|=sl C{a,b}〈〈a, b〉〉 gwin.5 ConlusionsIn this paper, the relationship between rational play and knowing how to playis investigated in a formal way. To this end, we dust o� Epistemi TemporalStrategi Logi by van Otterloo and Jonker [13℄, and propose a simpler semantisexpressed entirely in terms of onurrent epistemi game strutures and theirstates; we prove that the new semantis is equivalent to the original one for
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