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Abstract. Modal logics of strategic ability usually focus on capturing
what it means for an agent to have a feasible strategy that brings about
some property. While there is a general agreement on abilities in scenarios
where agents have perfect information, the right semantics for ability
under incomplete information is still debated upon. Epistemic Temporal
Strategic Logic, an offspring of this debate, can be treated as a logic that
captures properties of agents’ rational play.

In this paper, we provide a semantics of ETSL that is more compact
and comprehensible than the one presented in the original paper by van
Otterloo and Jonker. Second, we use ETSL to show that a rational player
knows that he will succeed if, and only if, he knows how to play to succeed
— while the same is not true for rational coalitions of players.
Keywords: multi-agent systems, theories of agency, game-theoretical foun-
dations, modal logic.

1 Introduction

Modal logics of strategic ability usually focus on capturing what it means for
an agent to have a feasible strategy that brings about some property. While
there is a general agreement on abilities in scenarios where agents have perfect
information, the right semantics for ability under incomplete information is still
debated upon. Epistemic Temporal Strategic Logic, proposed by van Otterloo
and Jonker [13], is an offspring of this debate, but one that leads in an orthogonal
direction to the mainstream solutions. The central operator of ETSL can be read
as: “if A play rationally to achieve ¢ (meaning: they never play a dominated
strategy), they will achieve ¢”. Thus, one may treat ETSL as a logic that captures
properties of agents’ rational play in a sense.

This paper contains two main messages. First, we provide a semantics of
ETSL that is more compact and comprehensible than the one presented in [13].
ETsL is underpinned by several exciting concepts. Unfortunately, its semantics is
also quite hard to read due to a couple non-standard solutions and a plethora of
auxiliary functions, which is probably why the logic never received the attention
it deserves. Second, and perhaps more importantly, we use ETSL to show that a
rational player knows that he will succeed if, and only if, he knows how to play
to succeed — while the same is not true for rational coalitions of players.



2 Reasoning about Abilities of Agents

Modal logics of strategic ability [1, 2] form one of the fields where logic and game
theory can successfully meet. The logics have clear possible worlds semantics, are
axiomatizable, and have some interesting computational properties. Moreover,
they are underpinned by intuitively appealing conceptual machinery for model-
ing and reasoning about systems that involve multiple autonomous agents.

2.1 Ati: Ability in Perfect Information Games

Alternating-time Temporal Logic (ATL) [1,2] can be seen as a logic for sys-
tems involving multiple agents, that allows one to reason about what agents can
achieve in game-like scenarios. Since ATL does not include incomplete informa-
tion in its scope, it can be seen as a logic for reasoning about agents who always
have perfect information about the current state of affairs. Formula (A)e,
where A is a coalition of agents, expresses that A have a collective strategy to
enforce . ATL formulae include temporal operators: “O” (“in the next state”),
O (“always from now on”) and U (“until”). Operator ¢ (“now or sometime in the
future”) can be defined as O = T U . Like in CTL, every occurrence of a tem-
poral operator is preceded by exactly one cooperation modality ((A))." Formally,
the recursive definition of ATL formulae is:

pu=pl-plenp| (A)Op| (AND¢ | (AheU ¢

A number of semantics have been defined for ATT., most of them equivalent [3].
In this paper, we use a variant of concurrent game structures,

M = (Agt, St, I, 7, Act, d, o),

which includes a nonempty finite set of all agents Agt = {1, ..., k}, a nonempty
set of states St, a set of atomic propositions I7, a valuation of propositions 7 :
IT — P(St), and a nonempty set of (atomic) actions Act. Function d : Agtx St —
P(Act) defines actions available to an agent in a state, and o is a deterministic
transition function that assigns an outcome state ¢’ = o(q, a, . .., ay) to state g,
and a tuple of actions (a1, ..., ax) that can be executed by Agt in ¢. A strategy
of agent a is a conditional plan that specifies what a is going to do for every
possible situation (s, : St — Act such that s,(q) € d(a,q)). A collective strategy
(called also a strategy profile) Sa for a group of agents A is a tuple of strategies
S,, one per agent a € A. A path A in M is an infinite sequence of states that can
be effected by subsequent transitions, and refers to a possible course of action
(or a possible computation) that may occur in the system; by A[i], we denote
the ith position on path A. Function out(q, S4) returns the set of all paths that
may result from agents A executing strategy S4 from state ¢ onward:

! The logic to which such a syntactic restriction applies is sometimes called “vanilla”
ATL (resp. “vanilla” CTL etc.).



out(q,Sa) = {\ = qoq1q2--- | @ = q and for every i = 1,2,... there exists a
tuple of actions ()", ...,a) ') such that of' = S,(g;—1) for each a € A,
o'~ € d(a,qi—1) for each a ¢ A, and o(g;—1,0} ", ..., al ) = ¢;}.

Now, the semantics of ATL formulae can be given via the following clauses:

M,gkE=p iff ¢ € n(p) (where p € IT);

M.q |~ iff M, q % ¢;

MgEeny i Mg pand M,q =1

M,q = (A) Oy iff there is a collective strategy Sa such that, for every A €
out(q,Sa), we have M, A[1] |= ¢;

M, q = (A)Oe  iff there exists S4 such that, for every A € out(q, Sa), we have
M, A[i] for every i > 0;

M, q E (AYpU 1 iff there is S, st. for every A € out(q,S4) there is i > 0, for
which M, A[i] = ¢, and M, A[j] | ¢ for every 0 < j < i.

2.2 Strategic Ability and Incomplete Information

ATL is unrealistic in a sense: real-life agents seldom possess complete informa-
tion about the current state of the world. Alternating-time Temporal Epistemic
Logic (ATEL) [12] enriches the picture with an epistemic component, adding to
ATL operators for representing agents’ knowledge: K ¢ reads as “agent a knows
that ¢”. Additional operators Exp, Cap, and D4 refer to mutual knowledge
(“everybody knows”), common knowledge, and distributed knowledge among the
agents from A. Models for ATEL extend concurrent game structures with epis-
temic accessibility relations ~1,...,~xC @ X @ (one per agent) for modeling
agents’ uncertainty; the relations are assumed to be equivalences. We will call
such models concurrent epistemic game structures (CEGS) in the rest of the pa-
per. Agent a’s epistemic relation is meant to encode a’s inability to distinguish
between the (global) system states: ¢ ~, ¢’ means that, while the system is in
state ¢, agent a cannot determine whether it is not in ¢’. Then:

M,q E Kqp iff ¢ holds for every ¢’ such that ¢ ~, ¢'.

Relations ~§, ~§ and ~%, used to model group epistemics, are derived from
the individual relations of agents from A. First, ~% is the union of relations ~,
a € A. Next, ~9 is defined as the transitive closure of ~%. Finally, ~% is the
intersection of all the ~,, a € A. The semantics of group knowledge can be
defined as below (for £ = C, E, D):

M,q = Kap iff ¢ holds for every ¢’ such that ¢ ~% ¢'.

Ezample 1. (Gambling Robots) Two robots (a and b) play a simple card
game. The deck consists of Ace, King and Queen (A, K, Q); it is assumed that
A beats K, K beats @, but @ beats A. First, the “environment” agent env deals
a random card to both robots (face down), so that each player can see his own
hand, but he does not know the card of the other player. Then robot a can
exchange his card for the one remaining in the deck (action exch), or he can
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Fig. 1. Gambling Robots game. Arrows represent possible transitions of the system (la-
beled with tuples of agents’ actions); dashed lines connect states that are indiscernible
for particular agents.

keep the current one (keep). At the same time, robot b can change the priorities
of the cards, so that A becomes better than @ (action chg) or he can do nothing
(nop). If a has a better card than b after that, then a win is scored, otherwise
the game ends in a “losing” state. A cEGS for the game is shown in Figure 1;
we will refer to the model as My throughout the rest of the paper. Note that
Moy, qo E {a)Owin (and even My, go = Ko {a)Owin), although, intuitively, a has
no feasible way of ensuring a win. This is a fundamental problem with ATEL,
which we discuss briefly below.

It was pointed out in several places that the meaning of ATEL formulae is
somewhat counterintuitive [5,6,10]. Most importantly, one would expect that
an agent’s ability to achieve property ¢ should imply that the agent has enough
control and knowledge to identify and ezecute a strategy that enforces ¢ (cf.
also [11]). This problem is closely related to the well known distinction between
knowledge de re and knowledge de dicto.

A number of frameworks were proposed to overcome this problem [5,6,11,
10,13, 4], yet none of them seems the ultimate definitive solution. Most of the
solutions agree that only uniform strategies (i.e., strategies that specify the same
choices in indistinguishable states) are really executable. However, in order to
identify a successful strategy, the agents must consider not only the courses of
action, starting from the current state of the system, but also from states that
are indistinguishable from the current one. There are many cases here, especially
when group epistemics is concerned: the agents may have common, ordinary or
distributed knowledge about a strategy being successful, or they may be hinted
the right strategy by a distinguished member (the “boss”), a subgroup (“head-
quarters committee”) or even another group of agents (“consulting company”).
Most existing solutions [11, 13, 4] treat only some of the cases (albeit rather in an



elegant way), while others [6,10] offer a more general treatment of the problem
at the expense of an overblown logical language (which is by no means elegant).

Recently, a new, non-standard semantics for ability under incomplete infor-
mation has been proposed in [8, 9], which we believe to be both intuitive, general
and elegant. We summarize the proposal in the next section, as we will use it
further to capture strategic abilities of agents.

2.3 An Intuitive Semantics for Ability and Knowledge

In [8, 9], a non-standard semantics for the logic of strategic ability and incomplete
information has been proposed, which we believe to be finally satisfying. In the
semantics, formulae are interpreted over sets of states rather than single states.
Moreover, we introduce “constructive knowledge” operators K,, one for each
agent a, that yield the set of states, indistinguishable from the current state
from a’s perspective. Constructive common, mutual, and distributed knowledge
is formalized via operators C4,E 4, and D 4. The language, which we tentatively
call Constructive Strategic Logic (CSL) here, is defined as follows:

pu=plop|~plene | (A)Op | (ANOp | (ADeU ¢ | Cap | Eap | Dap |
(CA(,D | EA(p | ]D)A(p.

Individual knowledge operators can be derived as: Ko = E(43¢ and Koo =
E{ay. Moreover, we define @1 V o2 = (=1 A —p2), and p1 — 02 = 01 V .

The models are concurrent epistemic game structures again, and we consider
only memoryless uniform strategies. Let img(q, R) be the image of state ¢ with
respect to relation R, i.e. the set of all states ¢’ such that ¢Rq’. Moreover, we use
out(Q), Sa) as a shorthand for Ugeqout(g, Sa), and img(Q, R) as a shorthand
for Ugeqimg(g, R). The notion of a formula ¢ being satisfied by a set of states
@ C St in a model M is given through the following clauses.

M,QEp iff ¢ € 7(p) for every ¢q € Q;
M,Q ¢ iff M,Q I~ ¢;
M,QE~y iff M, q £ ¢ for every q € Q;

M,QEeAy i M,Q = and M, Q =
M,Q E (A) O¢ iff there exists S4 such that, for every A € out(Q, Sa), we

have that M, {A[1]} E ¢;

M,Q E {A)Oe iff there exists S such that, for every A € out(Q@,Sa) and
i > 0, we have M, {A[i]} = ¢;

M, Q E (A)pU 1 iff there exists S4 such that, for every A € out(Q, Sa), there
is ¢ > 0 for which M, {A[i]} = ¢ and M, {A[j]} E ¢ for every
0<j<i

M,Q E Kap iff M,q = ¢ for every g € img(Q,~%) (where K = C, E, D);

M,Q [ Kap iff M,img(Q, ~%) |= ¢ (where K = C,E,D and K = C, E, D,
respectively).

We will also write M, q |= ¢ as a shorthand for M, {q} E ¢, and this is the
notion of satisfaction (in single states) that we are ultimately interested in — but
that notion is defined in terms of the satisfaction in sets of states.



Now, K, {a) e expresses the fact that a has a single strategy that enforces ¢
from all states indiscernible from the current state, instead of stating that ¢ can
be achieved from every such state separately (what K,{(a))¢ says, which is very
much in the spirit of standard epistemic logic). More generally, the first kind
of formulae refer to having a strategy “de re” (i.e. having a successful strategy
and knowing the strategy), while the latter refer to having a strategy “de dicto”
(i.e. only knowing that some successful strategy is available; cf. [6]). Note also
that the property of having a winning strategy in the current state (but not
necessarily even knowing about it) is simply expressed with (a))¢. Capturing
different ability levels of coalitions is analogous, with various “epistemic modes”
of collective recognizing the right strategy.

Example 2. Robot a has no winning strategy in the starting state of the game:
My, go E —{a)Owin, which implies that it has neither a strategy “de re” nor “de
dicto” (Mo, qo E Ka{a)Owin A =K, {a)Owin). On the other hand, he has a
successful strategy in gax (just play keep) and he knows he has one (because
another action, exch, is bound to win in gaq); still, the knowledge is not con-
structive, since a does not know which strategy is the right one in the current
situation: Mo, gax = {(a)) Owin A K, {(a)) Owin A=K, (a)) Owin. Also, b’s playing
chg enforces a transition to g, for both gag,¢rxq, s0 Mo, qaq = Kp{(b) Owin
(robot b has a strategy “de re” to enforce a win from gaq).

Finally, qox F  {(a,0)0win A Eggpy{a,b)Owin A Crq 1 ((a, b)) Owin
A=Eqqpy (@, b)) Owin AD, 31 (a, b)) Owin: in ggx, the robots have a collective strat-
egy to enforce a win, and they all know it (they even have common knowledge
about it); on the other hand, they cannot identify the right strategy as a team
— they can only see one if they share knowledge at the beginning (i.e., in ggx).

3 Epistemic Temporal Strategic Logic

A very interesting variation on the theme of combining strategic, epistemic and
temporal aspects of a multi-agent system was proposed in [13]. Epistemic Tem-
poral Strategic Logic (ETSL) digs deeper in the repository of game theory, and
focuses on the concept of undominated strategies. Thus, its variant of coopera-
tion modalities has a different flavor than the ones from ATL, ATEL, CSL etc. In
a way, formula {(A)y in ETSL can be summarized as:

“If A play rationally to achieve ¢ (meaning: they never play a dominated
strategy), they will achieve ¢”.

ETSL can be treated as a logic that describes the outcome of rational play under
incomplete information,? in the same way as CSL can be seen as a logic that cap-
tures agents’ strategic abilities (regardless of whether the agents play rationally

2 We emphasize that this is a specific notion of rationality (i.e., agents are assumed
to play only undominated strategies). Game theory proposes several other rational-
ity criteria as well, based e.g. on Nash equilibrium, dominant strategies, or Pareto
efficiency. In fact, it is easy to imagine ETSL-like logics based on these notions instead.



or not). The main claim we propose in this paper is that a rational player knows
that he will succeed if, and only if, he has a strategy “de re” to succeed — while
the same is not true for rational coalitions of players. However, before we present
and discuss the claim formally in Section 4, we must re-write the semantics of
ETSL in several respects.

First, the original semantics of ETSL is defined only for finite turn-based
acyclic game models with epistemic accessibility relations, and we will general-
ize the semantics to concurrent epistemic game structures. Next, the semantics
comes with a plethora of auxiliary functions and definitions (and a couple of
omissions), which makes it rather hard to read. In fact, this is probably the
reason why the logic never received the attention it deserves, and it is definitely
worth trying to make the semantics more compact. Finally, the authors of [13]
propose that a model should include also a “grand strategy profile” Syg¢, defining
the actual strategies of all agents (or at least constraining them in some way,
since non-deterministic strategies are allowed in ETSL). While the idea seems
interesting in itself (a similar idea was later exploited e.g. in [7] to allow for
explicit analysis of strategies and reasoning about strategy revision), we will
show that it does not introduce a finer-grained analysis of “vanilla” ETSL formu-
las: if a formula holds in M, g for one strategy profile, it holds in M, q for all
the other strategy profiles, too. Moreover, it can be proved that the semantics
of cooperation modalities {(A) is the same regardless of whether we consider
non-deterministic strategies or not. In consequence, we will be able to show
a “vanilla” ETSL semantics expressed entirely in terms of concurrent epistemic
game structures and their states.

3.1 The Semantics Made Easier to Read
Formulae of ETSL come with no restriction wrt grouping of temporal operators:

:=pl@|loAd|(A)p| Op|Op| Ut | Kup.

After some re-writing (and having it generalized to general game structures,
not only turn-based trees), the semantics can be given as follows. Strategies are
allowed to be non-deterministic, i.e. S, : St — P(Act).> We require strategies
to be uniform, although [13] does not do it explicitly (we take it as a simple
omission, because otherwise many claims in that paper seem to be false). A
collective strategy (strategy profile) S4 is a tuple of strategies, one per agent from
A. SY is the “neutral strategy” with no restriction on a’s actions (S2(q) = Act for
each ¢ € St), and strategy profile SY assigns neutral strategies to agents from A.
Moreover, we generalize function out(q, S4) to handle nondeterministic strategies
too; in out’(q, Sa), “ai"l = S.(g;—1)" is replaced with o=t € S,(q;—1).

Now, the semantics can be given through the following clauses (the semantics
for p, = and ¢ A 1 is analogous to the one presented in Section 2.1):

® To preserve seriality (“time flows forever”), we assume that S, (q) # @ for all ¢ € St.



M, Sags,q = (A)p iff for all strategies T4, undominated wrt g¢,¢, we have
M7 (TAvsggt\A)vq ': ®3

M, Sagt,q = Op iff for every A € out/(q, Sagy) we have M, Syat, A[1] = ¢;

M, Spgt,g =0¢ iff for every A € out'(q,Sag) and ¢ > 0 we have
Mv SAgtaA[i] ': 2

M, Sags,q = U iff for every A € out’(q, Sagt) there is ¢ > 0 such that
M, Sagt, A[i] = ¢ and for all j such that 0 < j < ¢ we
have M; SAgtaA[j] ): 2

M, Sagt,q = Ko iff for all ¢ ~q ¢’ we have M, (Sugi(a), Spgi 14y): 4" F -

Definition 1. Strategy Sa dominates T4 with respect to formula ¢, model M,
and state q, if Sa achieves ¢ better then Ta, i.e. iff:

1. for every ¢ such that q ~4 ¢': if M, (TA,Sggt\A),q’ E ¢ then also

M? (SAaSggt\A)aql ): 2 and
2. there emists ¢ such that ¢ ~a ¢, and M, (SA,Sth\A),q/ E ¢, and

Ma (TA, Sggt\A)a q# ©-

Remark 1. Definition 1 uses epistemic relation ~ 4. However, epistemic accessi-
bility relations are defined only for individual agents in [13], which is perhaps
another omission. In this study, we take the liberty to fix ~4 as ~%.

We also point out that ETSL can be extended with collective epistemic oper-
ators F4,C4, D4 in a straightforward manner.

Ezample 8. Consider the gambling robots again. Robot ¢ has two undominated
strategies wrt Owin, M, gax: namely, to play exch in both gak, gag, or to play
keep in both (other choices do not matter). Since playing exch fails in gax,
so: Mo, qak = {((a) Owin. Furthermore, playing keep is the only undominated
strategy in gxg and gxa (and it succeeds only in gxg). Thus, Mo, qxo =
{a) Owin, and My, gxa = {a) Owin. Hence, Mo, gr¢ = Kq{(a) Owin.

3.2 A Few Properties

In this section, we present several properties of ETSL formulae that will allow us
to give an even simpler semantic definition of “vanilla” ETSL.

Proposition 1. For every “vanilla” ETSL formula p, concurrent epistemic game
structure M, and state q in M: M, Sagt,q | ¢ iff M, S}u,q F ¢ for any pair
of “grand” strategy profiles Sagt, S;&gt'

Proof. By induction on the structure of . Note that it is sufficient to prove the
implication one way, as the choice of Sygq, Sggt is completely arbitrary.

Case p = p: M, Sagt, q =, 50 q € 7(q), s0 M, S}, q F p-

Case ¢ = 9t M, Sags,q = —, so M, Sagt,q = 1, so (by induction hypoth-
esis) M, Sy, q £ ¥, so M, S}, q E —. (As the choice of Sagt, Sy Was
completely arbitrary, the implication holds the other way too.)



Case ¢ = 1)1 A9t analogous.

Case ¢ = (A) Oy M, Sagi,q = (A) O ift M, (Ta, Sggt\A),A[l] E o for all
undominated T4 and A € out'(q, (T4, Sggt\A)). Note that the latter condi-
tion does not refer to Sagt, s0 M, S}, q | (4)) O too.

Cases ¢ = (A)Oy and ¢ = (A1 U 19: analogous.

Case ¢ = Kt M, Sagt,q = Katp, 80 M, (Sagt(a), Sggt\{a}), q E v forall g ~,
q'. By induction hypothesis, also M, (S} (a), Sggt\{a}), ¢ E ¢ for all ¢ ~,
q'ss0 M, S}, q F Kath.

Remark 2. We point out that restricting the scope of Proposition 1 to “vanilla”
ETSL formulae is important. In particular, the epistemic opertor K, has a non-
standard interpretation when the full language of ETSL is considered.

Proposition 2. Let ® = O, [, or 1 U 1o where 1,11, 1o are “vanilla” ETSL
formulae. Moreover, let |®| denote the set of paths for which @ holds; formally,
|Ov] = {A|M A1 4}, |O¢) = {A|ViM, Ali] =4}, and
[hrU ha| = {A | Fi(M, Ali] |= 2 AVogj<iM, Alj] = 41}

Then, Sa dominates Ty wrt &, M, and q iff:

1. for every q', q ~% ¢': if out(q', Ta) C |®| then also out(q',Sa) C |®|, and
2. there exists ¢', q ~5 ¢/, such that out(q',Sa) C |®| and out(q',Ta) € |P|.

Proof. Straightforward from the definition.

Remark 3. Note that dominance can be characterized in an even more compact
way. Let succyas(Sa) = {q € img(q,~%) | out(q,Sa) C |®|} be the set of states
from img(q, ~%), for which s, succeeds to enforce @. Now, S4 dominates T4 wrt
D, M, g iff succqa(Ta) & succq,a(Sa).

Proposition 3. Let ® = O, [, or iy U 1o where P, 1)1, 1o are “vanilla” ETSL
formulae. Strategy Ta is dominated wrt @, M,q by a strategy Sa iff it is domi-
nated wrt &, M, q by a deterministic strategy S;.

Proof. =: Let T4 be dominated by Sa (wrt ¢, M,q). We construct the de-
terministic strategy S’ by fixing arbitrary (uniform) choices out of S4. For-
mally, for every agent a € A and abstraction class img(q’, ~,) C St such that
Sa(qd') ={a,d/, ..}, we fix S/ (¢") = afor all ¢ € img(q’, ~4). (By uniformity of
Sa, we have a € S,(¢") for all ¢” € img(q’, ~,), so S’ is a valid strategy.) First,
this enforces uniformity of S’;. Second, out(q, S’y) C out(q, Sa) for all g € St (by
definition of out). Thus, we can use Proposition 2 to show that S/, dominates
T4, which concludes the proof.

«<: Straightforward.

Proposition 4. Let & be as above. Then, M, Sagt,q = (AN iff for all deter-
ministic strategies Ta, undominated wrt @, we have M, (T4, Sth\A)’ qkE= 9.



Proof. =: Straightforward.

<: Assume that M, (T4, Sggt\A), g = @ for all deterministic strategies T4, un-
dominated wrt @, and suppose that there is a nondeterministic undominated S 4
such that M, (Sa, Sggt\A), q = . Let us fix a deterministic uniform strategy S’
out of S4 in a similar way as in Proposition 3. Now, out(q, S’y) C out(q,Sa) for
all g € St, so out(q’, S4) C |®| implies out(q’,S) C |P| (S’ is never worse than
Sa wrt @). Moreover, out(q, S) C |@| and out(q, Sa) € |P|. By Proposition 2,
S’y dominates S4, so Sa is dominated — a contradiction.

3.3 ETsSL in Terms of Concurrent Epistemic Game Structures

We have shown that, for “vanilla” ETSL, strategies do not have to be referred

explicitly in the interpretation of formulae (Propositions 1 and 2). Moreover, we

can restrict the set of considered strategies to deterministic strategies (Proposi-
tions 3 and 4). In consequence, we can express the semantics of “vanilla” ETSL
equivalently in ATL-like fashion:

M,q E (A) O iff for every strategy S4, undominated wrt ¢, O, and every
A € out(q,Sa), we have that M, A[1] = ¢;

M,q E (A)Op iff for every strategy Sa, undominated wrt ¢, Oy, and every
A € out(q,Sa) and ¢ > 0 we have M, Afi] = ¢;

M, q = {(AY)pU 1 iff for every strategy S, undominated wrt ¢, o U 1, and every
A € out(q,Sa), there is ¢ > 0 such that M, A[i] E ¢ and for
all j such that 0 < j < i we have M, A[j] | ¢.

Only uniform deterministic strategies are taken into account. The semantics
of p, =, ¢ A1, and the epistemic operators is the same as for ATL and ATEL.

4 Playing Rationally vs. Knowing how to Play

We can finally present the main result of this paper, namely, that a rational
player knows that he will succeed if, and only if, he has a strategy “de re” to
succeed. The result holds under the assumption that the model is finite,* or more
generally, that it includes at least one undominated strategy.

Moreover, we show that having common knowledge how to succeed is, in
general, a stronger property than knowing that one will succeed for rational
coalitions of players. That is, if rational agents have common knowledge about
a winning strategy, then they have common knowledge that they will succeed —
but the converse is not true any more. Surprisingly enough, it turns out that the
relationship is strictly reverse for distributed knowledge: if a rational coalition
has distributed knowledge that it will succeed, then it has distributed knowledge
about a winning strategy — but not necessarily the other way around. For mutual
knowledge, the relationship holds neither way.

In what follows, we use = ¢, and =4 to denote the ETSL and CSL satis-
faction relation, respectively.

4 We use the term “finite model” to denote a cEGS with a finite set of states St.



4.1 Rational Play of Individual Agents
We begin with two important lemmas.

Lemma 1. Given a finite model M, state q in M, formula & and agent a, there
is a strateqy s, which is undominated wrt M, q,®.

Proof. First, we consider the simpler case when the set of actions Act is finite.
In such a case, the set of strategies is also finite, and the dominance relation
is transitive and antireflexive. Suppose that every strategy is dominated; then,
there must be a strategy which is dominated by itself — a contradiction.

We sketch the proof for infinite Act as follows. We partition the infinite set of
strategies into equivalence classes, such that strategies in the same class have the
same outcome paths for every state ¢ (i.e., sq & t, iff Vyout(q, sq) = out(q,ts)).
Obviously, if s, dominates ¢,, then all strategies s/, ~ s, dominate ¢, too. Now,
at every state ¢ (and therefore at every point on a path from out(q’, s,)) there is a
finite number of possible sets of successor states (the actual set being determined
by the choice s,(q)). Moreover, the same choice must be taken at every further
occurrence of the same state ¢ on a path, since s, is a memoryless strategy. In
consequence, there is only a finite number of different sets of outcome paths, and
hence a finite number of the equivalence classes. Again, dominance is transitive
and antireflexive, so an undominated strategy must exist.

Remark 4. Note that the result in Lemma 1 does not extend to CEGS with infinite
state spaces. Consider the game of “Fuzzy Blackjack” (called so all the more
because our robots play it usually after having consumed too much machine
oil). Only a single player is necessary, and we use positive real numbers as states
and actions (i.e., St = Act = R,;). When the player chooses a number in state
q, the number is added to the state: o(q,«) = ¢ + . The values below 1 are
the winning ones, i.e. w(win) = (0,1) (it should be 21, but this would make
the game too complicated for a drunken robot). Moreover, the robot cannot
distinguish between the states below 1: ¢ ~, ¢’ for all ¢,q" € (0,1). Now, there
is no undominated strategy wrt 0.5, Owin.

To prove this, suppose that a strategy s, is undominated. The strategy is
uniform, so s,(¢q) = « for some a € R, and all ¢ € (0,1). Obviously, a € (0, 1),
because else s, never succeeds. Now, the set of states in which s, is successful
ist succy 5 Owin(sa) = (0,1 = ). Let ta(q) = q + /2. Now, succy 5 yin(ta) =
(0,1 — a/2) P succo.s5,5(sq) — & contradiction. Note also that:

— If we replace R, with the set of positive rational numbers, the result is the
same. So, there may be no undominated strategies even when we restrict St
and Act to countable sets.

— In order to show the same for countable St and finite Act, it is sufficient
to modify the example so that Act = {0,1,call}, and the initial state and
every subsequent action @ = 0,1 are simply stored in the resulting state.
Now o(q, call) takes the initial state go and the string of 0s and 1s aq, ..., ay,
stored in ¢, and returns ¢’ = go + (0.1...a 1)2. For such a game, there is no
undominated strategy wrt 0.5, Qwin.



Lemma 2. Given M,q,®,a, if there is an undominated strategy wrt M, q, P,
then there is also an undominated strategy wrt M, q', ® for every ¢’ € img(q, ~q).

Proof. Take any s, undominated wrt M, q,® (*). Suppose now that s, is domi-
nated by some strategy t, wrt another state ¢’ € img(q, ~4) (**).

1. By (*) and Prop. 2: Vg cimg(q,~a) (0ut(q”,ta) C |@| = out(q”,s.) C |P]).
2. By (**) and Prop. 2: 3y cimg(q/,~a) (0ut(q”,ta) C [P Aout(q”, sq)  |P)).

Moreover, img(q, ~,) = img(q’, ~,) because is ~, is an equivalence relation —
which gives a contradiction between (1) and (2).

Remark 5. We note that Lemma 2 may hold even for indistinguishability re-
lations that are not equivalences. In fact, it is sufficient to require that ~,
is transitive. In that case, ¢’ € img(q,~,) and ¢ € img(q’,~,) implies that
q" € img(q, ~,), and we also get the contradiction.

We are ready to prove the main claim of this paper now.

Theorem 1. Let us consider only finite models, and formulae ® = O, [y, or
1 U o where 1, 1h1, 19 are “vanilla” ETSL formulae. An agent has a strateqy “de
re” to enforce @ if, and only if, he knows that his rational play will bring about
®. Formally, for every finite M and state q in M :

M, q ):ETSL Ka«a»@ iff M,q ':CSL K“«a»@'

Proof. Induction on the structure of ¢. We prove the theorem for the case & =
0. Other cases are analogous.

=: Let M,q g Ka(@)D. Then, Yy cimg(gma)M, ¢ Fyrgr (a)0v, and
hence M, q g (@) in particular. By Lemmas 1 and 2, there is a strategy
Sq, undominated wrt M, q’, 0 for every ¢’ € img(q, ~q).

Then: Yy cimg(g,~a) VAcout(q’,sa) Vi M Ali] F g, 0. By the induction hypothe-
sis, also Vq/Eimg(q,wa)V/lEout(q/,sa)vij\47A[Z‘] |:CSL 1/} ThllS, V/16owf(img(q,wa),sa)vi
M, Ali] Fog, ¥ and so M,img(q,~a) Fog, (@)D, and finally M, q =g,
Ko ()00

< Let M,q g Ko{(a)Tw, ie. M,img(q, ~a) Fogp, ()¢, Consider ¢’ €
img(q, ~4). By transitivity of ~,, we have img(q’,~,) C img(q,~a), S0 also
Vo cimg(gma) Mo img(q', ~a) Eogp (@), Then, for every ¢’ € img(g, ~q), there
must be s, such that Yo/ cimg(q/,~a) VAcout(q”,s) ViM, Ali] F g ¥, and hence (by
induction) vq”Eimg(q’,wa)vAEOut(q”,sa)ViM;A[i] ':ETSL ’l/) SO, Succql,gw(sa) =
img(q’, ~a), and therefore succy my(te) = img(q’, ~,) for every other undomi-
nated strategy t, (otherwise ¢, would be dominated by s,). Thus, M,q¢" .o
{(a)Oy for every ¢' € img(q, ~aq), and finally M, q Fprq, Ka(a)Ov.

Theorem 2. More generally, for every @ as above, and M,q such that there
exists an undominated strategy wrt M, q,P: M, q Fprep Kala)@ iff M, q g,
Ka{(a)®.



4.2 Rational Coalitions Are at Disadvantage

Beside some philosophical insight into the nature of knowledge and rational
play, Theorems 1 and 2 provide us with an alternative way of decomposing
strategic abilities under incomplete information into a strategic and epistemic
part. The definition of the strategic dimension is more sophisticated and less
straightforward than usually; on the other hand, we do not pay the price of a non-
standard satisfaction relation. Unfortunately, such decomposition is not valid
any more when abilities of collective agents are concerned. Now, the relationship
is much more limited: if a coalition has common knowledge how to play, then
it has also common knowledge that rational play will be successful; the same
does not hold for other types of collective knowledge. Moreover, the converse
relationship is guaranteed for distributed knowledge, but not for common nor
mutual knowledge.

Theorem 3. Let & = O, [y, or 1 U s where 1,11, are “vanilla” ETSL
formulae. Then, if a coalition has common knowledge how to play, then it has
common knowledge that rational play will be successful:

if M,q ':CSL Ca((A)® then M,q ':ETSL Ca(A)P

The same holds for neither mutual nor distributed knowledge.

Proof. Common knowledge Let M,q Fqg, Ka(A >>D1/), i.e. M,img(q,~9)
Fast, (A)0. Consider ¢ € img(q, ~ ) We have img(q’, ~%) C img(q/, Ng) -
img(q,~9), so also V¥, 'eimg(q,~S) M, img(q’, ~ ) oL (A)0w. Then, for every
¢ € img(q,~9), there must be S such that V . ciyma(y ~2) Y Acout(q,s) ViM, Ald]

Fosy ¥. and hence (by induction) Vi eimg(gr,~2)Vacout(q”,54)ViM, Ali] Fgrgp
Y. So, succy 0y(Sa) = img(q’, ~§), and therefore succ, my(Ta) = img(q’, ~§)
for every other undominated strategy T4 (otherwise T4 would be dominated
by Sa). Thus, M,q" Fp, (A)OY for every ¢’ € img(q, ~%), and finally

M; q ':ETSL Ca <<A>>|:|1/}

Mutual knowledge: for a counterexample, consider a modification of the game
from Figure 1, in which a third robot c is introduced. The robot can only execute
nop, and its epistemic relation ~.= {(¢,¢) | ¢ € St} U{(¢xqQ,9x4), (4K 4,9xQ)},
i.e. c can distinguish all states except ¢k, ¢k 4. Moreover, the transition function
is slightly changed: now, o(qx 4, keep, nop) = q,,. For the resulting system M, we
have that M1, qaq Fogp, Eqp,ep (b, ¢) Owin, but at the same time M1, qaqQ Fprer
Efq,c1((a, ¢) Owin because M1, qxq Fprgr, (a,c) Owin.

Distributed knowledge: analogously, Mi,qrxq Fog; Db} (b, ¢) Owin, yet
M1, qxQ Frrst, Pia,c} (@, ) Owin because My, qrq Fprs, (a,c) Owin.

Theorem 4. Let & = O, [y, or 1 U ps where 1,11, are “vanilla” ETSL
formulae, and let M be a finite CEGS.> Then, if A have distributed knowledge

5 Alternatively, we can request that A have at least one undominated strategy for
every relevant state.



Fig. 2. (A) Model My: four agents a, b, ¢, d, epistemic relations shown with the dashed
lines, Act = {1, 2, 3,4}. Transitions: o(¢i, j,J,J,J) = qu for j # i, otherwise the system
proceeds to the “losing” state ¢;; (B) Model Ms: two agents a,b, two actions 1,2.
The tuples of actions that are absent in the graph lead to g;.

that rational play will bring about ®, then they have distributed knowledge how
to play to bring about ®. Formally:

if M,q ':ETSL DA<<A>>¢ then M, q ):CSL DA<<A>>¢

The same holds for neither mutual nor common knowledge.

Proof. (sketch) Distributed knowledge: the proof is analogous to the proofs
of Lemma 2 and Theorem 1 (part =), as we can exploit the fact that ~% is

transitive, and img(q, ~%) C img(q, ~%).

Mutual knowledge: for a counterexample, consider model M from Figure 2A.
Let g denote the state “opposite” to ¢, i.e. g1 = ¢q3, ¢z = ¢4 etc. Furthermore,
let S}, denote the strategy of playing (i,7,4,4) in all states. Now, S}, is the
only undominated strategy wrt g, Owin for i = 1,...,4, and S}, ..., Sj,, are
exactly the strategies undominated wrt go, Owin. So, Ma, ¢; Fprqp, (Agt)) Owin
for every i = 0,1,...,4, and therefore Ma,qo =g Eagt((Agt)) Owin. On the
other hand, there is no single strategy that succeeds for all qq, g1, ..., q4.

Common knowledge: consider model M3 from Figure 2B. Let Sy, ;) be the
strategy “play (1,1) everywhere”, and T, be “play (2,2) everywhere”. Note
that S¢, ;) is the only undominated strategy wrt g, Owin for ¢ = qo, q1, and Ty, 3
is the only undominated strategy wrt g, Owin for ¢ = g2, g3. Thus, for every g =
q0; -+, 43t M3,q Fppg (a,b) Owin, and hence M3, q1 Fprgp Clapy (@, b)) Owin.
On the other hand, M3, q1 £ q; Cyapy (@, b)) Owin.

5 Conclusions

In this paper, the relationship between rational play and knowing how to play
is investigated in a formal way. To this end, we dust off Epistemic Temporal
Strategic Logic by van Otterloo and Jonker [13], and propose a simpler semantics
expressed entirely in terms of concurrent epistemic game structures and their
states; we prove that the new semantics is equivalent to the original one for



“vanilla” ETSL formulae. ETSL serves as a device for talking about the outcome
of rational play (in the sense that agents are assumed to play only undominated
strategies). To capture properties of the other kind (“knowing how to play”), we
use the recent proposal of Constructive Strategic Logic [8,9].

The main result of this paper states that, for finite models, a rational player
knows that he will succeed if, and only if, he knows how to succeed. We also
show that the relationship is much more limited for rational coalitions. That is,
if rational agents have common knowledge about a winning strategy, then they
have common knowledge that they will succeed — but the converse is not guar-
anteed any more. Moreover, it turns out that the relationship is strictly reverse
for distributed knowledge: if a rational coalition has distributed knowledge that
it will succeed, then it has distributed knowledge about a winning strategy —
but not necessarily the other way around. Finally, for mutual knowledge, the
relationship does not hold either way in general. This is a curious result, and
one that may lead to interesting philosophical conclusions.
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