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ABSTRACT
Logics of knowledge and belief are often too static and inflex-
ible to be used on real-world problems. In particular, they
usually offer no concept for expressing that some course of
events is more likely to happen than another. We address
this problem and extend CTLK (computation tree logic
with knowledge) with a notion of plausibility, which allows
for practical and counterfactual reasoning. The new logic
CTLKP (CTLK with plausibility) includes also a particu-
lar notion of belief. A plausibility update operator is added
to this logic in order to change plausibility assumptions dy-
namically. Furthermore, we examine some important prop-
erties of these concepts. In particular, we show that, for a
natural class of models, belief is a KD45 modality. We also
show that model checking CTLKP is PTIME-complete
and can be done in time linear with respect to the size of
models and formulae.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms
Theory
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1. INTRODUCTION
Notions like time, knowledge, and beliefs are very impor-

tant for analyzing the behavior of agents and multi-agent
systems. In this paper, we extend modal logics of time and
knowledge with a concept of plausible behavior : this notion
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is added to the language of CTLK [19], which is a straight-
forward combination of the branching-time temporal logic
CTL [4, 3] and standard epistemic logic [9, 5].

In our approach, plausibility can be seen as a temporal
property of behaviors. That is, some behaviors of the sys-
tem can be assumed plausible and others implausible, with
the underlying idea that the latter should perhaps be ig-
nored in practical reasoning about possible future courses
of action. Moreover, behaviors can be formally understood
as temporal paths in the Kripke structure modeling a multi-
agent system. As a consequence, we obtain a language to
reason about what can (or must) plausibly happen. We
propose a particular notion of beliefs (inspired by [20, 7]),
defined in terms of epistemic relations and plausibility. The
main intuition is that beliefs are facts that an agent would
know if he assumed that only plausible things could happen.

We believe that humans use such a concept of plausibility
and “practical beliefs” quite often in their everyday reason-
ing. Restricting one’s reasoning to plausible possibilities is
essential to make the reasoning feasible, as the space of all
possibilities is exceedingly large in real life. We investigate
some important properties of plausibility, knowledge, and
belief in this new framework. In particular, we show that
knowledge is an S5 modality, and that beliefs satisfy ax-
ioms K45 in general, and KD45 for the class of plausibly
serial models. Finally, we show that the relationship be-
tween knowledge and belief for plausibly serial models is
natural and reflects the initial intuition well. We also show
how plausibility assumptions can be specified in the object
language via a plausibility update operator, and we study
properties of such updates. Finally, we show that model
checking of the new logic is no more complex than model
checking CTL and CTLK.

Our ultimate goal is to come up with a logic that al-
lows the study of strategies, time, knowledge, and plausi-
ble/rational behavior under both perfect and imperfect in-
formation. As combining all these dimensions is highly non-
trivial (cf. [12, 14]) it seems reasonable to split this task.
While this paper deals with knowledge, plausibility, and be-
lief, the companion paper [11] proposes a general framework
for multi-agent systems that regard game-theoretical ratio-
nality criteria like Nash equilibrium, Pareto optimality, etc.
The latter approach is based on the more powerful logic
ATL [1].

The paper is structured as follows. Firstly, we briefly
present branching-time logic with knowledge, CTLK. In
Section 3 we present our approach to plausibility and for-
mally define CTLK with plausibility. We also show how



temporal formulae can be used to describe plausible paths,
and we compare our logic with existing related work. In Sec-
tion 4, properties of knowledge, belief, and plausibility are
explored. Finally, we present verification complexity results
for CTLKP in Section 5.

2. BRANCHING TIME AND KNOWLEDGE
In this paper we develop a framework for agents’ beliefs

about how the world can (or must) evolve. Thus, we need a
notion of time and change, plus a notion of what the agents
are supposed to know in particular situations. CTLK [19]
is a straightforward combination of the computation tree
logic CTL [4, 3] and standard epistemic logic [9, 5].

CTL includes operators for temporal properties of sys-
tems: i.e., path quantifier E (“there is a path”), together
with temporal operators: f (“in the next state”), 2 (“al-
ways from now on”) and U (“until”).1 Every occurrence of
a temporal operator is preceded by exactly one path quanti-
fier in CTL (this variant of the language is sometimes called
“vanilla” CTL). Epistemic logic uses operators for repre-
senting agents’ knowledge: Kaϕ is read as “agent a knows
that ϕ”.

Let Π be a set of atomic propositions with a typical ele-
ment p, and Agt = {1, ..., k} be a set of agents with a typical
element a. The language of CTLK consists of formulae ϕ,
given as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eγ | Kaϕ
γ ::= fϕ | 2 ϕ | ϕU ϕ.

We will sometimes refer to formulae ϕ as (“vanilla”) state
formulae and to formulae γ as (“vanilla”) path formulae.

The semantics of CTLK is based on Kripke models M =
〈Q , R,∼1, ...,∼k, π〉, which include a nonempty set of states
Q , a state transition relation R ⊆ Q × Q , epistemic indis-
tinguishability relations ∼a⊆ Q ×Q (one per agent), and a
valuation of propositions π : Π → P(Q). We assume that
relation R is serial and that all ∼a are equivalence relations.
A path λ in M refers to a possible behavior (or computa-
tion) of system M, and can be represented as an infinite
sequence of states that follow relation R, that is, a sequence
q0q1q2... such that qiRqi+1 for every i = 0, 1, 2, ... We de-
note the ith state in λ by λ[i]. The set of all paths in M
is denoted by ΛM (if the model is clear from context, M
will be omitted). A q-path is a path that starts from q,
i.e., λ[0] = q. A q-subpath is a sequence of states, starting
from q, which is a subpath of some path in the model, i.e.
a sequence q0q1... such that q = q0 and there are q0, ..., qi

such that q0...qiq0q1... ∈ ΛM.2 The semantics of CTLK is
defined as follows:

M, q |= p iff q ∈ π(p);

M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;

M, q |= E fϕ iff there is a q-path λ such that M, λ[1] |= ϕ;

M, q |= E2 ϕ iff there is a q-path λ such that M, λ[i] |= ϕ
for every i ≥ 0;

1Additional operators A (“for every path”) and ♦ (“some-
time in the future”) are defined in the usual way.
2For CTLK models, λ is a q-subpath iff it is a q-path. It
will not always be so when plausible paths are introduced.

M, q |= EϕU ψ iff there is a q-path λ and i ≥ 0 such that
M, λ[i] |= ψ, and M, λ[j] |= ϕ for every 0 ≤ j < i;

M, q |= Kaϕ iff M, q |= ϕ for every q′ such that q ∼a q′.

3. EXTENDING TIME AND KNOWLEDGE
WITH PLAUSIBILITY AND BELIEFS

In this section we discuss the central concept of this pa-
per, i.e. the concept of plausibility. First, we outline the
idea informally. Then, we extend CTLK with the notion
of plausibility by adding plausible path operators Pl a and
physical path operator Ph to the logic. Formula Pl aϕ has
the intended meaning: according to agent a, it is plausible
that ϕ holds; formula Phϕ reads as: ϕ holds in all “physi-
cally” possible scenarios (i.e., even in implausible ones). The
plausible path operator restricts statements only to those
paths which are defined to be “sensible”, whereas the physi-
cal path operator generates statements about all paths that
may theoretically occur. Furthermore, we define beliefs on
top of plausibility and knowledge, as the facts that an agent
would know if he assumed that only plausible things could
happen. Finally, we discuss related work [7, 8, 20, 18, 16],
and compare it with our approach.

3.1 The Concept of Plausibility
It is well known how knowledge (or beliefs) can be mod-

eled with Kripke structures. However, it is not so obvious
how we can capture knowledge and beliefs in a sensible way
in one framework. Clearly, there should be a connection
between these two notions. Our approach is to use the no-
tion of plausibility for this purpose. Plausibility can serve
as a primitive concept that helps to define the semantics
of beliefs, in a similar way as indistinguishability of states
(represented by relation ∼a) is the semantic concept that
underlies knowledge. In this sense, our work follows [7, 20]:
essentially, beliefs are what an agent would know if he took
only plausible options into account. In our approach, how-
ever, plausibility is explicitly seen as a temporal property.
That is, we do not consider states (or possible worlds) to be
more plausible than others but rather define some behaviors
to be plausible, and others implausible. Moreover, behav-
iors can be formally understood as temporal paths in the
Kripke structure modeling a multi-agent system.

An actual notion of plausibility (that is, a particular set of
plausible paths) can emerge in many different ways. It may
result from observations and learning; an agent can learn
from its observations and see specific patterns of events as
plausible (“a lot of people wear black shoes if they wear a
suit”). Knowledge exchange is another possibility (e.g., an
agent a can tell agent b that “player c always bluffs when he
is smiling”). Game theory, with its rationality criteria (un-
dominated strategies, maxmin, Nash equilibrium etc.) is an-
other viable source of plausibility assumptions. Last but not
least, folk knowledge can be used to establish plausibility-
related classifications of behavior (“players normally want
to win a game”, “people want to live”).

In any case, restricting the reasoning to plausible possibil-
ities can be essential if we want to make the reasoning feasi-
ble, as the space of all possibilities (we call them “physical”
possibilities in the rest of the paper) is exceedingly large in
real life. Of course, this does not exclude a more extensive
analysis in special cases, e.g. when our plausibility assump-
tions do not seem accurate any more, or when the cost of



inaccurate assumptions can be too high (as in the case of
high-budget business decisions). But even in these cases, we
usually do not get rid of plausibility assumptions completely
– we only revise them to make them more cautious.3

To formalize this idea, we extend models of CTLK with
sets of plausible paths and add plausibility operators Pl a,
physical paths operator Ph , and belief operators Ba to the
language of CTLK. Now, it is possible to make statements
that refer to plausible paths only, as well as statements that
regard all paths that may occur in the system.

3.2 CTLK with Plausibility
In this section, we extend the logic of CTLK with plau-

sibility; we call the resulting logic CTLKP. Formally, the
language of CTLKP is defined as:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eγ | Pl aϕ | Phϕ | Kaϕ | Baϕ
γ ::= fϕ | 2 ϕ | ϕU ϕ.

For instance, we may claim it is plausible to assume that
a shop is closed after the opening hours, though the manager
may be physically able to open it at any time: Pl aA2 (late →
¬open) ∧PhE♦ (late ∧ open).

The semantics of CTLKP extends that of CTLK as fol-
lows. Firstly, we augment the models with sets of plausible
paths. A model with plausibility is given as

M = 〈Q , R,∼1, ...,∼k,Υ1, ...,Υk, π〉,

where 〈Q , R,∼1, ...,∼k, π〉 is a CTLK model, and Υa ⊆ ΛM
is the set of paths inM that are plausible according to agent
a. If we want to make it clear that Υa is taken from model
M, we will write ΥMa . It seems worth emphasizing that this
notion of plausibility is subjective and holistic. It is subjec-
tive because Υa represents agent a’s subjective view on what
is plausible – and indeed, different agents may have differ-
ent ideas on plausibility (i.e., Υa may differ from Υb). It is
holistic because Υa represents agent a’s idea of the plausi-
ble behavior of the whole system (including the behavior of
other agents).

Remark 1. In our models, plausibility is also global, i.e.,
plausibility sets do not depend on the state of the system.
Investigating systems, in which plausibility is relativized with
respect to states (like in [7]), might be an interesting avenue
of future work. However, such an approach – while obviously
more flexible – allows for potentially counterintuitive system
descriptions. For example, it might be the case that path λ
is plausible in q = λ[0], but the set of plausible paths in
q′ = λ[1] is empty. That is, by following plausible path λ we
are bound to get to an implausible situation. But then, does
it make sense to consider λ as plausible?

Secondly, we use a non-standard satisfaction relation |=P ,
which we call plausible satisfaction. Let M be a CTLKP

3That is, when planning to open an industrial plant in the
UK, we will probably consider the possibility of our main
contractor taking her life, but we will still not take into ac-
count the possibilities of: an invasion of UFO, England being
destroyed by a meteorite, Fidel Castro becoming the British
Prime Minister etc. Note that this is fundamentally different
from using a probabilistic model in which all these unlikely
scenarios are assigned very low probabilities: in that case,
they also have a very small influence on our final decision,
but we must process the whole space of physical possibilities
to evaluate the options.

model and P ⊆ ΛM be an arbitrary subset of paths in M
(not necessarily any ΥMa ). |=P restricts the evaluation of
temporal formulae to the paths given in P only. The “ab-
solute” satisfaction relation |= is defined as |=ΛM .

Let on(P ) be the set of all states that lie on at least one
path in P , i.e. on(P ) = {q ∈ Q | ∃λ ∈ P∃i (λ[i] = q)}. Now,
the semantics of CTLKP can be given through the follow-
ing clauses:

M, q |=P p iff q ∈ π(p);

M, q |=P ¬ϕ iff M, q 6|=P ϕ;

M, q |=P ϕ ∧ ψ iff M, q |=P ϕ and M, q |=P ψ;

M, q |=P E fϕ iff there is a q-subpath λ ∈ P such that
M, λ[1] |=P ϕ;

M, q |=P E2 ϕ iff there is a q-subpath λ ∈ P such that
M, λ[i] |=P ϕ for every i ≥ 0;

M, q |=P EϕU ψ iff there is a q-subpath λ ∈ P and i ≥ 0
such that M, λ[i] |=P ψ, and M, λ[j] |=P ϕ for every
0 ≤ j < i;

M, q |=P Pl aϕ iff M, q |=Υa
ϕ;

M, q |=P Phϕ iff M, q |= ϕ;

M, q |=P Kaϕ iff M, q |= ϕ for every q′ such that q ∼a q′;

M, q |=P Baϕ iff for all q′ ∈ on(Υa) with q ∼a q′, we have
that M, q′ |=Υa

ϕ.

One of the main reasons for using the concept of plausi-
bility is that we want to define agents’ beliefs out of more
primitive concepts – in our case, these are plausibility and
indistinguishability – in a way analogous to [20, 7]. If an
agent knows that ϕ, he must be “sure” about it. However,
beliefs of an agent are not necessarily about reliable facts.
Still, they should make sense to the agent; if he believes that
ϕ, then the formula should at least hold in all futures that
he envisages as plausible. Thus, beliefs of an agent may be
seen as things known to him if he disregards all non-plausible
possibilities.

We say that ϕ is M-true (M |= ϕ) if M, q |= ϕ for all
q ∈ QM. ϕ is valid (|= ϕ) if M |= ϕ for all models M. ϕ
is M-strongly true (M|≡ϕ) if M, q |=P ϕ for all q ∈ QM
and all P ⊆ ΛM. ϕ is strongly valid ( |≡ϕ) if M|≡ϕ for all
models M.

Proposition 2. Strong truth and strong validity imply
truth and validity, respectively. The reverse does not hold.

Ultimately, we are going to be interested in normal (not
strong) validity, as parameterizing the satisfaction relation
with a set P is just a technical device for propagating sets
of plausible paths Υa into the semantics of nested formulae.
The importance of strong validity, however, lies in the fact
that |≡ϕ ↔ ψ makes ϕ and ψ completely interchangeable,
while the same is not true for normal validity.

Proposition 3. Let Φ[ϕ/ψ] denote formula Φ in which
every occurrence of ψ was replaced by ϕ. Also, let |≡ϕ↔ ψ.
Then for all M, q, P : M, q |=P Φ iff M, q |=P Φ[ϕ/ψ] (in
particular, M, q |= Φ iff M, q |= Φ[ϕ/ψ]).

Note that |= ϕ↔ ψ does not even imply that M, q |= Φ iff
M, q |= Φ[ϕ/ψ].



Figure 1: Guessing Robots game

Example 1 (Guessing Robots). Consider a simple
game with two agents a and b, shown in Figure 1. First,
a chooses a real number r ∈ [0, 1] (without revealing the
number to b); then, b chooses a real number r′ ∈ [0, 1].
The agents win the game (and collect EUR 1, 000, 000) if
both chose 1, otherwise they lose. Formally, we model the
game with a CTLKP model M, in which the set of states
Q includes qs for the initial situation, states qr, r ∈ [0, 1],
for the situations after a has chosen number r, and “final”
states qw, ql for the winning and the losing situation, re-
spectively. The transition relation is as follows: qsRqr and
qrRql for all r ∈ [0, 1]; q1Rqw, qwRqw, and qlRql. Moreover,
π(one) = {q1} and π(win) = {qw}. Player a has perfect in-
formation in the game (i.e., q ∼a q′ iff q = q′), but player
b does not distinguish between states qr (i.e., qr ∼b qr′ for
all r, r′ ∈ [0, 1]). Obviously, the only sensible thing to do
for both agents is to choose 1 (using game-theoretical vocab-
ulary, these strategies are strongly dominant for the respec-
tive players). Thus, there is only one plausible course of
events if we assume that our players are rational, and hence
Υa = Υb = {qsq1qwqw . . .}.

Note that, in principle, the outcome of the game is uncer-
tain: M, qs |= ¬A♦ win∧¬A2 ¬win. However, assuming ra-
tionality of the players makes it only plausible that the game
must end up with a win: M, qs |= Pla A♦ win ∧Plb A♦ win,
and the agents believe that this will be the case: M, qs |=
BaA♦ win ∧ BbA♦ win. Note also that, in any of the states
qr, agent b believes that a (being rational) has played 1:
M, qr |= Bbone for all r ∈ [0, 1].

3.3 Defining Plausible Paths with Formulae
So far, we have assumed that sets of plausible paths are

somehow given in models. In this section we present a dy-
namic approach where an actual notion of plausibility can
be specified in the object language. Note that we want to
specify (usually infinite) sets of infinite paths, and we need a
finite representation of these structures. One logical solution
is given by using path formulae γ. These formulae describe
properties of paths; therefore, a specific formula can be used
to characterize a set of paths. For instance, think about a
country in Africa where it has never snowed. Then, plausi-
ble paths might be defined as ones in which it never snows,
i.e., all paths that satisfy 2 ¬snows. Formally, let γ be a
CTLK path formula. We define |γ|M to be the set of paths

that satisfy γ in model M:

| fϕ|M = {λ | M, λ[1] |= ϕ}
|2 ϕ|M = {λ | ∀i (M, λ[i] |= ϕ)}

|ϕ1U ϕ2|M = {λ | ∃i
`
M, λ[i] |= ϕ2 ∧

∀j(0 ≤ j < i⇒M, λ[j] |= ϕ1)
´
}.

Moreover, we define the plausible paths model update as
follows. Let M = 〈Q , R,∼1, ...,∼k,Υ1, ...,Υk, π〉 be a
CTLKP model, and let P ⊆ ΛM be a set of paths. Then
Ma,P = 〈Q , R,∼1, ...,∼k,Υ1, ...,Υa−1, P,Υa+1, ...,Υk, π〉 de-
notes model M with a’s set of plausible paths reset to P .

Now we can extend the language of CTLKP with formu-
lae (set-pla γ)ϕ with the intuitive reading: “suppose that
γ exactly characterizes the set of plausible paths, then ϕ
holds”, and formal semantics given below:

M, q |=P (set-pla γ)ϕ iff Ma,|γ|M , q |=P ϕ.

We observe that this update scheme is similar to the one
proposed in [13].

3.4 Comparison to Related Work
Several modal notions of plausibility were already dis-

cussed in the existing literature [7, 8, 20, 18, 16]. In these
papers, like in ours, plausibility is used as a primitive se-
mantic concept that helps to define beliefs on top of agents’
knowledge. A similar idea was introduced by Moses and
Shoham in [18]. Their work preceded both [7, 8] and [20] –
and although Moses and Shoham do not explicitly mention
the term “plausibility”, it seems appropriate to summarize
their idea first.

Moses and Shoham: Beliefs as Conditional Knowledge
In [18], beliefs are relativized with respect to a formula α
(which can be seen as a plausibility assumption expressed
in the object language). More precisely, worlds that satisfy α
can be considered as plausible. This concept is expressed via
symbols Bαi ϕ; the index i ∈ {1, 2, 3} is used to distinguish
between three different implementations of beliefs. The first
version is given by Bα1 ϕ ≡ K(α → ϕ).4 A drawback of
this version is that if α is false, then everything will be
believed with respect to α. The second version overcomes
this problem: Bα2 ϕ ≡ K(α→ ϕ) ∧ (K¬α→ Kϕ); now ϕ is
only believed if it is known that ϕ follows from assumption
α, and ϕmust be known if assumption α is known to be false.
Finally, Bα3 ϕ ≡ K(α→ ϕ) ∧ ¬K¬α: if the assumption α is
known to be false, nothing should be believed with respect to
α. The strength of these different notions is given as follows:
Bα3 ϕ implies Bα2 ϕ, and Bα2 ϕ implies Bα1 ϕ. In this approach,
belief is strongly connected to knowledge in the sense that
belief is knowledge with respect to a given assumption.

Friedman and Halpern: Plausibility Spaces
The work of Friedman and Halpern [7] extends the concepts
of knowledge and belief with an explicit notion of plausi-
bility; i.e., some worlds are more plausible for an agent
than others. To implement this idea, Kripke models are
extended with function P which assigns a plausibility space
P (q, a) = (Ω(q,a),�(q,a)) to every state, or more generally
every possible world q, and agent a. The plausibility space

4Unlike in most approaches, K is interpreted over all worlds
and not only over the indistinguishable worlds.



is just a partially ordered subset of states/worlds; that is,
Ω(q, a) ⊆ Q , and �(q,a)⊆ Q×Q is a reflexive and transitive
relation. Let S, T ⊆ Ω(q,a) be finite subsets of states; now,
T is defined to be plausible given S with respect to P (q, a),
denoted by S →P (q,a) T , iff all minimal points/states in

S (with respect to �(q,a)) are also in T .5 Friedman and
Halpern’s view to modal plausibility is closely related to
probability and, more generally, plausibility measures. Log-
ics of plausibility can be seen as a qualitative description of
agents preferences/knowledge; logics of probability [6, 15],
on the other hand, offer a quantitative description.

The logic from [7] is defined by the following grammar:
ϕ ::= p | ϕ∧ϕ | ¬ϕ | Kaϕ | ϕ→a ϕ, where the semantics of
all operators except→a is given as usual, and formulae ϕ→a

ψ have the meaning that ψ is true in the most plausible
worlds in which ϕ holds. Formally, the semantics for →a

is given as: M, q |= ϕ →a ψ iff SϕP (q,a) →P(q,a) S
ψ
P (q,a),

where Sϕ(q,a) = {q′ ∈ Ω(q,a) | M, q′ |= ϕ} are the states in

Ω(q,a) that satisfy ϕ. The idea of defining beliefs is given
by the assumption that an agent believes in something if he
knows that it is true in the most plausible worlds of Ω(q,a);
formally, this can be stated as Baϕ ≡ Ka(> →a ϕ).

Friedman and Halpern have shown that the KD45 ax-
ioms are valid for operator Ba if plausibility spaces satisfy
consistency (for all states q ∈ Q it holds that Ω(q,a) ⊆ { q′ ∈
Q | q ∼a q′ }) and normality (for all states q ∈ Q it holds
that Ω(q,a) 6= ∅).6 A temporal extension of the language
(mentioned briefly in [7], and discussed in more detail in [8])
uses the interpreted systems approach [10, 5]. A system R
is given by runs, where a run r : N → Q is a function from
time moments (modeled by N) to global states, and a time
point (r, i) is given by a time point i ∈ N and a run r. A
global state is a combination of local states, one per agent.
An interpreted system M = (R, π) is given by a system R
and a valuation of propositions π. Epistemic relations are
defined over time points, i.e., (r′,m′) ∼a (r,m) iff agent
a’s local states r′a(m

′) and ra(m) of (r′,m′) and (r,m) are
equal. Formulae are interpreted in a straightforward way
with respect to interpreted systems, e.g. M, r,m |= Kaϕ iff
M, r′,m′ |= ϕ for all (r′,m′) ∼a (r,m). Now, these are time
points that play the role of possible worlds; consequently,
plausibility spaces P(r,m,a) are assigned to each point (r,m)
and agent a.

Su et al.: KBC Logic
Su et al. [20] have developed a multi-modal, computation-
ally grounded logic with modalitiesK,B, and C (knowledge,
belief, and certainty). The computational model consists of
(global) states q = (qvis, qinv, qper,Qpls) where the envi-
ronment is divided into a visible (qvis) and an invisible part
(qinv), and qper captures the agent’s perception of the visible
part of the environment. External sources may provide the
agent with information about the invisible part of a state,
which results in a set of states Qpls that are plausible for
the agent.

Given a global state q, we additionally define V is(q) =
qvis, Inv(q) = qinv, Per(q) = qper, and Pls(q) = Qpls. The

5When there are infinite chains . . . � q3 � q2 �a q1, the
definition is much more sophisticated. An interested reader
is referred to [7] for more details.
6Note that this “normality” is essentially seriality of states
wrt plausibility spaces.

semantics is given by an extension of interpreted systems [10,
5], here, it is called interpreted KBC systems. KBC formu-
lae are defined as ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ | Cϕ.
The epistemic relation ∼vis is captured in the following way:
(r, i) ∼vis (r′, i′) iff V is(r(i)) = V is(r′(i′)). The semantic
clauses for belief and certainty are given below.

M, r, i |= Bϕ iffM, r′, i′ |= ϕ for all (r′, i′) with V is(r′(i′)) =
Per(r(i)) and Inv(r′(i′)) ∈ Pls(r(i))

M, r, i |= Cϕ iffM, r′, i′ |= ϕ for all (r′(i′)) with V is(r′(i′)) =
Per(r(i))

Thus, an agent believes ϕ if, and only if, ϕ is true in all
states which look like what he sees now and seem plausible
in the current state. Certainty is stronger: if an agent is
certain about ϕ, the formula must hold in all states with
a visible part equal to the current perception, regardless of
whether the invisible part is plausible or not.

The logic does not include temporal formulae, although
it might be extended with temporal operators, as time is
already present in KBC models.

What Are the Differences to Our Logic?
In our approach, plausibility is explicitly seen as a temporal
property, i.e., it is a property of temporal paths rather than
states. In the object language, this is reflected by the fact
that plausibility assumptions are specified through path for-
mulae. In contrast, the approach of [18] and [20] is static:
not only the logics do not include operators for talking about
time and/or change, but these are states that are assumed
plausible or not in their semantics.

The differences to [7, 8] are more subtle. Firstly, the
framework of Friedman and Halpern is static in the sense
that plausibility is taken as a property of (abstract) possi-
ble worlds. This formulation is flexible enough to allow for
incorporating time; still, in our approach, time is inherent
to plausibility rather than incidental.

Secondly, our framework is more computationally oriented.
The implementation of temporal plausibility in [7, 8] is based
on the interpreted systems approach with time points (r,m)
being subject to plausibility. As runs are included in time
points, they can also be defined plausible or implausible.7

However, it also means that time points serve the role of
possible worlds in the basic formulation, which yields Kripke
structures with uncountable possible world spaces in all but
the most trivial cases.

Thirdly, [7, 8] build on linear time: a run (more precisely,
a time moment (r,m)) is fixed when a formula is interpreted.
In contrast, we use branching time with explicit quantifica-
tion over temporal paths.8 We believe that branching time
is more suitable for non-deterministic domains (cf. e.g. [4]),
of which multi-agent systems are a prime example. Note
that branching time makes our notion of belief different from
Friedman and Halpern’s. Most notably, property Kϕ→ Bϕ
is valid in their approach, but not in ours: an agent may

7Friedman and Halpern even briefly mention how plausibil-
ity of runs can be embedded in their framework.
8To be more precise, time in [7] does implicitly branch at
epistemic states. This is because (r,m) ∼a (r′,m′) iff a’s
local state corresponding to both time points is the same
(ra(m) = r′a(m

′)). In consequence, the semantics of Kaϕ
can be read as “for every run, and every moment on this
run that yields the same local state as now, ϕ holds”.



know that some course of events is in principle possible,
without believing that it can really become the case (see
Section 4.2). As Proposition 13 suggests, such a subtle dis-
tinction between knowledge and beliefs is possible in our
approach because branching time logics allow for existential
quantification over runs.

Fourthly, while Friedman and Halpern’s models are very
flexible, they also enable system descriptions that may seem
counterintuitive. Suppose that (r,m) is plausible in itself
(formally: (r,m) is minimal wrt �(r,m,a)), but (r,m+ 1) is
not plausible in (r,m + 1). This means that following the
plausible path makes it implausible (cf. Remark 1), which
is even stranger in the case of linear time. Combining the
argument with computational aspects, we suggest that our
approach can be more natural and straightforward for many
applications.

Last but not least, our logic provides a mechanism for
specifying (and updating) sets of plausible paths in the ob-
ject language. Thus, plausibility sets can be specified in a
succinct way, which is another feature that makes our frame-
work computation-friendly. The model checking results from
Section 5 are especially encouraging in this light.

4. PLAUSIBILITY, KNOWLEDGE, AND BE-
LIEFS IN CTLKP

In this section we study some relevant properties of plausi-
bility, knowledge, and beliefs; in particular, axioms KDT45
are examined. But first, we identify two important sub-
classes of models with plausibility.

A CTLKP model is plausibly serial (or p-serial) for agent
a if every state of the system is part of a plausible path ac-
cording to a, i.e. on(Υa) = Q . As we will see further, a
weaker requirement is sometimes sufficient. We call a model
weakly p-serial if every state has at least one indistinguish-
able counterpart which lies on a plausible path, i.e. for each
q ∈ Q there is a q′ ∈ Q such that q ∼a q′ and q′ ∈ on(Υa).
Obviously, p-seriality implies weak p-seriality. We get the
following characterization of both model classes.

Proposition 4. M is plausibly serial for agent a iff for-
mula Pl aE f> is valid in M . M is weakly p-serial for agent
a iff ¬KaPl aA f⊥ is valid in M .

4.1 Axiomatic Properties

Theorem 5. Axioms K, D, 4, and 5 for knowledge are
strongly valid, and axiom T is valid. That is, modalities Ka

form system S5 in the sense of normal validity, and KD45
in the sense of strong validity.

We do not include proofs here due to lack of space. The
interested reader is referred to [2], where detailed proofs are
given.

Proposition 6. Axioms K, 4, and 5 for beliefs are
strongly valid. That is, we have:
|≡ (Baϕ ∧Ba(ϕ→ ψ)) → Baψ, |≡ (Baϕ→ BaBaϕ), and
|≡ (¬Baϕ→ Ba¬Baϕ).

The next proposition concerns the “consistency” axiom
D: Baϕ → ¬Ba¬ϕ. It is easy to see that the axiom is not
valid in general: as we have no restrictions on plausibility
sets Υa, it may be as well that Υa = ∅. In that case we have

Baϕ ∧Ba¬ϕ for all formulae ϕ, because the set of states to
be considered becomes empty. However, it turns out that D
is valid for a very natural class of models.

Proposition 7. Axiom D for beliefs is not valid in the
class of all CTLKP models. However, it is strongly valid in
the class of weak p-serial models (and therefore also in the
class of p-serial models).

Moreover, as one may expect, beliefs do not have to be
always true.

Proposition 8. Axiom T for beliefs is not valid; i.e.,
6|= (Baϕ → ϕ). The axiom is not even valid in the class of
p-serial models.

Theorem 9. Belief modalities Ba form system K45 in
the class of all models, and KD45 in the class of weakly
plausibly serial models (in the sense of both normal and
strong validity). Axiom T is not even valid for p-serial mod-
els.

4.2 Plausibility, Knowledge, and Beliefs
First, we investigate the relationship between knowledge

and plausibility/physicality operators. Then, we look at the
interaction between knowledge and beliefs.

Proposition 10. Let ϕ be a CTLKP formula, and M
be a CTLKP model. We have the following strong validities:

(i) |≡Pl aKaϕ↔ Kaϕ

(ii) |≡PhKaϕ↔ KaPhϕ and |≡KaPhϕ↔ Kaϕ

We now want to examine the relationship between knowl-
edge and belief. For instance, if agent a believes in some-
thing, he knows that he believes it. Or, if he knows a fact,
he also believes that he knows it. On the other hand, for
instance, an agent does not necessarily believe in all the
things he knows. For example, we may know that an in-
vasion from another galaxy is in principle possible (KaE♦
invasion), but if we do not take this possibility as plausible
(¬Pl aE♦ invasion), then we reject the corresponding belief
in consequence (¬BaE♦ invasion). Note that this property
reflects the strong connection between belief and plausibility
in our framework.

Proposition 11. The following formulae are strongly
valid:

(i) Baϕ→ KaBaϕ, (ii) KaBaϕ→ Baϕ,
(iii) Kaϕ→ BaKaϕ.

The following formulae are not valid:
(iv) Baϕ→ BaKaϕ, (v) Kaϕ→ Baϕ

The last invalidity is especially important: it is not the
case that knowing something implies believing in it. This
emphasizes that we study a specific concept of beliefs here.
Note that its specific is not due to the plausibility-based def-
inition of beliefs. The reason lies rather in the fact that we
investigate knowledge, beliefs and plausibility in a temporal
framework, as Proposition 12 shows.

Proposition 12. Let ϕ be a CTLKP formula that does
not include any temporal operators. Then Kaϕ → Baϕ is
strongly valid, and in the class of p-serial models we have
even that |≡Kaϕ↔ Baϕ.



Moreover, it is important that we use branching time with
explicit quantification over paths; this observation is formal-
ized in Proposition 13.

Definition 1. We define the universal sublanguage of
CTLK in a way similar to [21]:

ϕu ::= p | ¬p | ϕu ∧ ϕu | ϕu ∨ ϕu | Aγu | Kaϕu,
γu ::= fϕu | 2 ϕu | ϕuU ϕu.

We call such ϕu universal formulae, and γu universal path
formulae.

Proposition 13. Let ϕu be a universal CTLK formula.
Then |≡Kaϕu → Baϕu.

The following two theorems characterize the relationship
between knowledge and beliefs: first for the class of p-serial
models, and then, finally, for all models.

Theorem 14. The following formulae are strongly valid
in the class of plausibly serial CTLKP models:

(i) Baϕ↔ KaPl aϕ, (ii) Kaϕ↔ BaPhϕ.

Theorem 15. Formula Baϕ ↔ KaPl a(E f> → ϕ) is
strongly valid.

Note that this characterization has a strong commonsense
reading: believing in ϕ is knowing that ϕ plausibly holds in
all plausibly imaginable situations.

4.3 Properties of the Update
The first notable property of plausibility update is that it

influences only formulae in which plausibility plays a role,
i.e. ones in which belief or plausibility modalities occur.

Proposition 16. Let ϕ be a CTLKP formula that does
not include operators Pl a and Ba, and γ be a CTLKP path
formula. Then, we have |≡ϕ↔ (set-pla γ)ϕ.

What can be said about the result of an update? At first
sight, formula (set-pla γ)Pl aAγ seems a natural character-
ization; however, it is not valid. This is because, by leaving
the other (implausible) paths out of scope, we may leave out
of |γ| some paths that were needed to satisfy γ (see the ex-
ample in Section 4.2). We propose two alternative ways out:
the first one restricts the language of the update similarly
to [21]; the other refers to physical possibilities, in a way
analogous to [13].

Proposition 17. The CTLKP formula (set-pla γ)Pl aAγ
is not valid. However, we have the following validities:

(i) |≡ (set-pla γu)Pl aAγu, where γu is a universal CTLK
path formula from Definition 1.

(ii) If ϕ,ϕ1, ϕ2 are arbitrary CTLK formulae, then:
|≡ (set-pla

fϕ)Pl aA f(Phϕ),
|≡ (set-pla 2 ϕ)Pl aA2 (Phϕ), and

|≡ (set-pla ϕ1U ϕ2)Pl aA(Phϕ1)U (Phϕ2).

5. VERIFICATION OF PLAUSIBILITY,
TIME AND BELIEFS

In this section we report preliminary results on model
checking CTLKP formulae. Clearly, verifying CTLKP
properties directly against models with plausibility does not
make much sense, since these models are inherently infinite;

what we need is a finite representation of plausibility sets.
One such representation has been discussed in Section 3.3:
plausibility sets can be defined by path formulae and the
update operator (set-pla γ).

We follow this idea here, studying the complexity of model
checking CTLKP formulae against CTLK models (which
can be seen as a compact representation of CTLKP mod-
els in which all the paths are assumed plausible), with the
underlying idea that plausibility sets, when needed, must be
defined explicitly in the object language. Below we sketch
an algorithm that model-checks CTLKP formulae in time
linear wrt the size of the model and the length of the for-
mula. This means that we have extended CTLK to a more
expressive language with no computational price to pay.

First of all, we get rid of the belief operators (due to Theo-
rem 15), replacing every occurrence of Baϕ withKaPl a(E f
> → ϕ). Now, let −→γ = 〈γ1, ..., γk〉 be a vector of “vanilla”
path formulae (one per agent), with the initial vector −→γ0 =
〈>, ...,>〉, and −→γ [γ′/a] denoting vector −→γ , in which −→γ [a]
is replaced with γ′. Additionally, we define −→γ [0] = >. We
translate the resulting CTLKP formulae to ones without
plausibility via function tr(ϕ) = tr−→γ0,0(ϕ), defined as fol-
lows:

tr−→γ ,i(p) = p,
tr−→γ ,i(ϕ1 ∧ ϕ2) = tr−→γ ,i(ϕ1) ∧ tr−→γ ,i(ϕ2),
tr−→γ ,i(¬ϕ) = ¬tr−→γ ,i(ϕ),
tr−→γ ,i(Kaϕ) = Ka tr−→γ ,0(ϕ),
tr−→γ ,i(Pla ϕ) = tr−→γ ,a(ϕ),
tr−→γ ,i((set-pla γ

′)ϕ) = tr−→γ [γ′/a],i(ϕ),
tr−→γ ,i(Phϕ) = tr−→γ ,0(ϕ),
tr−→γ ,i(

fϕ) = ftr−→γ ,i(ϕ),
tr−→γ ,i(2 ϕ) = 2 tr−→γ ,i(ϕ),
tr−→γ ,i(ϕ1U ϕ2) = tr−→γ ,i(ϕ1)U tr−→γ ,i(ϕ2),
tr−→γ ,i(Eγ

′) = E(−→γ [i] ∧ tr−→γ ,i(γ′)).
Note that the resulting sentences belong to the logic of

CTLK+, that is CTL+ (where each path quantifier can be
followed by a Boolean combination of “vanilla” path formu-
lae)9 with epistemic modalities. The following proposition
justifies the translation.

Proposition 18. For any CTLKP formula ϕ without
Ba, we have that M, q |=CTLKP ϕ iff M, q |=CTLK+ tr(ϕ).

In general, model checking CTL+ (and also CTLK+)
is ∆P

2 -complete. However, in our case, the Boolean combi-
nations of path subformulae are always conjunctions of at
most two non-negated elements, which allows us to propose
the following model checking algorithm. First, subformulae
are evaluated recursively: for every subformula ψ of ϕ, the
set of states in M that satisfy ψ is computed and labeled
with a new proposition pψ. Now, it is enough to define
checking M, q |= ϕ for ϕ in which all (state) subformulae
are propositions, with the following cases:

Case M, q |= E(2 p ∧ γ): IfM, q 6|= p, then return no. Oth-
erwise, remove fromM all the states that do not satisfy
p (yielding a sparser model M ′), and check the CTL
formula Eγ in M ′, q with any CTL model-checker.

Case M, q |= E( fp ∧ γ): Create M ′ by adding a copy q′ of
state q, in which only the transitions to states satisfy-
ing p are kept (i.e., M, q′ |= r iff M, q |= r; and q′Rq′′

iff qRq′′ and M, q′′ |= p). Then, check Eγ in M ′, q′.
9For the semantics of CTL+, and discussion of model
checking complexity, cf. [17].



Case M, q |= E(p1U p2 ∧ p3U p4): Note that this is equiva-
lent to checking E(p1 ∧ p3)U (p2 ∧ Ep3U p4) ∨ E(p1 ∧
p3)U (p4 ∧ Ep1U p2), which is a CTL formula.

Other cases: The above cases cover all possible formulas
that begin with a path quantifier. For other cases,
standard CTLK model checking can be used.

Theorem 19. Model checking CTLKP against CTLK
models is PTIME-complete, and can be done in time O(ml),
where m is the number of transitions in the model, and l is
the length of the formula to be checked. That is, the com-
plexity is no worse than for CTLK itself.

6. CONCLUSIONS
In this paper a notion of plausible behavior is considered,

with the underlying idea that implausible options should be
usually ignored in practical reasoning about possible future
courses of action. We add the new notion of plausibility to
the logic of CTLK [19], and obtain a language which en-
ables reasoning about what can (or must) plausibly happen.
As a technical device to define the semantics of the resulting
logic, we use a non-standard satisfaction relation |=P that
allows to propagate the “current” set of plausible paths into
subformulae. Furthermore, we propose a non-standard no-
tion of beliefs, defined in terms of indistinguishability and
plausibility. We also propose how plausibility assumptions
can be specified in the object language via a plausibility up-
date operator (in a way similar to [13]).

We use this new framework to investigate some important
properties of plausibility, knowledge, beliefs, and updates.
In particular, we show that knowledge is an S5 modality,
and that beliefs satisfy axioms K45 in general, and KD45
for the class of plausibly serial models. We also prove that
believing in ϕ is knowing that ϕ plausibly holds in all plau-
sibly possible situations. That is, the relationship between
knowledge and beliefs is very natural and reflects the ini-
tial intuition precisely. Moreover, the model checking re-
sults from Section 5 show that verification for CTLKP is
no more complex than for CTL and CTLK.

We would like to stress that we do not see this contribution
as a mere technical exercise in formal logic. Human agents
use a similar concept of plausibility and “practical” beliefs
in their everyday reasoning in order to reduce the search
space and make the reasoning feasible. As a consequence, we
suggest that the framework we propose may prove suitable
for modeling, design, and analysis resource-bounded agents
in general.

We would like to thank Juergen Dix for fruitful discus-
sions, useful comments and improvements.
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