
What Agents Can Probably Enforce

Nils Bulling and Wojciech Jamroga

Department of Informatics, Clausthal University of Technology, Germany
bulling,wjamroga@in.tu-clausthal.de

Abstract. Alternating-time Temporal Logic (ATL) is probably the most influen-
tial logic of strategic ability that has emerged in recent years. The idea of ATL
is centered around cooperation modalities: 〈〈A〉〉γ is satisfied if the group A of
agents has a collective strategy to enforce temporal property γ against the worst
possible response from the other agents. So, the semantics of ATL shares the
“all-or-nothing” attitude of many logical approaches to computation.
Such an assumption seems appropriate in some application areas (life-critical sys-
tems, security protocols, expensive ventures like space missions). In many cases,
however, one might be satisfied if the goal is achieved with reasonable likelihood.
In this paper, we try to soften the rigorous notion of success that underpins ATL.

1 Introduction

Alternating-time Temporal Logic (ATL) [1] is probably the most influential logic of
strategic ability that has emerged in recent years. The idea of ATL is centered around
cooperation modalities 〈〈A〉〉: 〈〈A〉〉γ is satisfied if the group of agentsA has a collective
strategy to enforce temporal property γ. That is, 〈〈A〉〉γ holds if A has a strategy that
succeeds to make γ true against the worst possible response from the opponents. So,
the semantics of ATL shares the “all-or-nothing” attitude of many logical approaches
to computation, justified by von Neumann’s maximin evaluation of strategies in classi-
cal game theory [12]. Such an assumption does seem appropriate in some application
areas. For life-critical systems, security protocols, and expensive ventures like space
missions it is indeed essential that nothing can go wrong (provided that the assump-
tions being made are correct). In many cases, however, one might be satisfied if the
goal is achieved with reasonable likelihood. Also, it does not seem right to assume that
the rest of the agents will behave in the most hostile and destructive way; they may be
friendly, indifferent, or simply not powerful enough to do it (for example, due to incom-
plete knowledge). Thus, to evaluate available strategies, a finer measure of success is
needed that takes into account the possibility of a non-adversary response.

A naive (but nevertheless appealing) idea is to evaluate a strategy s by counting
against how many opponents’ responses it succeeds. If the ratio we get is, say, 50%,
we can say that s succeeds in 50% of the cases. Note that this approach is underpinned
by the assumption that each response from the other agents is equally likely; that is,
we in fact assume that those agents play at random. Putting it in another way: As we
do not have any information about the future strategy of the opponents, we assume a
uniform distribution over all possible response strategies. On the other hand, assuming
the uniform distribution is too strong in many scenarios, where the “proponents” may

have a more specific idea of what the opponents will do (obtained e.g. by statistical
analysis and/or learning). In order to properly address the issue, we introduce modalities
〈〈A〉〉p

ωγ that say that agents A have a collective strategy to enforce γ with probability
of at least p ∈ [0, 1], assuming that the expected behavior of the opponents is described
by the prediction symbol ω.

2 Preliminaries

2.1 Alternating-time Temporal Logic

Alternating-time temporal logic (ATL) [1] enables reasoning about temporal properties
and strategic abilities of agents.

Definition 1 (LATL). Let Agt = {a1, . . . , ak} be a nonempty finite set of all agents, and
Π be a set of propositions (we use p, q, r, . . . to denote propositions). LATL(Agt,Π) is
defined by the following grammar (where A ⊆ Agt):

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ where γ ::= gϕ | �ϕ | ϕU ϕ.
Formulae ϕ are called state formulae, and formulae γ path formulae.

Informally, 〈〈A〉〉γ expresses that agents A have a collective strategy to enforce γ.
ATL formulae include the usual temporal operators: g(“next”), � (“always from now
on”), and U (strict “until”). Additionally, ♦ (“sometime in the future”) can be defined
as ♦γ ≡ >U γ. The semantics of ATL is defined by concurrent game structures.

Definition 2 (CGS). A concurrent game structure (CGS) is a tuple
M = 〈Agt,Q ,Π, π,Act, d, o〉, consisting of: a set Agt = {a1, . . . , ak} of agents;
a set Q of states; a set Π of atomic propositions; a valuation of propositions π : Q →
P(Π); and a finite set Act of actions. Function d : Agt × Q → P(Act) indicates the
actions available to agent a ∈ Agt in state q ∈ Q . We often write da(q) instead of
d(a, q), and use d(q) to denote the set da1(q)× · · · × dak

(q) of action profiles in state
q. Finally, o is a transition function which maps each state q ∈ Q and action profile
−→α = 〈α1, . . . , αk〉 ∈ d(q) to another state q′ = o(q,−→α).

In this paper, we will only deal with finite models, i.e., we assume that the sets of
states and actions in each model are finite.

A (memoryless) strategy sa : Q → Act is a conditional plan that specifies what
a ∈ Agt is going to do for every possible situation.1 We denote the set of such functions
by Σa. A collective strategy sA for team A ⊆ Agt specifies an individual strategy for
each agent a ∈ A; the set of A’s collective strategies is given by ΣA =

∏
a∈AΣa. A

path λ = q0q1 . . . in model M is an infinite sequence of states that can be effected
by subsequent transitions. We use λ[n] to denote the nth state in λ; λ[i..j] denotes the
subpath of λ between positions i and j (also for j = ∞). Λ(q) denotes the set of all the
paths starting in state q. Function out(q, sA) returns the set of all paths that may result
from agents A executing strategy sA from state q onward.

1 This is a deviation from the original semantics of ATL [1], where strategies assign agents’
choices to sequences of states. We note, however, that both types of strategies yield equivalent
semantics for “vanilla” ATL [9].

q0

p

q1r q2 s(α
, β

)
(α

′ , β
′) (α, β ′

)
(α ′

, β)

(?, ?)
(?, ?)

Fig. 1. A simple CGS M1 = 〈{1, 2}, {q0, q1, q2}, {r, s}, π, {α, α′, β, β′}, d, o〉; π, d, and o can
be read off from the figure. By ? we refer to any possible action.

Definition 3 (Semantics of ATL). Let M be a CGS, q a state in M , and λ a path in
M . The semantics is given by the satisfaction relation |= as follows:

M, q |= p iff p ∈ π(q) (for p ∈ Π);
M, q |= ¬ϕ iff M, q 6|= ϕ;
M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;
M, q |= 〈〈A〉〉γ iff there is a collective strategy sA such that, for every λ ∈ out(q, sA)

we have M,λ |= γ;
M,λ |= gϕ iff M,λ[1..∞] |= ϕ;
M,λ |= �ϕ iff M,λ[i..∞] |= ϕ for all i ∈ N0;
M,λ |= ϕ1 U ϕ2 iff M,λ[i..∞] |= ϕ2 for some i ≥ 0, and λ[j..∞] |= ϕ1 for all

0 ≤ j ≤ i.

Example 1. Consider a simple two-agent scenario depicted in Figure 1. Agent 1 (resp.
2) can perform actions α and α′ (resp. β and β′). For example, strategy profile (α, β),
performed in q0, leads to state q1 in which r holds. Agent 1 can enforce neither r nor
s on its own: M1, q0 |= ¬〈〈1〉〉 gr ∧ ¬〈〈1〉〉 gs, and neither can agent 2. However, the
agents can cooperate to determine the outcome: M1, q0 |= 〈〈1, 2〉〉 gr ∧ 〈〈1, 2〉〉 gs.

2.2 Probability Theory

In this section we recall some basic notions from probability theory. Let X be a non-
empty set and let F ⊆ P(X) be a set of subsets. F is called a (set) algebra over X
iff: (i) ∅ ∈ F ; (ii) if A ∈ F then also Ā := X \ A ∈ F ; and (iii) if A,B ∈ F
then also A ∪ B ∈ F . F is called a σ-algebra if additionally to (i-iii) it also holds (iv)⋃∞

i=1Ai ∈ F for all A1, A2, · · · ∈ F .
Let S be a σ-algebra over X . We say that a function µ : S → R is a measure (on

S) iff it is non-negative, i.e. µ(A) ≥ 0 for all A ∈ S, and σ-additive, i.e. µ(
⋃∞

i=1Ai) =∑∞
i=1 µ(Ai) whenever each Ai ∈ S. Finally, we say that the measure µ is a probability

measure if µ(X) = 1 and call the triple (X,S, µ) a probability space. By Ξ(S) we
denote the set of all probability measures over S.

Note that whenever X is finite it is sufficient to define the probabilities of the basic
elements x ∈ X . Then, the probability of an event E ⊆ X is given by the sum of
the basic probabilities: µ(E) =

∑
x∈E µ({x}), and the corresponding probability mea-

sure is uniquely determined over the σ-algebra P(X). In such cases, we can also write

µ(x) instead of µ({x}) and Ξ(X) instead of Ξ(P(X)), and also refer to a probability
measure over P(X) as probability measure over X .

3 ATL with Probability

In this section we propose and discuss our new logic pATL (ATL with probabilistic
success). Firstly, we define the syntax and the semantics on an abstract level. Then, we
instantiate the semantics for two different ways of modeling the opponents’ behavior:
namely, by mixed and behavioral memoryless strategies. Finally, we discuss the relation
of pATL to “pure” ATL.

3.1 Syntax

In pATL, cooperation modalities 〈〈A〉〉 of the original ATL are replaced with a richer
family of strategic modalities 〈〈A〉〉p

ω.

Definition 4 (LpATL). The basic languageLpATL(Agt,Π,Ω) is defined over the nonempty
setsΠ of propositions, Agt = {a1, . . . , ak} of agents, andΩ of prediction symbols. The
language consists of all state formulae ϕ defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉
p

ωγ; where γ ::= gϕ | �ϕ | ϕU ϕ,
ω ∈ Ω, and p ∈ [0, 1]. Additional temporal operators are defined as before.

We use p, ω, a,A to refer to a typical proposition, a prediction symbol, an agent, and
a group of agents, respectively. The informal reading of formula 〈〈A〉〉p

ωγ is: Team A
can bring about γ with success level of at least p when the opponents behave according
to ω. The prediction symbols are used to assume some “predicted behavior” of the
opponents.

3.2 Semantics: The Abstract Framework

Now we define the semantics of pATL in a generic way before considering more con-
crete settings. Models for pATL extend concurrent game structures with prediction
denotation functions which, given a group of agents, assign prediction symbols to pre-
dicted behaviors. We use a non-empty set BH to refer to all possible predicted behav-
iors. There are several sensible ways how BH can be instantiated: Mixed and behavioral
strategies provide two well-known possibilities (cf. Sections 3.3 and 3.4).

Definition 5 (Prediction denotation function). Let BH be a non-empty set represent-
ing possible (probabilistic) behaviors of the agents. A prediction denotation function is
a function [[·]] : Ω × P(Agt) → BH where [[ω,A]] denotes a (probabilistic) prediction
of A’s behavior according to the prediction symbol ω ∈ Ω. We write [[ω]]A for [[ω,A]].

Definition 6 (Models of pATL). A concurrent game structure with probability (CGSP)
is given by a tupleM = 〈Agt,Q ,Π, π,Act, d, o,Ω, [[·]]〉where 〈Agt,Q ,Π, π,Act, d, o〉
is a CGS, Ω is a set of prediction symbols, and [[·]] is a prediction denotation function.

Our semantics of 〈〈A〉〉p

ω is based on the generic notion of a success measure. The
measure indicates “how successful” a group of agents is wrt property γ if the opponents
behave according to their predicted behavior. The semantics of pATL, parameterized by
a success measure, updates the ATL semantics from the previous section by replacing
the rule for the cooperation modalities.

Definition 7 (Success measure). A success measure success is a function that takes
a strategy of the proponents sA, a probabilistic prediction [[ω]]Agt\A of the opponents’
behavior, the current state of the system q, and a pATL path formula γ and returns a
score success(sA, [[ω]]Agt\A, q, γ) from [0, 1].

Definition 8 (Semantics of pATL). LetM be a CGSP. The semantics of pATL updates
the clauses from Definition 3 by replacing the clause for 〈〈A〉〉 with the following:

M, q |= 〈〈A〉〉p

ωγ iff there is sA ∈ ΣA such that success(sA, [[ω]]Agt\A, q, γ) ≥ p.

Various success measures may prove appropriate for different purposes; they inher-
ently depend on the type of the prediction denotation functions and therewith on the
possible predicted behaviors represented by BH.

3.3 Opponents’ Play: Mixed Strategies

As the first instantiation of the generic framework, we consider mixed memoryless
strategies which are probability distributions over pure memoryless strategies of the
opponents. This notion of behavior fits well our initial intuition of counting the favor-
able opponents’ responses in order to determine the success level of a strategy.

Definition 9 (Mixed memoryless strategy). A mixed memoryless strategy (mms) σA

for A ⊆ Agt is a probability measure over P(ΣA).

Definition 10 (mms denotation function). A mms denotation function is a prediction
denotation function with BH =

⋃
A⊆AgtΞ(ΣA), such that [[ω]]A ∈ Ξ(ΣA). [[ω]]A(s)

denotes the probability that s will be played by A according to the prediction symbol ω.

In this paper, we take the success measure of a mms wrt property γ to be the ex-
pected probability of making γ true. For this purpose, we first define the outcome of a
strategy.

Definition 11 (Outcome of a strategy against a mms). The outcome of strategy sA

against a mixed memoryless strategy σAgt\A at state q is the probability measure over
Λ(q) given by:

O(sA, σAgt\A, q)(λ) :=
∑

t∈Resp(sA,λ)

σAgt\A(t)

where Resp(sA, λ) = {t ∈ ΣAgt\A | λ ∈ out(q, 〈sA, t〉)} is the set of all response
strategies t of the opponents, that, together with A’s strategy sA, result in path λ.2

2 Note that for a deterministic strategy profile 〈sA, tAgt\A〉 the outcome set contains exactly one
path.

Thus,O(sA, σAgt\A
, q)(λ) sums up the probabilities of all responses inResp(sA, λ),

for each path λ. In consequence, O(sA, σAgt\A
, q)(λ) denotes the probability that the

opponents will play a strategy resulting in λ. Note also that, when memoryless strate-
gies are played, the same action vector is performed every time a particular state is
revisited, which restricts the set of paths than can occur.

Definition 12 (Minimal periodic path, Λmp(q)). We say that a path λ ∈ Λ(q) is
minimal periodic if, and only if, the path can be written as λ = λ[0, j]λ[j+1, i] . . . λ[j+
1, i] where i ∈ N0 is the minimal natural number such that there is some j < i and
λ[i] = λ[j]. The set of all minimal periodic paths starting in q is denoted by Λmp(q).
We note that, for a finite model, the set Λmp(q) consists of only finitely many paths.

Proposition 1. O(sA, σAgt\A, q) is a probability measure over Λ(q) and over Λmp(q).

Proof. That O(sA, ·, q) is non-negative follows from the fact that σAgt\A(t) ≥ 0 for
all response strategies t. It is easy to see that all non minimal periodic paths have
probability zero since we consider memoryless strategies only. This implies that there
are only finitely many paths with non-zero probability. Thus, O(sA, σAgt\A, q) is σ-
additive, and the following holds: O(sA, σA, q)(Λ(q)) = O(sA, σA, q)(Λmp(q)) =∑

λ∈Λmp(q)

∑
t∈Resp(sA,λ) σB(t) =

∑
t∈ ˆResp(sA) σB(t) where ˆResp(sA) consists of

all strategies t ∈ ΣB such that there is a path λ ∈ Λmp(q) with λ ∈ out(q, 〈sA, t〉). But
then ˆResp(sA) = ΣB and thus the sum is equal to 1. ut
Definition 13 (Success measure with mms). The success measure against mixed mem-
oryless strategies is defined as below:

success(sA, σAgt\A, q, γ) =
∑

λ∈Λ(q)

holdsγ(λ) · O(sA, σAgt\A, q)(λ),

where holdsγ(λ) =

{
1 if M,λ |= γ

0 else.

Function holdsγ : Λ → {0, 1} can be seen as a characteristic function of the path
formula γ: It indicates, for each path λ, whether γ holds on λ or not.

By Proposition 1, success(sA, σAgt\A, q, γ) is indeed an expected value, and it is actu-
ally defined by a finite sum. Moreover, measuring the success of strategy sA by count-
ing the favorable vs. all responses of the opponents is a special case, obtained by setting
[[ω]]Agt\A to the uniform probability distribution over ΣAgt\A.

Example 2. Consider the system from Example 1. We have discussed in Section 2.1
that 1 is able to enforce neither r nor s. However, it might be the case that additional
information about 2’s behavior is available, namely that 2 plays action β′ more often
than β (say, seven out of every ten times). This kind of observation can be formalized
by a probability measure σ over {β, β′} with σ(β) = 0.3 and σ(β′) = 0.7.

Using ATL, it was not possible to state any “positive” fact about 1’s power. pATL
allows a finer-grained analysis. We can now state that 1 can enforce any outcome (r or s)
with probability at least 0.7. Formally, let [[ω]]2 = σ. We have thatM, q0 |= 〈〈1〉〉0.7

ω
gr∧

〈〈1〉〉0.7

ω
gs. If 1 desires r, he should play α′ since 〈α′, β′〉 leads to r; otherwise the agent

should select action α in q0.

3.4 Opponents’ Play: Behavioral Strategies

In this section we present an alternative instantiation of the semantics, where the predic-
tion of opponents’ play is based on the notion of behavioral strategies (which follows
the Markovian assumption that the probability of taking an action depends only on the
state where it is executed). We show that the semantics is well defined for pATL.

Definition 14 (Behavioral strategy). A behavioral strategy for A ⊆ Agt is a function
βA : Q →

⋃
q∈Q Ξ(dA(q)) such that βA(q) is a probability measure over dA(q), i.e.,

βA(q) ∈ Ξ(dA(q)). We use BA to denote the set of behavioral strategies of A.

Definition 15 (Behavioral strategy denotation function). A behavioral strategy de-
notation function is a prediction denotation function with BH =

⋃
A⊆Agt BA, such that

[[ω]]A ∈ BA. Thus, [[ω]]A(q)(−→α) denotes the probability that the collective action −→α
will be played by agents A in state q according to the prediction symbol ω.

As in the case of mixed memoryless strategies (cf. Definition 11), the outcome of
a strategy against behavioral predictions is a probability measure over paths. However,
the setting is more complicated now. For mixed predictions it suffices to consider a
probability distribution over the finite set of pure strategies which induces a probability
measure over the set of paths. Indeed, only finite prefixes of paths, namely the non-
looping parts, are relevant for the outcome. For behavioral strategies, actions (rather
than strategies) are probabilistically determined, which makes it possible for different
actions to be executed when the system returns to a previously visited state. Thus, the
probability of a specific set of paths depends on the whole paths that belong to the set.

To define the outcome of a behavioral strategy we first need to define the probability
space induced by the probabilities of one-step transitions; to this end, we follow the
construction from [8]. Recall that Λ(q) denotes the set of all infinite paths starting in
q. The probability of a set of paths is defined inductively by consistently assigning
probabilities to all finite initial segments (prefixes) of a path. The intuition is that prefix
h can be used to represent the set of infinite paths that extend h. By imposing closure
wrt complement and (countable) union, we obtain a probability measure for some sets
of paths. Of course, not every set of paths can be constructed this way, but we prove (in
Proposition 2) that all the relevant sets can.

We use Λn(q) to denote the set of finite prefixes (histories) of length n of the paths
from Λ(q); note that Λn(q) is always finite for finite models. Now, we define Fn(q)
and F(q) to be the following sets of subsets of Λ(q):

Fn(q) :=
{
{λ | λ[0, n− 1] ∈ T}

∣∣ T ⊆ Λn(q)
}

and F(q) :=
∞⋃

n=0

Fn(q).

That is, for each set of prefixes T ⊆ Λn(q), the set Fn(q) includes the set of all their
infinite extensions. Note that every Fn(q) is a σ-algebra. Each element S of Fn(q)
(often called cylinder set) can be written as a finite union of basic cylinder sets [hi] :=
{λ ∈ Λ(q) | hi ≤ λ} where hi ∈ Λn(q) is a history of length n and hi ≤ λ denotes
that hi is an initial prefix of λ; so, S =

⋃
i[hi] for appropriate hi ∈ Λn(q). We use these

basic cylinder sets to define an appropriate probability measure.

A basic cylinder set [hi] consists of all extensions of hi; hence, the probability
that one of hi’s extensions λ ∈ [hi] will occur is equal to the probability that hi will
take place. Given a strategy sA and a behavioral response βAgt\A

, the probability for
[hi], hi = q0 . . . qn, is defined as the product of subsequent transition probabilities:

νsA

βAgt\A
([hi]) :=

n−1∏
i=0

∑
−→α∈Act(sA,qi,qi+1)

βAgt\A
(qi)(−→α)

where Act(sA, qi, qi+1) = {−→α ∈ dAgt\A
(qi) | qi+1 = o(qi, 〈sA(qi),−→α 〉)} consists

of all action profiles which can be performed in qi and which lead to qi+1 given the
choices sA of agents A. According to [8], function νsA

βAgt\A
is uniquely defined on F(q)

and the restriction of νsA

βAgt\A
to Fn(q) is a measure on Fn(q) for each n. Still, F(q) is

not a σ-algebra.
Therefore, we take S(q) to be the smallest σ-algebra containing F(q) and extend

νsA

βAgt\A
to a measure on S(q) as follows:

µsA

βAgt\A
(S) := inf

C∈H(S)

{
νsA

βAgt\A

(⋃
C

)}
where S ∈ S(q) and H(S) denotes the denumerable set of coverings of S by basic
cylinder sets. That is, H(S) consists of sets {[h1], [h2], . . . } such that S ⊆

⋃
i[hi].

According to [8], we have that (Λ(q),S(q), µsA

βAgt\A
) is a probability space. Actually,

µsA

βAgt\A
is the unique extension of νsA

βAgt\A
on Fn(q) to the σ-algebra S(q) [8, Theorem

1.19]; in particular, this means that both measures coincide on all sets from F(q). We
refer to µsA

βAgt\A
as the probability measure on S(q) induced by the pure strategy sA and

the behavioral strategy βAgt\A
.

Definition 16 (Success measure with behavioral memoryless strategies). Like in the
previous section, the success measure of strategy sA wrt the formula γ is defined as the
expected value of the characteristic function of γ (i.e., holdsγ) over (Λ(q),S(q), µsA

βAgt\A
).

success(sA, βAgt\A
, q, γ) := E[holdsγ] =

∫
Λ(q)

holdsγdµ
sA

βAgt\A
.

Note that the formulation uses a Lebesgue integral over the σ-algebra S(q). Now we
can show that the semantics of pATL with behavioral strategies is well-defined. We first
prove that holdsγ is S(q)-measurable (i.e., every preimage of holdsγ is an element of
S(q) and thus can be assigned a measure); then, we show that holdsγ is integrable.

Proposition 2. Function holdsγ is S(q)-measurable and µsA

βAgt\A
-integrable for any

pATL-path formula γ.

Proof. In particular, we have to show that holds−1
γ (A) := {λ ∈ Λ(q) | holdsγ(λ) ∈

A} is measurable for every A ⊆ {0, 1} (i.e., holds−1
γ (A) ∈ S(q)). The cases ∅ and

{0, 1} are trivial. The case for {0} is clear if we have shown it forA = {1} (cf. property

(ii) of σ-algebras, Section 2.2). Therefore, let fγ := holds−1
γ ({1}). The proof proceeds

by structural induction on γ.
I. Case “�”: (i) Let γ = �p where p is a propositional logic formula (e.g. p = r∧¬s).
We define L�p

n := {λ ∈ Λ(q) | ∀i ∈ N0(0 ≤ i < n → M,λ[i] |= p}. We have that
each L�p

n ∈ Fn(q) ⊆ S(q) and that
⋂

n∈N L
�p
n = fγ ; hence, also that fγ ∈ S(q)

because of property (ii) and (iv) of σ-algebras (cf. Section 2.2). That fγ is integrable
follows from Lebesgue’s Dominated Convergence Theorem: fγ is measurable and |fγ |
is bounded by the µsA

βAgt\A
-integrable (constant) function 1. (ii) Let γ = �〈〈B〉〉p

ω′γ′ and

suppose fγ′ is already proven to be integrable. Then, L
�〈〈B〉〉

p

ω′γ
′

n can be defined in the
same way as above. (iii) Suppose that for each sub path formula γ′ contained in ϕ1 and
ϕ2 we have proven that fγ′ is integrable, then Lγ

n can be defined in the same way as
above for γ = �¬ϕ1 and γ = �(ϕ1 ∧ ϕ2).
II. Case “ g”: Similar to I(i) we define L

gp
n := {λ ∈ Λ(q) | n > 1 and M,λ[1] |=

p}. Then, we have that
⋃

n∈N L
gp

n = f gp
∈ S(q). The rest of the proof is done

analogously to I.
III. Case “U ”: Here, we also just consider the part corresponding to I(i). We set
LpU q

n := {λ ∈ Λ(q) | ∃j(0 ≤ j < n → (M,λ[j] |= q ∧ ∀i ∈ N0(0 ≤ i <
j →M,λ[i] |= p))}; then, we have that

⋃
n∈N0

LpU q
n = fpU q ∈ S(q). ut

Note that pATL with behavioral strategies can be seen as a special case of the
multi-agent Markov Temporal Logic MTL from [7], since 〈〈A〉〉p

ωγ can be rewritten as
the MTL formula p 4 (strAgt\Aω)〈〈A〉〉γ.

3.5 Relationship to ATL

Firstly, we observe that an analogous success measure can be constructed for ATL:

successATL(sA, q, γ) = min
λ∈out(sA,q)

{holdsγ(λ)}.

Then, M, q |=ATL 〈〈A〉〉γ iff there is a sA ∈ ΣA such that successATL(sA, q, γ) = 1.
Thus, the abstract framework can be instantiated in a way that embraces the original
semantics of ATL. Alternatively, we can try to embed ATL in pATL using the proba-
bilistic success measures we have already defined.

Embedding ATL in pATL with Mixed Strategies We consider pATL with mixed
memoryless strategies. The idea is to require that every response strategy has a non-
zero probability. Note that a given CGSP M induces a CGS M ′ in a straightforward
way: Only the set of prediction symbols and the prediction denotation function must be
left out. In the following we will also use CGSP’s together with ATL formulae (without
probability) by implicitly considering the induced CGS’s.

Theorem 1. Let γ be an ATL path formula with no cooperation modalities, and let ω be
a prediction symbol describing a mixed memoryless strategy such that [[ω]]Agt\A(t) > 0
for every t ∈ ΣAgt\A. Then, for all models M and states q in M it holds that:

M, q |=ATL 〈〈A〉〉γ iff M, q |=pATL 〈〈A〉〉1ωγ.

q1 q2 p
(α, β)

(α, α) (α, α)

Fig. 2. CGS M2 with actions α and β. The ? ∈ {α, β} refers to any of the two actions.

Proof. Let Ā := Agt\A forA ⊆ Agt. “⇒”: Assume that sA ∈ ΣA and that for all λ ∈
out(q, sA) it holds that M,λ |= γ. Now suppose that M, q 6|=pATL 〈〈A〉〉1ωγ. In particular
that would mean that success(sA, σA, q, γ) =

∑
λ∈Λ(q) holdsγ(λ)·

∑
t∈Resp(sA,λ) σĀ(t) <

1. This can only be caused by two cases: (1) There is a path λ ∈ Λ(q) a strategy
t ∈ Resp(sA, λ) with σĀ(t) > 0 and holdsγ(λ) = 0. But then λ ∈ out(q, sA) contra-
dicts the assumption that sA is successfully.
(2) There is a strategy t ∈ ΣĀ with σĀ(t) > 0 and for all λ ∈ Λ(q) it holds that
t 6∈ Resp(sA, λ) (*). But there must be a path λ with {λ} = out(q, (sA, t)) and thus
t ∈ Resp(sA, λ), which contradicts (*).

“⇐”: Assume that sA ∈ ΣA and success(sA, σA, q, γ) = 1. Suppose that there is a
path λ ∈ out(q, sA) with M,λ 6|= γ. This means that strategy t with out(q, (sA, t)) =
{λ} is in Resp(sA, λ) but plays no role in the calculation of the success value since
holdsγ(λ) = 0. This contradicts the assumption that success(sA, σA, q, γ) = 1. ut

Condition [[ω]]Agt\A(t) > 0 ensures that no “bad response” of the opponents is ne-
glected because of zero probability. Since we only deal with finite models, the uniform
distribution over ΣA is always well defined.

Corollary 1. Let uA be a prediction symbol that denotes the uniform distribution over
strategies of the agents inA, and let tr(ϕ) replace all occurrences of 〈〈A〉〉 by 〈〈A〉〉1uAgt\A

in ϕ. Then, M, q |=ATL ϕ iff M, q |=pATL tr(ϕ).

ATL vs. pATL with Behavioral Strategies In Theorem 1 we have shown that, un-
der the semantics based on mixed response strategies, the ATL operator 〈〈A〉〉 can be
replaced by 〈〈A〉〉1ω if all response strategies have non-zero probability according to ω.
One could expect the same for behavioral strategies if it is assumed that each “response
action” is left possible; however, an analogous result does not hold. That is because we
consider probabilities over all infinite paths in the system, which makes for a contin-
uous probability space. Thus, the probability that a particular path will occur is zero,
while it still can occur, cf. Example 3. Proposition 3 is an immediate corollary: pATL
with behavioral predictions cannot simulate plain ATL operators in a straightforward
way. Still, as Proposition 4 shows, that can be done in the subclass of acyclic CGS (the
result will become important for the model checking analysis in Section 4.2).

Example 3. Let M ′
2 be the CGSP based on CGS M2 shown in Figure 2. Note that

M, q1 |= ¬〈〈a1〉〉♦p. What happens if agent a2 behaves according to a behavioral
strategy? Let βa2 be the behavioral strategy specified as follows: βa2(q1)(α) = ε,

βa2(q1)(β) = 1− ε, and βa2(q2)(α) = 1 where 0 < ε < 1. This behavioral strategy as-
signs non-zero probability to all actions of a2. Then, for a symbol ω with [[ω]]a2 = βa2

we have that M, q1 |= 〈〈a1〉〉1ω♦p. Thus, a1 has a strategy which guarantees ♦p with
expected probability 1. The reason for that is due to the fact that the only possible path
which can prevent ♦p is q1q1q1 But the probability that this is going to happen is
limn→∞

∏n
i=1 ε = 0.

Proposition 3. There is an ATL path formula γ, a model M and a state q such that
M, q |=ATL ¬〈〈A〉〉γ but M, q |=pATL 〈〈A〉〉1ωγ for every behavioral strategy.

Let us define a sink state as a state with a loop to itself being the only outgoing
transition. A CGS (resp. CGSP) is acyclic iff it contains no cycles except for the loops
at sink states. Such a model includes only a finite number of paths, so the following
proposition can be proven analogously to Theorem 1.

Proposition 4. Let M be an acyclic CGS and ω denote a behavioral prediction for
Agt \ A in which every action is possible (i.e., [[ω]]Agt\A(q)(−→α) > 0 for every q ∈
Q ,−→α ∈ dAgt\A(q)). Then, M, q |=ATL 〈〈A〉〉γ iff M, q |=pATL 〈〈A〉〉1ωγ.

4 Model Checking

In this section, we discuss the complexity of model checking formulae of our “ATL
with probabilistic success”. We have presented two alternative semantics for the logic,
underpinned by two different ways of assuming the opponents’ behavior. The semantics
based on mixed strategies seems to be the simpler of the two, as the success measure is
based on a finite probability distribution, and hence can be computed as a finite sum of
elements. In contrast, the semantics based on behavioral strategies refers to an integral
of a continuous probability distribution – so one might expect that checking formulae
of pATL in the latter case is much harder. Surprisingly, it turns out to be the opposite.

4.1 Model Checking pATL with Mixed Opponents’ Strategies

We study the model checking problem with respect to the number of transitions in the
model (m) and the length of the formula (l). As the number of memoryless strategies is
usually exponential in the number of transitions, we need a compact way of representing
mixed strategies (representing them explicitly as arrays of probability values would
yield structures of exponential size). For the rest of this section, we assume that a mixed
strategy is represented as a sequence of pairs [〈C1, p1〉, . . . , 〈Cn, pn〉], where the length
of the sequence is polynomial in m, l, every Ci is a condition on strategies that can
be checked in polynomial time wrt m, l, and every pi ∈ [0, 1] is a probability value
with a polynomial representation wrt m, l. For simplicity, we assume that conditions Ci

are mutually exclusive. The idea is that the probability of strategy s is determined as
p(s) = pi by the condition Ci which holds for s; if no Ci holds for s then the probability
of s is 0. We also assume that the distribution is normalized, i.e.,

∑
s∈Σ p(s) = 1 where

p(s) denotes the probability of s determined by the representation given above.

q11 q13

�

�

�

�

x
1 x

4

�

q�

q

win
q21 q23

�

x
1

x
3

�

�

�

q12

�x
3

q22

x
2

�

�

�

�

Fig. 3. The concurrent epistemic game structure for formula F ≡ (x1∨¬x3∨x4)∧(x1∨x2∨x3).
States q11, q21 and q12, q23 are indistinguishable for the agent: the same action (valuation) must
be specified in both within a uniform strategy.

In this setting, model checking pATL with mixed memoryless strategies turns out
to be at least PP-hard, where PP is the class of decision problems solvable by a prob-
abilistic Turing machine in polynomial time, with an error probability of less than 1/2
for all instances [5]. We prove it by a polynomial-time reduction of “Majority SAT”,
a typical PP-complete problem. Since PP contains both NP and co-NP, we obtain
NP-hardness and co-NP-hardness as an immediate corollary.

Definition 17 (MAJSAT). The problem MAJSAT is formulated as follows: Given a
Boolean formulaF in conjunctive normal form with propositional variables x1, . . . , xn,
answer YES if more than half of all assignments of x1, . . . , xn make F true, and NO
otherwise.

Proposition 5. Model checking pATL with mixed memoryless strategies is PP-hard.

Proof (sketch). We prove the hardness by a reduction of MAJSAT. First, we take the
formula F and construct a single agent concurrent epistemic game structure M in a
way similar to [9]. The model includes 2 special states: q> (the winning state) and q⊥
(the losing state), plus one state for each literal instance in F . The “literal” states are
organized in levels, according to the clause they appear in: qij refers to the jth literal
of clause i. At each “literal” state, the agent can declare the underlying proposition true
or false. If the declaration validates the literal, then the system proceeds to the next
clause; otherwise it proceeds to the next literal in the same clause. For example, if q12
refers to literal ¬x3, then action “true” makes the system proceed to q13 (in search of
another literal that would validate clause 1), while action “false” changes the state to
q21 (to validate the next clause). In case the last literal in a clause has been invalidated,
the system proceeds to q⊥; when a literal in the last clause is validated, a transition to
q> follows. There is a single atomic proposition win in the model, which holds only in
state q>. An example of the construction is shown in Figure 3.

Every two nodes with the same underlying proposition are connected by an indistin-
guishability link to ensure that strategies consistently assign variables x1, . . . , xn with
Boolean values. To achieve this, it is enough to require that only uniform strategies are

used by the agent; a strategy is uniform iff it specifies the same choices in indistinguish-
able states. Now we observe the following facts:

– There is a 1–1 correspondence between assignments of x1, . . . , xn and uniform
strategies of the validating agent. Also, each uniform strategy s determines exactly
one path λ(s) starting from q11;

– By the above, the number of uniform strategies is equal to the number of different
assignments of x1, . . . , xn. Thus, there are D = 2n uniform strategies in total;

– A uniform strategy successfully validates F iff it enforces path λ(s) that achieves
q>, i.e., one for which λ(s) |= ♦win;

– Uniformity of a strategy can be checked in time polynomial wrt m (the number of
transitions in the model). Let C be an encoding of the uniformity condition; then,
mixed strategy [〈C, 1

D 〉] assigns the same importance to every uniform strategy and
discards all non-uniform ones. We define symbol ω to denote that strategy;

– MAJSAT(F)=YES iff # assignments V of x1,...,xn such that V |=F
all assignments of x1,...,xn

≥ 0.5 iff
uniform strategies s such that λ(s)|=♦win

all uniform strategies ≥ 0.5 iff M, q11 |= 〈〈∅〉〉0.5
ω ♦win,

which concludes the reduction. ut

Corollary 2. Model checking pATL with mms’s is NP-hard and co-NP-hard.

For the upper bound, we present a PSPACE algorithm for model checking pATL
with mms’s. The algorithm uses an NP#P procedure, i.e., one which runs in nonde-
terministic polynomial time with calls to an oracle that counts the number of accepting
paths of a nondeterministic polynomial time Turing machine [11]. The class NP#P is
known to lie between PH and PSPACE [10].

Theorem 2. Model checking pATL with mixed memoryless strategies is in PSPACE.

Proof (Sketch). Let γ be a path formula that does not include cooperation modalities.
The following procedure checks if M, q |= 〈〈A〉〉p

ωγ:
1. Nondeterministically choose a strategy sA of agents A; /requires at most m steps/
2. For each 〈Ci, pi〉 ∈ [[ω]], execute Ti := oracle(sA, Ci); /polynomially many calls/
3. Answer YES if

∑
i piTi ≥ p and NO otherwise. /computation polynomial in the represen-

tation of pi and Ti/
The oracle computes the number of Agt\A’s strategies tAgt\A such that tAgt\A obeys Ci

and 〈sA, tAgt\A〉 generate a path that satisfies γ. That is, the oracle counts the accepting
paths of the following nondeterministic Turing machine:
1. Nondet. choose a strategy tAgt\A of agents Agt \A; /requires at most m steps/
2. Check whether tAgt\A satisfies Ci; /polynomially many steps/
3. If so, “trim” modelM by removing choices that are not in 〈sA, tAgt\A〉, then model-

check the CTL formula Aγ in the resulting model and return the answer of that
algorithm; otherwise return NO. /m steps + CTL model checking which is polynomial in m, l [3]/

The main procedure runs in time NP#P, and hence the task can be done in polyno-
mial space [10]. For the case when γ includes nested strategic modalities, the procedure
is applied recursively (bottom-up). That is, we get a deterministic Turing machine with
adaptive calls to the PSPACE procedure. Since PPSPACE = PSPACE, we obtain
the upper bound. ut

4.2 Model Checking pATL with Behavioral Opponents’ Strategies

The semantics of pATL with opponents’ behavior modeled by behavioral strategies
is mathematically more advanced than for mixed strategies. So, one may expect the
corresponding model checking problem to be even harder than the one we studied in
Section 4.1. Surprisingly, it turns out that checking pATL with behavioral strategies
can be done in polynomial time wrt the number of transitions in the model (m) and the
length of the formula (l). Below, we sketch the proceduremcheck(M, q, ϕ) that checks
whether M, q |= ϕ:

– ϕ ≡ p, ¬ψ, or ψ1 ∧ ψ2: proceed as usual;
– ϕ ≡ 〈〈A〉〉p

ω�ψ: (for ϕ ≡ 〈〈A〉〉p

ω
gψ and ϕ ≡ 〈〈A〉〉p

ωψ1 U ψ2 analogously)
1. Model check ψ inM recursively. Replace ψ with a new proposition yes holding

in exactly those states st ∈ Q for which mcheck(M, st, ψ) = YES;
2. ReconstructM as a 2-player CGSPM ′ with agent 1 representing teamA and 2

representing Agt\A. That is, d′1(st) =
∏

a∈A da(st), d′2(st) =
∏

a∈Agt\A da(st)
for each st ∈ Q , and the transition function o′ is updated accordingly.

3. Fix the behavior of agent 2 in M ′ according to [[ω]]Agt\A. That is, construct
the probabilistic transition function o′′ so that, for each st, st′ ∈ Q , α1 ∈
d′1(st): o

′′(st, α1, st
′) =

∑
{α2∈d′2(st)|o′(st,α1,α2)=st′}[[ω]]Agt\A(st, α2). Also,

reconstruct proposition yes as a reward function that assigns 1 at state st if
yes ∈ π′(st) and 0 otherwise. Note that the resulting structure M ′′ is a Markov
Decision Process [2];

4. Model check the formula ∃�yes of “Discounted CTL” [4] in M ′′, q and return
the answer. This can be done in time polynomial in the number of transitions
in M ′′ and exponential in the length of the formula [4]. Note, however, that the
length of ∃�yes is constant.

Since part 2-4 requires O(m) steps, and it is repeated at most l times (once per subfor-
mula of ϕ), we get that the procedure runs in time O(ml).

For the lower bound, we observe that reachability in And-Or-Graphs [6] can be
reduced (in constant time) to model checking of the fixed ATL formula 〈〈a〉〉♦p over
acyclic CGS (cf. [1]). By Proposition 4, this reduces (again in constant time) to model
checking of pATL with behavioral predictions. In consequence, we get the following.

Theorem 3. Model checking pATL with the opponents’ behavior modeled by behav-
ioral memoryless strategies is P-complete with respect to the number of transitions in
the model and the length of the formula.

Thus, it turns out that the model checking problem associated with the more sophis-
ticated semantics can be done in linear time wrt the input size, while model checking
the seemingly simpler semantics is much harder (NP- and co-NP-hard).

5 Conclusions
In this paper, we combine the rigorous approach to success of ATL with a quantitative
analysis of the possible outcome of strategies. The resulting logic goes well beyond
the usual ”all-or-nothing” reasoning: Instead of always looking at the opponents’ most

dangerous response, we assume them to select strategies according to some probability
measure. To this end, we define new cooperation modalities 〈〈A〉〉p

ωγ with the intuitive
reading that group A has a strategy to enforce γ with probability p assuming that the
opponents behave according to the predicted behavior denoted by ω. Although we in-
troduce two specific notions of success (one based on mixed response strategies, the
other on behavioral predictions), the idea of the success measure is generic and can be
implemented according to the designer’s needs. This enables the framework to be used
in a very flexible way and in various scenarios.

We show that the semantics of pATL based on mixed responses embeds ATL, while
the semantics of pATL based on behavioral responses does not (or, at least, not in a
straightforward way). Furthermore, we prove that model checking pATL with mixed
responses is located between PP and PSPACE, while the same problem for behav-
ioral predictions can be done in linear time wrt the input size (i.e., no worse than for
original ATL). Thus, we obtain the surprising result that the first semantics (which
looked more intuitive and less mathematically advanced at the first glance) turns out
to be considerably handicapped in terms of complexity when compared to the other
semantics.

We thank Valentin Goranko and the anonymous referees for their comments and
discussion, and Hendrik Baumann for his help. The research was partially conducted
within the Polish development project no. O R000024 04.

References
1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic. Journal of

the ACM, 49:672–713, 2002.
2. R. Bellman. A Markovian decision process. Journal of Mathematics and Mechanics, 6:679–

684, 1957.
3. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using branch-

ing time temporal logic. In Proceedings of Logics of Programs Workshop, volume 131 of
Lecture Notes in Computer Science, pages 52–71, 1981.

4. L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga. Model checking
discounted temporal properties. In Proceedings of TACAS’04, volume 2988 of LNCS, pages
57–68, 2004.

5. J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Com-
puting, 6(4), 1977.

6. N. Immerman. Number of quantifiers is better than number of tape cells. Journal of Com-
puter and System Sciences, 22(3):384–406, 1981.

7. W. Jamroga. A temporal logic for multi-agent MDP’s. In Proceedings of the AAMAS Work-
shop on Formal Models and Methods for Multi-Robot Systems, pages 29–34, 2008.

8. J. G. Kemeny, L. J. Snell, and A. W. Knapp. Denumerable Markov Chains. 1966.
9. P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in Theoreti-

cal Computer Science, 85(2), 2004.
10. S. Toda. On the computational power of PP and P. In Proceedings of IEEE FOCS’89, pages

514–519, 1989.
11. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,

8:189–201, 1979.
12. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behaviour. Princeton

University Press: Princeton, NJ, 1944.

