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.1 Introdu
tionModal logi
s of strategi
 ability usually fo
us on 
apturing what it means foran agent to have a feasible strategy that brings about some property. Whilethere is a general agreement on abilities in s
enarios where agents have perfe
tinformation, the right semanti
s for ability under in
omplete information is stilldebated upon. Epistemi
 Temporal Strategi
 Logi
, proposed by van Otterlooand Jonker [13℄, is an o�spring of this debate, but one that leads in an orthogonaldire
tion to the mainstream solutions. The 
entral operator of etsl 
an be readas: �if A play rationally to a
hieve ϕ (meaning: they never play a dominatedstrategy), they will a
hieve ϕ�. Thus, one may treat etsl as a logi
 that 
apturesproperties of agents' rational play in a sense.This paper 
ontains two main messages. First, we provide a semanti
s ofetsl that is more 
ompa
t and 
omprehensible than the one presented in [13℄.Etsl is underpinned by several ex
iting 
on
epts. Unfortunately, its semanti
s isalso quite hard to read due to a 
ouple non-standard solutions and a plethora ofauxiliary fun
tions, whi
h is probably why the logi
 never re
eived the attentionit deserves. Se
ond, and perhaps more importantly, we use etsl to show that arational player knows that he will su

eed if, and only if, he knows how to playto su

eed � while the same is not true for rational 
oalitions of players.



2 Reasoning about Abilities of AgentsModal logi
s of strategi
 ability [1, 2℄ form one of the �elds where logi
 and gametheory 
an su

essfully meet. The logi
s have 
lear possible worlds semanti
s, areaxiomatizable, and have some interesting 
omputational properties. Moreover,they are underpinned by intuitively appealing 
on
eptual ma
hinery for model-ing and reasoning about systems that involve multiple autonomous agents.2.1 Atl: Ability in Perfe
t Information GamesAlternating-time Temporal Logi
 (atl) [1, 2℄ 
an be seen as a logi
 for sys-tems involving multiple agents, that allows one to reason about what agents 
ana
hieve in game-like s
enarios. Sin
e atl does not in
lude in
omplete informa-tion in its s
ope, it 
an be seen as a logi
 for reasoning about agents who alwayshave perfe
t information about the 
urrent state of a�airs. Formula 〈〈A〉〉ϕ,where A is a 
oalition of agents, expresses that A have a 
olle
tive strategy toenfor
e ϕ. Atl formulae in
lude temporal operators: � g� (�in the next state�),
� (�always from now on�) and U (�until�). Operator ♦ (�now or sometime in thefuture�) 
an be de�ned as ♦ϕ ≡ ⊤U ϕ. Like in 
tl, every o

urren
e of a tem-poral operator is pre
eded by exa
tly one 
ooperation modality 〈〈A〉〉.1 Formally,the re
ursive de�nition of atl formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕA number of semanti
s have been de�ned for atl, most of them equivalent [3℄.In this paper, we use a variant of 
on
urrent game stru
tures,
M = 〈Agt, St,Π, π,Act, d, o〉,whi
h in
ludes a nonempty �nite set of all agents Agt = {1, ..., k}, a nonemptyset of states St, a set of atomi
 propositions Π , a valuation of propositions π :

Π → P(St), and a nonempty set of (atomi
) a
tions Act. Fun
tion d : Agt×St→
P(Act) de�nes a
tions available to an agent in a state, and o is a deterministi
transition fun
tion that assigns an out
ome state q′ = o(q, α1, . . . , αk) to state q,and a tuple of a
tions 〈α1, . . . , αk〉 that 
an be exe
uted by Agt in q. A strategyof agent a is a 
onditional plan that spe
i�es what a is going to do for everypossible situation (sa : St→ Act su
h that sa(q) ∈ d(a, q)). A 
olle
tive strategy(
alled also a strategy pro�le) SA for a group of agents A is a tuple of strategies
Sa, one per agent a ∈ A. A path Λ inM is an in�nite sequen
e of states that 
anbe e�e
ted by subsequent transitions, and refers to a possible 
ourse of a
tion(or a possible 
omputation) that may o

ur in the system; by Λ[i], we denotethe ith position on path Λ. Fun
tion out(q, SA) returns the set of all paths thatmay result from agents A exe
uting strategy SA from state q onward:1 The logi
 to whi
h su
h a synta
ti
 restri
tion applies is sometimes 
alled �vanilla�atl (resp. �vanilla� 
tl et
.).



out(q, SA) = {λ = q0q1q2... | q0 = q and for every i = 1, 2, ... there exists atuple of a
tions 〈αi−1
1 , ..., αi−1

k 〉 su
h that αi−1
a = Sa(qi−1) for ea
h a ∈ A,

αi−1
a ∈ d(a, qi−1) for ea
h a /∈ A, and o(qi−1, α

i−1
1 , ..., αi−1

k ) = qi}.Now, the semanti
s of atl formulae 
an be given via the following 
lauses:
M, q |= p i� q ∈ π(p) (where p ∈ Π);
M, q |= ¬ϕ i� M, q 6|= ϕ;
M, q |= ϕ ∧ ψ i� M, q |= ϕ and M, q |= ψ;
M, q |= 〈〈A〉〉 gϕ i� there is a 
olle
tive strategy SA su
h that, for every Λ ∈

out(q, SA), we have M,Λ[1] |= ϕ;
M, q |= 〈〈A〉〉�ϕ i� there exists SA su
h that, for every Λ ∈ out(q, SA), we have

M,Λ[i] for every i ≥ 0;
M, q |= 〈〈A〉〉ϕU ψ i� there is SA st. for every Λ ∈ out(q, SA) there is i ≥ 0, forwhi
h M,Λ[i] |= ψ, and M,Λ[j] |= ϕ for every 0 ≤ j < i.2.2 Strategi
 Ability and In
omplete InformationAtl is unrealisti
 in a sense: real-life agents seldom possess 
omplete informa-tion about the 
urrent state of the world. Alternating-time Temporal Epistemi
Logi
 (atel) [12℄ enri
hes the pi
ture with an epistemi
 
omponent, adding toatl operators for representing agents' knowledge: Kaϕ reads as �agent a knowsthat ϕ�. Additional operators EAϕ, CAϕ, and DAϕ refer to mutual knowledge(�everybody knows�), 
ommon knowledge, and distributed knowledge among theagents from A. Models for atel extend 
on
urrent game stru
tures with epis-temi
 a

essibility relations ∼1, ...,∼k⊆ Q × Q (one per agent) for modelingagents' un
ertainty; the relations are assumed to be equivalen
es. We will 
allsu
h models 
on
urrent epistemi
 game stru
tures (
egs) in the rest of the pa-per. Agent a's epistemi
 relation is meant to en
ode a's inability to distinguishbetween the (global) system states: q ∼a q′ means that, while the system is instate q, agent a 
annot determine whether it is not in q′. Then:
M, q |= Kaϕ i� ϕ holds for every q′ su
h that q ∼a q′.Relations ∼EA, ∼CA and ∼DA , used to model group epistemi
s, are derived fromthe individual relations of agents from A. First, ∼EA is the union of relations ∼a,
a ∈ A. Next, ∼CA is de�ned as the transitive 
losure of ∼EA. Finally, ∼DA is theinterse
tion of all the ∼a, a ∈ A. The semanti
s of group knowledge 
an bede�ned as below (for K = C,E,D):
M, q |= KAϕ i� ϕ holds for every q′ su
h that q ∼K

A q
′.Example 1. (Gambling Robots) Two robots (a and b) play a simple 
ardgame. The de
k 
onsists of A
e, King and Queen (A,K,Q); it is assumed that

A beats K, K beats Q, but Q beats A. First, the �environment� agent env dealsa random 
ard to both robots (fa
e down), so that ea
h player 
an see his ownhand, but he does not know the 
ard of the other player. Then robot a 
anex
hange his 
ard for the one remaining in the de
k (a
tion exch), or he 
an
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Fig. 1. Gambling Robots game. Arrows represent possible transitions of the system (la-beled with tuples of agents' a
tions); dashed lines 
onne
t states that are indis
erniblefor parti
ular agents.keep the 
urrent one (keep). At the same time, robot b 
an 
hange the prioritiesof the 
ards, so that A be
omes better than Q (a
tion chg) or he 
an do nothing(nop). If a has a better 
ard than b after that, then a win is s
ored, otherwisethe game ends in a �losing� state. A 
egs for the game is shown in Figure 1;we will refer to the model as M0 throughout the rest of the paper. Note that
M0, q0 |= 〈〈a〉〉♦win (and even M0, q0 |= Ka〈〈a〉〉♦win), although, intuitively, a hasno feasible way of ensuring a win. This is a fundamental problem with atel,whi
h we dis
uss brie�y below.It was pointed out in several pla
es that the meaning of atel formulae issomewhat 
ounterintuitive [5, 6, 10℄. Most importantly, one would expe
t thatan agent's ability to a
hieve property ϕ should imply that the agent has enough
ontrol and knowledge to identify and exe
ute a strategy that enfor
es ϕ (
f.also [11℄). This problem is 
losely related to the well known distin
tion betweenknowledge de re and knowledge de di
to.A number of frameworks were proposed to over
ome this problem [5, 6, 11,10, 13, 4℄, yet none of them seems the ultimate de�nitive solution. Most of thesolutions agree that only uniform strategies (i.e., strategies that spe
ify the same
hoi
es in indistinguishable states) are really exe
utable. However, in order toidentify a su

essful strategy, the agents must 
onsider not only the 
ourses ofa
tion, starting from the 
urrent state of the system, but also from states thatare indistinguishable from the 
urrent one. There are many 
ases here, espe
iallywhen group epistemi
s is 
on
erned: the agents may have 
ommon, ordinary ordistributed knowledge about a strategy being su

essful, or they may be hintedthe right strategy by a distinguished member (the �boss�), a subgroup (�head-quarters 
ommittee�) or even another group of agents (�
onsulting 
ompany�).Most existing solutions [11, 13, 4℄ treat only some of the 
ases (albeit rather in an



elegant way), while others [6, 10℄ o�er a more general treatment of the problemat the expense of an overblown logi
al language (whi
h is by no means elegant).Re
ently, a new, non-standard semanti
s for ability under in
omplete infor-mation has been proposed in [8, 9℄, whi
h we believe to be both intuitive, generaland elegant. We summarize the proposal in the next se
tion, as we will use itfurther to 
apture strategi
 abilities of agents.2.3 An Intuitive Semanti
s for Ability and KnowledgeIn [8, 9℄, a non-standard semanti
s for the logi
 of strategi
 ability and in
ompleteinformation has been proposed, whi
h we believe to be �nally satisfying. In thesemanti
s, formulae are interpreted over sets of states rather than single states.Moreover, we introdu
e �
onstru
tive knowledge� operators Ka, one for ea
hagent a, that yield the set of states, indistinguishable from the 
urrent statefrom a's perspe
tive. Constru
tive 
ommon, mutual, and distributed knowledgeis formalized via operators CA,EA, and DA. The language, whi
h we tentatively
all Constru
tive Strategi
 Logi
 (
sl) here, is de�ned as follows:
ϕ ::= p | ¬ϕ | ∼ϕ | ϕ ∧ ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ | CAϕ | EAϕ | DAϕ |

CAϕ | EAϕ | DAϕ.Individual knowledge operators 
an be derived as: Kaϕ ≡ E{a}ϕ and Kaϕ ≡
E{a}ϕ. Moreover, we de�ne ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), and ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.The models are 
on
urrent epistemi
 game stru
tures again, and we 
onsideronly memoryless uniform strategies. Let img(q,R) be the image of state q withrespe
t to relationR, i.e. the set of all states q′ su
h that qRq′. Moreover, we use
out(Q,SA) as a shorthand for ∪q∈Qout(q, SA), and img(Q,R) as a shorthandfor ∪q∈Qimg(q,R). The notion of a formula ϕ being satis�ed by a set of states
Q ⊆ St in a model M is given through the following 
lauses.
M,Q |= p i� q ∈ π(p) for every q ∈ Q;
M,Q |= ¬ϕ i� M,Q 6|= ϕ;
M,Q |=∼ϕ i� M, q 6|= ϕ for every q ∈ Q;
M,Q |= ϕ ∧ ψ i� M,Q |= ϕ and M,Q |= ψ;
M,Q |= 〈〈A〉〉 gϕ i� there exists SA su
h that, for every Λ ∈ out(Q,SA), wehave that M, {Λ[1]} |= ϕ;
M,Q |= 〈〈A〉〉�ϕ i� there exists SA su
h that, for every Λ ∈ out(Q,SA) and

i ≥ 0, we have M, {Λ[i]} |= ϕ;
M,Q |= 〈〈A〉〉ϕU ψ i� there exists SA su
h that, for every Λ ∈ out(Q,SA), thereis i ≥ 0 for whi
hM, {Λ[i]} |= ψ andM, {Λ[j]} |= ϕ for every

0 ≤ j < i;
M,Q |= KAϕ i� M, q |= ϕ for every q ∈ img(Q,∼K

A) (where K = C,E,D);
M,Q |= K̂Aϕ i� M, img(Q,∼K

A) |= ϕ (where K̂ = C,E,D and K = C,E,D,respe
tively).We will also write M, q |= ϕ as a shorthand for M, {q} |= ϕ, and this is thenotion of satisfa
tion (in single states) that we are ultimately interested in � butthat notion is de�ned in terms of the satisfa
tion in sets of states.



Now, Ka〈〈a〉〉ϕ expresses the fa
t that a has a single strategy that enfor
es ϕfrom all states indis
ernible from the 
urrent state, instead of stating that ϕ 
anbe a
hieved from every su
h state separately (what Ka〈〈a〉〉ϕ says, whi
h is verymu
h in the spirit of standard epistemi
 logi
). More generally, the �rst kindof formulae refer to having a strategy �de re� (i.e. having a su

essful strategyand knowing the strategy), while the latter refer to having a strategy �de di
to�(i.e. only knowing that some su

essful strategy is available; 
f. [6℄). Note alsothat the property of having a winning strategy in the 
urrent state (but notne
essarily even knowing about it) is simply expressed with 〈〈a〉〉ϕ. Capturingdi�erent ability levels of 
oalitions is analogous, with various �epistemi
 modes�of 
olle
tive re
ognizing the right strategy.Example 2. Robot a has no winning strategy in the starting state of the game:
M0, q0 |= ¬〈〈a〉〉♦win, whi
h implies that it has neither a strategy �de re� nor �dedi
to� (M0, q0 |= ¬Ka〈〈a〉〉♦win ∧ ¬Ka〈〈a〉〉♦win). On the other hand, he has asu

essful strategy in qAK (just play keep) and he knows he has one (be
auseanother a
tion, exch, is bound to win in qAQ); still, the knowledge is not 
on-stru
tive, sin
e a does not know whi
h strategy is the right one in the 
urrentsituation:M0, qAK |= 〈〈a〉〉 gwin∧Ka〈〈a〉〉 gwin∧¬Ka〈〈a〉〉 gwin. Also, b's playing
chg enfor
es a transition to qw for both qAQ, qKQ, so M0, qAQ |= Kb〈〈b〉〉 gwin(robot b has a strategy �de re� to enfor
e a win from qAQ).Finally, qQK |= 〈〈a, b〉〉♦win ∧ E{a,b}〈〈a, b〉〉♦win ∧ C{a,b}〈〈a, b〉〉♦win
∧¬E{a,b}〈〈a, b〉〉♦win∧D{a,b}〈〈a, b〉〉♦win: in qQK , the robots have a 
olle
tive strat-egy to enfor
e a win, and they all know it (they even have 
ommon knowledgeabout it); on the other hand, they 
annot identify the right strategy as a team� they 
an only see one if they share knowledge at the beginning (i.e., in qQK).3 Epistemi
 Temporal Strategi
 Logi
A very interesting variation on the theme of 
ombining strategi
, epistemi
 andtemporal aspe
ts of a multi-agent system was proposed in [13℄. Epistemi
 Tem-poral Strategi
 Logi
 (etsl) digs deeper in the repository of game theory, andfo
uses on the 
on
ept of undominated strategies. Thus, its variant of 
oopera-tion modalities has a di�erent �avor than the ones from atl, atel, 
sl et
. Ina way, formula 〈〈A〉〉ϕ in etsl 
an be summarized as:�If A play rationally to a
hieve ϕ (meaning: they never play a dominatedstrategy), they will a
hieve ϕ�.Etsl 
an be treated as a logi
 that des
ribes the out
ome of rational play underin
omplete information,2 in the same way as 
sl 
an be seen as a logi
 that 
ap-tures agents' strategi
 abilities (regardless of whether the agents play rationally2 We emphasize that this is a spe
i�
 notion of rationality (i.e., agents are assumedto play only undominated strategies). Game theory proposes several other rational-ity 
riteria as well, based e.g. on Nash equilibrium, dominant strategies, or Paretoe�
ien
y. In fa
t, it is easy to imagine etsl-like logi
s based on these notions instead.



or not). The main 
laim we propose in this paper is that a rational player knowsthat he will su

eed if, and only if, he has a strategy �de re� to su

eed � whilethe same is not true for rational 
oalitions of players. However, before we presentand dis
uss the 
laim formally in Se
tion 4, we must re-write the semanti
s ofetsl in several respe
ts.First, the original semanti
s of etsl is de�ned only for �nite turn-baseda
y
li
 game models with epistemi
 a

essibility relations, and we will general-ize the semanti
s to 
on
urrent epistemi
 game stru
tures. Next, the semanti
s
omes with a plethora of auxiliary fun
tions and de�nitions (and a 
ouple ofomissions), whi
h makes it rather hard to read. In fa
t, this is probably thereason why the logi
 never re
eived the attention it deserves, and it is de�nitelyworth trying to make the semanti
s more 
ompa
t. Finally, the authors of [13℄propose that a model should in
lude also a �grand strategy pro�le� SAgt, de�ningthe a
tual strategies of all agents (or at least 
onstraining them in some way,sin
e non-deterministi
 strategies are allowed in etsl). While the idea seemsinteresting in itself (a similar idea was later exploited e.g. in [7℄ to allow forexpli
it analysis of strategies and reasoning about strategy revision), we willshow that it does not introdu
e a �ner-grained analysis of �vanilla� etsl formu-las: if a formula holds in M, q for one strategy pro�le, it holds in M, q for allthe other strategy pro�les, too. Moreover, it 
an be proved that the semanti
sof 
ooperation modalities 〈〈A〉〉 is the same regardless of whether we 
onsidernon-deterministi
 strategies or not. In 
onsequen
e, we will be able to showa �vanilla� etsl semanti
s expressed entirely in terms of 
on
urrent epistemi
game stru
tures and their states.3.1 The Semanti
s Made Easier to ReadFormulae of etsl 
ome with no restri
tion wrt grouping of temporal operators:
ϕ := p | ¬ϕ | ϕ ∧ ψ | 〈〈A〉〉ϕ | gϕ | �ϕ | ϕU ψ | Kaϕ.After some re-writing (and having it generalized to general game stru
tures,not only turn-based trees), the semanti
s 
an be given as follows. Strategies areallowed to be non-deterministi
, i.e. Sa : St → P(Act).3 We require strategiesto be uniform, although [13℄ does not do it expli
itly (we take it as a simpleomission, be
ause otherwise many 
laims in that paper seem to be false). A
olle
tive strategy (strategy pro�le) SA is a tuple of strategies, one per agent from

A. S0
a is the �neutral strategy� with no restri
tion on a's a
tions (S0

a(q) = Act forea
h q ∈ St), and strategy pro�le S0
A assigns neutral strategies to agents from A.Moreover, we generalize fun
tion out(q, SA) to handle nondeterministi
 strategiestoo; in out′(q, SA), �αi−1

a = Sa(qi−1)� is repla
ed with αi−1
a ∈ Sa(qi−1).Now, the semanti
s 
an be given through the following 
lauses (the semanti
sfor p, ¬ϕ and ϕ ∧ ψ is analogous to the one presented in Se
tion 2.1):3 To preserve seriality (�time �ows forever�), we assume that Sa(q) 6= ∅ for all q ∈ St.



M,SAgt, q |= 〈〈A〉〉ϕ i� for all strategies TA, undominated wrt q, ϕ, we have
M, (TA, S

0
Agt\A), q |= ϕ;

M,SAgt, q |= gϕ i� for every Λ ∈ out′(q, SAgt) we have M,SAgt, Λ[1] |= ϕ;
M,SAgt, q |= �ϕ i� for every Λ ∈ out′(q, SAgt) and i ≥ 0 we have

M,SAgt, Λ[i] |= ϕ;
M,SAgt, q |= ϕU ψ i� for every Λ ∈ out′(q, SAgt) there is i ≥ 0 su
h that

M,SAgt, Λ[i] |= ψ and for all j su
h that 0 ≤ j < i wehave M,SAgt, Λ[j] |= ϕ;
M,SAgt, q |= Kaϕ i� for all q ∼a q′ we have M, (SAgt(a), S

0
Agt\{a}), q

′ |= ϕ.De�nition 1. Strategy SA dominates TA with respe
t to formula ϕ, model M ,and state q, if SA a
hieves ϕ better then TA, i.e. i�:1. for every q′ su
h that q ∼A q′: if M, (TA, S
0
Agt\A), q′ |= ϕ then also

M, (SA, S
0
Agt\A), q′ |= ϕ, and2. there exists q′ su
h that q ∼A q′, and M, (SA, S

0
Agt\A), q′ |= ϕ, and

M, (TA, S
0
Agt\A), q 2 ϕ.Remark 1. De�nition 1 uses epistemi
 relation ∼A. However, epistemi
 a

essi-bility relations are de�ned only for individual agents in [13℄, whi
h is perhapsanother omission. In this study, we take the liberty to �x ∼A as ∼EA.We also point out that etsl 
an be extended with 
olle
tive epistemi
 oper-ators EA, CA, DA in a straightforward manner.Example 3. Consider the gambling robots again. Robot a has two undominatedstrategies wrt gwin,M, qAK : namely, to play exch in both qAK , qAQ, or to play

keep in both (other 
hoi
es do not matter). Sin
e playing exch fails in qAK ,so: M0, qAK 6|= 〈〈a〉〉 gwin. Furthermore, playing keep is the only undominatedstrategy in qKQ and qKA (and it su

eeds only in qKQ). Thus, M0, qKQ |=
〈〈a〉〉 gwin, and M0, qKA 6|= 〈〈a〉〉 gwin. Hen
e, M0, qKQ 6|= Ka〈〈a〉〉 gwin.3.2 A Few PropertiesIn this se
tion, we present several properties of etsl formulae that will allow usto give an even simpler semanti
 de�nition of �vanilla� etsl.Proposition 1. For every �vanilla� ETSL formula ϕ, 
on
urrent epistemi
 gamestru
ture M , and state q in M : M,SAgt, q |= ϕ i� M,S′

Agt, q |= ϕ for any pairof �grand� strategy pro�les SAgt, S
′
Agt.Proof. By indu
tion on the stru
ture of ϕ. Note that it is su�
ient to prove theimpli
ation one way, as the 
hoi
e of SAgt, S

′
Agt is 
ompletely arbitrary.Case ϕ ≡ p: M,SAgt, q |= p, so q ∈ π(q), so M,S′

Agt, q |= p.Case ϕ ≡ ¬ψ: M,SAgt, q |= ¬ψ, so M,SAgt, q 6|= ψ, so (by indu
tion hypoth-esis) M,S′
Agt, q 6|= ψ, so M,S′

Agt, q |= ¬ψ. (As the 
hoi
e of SAgt, S
′
Agt was
ompletely arbitrary, the impli
ation holds the other way too.)



Case ϕ ≡ ψ1 ∧ ψ2: analogous.Case ϕ ≡ 〈〈A〉〉 gψ: M,SAgt, q |= 〈〈A〉〉 gψ i� M, (TA, S
0
Agt\A), Λ[1] |= ϕ for allundominated TA and Λ ∈ out′(q, (TA, S

0
Agt\A)). Note that the latter 
ondi-tion does not refer to SAgt, so M,S′

Agt, q |= 〈〈A〉〉 gψ too.Cases ϕ ≡ 〈〈A〉〉�ψ and ϕ ≡ 〈〈A〉〉ψ1 U ψ2: analogous.Case ϕ ≡ Kaψ: M,SAgt, q |= Kaψ, soM, (SAgt(a), S
0
Agt\{a}), q

′ |= ψ for all q ∼a
q′. By indu
tion hypothesis, also M, (S′

Agt(a), S
0
Agt\{a}), q

′ |= ψ for all q ∼a
q′, so M,S′

Agt, q |= Kaψ.Remark 2. We point out that restri
ting the s
ope of Proposition 1 to �vanilla�etsl formulae is important. In parti
ular, the epistemi
 opertor Ka has a non-standard interpretation when the full language of etsl is 
onsidered.Proposition 2. Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etslformulae. Moreover, let |Φ| denote the set of paths for whi
h Φ holds; formally,
| gψ| = {Λ |M,Λ[1] |= ψ}, |�ψ| = {Λ | ∀iM,Λ[i] |= ψ}, and
|ψ1 U ψ2| = {Λ | ∃i(M,Λ[i] |= ψ2 ∧ ∀0≤j<iM,Λ[j] |= ψ1}.Then, SA dominates TA wrt Φ,M , and q i�:1. for every q′, q ∼EA q′: if out(q′, TA) ⊆ |Φ| then also out(q′, SA) ⊆ |Φ|, and2. there exists q′, q ∼EA q′, su
h that out(q′, SA) ⊆ |Φ| and out(q′, TA) 6⊆ |Φ|.Proof. Straightforward from the de�nition.Remark 3. Note that dominan
e 
an be 
hara
terized in an even more 
ompa
tway. Let succq,Φ(SA) = {q ∈ img(q,∼EA) | out(q, SA) ⊆ |Φ|} be the set of statesfrom img(q,∼EA), for whi
h sa su

eeds to enfor
e Φ. Now, SA dominates TA wrt
Φ,M, q i� succq,Φ(TA)  succq,Φ(SA).Proposition 3. Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etslformulae. Strategy TA is dominated wrt Φ,M, q by a strategy SA i� it is domi-nated wrt Φ,M, q by a deterministi
 strategy S′

A.Proof. ⇒: Let TA be dominated by SA (wrt ϕ,M, q). We 
onstru
t the de-terministi
 strategy S′
A by �xing arbitrary (uniform) 
hoi
es out of SA. For-mally, for every agent a ∈ A and abstra
tion 
lass img(q′,∼a) ⊆ St su
h that

Sa(q
′) = {α, α′, ...}, we �x S′

a(q
′′) = α for all q′′ ∈ img(q′,∼a). (By uniformity of

SA, we have α ∈ Sa(q
′′) for all q′′ ∈ img(q′,∼a), so S′

A is a valid strategy.) First,this enfor
es uniformity of S′
A. Se
ond, out(q̄, S′

A) ⊆ out(q̄, SA) for all q̄ ∈ St (byde�nition of out). Thus, we 
an use Proposition 2 to show that S′
A dominates

TA, whi
h 
on
ludes the proof.
⇐: Straightforward.Proposition 4. Let Φ be as above. Then, M,SAgt, q |= 〈〈A〉〉Φ i� for all deter-ministi
 strategies TA, undominated wrt Φ, we have M, (TA, S

0
Agt\A), q |= Φ.



Proof. ⇒: Straightforward.
⇐: Assume thatM, (TA, S

0
Agt\A), q |= Φ for all deterministi
 strategies TA, un-dominated wrt Φ, and suppose that there is a nondeterministi
 undominated SAsu
h thatM, (SA, S

0
Agt\A), q 6|= Φ. Let us �x a deterministi
 uniform strategy S′

Aout of SA in a similar way as in Proposition 3. Now, out(q̄, S′
A) ⊆ out(q̄, SA) forall q̄ ∈ St, so out(q′, SA) ⊆ |Φ| implies out(q′, S′

A) ⊆ |Φ| (S′
A is never worse than

SA wrt Φ). Moreover, out(q, S′
A) ⊆ |Φ| and out(q, SA) 6⊆ |Φ|. By Proposition 2,

S′
A dominates SA, so SA is dominated � a 
ontradi
tion.3.3 Etsl in Terms of Con
urrent Epistemi
 Game Stru
turesWe have shown that, for �vanilla� etsl, strategies do not have to be referredexpli
itly in the interpretation of formulae (Propositions 1 and 2). Moreover, we
an restri
t the set of 
onsidered strategies to deterministi
 strategies (Proposi-tions 3 and 4). In 
onsequen
e, we 
an express the semanti
s of �vanilla� etslequivalently in atl-like fashion:

M, q |= 〈〈A〉〉 gϕ i� for every strategy SA, undominated wrt q, gϕ, and every
Λ ∈ out(q, SA), we have that M,Λ[1] |= ϕ;

M, q |= 〈〈A〉〉�ϕ i� for every strategy SA, undominated wrt q,�ϕ, and every
Λ ∈ out(q, SA) and i ≥ 0 we have M,Λ[i] |= ϕ;

M, q |= 〈〈A〉〉ϕU ψ i� for every strategy SA, undominated wrt q, ϕU ψ, and every
Λ ∈ out(q, SA), there is i ≥ 0 su
h that M,Λ[i] |= ψ and forall j su
h that 0 ≤ j < i we have M,Λ[j] |= ϕ.Only uniform deterministi
 strategies are taken into a

ount. The semanti
sof p, ¬ϕ, ϕ ∧ ψ, and the epistemi
 operators is the same as for atl and atel.4 Playing Rationally vs. Knowing how to PlayWe 
an �nally present the main result of this paper, namely, that a rationalplayer knows that he will su

eed if, and only if, he has a strategy �de re� tosu

eed. The result holds under the assumption that the model is �nite,4 or moregenerally, that it in
ludes at least one undominated strategy.Moreover, we show that having 
ommon knowledge how to su

eed is, ingeneral, a stronger property than knowing that one will su

eed for rational
oalitions of players. That is, if rational agents have 
ommon knowledge abouta winning strategy, then they have 
ommon knowledge that they will su

eed �but the 
onverse is not true any more. Surprisingly enough, it turns out that therelationship is stri
tly reverse for distributed knowledge: if a rational 
oalitionhas distributed knowledge that it will su

eed, then it has distributed knowledgeabout a winning strategy � but not ne
essarily the other way around. For mutualknowledge, the relationship holds neither way.In what follows, we use |=etsl and |=
sl to denote the etsl and 
sl satis-fa
tion relation, respe
tively.4 We use the term ��nite model� to denote a 
egs with a �nite set of states St.



4.1 Rational Play of Individual AgentsWe begin with two important lemmas.Lemma 1. Given a �nite model M , state q in M , formula Φ and agent a, thereis a strategy sa whi
h is undominated wrt M, q, Φ.Proof. First, we 
onsider the simpler 
ase when the set of a
tions Act is �nite.In su
h a 
ase, the set of strategies is also �nite, and the dominan
e relationis transitive and antire�exive. Suppose that every strategy is dominated; then,there must be a strategy whi
h is dominated by itself � a 
ontradi
tion.We sket
h the proof for in�nite Act as follows. We partition the in�nite set ofstrategies into equivalen
e 
lasses, su
h that strategies in the same 
lass have thesame out
ome paths for every state q (i.e., sa ≈ ta i� ∀qout(q, sa) = out(q, ta)).Obviously, if sa dominates ta, then all strategies s′a ≈ sa dominate ta too. Now,at every state q (and therefore at every point on a path from out(q′, sa)) there is a�nite number of possible sets of su

essor states (the a
tual set being determinedby the 
hoi
e sa(q)). Moreover, the same 
hoi
e must be taken at every furthero

urren
e of the same state q on a path, sin
e sa is a memoryless strategy. In
onsequen
e, there is only a �nite number of di�erent sets of out
ome paths, andhen
e a �nite number of the equivalen
e 
lasses. Again, dominan
e is transitiveand antire�exive, so an undominated strategy must exist.Remark 4. Note that the result in Lemma 1 does not extend to 
egs with in�nitestate spa
es. Consider the game of �Fuzzy Bla
kja
k� (
alled so all the morebe
ause our robots play it usually after having 
onsumed too mu
h ma
hineoil). Only a single player is ne
essary, and we use positive real numbers as statesand a
tions (i.e., St = Act = R+). When the player 
hooses a number in state
q, the number is added to the state: o(q, α) = q + α. The values below 1 arethe winning ones, i.e. π(win) = (0, 1) (it should be 21, but this would makethe game too 
ompli
ated for a drunken robot). Moreover, the robot 
annotdistinguish between the states below 1: q ∼a q

′ for all q, q′ ∈ (0, 1). Now, thereis no undominated strategy wrt 0.5, gwin.To prove this, suppose that a strategy sa is undominated. The strategy isuniform, so sa(q) = α for some α ∈ R+ and all q ∈ (0, 1). Obviously, α ∈ (0, 1),be
ause else sa never su

eeds. Now, the set of states in whi
h sa is su

essfulis: succ0.5, gwin(sa) = (0, 1− α). Let ta(q) = q + α/2. Now, succ0.5, gwin(ta) =

(0, 1 − α/2) ! succ0.5,Φ(sa) � a 
ontradi
tion. Note also that:� If we repla
e R+ with the set of positive rational numbers, the result is thesame. So, there may be no undominated strategies even when we restri
t Stand Act to 
ountable sets.� In order to show the same for 
ountable St and �nite Act, it is su�
ientto modify the example so that Act = {0, 1, call}, and the initial state andevery subsequent a
tion α = 0, 1 are simply stored in the resulting state.Now o(q, call) takes the initial state q0 and the string of 0s and 1s α1, ..., αnstored in q, and returns q′ = q0 + (0.α1...αn1)2. For su
h a game, there is noundominated strategy wrt 0.5,♦win.



Lemma 2. Given M, q, Φ, a, if there is an undominated strategy wrt M, q, Φ,then there is also an undominated strategy wrtM, q′, Φ for every q′ ∈ img(q,∼a).Proof. Take any sa undominated wrt M, q, Φ (*). Suppose now that sa is domi-nated by some strategy ta wrt another state q′ ∈ img(q,∼a) (**).1. By (*) and Prop. 2: ∀q′′∈img(q,∼a) (out(q′′, ta) ⊆ |Φ| ⇒ out(q′′, sa) ⊆ |Φ|).2. By (**) and Prop. 2: ∃q′′∈img(q′,∼a) (out(q′′, ta) ⊆ |Φ| ∧ out(q′′, sa) 6⊆ |Φ|).Moreover, img(q,∼a) = img(q′,∼a) be
ause is ∼a is an equivalen
e relation �whi
h gives a 
ontradi
tion between (1) and (2).Remark 5. We note that Lemma 2 may hold even for indistinguishability re-lations that are not equivalen
es. In fa
t, it is su�
ient to require that ∼ais transitive. In that 
ase, q′ ∈ img(q,∼a) and q′′ ∈ img(q′,∼a) implies that
q′′ ∈ img(q,∼a), and we also get the 
ontradi
tion.We are ready to prove the main 
laim of this paper now.Theorem 1. Let us 
onsider only �nite models, and formulae Φ ≡ gψ,�ψ, or
ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etsl formulae. An agent has a strategy �dere� to enfor
e Φ if, and only if, he knows that his rational play will bring about
Φ. Formally, for every �nite M and state q in M :

M, q |=etsl Ka〈〈a〉〉Φ i� M, q |=
sl Ka〈〈a〉〉Φ.Proof. Indu
tion on the stru
ture of Φ. We prove the theorem for the 
ase Φ ≡
�ψ. Other 
ases are analogous.
⇒: Let M, q |=etsl Ka〈〈a〉〉�ψ. Then, ∀q′∈img(q,∼a)M, q′ |=etsl 〈〈a〉〉�ψ, andhen
e M, q |=etsl 〈〈a〉〉�ψ in parti
ular. By Lemmas 1 and 2, there is a strategy
sa, undominated wrt M, q′,�ψ for every q′ ∈ img(q,∼a).Then: ∀q′∈img(q,∼a)∀Λ∈out(q′,sa)∀iM,Λ[i] |=etsl �ψ. By the indu
tion hypothe-sis, also ∀q′∈img(q,∼a)∀Λ∈out(q′,sa)∀iM,Λ[i] |=
sl ψ. Thus, ∀Λ∈out(img(q,∼a),sa)∀i
M,Λ[i] |=
sl ψ and so M, img(q,∼a) |=
sl 〈〈a〉〉�ψ, and �nally M, q |=
sl
Ka〈〈a〉〉�ψ.
⇐: Let M, q |=
sl Ka〈〈a〉〉�ψ, i.e. M, img(q,∼a) |=
sl 〈〈a〉〉�ψ. Consider q′ ∈
img(q,∼a). By transitivity of ∼a, we have img(q′,∼a) ⊆ img(q,∼a), so also
∀q′∈img(q,∼a)M, img(q′,∼a) |=
sl 〈〈a〉〉�ψ. Then, for every q′ ∈ img(q,∼a), theremust be sa su
h that ∀q′′∈img(q′,∼a)∀Λ∈out(q′′,sa)∀iM,Λ[i] |=
sl ψ, and hen
e (byindu
tion) ∀q′′∈img(q′,∼a)∀Λ∈out(q′′,sa)∀iM,Λ[i] |=etsl ψ. So, succq′,�ψ(sa) =
img(q′,∼a), and therefore succq′,�ψ(ta) = img(q′,∼a) for every other undomi-nated strategy ta (otherwise ta would be dominated by sa). Thus, M, q′ |=etsl
〈〈a〉〉�ψ for every q′ ∈ img(q,∼a), and �nally M, q |=etsl Ka〈〈a〉〉�ψ.Theorem 2. More generally, for every Φ as above, and M, q su
h that thereexists an undominated strategy wrtM, q, Φ: M, q |=etsl Ka〈〈a〉〉Φ i�M, q |=
sl
Ka〈〈a〉〉Φ.



4.2 Rational Coalitions Are at DisadvantageBeside some philosophi
al insight into the nature of knowledge and rationalplay, Theorems 1 and 2 provide us with an alternative way of de
omposingstrategi
 abilities under in
omplete information into a strategi
 and epistemi
part. The de�nition of the strategi
 dimension is more sophisti
ated and lessstraightforward than usually; on the other hand, we do not pay the pri
e of a non-standard satisfa
tion relation. Unfortunately, su
h de
omposition is not validany more when abilities of 
olle
tive agents are 
on
erned. Now, the relationshipis mu
h more limited: if a 
oalition has 
ommon knowledge how to play, thenit has also 
ommon knowledge that rational play will be su

essful; the samedoes not hold for other types of 
olle
tive knowledge. Moreover, the 
onverserelationship is guaranteed for distributed knowledge, but not for 
ommon normutual knowledge.Theorem 3. Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etslformulae. Then, if a 
oalition has 
ommon knowledge how to play, then it has
ommon knowledge that rational play will be su

essful:if M, q |=
sl CA〈〈A〉〉Φ then M, q |=etsl CA〈〈A〉〉Φ.The same holds for neither mutual nor distributed knowledge.Proof. Common knowledge: Let M, q |=
sl KA〈〈A〉〉�ψ, i.e. M, img(q,∼CA)
|=
sl 〈〈A〉〉�ψ. Consider q′ ∈ img(q,∼CA). We have img(q′,∼EA) ⊆ img(q′,∼CA) ⊆
img(q,∼CA), so also ∀q′∈img(q,∼C

A
)M, img(q′,∼EA) |=
sl 〈〈A〉〉�ψ. Then, for every

q′ ∈ img(q,∼CA), there must be SA su
h that ∀q′′∈img(q′,∼E

A
)∀Λ∈out(q′′,SA)∀iM,Λ[i]

|=
sl ψ, and hen
e (by indu
tion) ∀q′′∈img(q′,∼E

A
)∀Λ∈out(q′′,SA)∀iM,Λ[i] |=etsl

ψ. So, succq′,�ψ(SA) = img(q′,∼EA), and therefore succq′,�ψ(TA) = img(q′,∼EA)for every other undominated strategy TA (otherwise TA would be dominatedby SA). Thus, M, q′ |=etsl 〈〈A〉〉�ψ for every q′ ∈ img(q,∼CA), and �nally
M, q |=etsl CA〈〈A〉〉�ψ.Mutual knowledge: for a 
ounterexample, 
onsider a modi�
ation of the gamefrom Figure 1, in whi
h a third robot c is introdu
ed. The robot 
an only exe
ute
nop, and its epistemi
 relation ∼c= {(q, q) | q ∈ St}∪{(qKQ, qKA), (qKA, qKQ)},i.e. c 
an distinguish all states ex
ept qKQ, qKA. Moreover, the transition fun
tionis slightly 
hanged: now, o(qKA, keep, nop) = qw. For the resulting systemM1, wehave thatM1, qAQ |=
sl E{b,c}〈〈b, c〉〉 gwin, but at the same timeM1, qAQ 6|=etsl
E{a,c}〈〈a, c〉〉 gwin be
ause M1, qKQ 6|=etsl 〈〈a, c〉〉 gwin.Distributed knowledge: analogously, M1, qKQ |=
sl D{b,c}〈〈b, c〉〉 gwin, yet
M1, qKQ 6|=etsl D{a,c}〈〈a, c〉〉 gwin be
ause M1, qKQ 6|=etsl 〈〈a, c〉〉 gwin.Theorem 4. Let Φ ≡ gψ,�ψ, or ψ1 U ψ2 where ψ, ψ1, ψ2 are �vanilla� etslformulae, and let M be a �nite 
egs.5 Then, if A have distributed knowledge5 Alternatively, we 
an request that A have at least one undominated strategy forevery relevant state.
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Fig. 2. (A) Model M2: four agents a, b, c, d, epistemi
 relations shown with the dashedlines, Act = {1, 2, 3, 4}. Transitions: o(qi, j, j, j, j) = qw for j 6= i, otherwise the systempro
eeds to the �losing� state ql; (B) Model M3: two agents a, b, two a
tions 1, 2.The tuples of a
tions that are absent in the graph lead to ql.that rational play will bring about Φ, then they have distributed knowledge howto play to bring about Φ. Formally:if M, q |=etsl DA〈〈A〉〉Φ then M, q |=
sl DA〈〈A〉〉Φ.The same holds for neither mutual nor 
ommon knowledge.Proof. (sket
h) Distributed knowledge: the proof is analogous to the proofsof Lemma 2 and Theorem 1 (part ⇒), as we 
an exploit the fa
t that ∼DA istransitive, and img(q,∼DA ) ⊆ img(q,∼EA).Mutual knowledge: for a 
ounterexample, 
onsider modelM2 from Figure 2A.Let q denote the state �opposite� to q, i.e. q1 = q3, q2 = q4 et
. Furthermore,let Si
Agt denote the strategy of playing 〈i, i, i, i〉 in all states. Now, Si

Agt is theonly undominated strategy wrt qi, gwin for i = 1, ..., 4, and S1
Agt, ..., S

4
Agt areexa
tly the strategies undominated wrt q0, gwin. So, M2, qi |=etsl 〈〈Agt〉〉 gwinfor every i = 0, 1, ..., 4, and therefore M2, q0 |=etsl EAgt〈〈Agt〉〉 gwin. On theother hand, there is no single strategy that su

eeds for all q0, q1, ..., q4.Common knowledge: 
onsider model M3 from Figure 2B. Let S{a,b} be thestrategy �play 〈1, 1〉 everywhere�, and T{a,b} be �play 〈2, 2〉 everywhere�. Notethat S{a,b} is the only undominated strategy wrt q, gwin for q = q0, q1, and T{a,b}is the only undominated strategy wrt q, gwin for q = q2, q3. Thus, for every q =

q0, ..., q3: M3, q |=etsl 〈〈a, b〉〉 gwin, and hen
e M3, q1 |=etsl C{a,b}〈〈a, b〉〉 gwin.On the other hand, M3, q1 6|=
sl C{a,b}〈〈a, b〉〉 gwin.5 Con
lusionsIn this paper, the relationship between rational play and knowing how to playis investigated in a formal way. To this end, we dust o� Epistemi
 TemporalStrategi
 Logi
 by van Otterloo and Jonker [13℄, and propose a simpler semanti
sexpressed entirely in terms of 
on
urrent epistemi
 game stru
tures and theirstates; we prove that the new semanti
s is equivalent to the original one for



�vanilla� etsl formulae. Etsl serves as a devi
e for talking about the out
omeof rational play (in the sense that agents are assumed to play only undominatedstrategies). To 
apture properties of the other kind (�knowing how to play�), weuse the re
ent proposal of Constru
tive Strategi
 Logi
 [8, 9℄.The main result of this paper states that, for �nite models, a rational playerknows that he will su

eed if, and only if, he knows how to su

eed. We alsoshow that the relationship is mu
h more limited for rational 
oalitions. That is,if rational agents have 
ommon knowledge about a winning strategy, then theyhave 
ommon knowledge that they will su

eed � but the 
onverse is not guar-anteed any more. Moreover, it turns out that the relationship is stri
tly reversefor distributed knowledge: if a rational 
oalition has distributed knowledge thatit will su

eed, then it has distributed knowledge about a winning strategy �but not ne
essarily the other way around. Finally, for mutual knowledge, therelationship does not hold either way in general. This is a 
urious result, andone that may lead to interesting philosophi
al 
on
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