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Abstract. In alternating-time temporal logic ATL?, agents with per-
fect recall assign choices to sequences of states, i.e., to possible finite
histories of the game. However, when a nested strategic modality is
interpreted, the new strategy does not take into account the previous
sequence of events. It is as if agents collect their observations in the
nested game again from scratch, thus effectively forgetting what they
observed before. Intuitively, it does not fit the assumption of agents
having perfect recall of the past.

Recently we have proposed a new semantics for ATL? where the
past is not forgotten in nested games [8]. In this paper we give a
formal treatment and show that the standard semantics of ATL? co-
incides with our new semantics in case of agents with perfect infor-
mation. On the other hand, both kinds of semantics differ if agents
have imperfect information about the state of the game. We compare
the expressivity of the logics and their sets of validities. The latter
characterize general properties of the underlying class of games.

1 Introduction
The alternating-time temporal logic ATL? and its fragment ATL [3]
are modal logics that allow for reasoning about strategic interactions
in multi-agent systems (MAS). ATL? extends the framework of tem-
poral logic with the game-theoretic notion of strategic ability. Hence,
ATL? is able to express statements about what agents (or groups of
agents) can achieve. This is useful for specification, verification and
reasoning about MAS, and is especially important because of the
active development of algorithms and tools for ATL model check-
ing [13, 10]. One challenge of MAS verification is to define desired
properties in the right way. This means choosing the right language
and the “right” semantics for a given setting, i.e., one which accu-
rately captures characteristics of the scenario.

There are many semantic variants of ATL and ATL?. They are
based on different assumptions about the capabilities of agents. For
instance, agents may be able to observe the full state of the system or
only parts of it (perfect or imperfect information), agents may recall
the entire history of the game (perfect recall) or have no memory at
all (memoryless or state-based strategies, sometimes referred to as
imperfect recall) [16, 12]. Also, agents’ strategies can come with or
without long-term commitment [1, 4], and so on.

More recently, we proposed a variant of the perfect recall seman-
tics called truly perfect recall [8]. We argued that the standard per-
fect recall semantics of ATL and ATL? has counterintuitive effects:
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agents may forget the past despite using perfect recall strategies.
More precisely, agents forget their past observations once they pro-
ceed to realize a sub-goal in the game. For instance, consider the
formula 〈〈a〉〉 f〈〈b〉〉3win which says that agent a has a strategy en-
suring that, from the next state, agent b can eventually win the game.
Assuming that agents have perfect recall, the ability of agent b relies
on its past observations of the game. However, the interpretation of
the subformula 〈〈b〉〉3win is done in the original model. Thus, when
looking for its best strategy to win the game, agent b must ignore (or
forget) all the observations it has made, when agent a was executing
its strategy for 〈〈a〉〉 f〈〈b〉〉3win. This is also closely related to the
way quantification in first-order logic works: variables are rebound
in the scope of nested quantifiers. The semantics in [8] was proposed
in order to overcome the forgetting phenomenon.

In this paper, we recall the new semantics, and argue in more detail
that it offers a significantly different view of agents’ abilities than the
original semantics of ATL?. More precisely, we show that if agents
have imperfect information then ATL? with truly perfect recall dif-
fers from ATL? with standard perfect recall in terms of expressive
power as well as valid sentences. Similar to [6], we conclude that
the truly perfect recall semantics corresponds to a different class of
games, and allows for expressing different properties of those games,
than the standard variants of ATL? investigated, e.g., in [3, 16, 12, 6].

As said before, the forgetting aspect of ATL? and the idea of the
no-forgetting semantics was introduced in the extended abstract [8].
This paper significantly extends that work by giving a complete, for-
mal treatment as well as a detailed comparison in terms of expres-
sive/distinguishing power and validity sets.

The rest of the paper is structured as follows. In Section 2 we re-
call the syntax of ATL? and the semantic variants which correspond
to the assumptions of perfect recall and perfect/imperfect informa-
tion. In Section 3 we present the no-forgetting semantics for ATL?

from [8]. Then, in Section 5 and 6 we investigate the expressivity
and sets of validities of ATL? with truly perfect recall, respectively.
In Section 6, we conclude and discuss directions for future research.

Related work. An important strand in research on ATL? emerged in
quest of the “right” semantics for strategic ability for a specific set-
ting. We only mention some works due to lack of space. ATL was
combined with epistemic logic [18, 12], and several semantic vari-
ants were defined for various assumptions about agents’ memory and
available information [16, 12], cf. also [6]. Moreover, many concep-
tual extensions have been considered, e.g., with explicit reasoning
about strategies [17, 14, 9], agents with bounded resources [2, 5] and
reasoning about persistent strategies and commitment [1, 4].

The authors of [15] introduce memoryfull ATL? where the history
is taken into account when evaluating cooperation modalities 〈〈A〉〉ψ.
More precisely, 〈〈A〉〉ψ is true in a current state s if, on all plays en-



forced by A from s, ψ is true when evaluated from the beginning of
the game. This is fundamentally different from our work. First of all,
the authors do only consider a perfect information setting. Secondly,
we do not use the history of events to evaluate a formula (our for-
mulae are purely future-directed) but only to choose an appropriate
strategy. Hence, the history only affects the agents’ behavior by al-
lowing them to learn from past events and to resolve observability
limitations (which is, as we will show, only the case in imperfect in-
formation settings). Similarly, in [7] the history of events is included
in the semantic relation to keep track of the agents satisfaction of
goals. This is useful if agents need to plan which coalitions to join in
order to satisfy their remaining (sub)goals.

2 ATL*: What Agents Can Achieve
In this section, we briefly recall the main concepts of ATL? and its
variants. We introduce examples which will later be used to motivate
the new no-forgetting semantics.
Syntax of Alternating-Time Temporal Logic ATL? [3] can be

seen as a generalization of the branching time logic CTL? where
path quantifiers E,A are replaced by cooperation modalities 〈〈A〉〉.
The formula 〈〈A〉〉γ expresses that group A has a collective strategy
to enforce the temporal property γ where γ can include the temporal
operators f (“next”), and U (“until”). Formally, let Π be a count-
able set of atomic propositions, and Agt be a finite nonempty set of
agents. The language of ATL? is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ
γ ::= ϕ | ¬γ | γ ∧ γ | fγ | γ U γ

where A ⊆ Agt and p ∈ Π. We define “sometime in the future”
as 3γ ≡ >U γ and “always in the future" as 2γ ≡ ¬3¬γ. For-
mulae ϕ and γ are called state and path formulae of ATL?, respec-
tively. State formulae constitute the language of ATL?. By requiring
that each temporal operator is immediately preceded by a strategic
modality, we obtain the sub-language ATL; for example, 〈〈A〉〉3p is
an ATL formula but 〈〈A〉〉32p and 〈〈A〉〉(3p ∧3r) are not.

Models: Imperfect information concurrent game structures
We interpret ATL? formulae over imperfect information concur-
rent game structures (iCGS) [18, 16]. An iCGS is given by M =
〈Agt, St,Π, π, Act, d, o, {∼a| a ∈ Agt}〉 consisting of a nonempty
finite set of all agents Agt = {1, . . . , k}, a nonempty set of states
St, a set of atomic propositions Π and their valuation π : Π →
2St, and a nonempty finite set of (atomic) actions Act. Function
d : Agt × St → 2Act defines nonempty sets of actions avail-
able to agents at each state; we will usually write da(q) instead of
d(a, q). Function o is a (deterministic) transition function that as-
signs the outcome state q′ = o(q, α1, . . . , αk) to each state q and
tuple of actions 〈α1, . . . , αk〉 such that αi ∈ di(q) for 1 ≤ i ≤ k.
Finally, each ∼a⊆ St × St is an equivalence relation that repre-
sents indistinguishability of states from agent a’s perspective. 4 We
assume that agents have identical choices in indistinguishable states
(da(q) = da(q′) whenever q ∼a q′). We also assume that collec-
tive knowledge is interpreted in the sense of “everybody knows’, i.e.,
∼A=

⋃
a∈A ∼a. We will use [q]A = {q′ | q ∼A q′} to refer to A’s

epistemic image of state q. Note that the perfect information mod-
els from [3] (concurrent game structures, CGS) can be modelled by
iCGS by assuming each ∼a to be the minimal reflexive relation.

4 It is important to note that these relations capture observational indistin-
guishability. The observations that agents collect during a course of action
is not encoded in the model but in the semantics. This also relates to the
difference between the computational and behavioral structure.
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Figure 1. The iCGS M1 describing the shell game. Tuples (α1, α2)
represent the action profiles. α1 denotes an action of player s—the

shuffler—and action α2 of player g—the guesser. The dotted line represents
g’s indistinguishability relation; reflexive loops are omitted. State q3 is

labelled with the only proposition win. For example, when the guesser plays
action pickR in state q2 the game proceeds to state q′3. nop indicates the

“do nothing” action.

Example 1 (Shell game) Consider model M1 from Figure 1 that
depicts a simple version of the shell game. There are two players:
the shuffler s and the guesser g. Initially, the shuffler places a ball in
one of two shells (the left or the right). The shells are open, and the
guesser can see the location of the ball. Then the shuffler turns the
shells over, so that the ball becomes hidden. The guesser wins if he
picks up the shell containing the ball. Obviously, this is a very sim-
plified version of the shell game as the shuffler does not even shuffle
the shells; he simply places the ball in one of them and closes them.
However, this example is rich enough to point out the limitations of
the ATL?-semantics.

Two remarks are in order. First, the relation ∼a encodes a’s
(in)ability to distinguish pairs of states, based on the qualities en-
capsulated in those states. That is, q ∼q q

′ iff q and q′ look the same
to a, independent of the history of events that led to them. If one as-
sumes that the agent has external memory that allows it to remember
the history of past events, this must be represented by an indistin-
guishability relation on histories, see the next paragraph. Secondly,
an iCGS is a template for possible actions and transitions. In order
to turn it into a description of an actual game, we need also to fix the
initial state. A pair (M, q) consisting of an iCGS M and a state of
M is called a pointed iCGS.

A history h is a finite sequence of states q0q1 . . . qn ∈ St+ which
results from the execution of subsequent transitions; that is, there
must be an action profile connecting qi with qi+1 for each i =
0, . . . , n − 1. Two histories h = q0q1 . . . qn and h′ = q′0q

′
1 . . . q

′
m

are indistinguishable for agent a (denoted h ≈a h′) iff n = m
and qi ∼a q

′
i for i = 0 . . . n. We use a synchronous semantics and

assume that agents know how much time has passed. We also ex-
tend the indistinguishability relation over histories ≈a, to groups:
≈A=

⋃
a∈A ≈a. We write h ◦ h′ to refer to the concatenation of

the histories h and h′, fst(h) and last(h) to refer to the first and last
state from history h, respectively. Λfin

M (q) is the set of all histories of
model M which start from state q, and Λfin

M =
⋃

q∈St Λfin
M (q) is the

set of all histories in model M .
A path λ = q0q1q2 . . . is an infinite sequence of states such that

there is a transition between each qi and qi+1. We write h ◦λ, where
h = q′0q

′
1 . . . q

′
n to refer to the path q′0q′1 . . . q′nq0q1q2 . . . obtained

by concatenating h and λ. We use ΛM (q) to refer to the set of paths
inM that start in state q and define ΛM :=

⋃
q∈StM

ΛM (q) to be the



set of paths in M , respectively. We use λ[i] to denote the ith position
on path λ (starting from i = 0) and λ[i,∞] to denote the subpath of
λ starting from i. Whenever the model is clear from context, we shall
omit the subscript.
Strategies and Their Outcomes A strategy of agent a is a con-

ditional plan that specifies what a is going to do in each situa-
tion. It makes sense, from a conceptual and computational point of
view, to distinguish between two types of strategies: an agent may
base its decision on the current state or on the whole history of
events that have happened. In this paper, we consider only the lat-
ter case. A perfect information strategy (I-strategy for short) is a
function sa : St+ → Act such that sa(q0 . . . qn) ∈ da(qn) for
all q0 . . . qn ∈ St+. An imperfect information strategy (i-strategy)
must be additionally uniform, in the sense that h ≈a h′ implies
sa(h) = sa(h′). A collective x-strategy sA with x ∈ {I, i}, is a
tuple of x-strategies, one per agent in A. Moreover, sA|a denotes
agent a’s part of the collective strategy sA and s∅ is the empty pro-
file which is the only strategy of the empty coalition.

Function outM (h, sA) returns the set of all paths that can occur
when sA is executed after an initial history h took place. Func-
tion playsxM (h, sA) returns the set of relevant paths for strategy
sA executed from h on. For perfect information, playsIM (h, sA) =
outM (h, sA). For imperfect information, playsiM (h, sA) includes
also the paths that A think might occur, i.e., ones starting from histo-
ries indistinguishable for A:

outM (h, sA) = {h ◦ λ = q0q1q2... | such that for each i ≥ |h|
there exists 〈αi−1

a1
, . . . , αi−1

ak
〉 such that αi−1

a ∈ da(qi−1) for ev-
ery a ∈ Agt, αi−1

a = sA|a(q0q1 . . . qi−1) for every a ∈ A, and
o(qi−1, α

i−1
a1

, . . . , αi−1
ak

) = qi}.

playsxM (h, sA) =

{ ⋃
h≈Ah′ outM (h′, sA) for x = i

outM (h, sA) for x = I

Note that the above definitions of functions out and plays are
slightly more general than the ones from [3, 16, 6]: outcome paths
are constructed given an initial sequence of states rather than a sin-
gle state. This will prove convenient when we define the truly perfect
recall semantics of ATL? in Section 3.
Standard Perfect Recall Semantics Let M be an iCGS and λ ∈
ΛM . The (standard perfect recall) semantics of ATL?, parameterized
with x ∈ {i, I}, can be defined as follows:

M,λ |=x p iff λ[0] ∈ π(p) (where p ∈ Π);
M,λ |=x ¬ϕ iff M,λ 6|=x ϕ;
M,λ |=x ϕ1 ∧ ϕ2 iff M,λ |=x ϕ1 and M,λ |=x ϕ2;
M,λ |=x 〈〈A〉〉ϕ iff there is a collective x-strategy sA such that,

for each λ′ ∈ playsxM (λ[0], sA), M,λ′ |=x ϕ;
M,λ |=x

fϕ iff M,λ[1,∞] |=x ϕ;
M,λ |=x ϕ1 U ϕ2 iff there is i ∈ N0 such that M,λ[i,∞] |=x

ϕ2 and for all 0 ≤ j < i, we have that M,λ[j,∞] |=x ϕ1.

Also, for a state q and a state formula ϕ, we define M, q |=x ϕ iff
M,λ |=x ϕ for any λ ∈ ΛM (q).5 We refer to the logic obtained by
combining |=x with the language of ATL?, i.e. all state formulae, as
ATL?

x . A state formula ϕ is valid in ATL?
x iff M, q |=x ϕ for all M

and states q in M .

Example 2 (Shell game ctd.) Consider the iCGS M1 from Fig-
ure 1, and assume q2 is the initial state of the game. It is easy

5 We observe that M,λ |=x ϕ for some λ ∈ ΛM (q) and state formula ϕ iff
M,λ |=x ϕ for all λ ∈ ΛM (q).

to see that M1, q2 |=I 〈〈g〉〉3win: under perfect information, the
guesser can win by choosing the left shell in q2. On the other hand,
M1, q2 6|=i 〈〈g〉〉3win: under imperfect information, the guesser has
no uniform strategy that succeeds from both q2 and q′2. Finally, if the
game begins in q0 then the guesser can win (M1, q0 |=i 〈〈g〉〉3win)
by using the i-strategy sg: “play pickL (resp. pickR) after history
q0q1q2 (resp. q0q′1q

′
2)”. The strategy is uniform as both histories are

distinguishable for the guesser6.

Note thatM, q |=i 〈〈A〉〉ϕ requiresA to have a single strategy that
is successful in all states indistinguishable from q for any member
of the coalition. Note also that standard epistemic operators can be
expressed in ATL?

i . Let Nϕ ≡ ϕU ϕ be the “now” operator. Then,
Kaϕ ≡ 〈〈a〉〉Nϕ (“a knows that ϕ”), and EA ≡ 〈〈A〉〉Nϕ (“every-
body in A knows that ϕ”).

3 ATL* with Truly Perfect Recall

In the standard semantics of ATL? agents “forget” some informa-
tion about the past, even if they are assumed to have perfect recall.
This can be seen in the case of nested cooperation modalities such as
in 〈〈a〉〉3〈〈b〉〉2p: b has to start collecting observations from scratch
when executing its strategy for the subgoal 2p. This leads to coun-
terintuitive effects, as the following example shows.

Example 3 (Forgetting in perfect recall) Recall that, on one hand,
M1, q0 |=i 〈〈g〉〉3win, that is, the guesser has a uniform strategy
to win the shell game starting in q0. On the other hand, M1, q2 |=i

¬〈〈g〉〉3win. As the shuffler in q0 can easily enforce the future state to
be q2, we get that M1, q0 |=i 〈〈s〉〉3¬〈〈g〉〉3win. Thus, in (M1, q0),
the guesser has the ability to win no matter what the shuffler does,
and at the same time the shuffler has a strategy to deprive the guesser
of the ability no matter what the guesser does!

This counterintuitive behavior is our motivation for proposing a
new perfect recall semantics for ATL? which really deserves the at-
tribute of perfect recall.

The no-forgetting semantics [8] is captured by the relation |=nf
x ,

x ∈ {i, I} for the language of ATL?, again for the perfect (I) and
imperfect information (i) cases. Formulae are interpreted over triples
consisting of a model, a path and an index k ∈ N0 which indicates
the current state on the path. Intuitively, the subhistory of the path up
to k encodes the past, and the subpath starting after k, the future. The
crucial part of this semantics is that the agents always remember the
sequence of past events—and they can learn from these past events.

Definition 1 (No-forgetting semantics for ATL?) Let M be an
iCGS, λ ∈ ΛM , k ∈ N0, and x ∈ {i, I}. Relation |=nf

x is defined
as follows:

M,λ, k |=nf
x p iff λ[k] ∈ Π(p) for p ∈ Π;

M,λ, k |=nf
x ¬ϕ iff M,λ, k 6|=nf

x ϕ;
M,λ, k |=nf

x ϕ1 ∧ ϕ2 iff M,λ, k |=nf
x ϕ1 and M,λ, k |=nf

x ϕ2;
M,λ, k |=nf

x 〈〈A〉〉ϕ iff there exists an x-strategy sA such that, for
all paths λ′ ∈ playsxM (λ[0, k], sA), M,λ′, k |=nf

x ϕ;
M,λ, k |=nf

x
fϕ iff M,λ, k + 1 |=nf

x γ
M, λ, k |=nf

x ϕ1 U ϕ2 iff there exists i ≥ k such thatM,λ, i |=nf
x ϕ2

and M,λ, j |=nf
x ϕ1 for all k ≤ j < i.

6 We note that the guesser has no memoryless strategy (i.e. a strategy that
assigns actions to states only) to win, as such a strategy had to assign the
same choices to q2 and q′2.



We use ATL?
nf,x to refer to the logic that combines the syntax of ATL?

with the semantic relation |=nf
x . Given a state formula ϕ and a history

h, we define M,h |=nf
x ϕ iff M,λ, k |=nf

x ϕ for any λ ∈ Λ such that
λ[0, k] = h. A state formula ϕ is valid in ATL?

nf,x iff M, q |=nf
x ϕ for

all models M and states q (note that states can be seen as a special
kind of histories); and satisfiable if such a pair (M, q) exists.

Our new semantics differs from the standard semantics of ATL?

only in that it keeps track of the history by incorporating it into λ and
playsx. This affects the set of paths that are relevant when evaluating
a strategy: Instead of starting with the current state of the game (as in
the standard semantics) we look at paths λ that describe the play from
the very beginning. λ[0, k− 1] represents the sequence of past states
(excluding the current one), λ[k] is the current state, and λ[k+1,∞]
is the future part of the play.

We illustrate the semantics by the following example.

Example 4 (Shell game ctd.) Consider the pointed iCGS (M1, q0)
again. Whatever the shuffler does in the first two steps, g can adapt
its choice (in q2 and q′2) to win the game. In particular, the i-
strategy sg from Example 2 can be used to demonstrate that for all
λ ∈ playsi(q0, sg)—for every strategy of s—we have M1, λ, 0 |=nf

i
3〈〈g〉〉3win. As a consequence, M1, q0 |=nf

i ¬〈〈s〉〉3¬〈〈g〉〉3win.

4 Truly Perfect Recall: Expressivity

We now proceed to show that the seemingly small change in seman-
tics has important consequences for the resulting logics. We prove
that the forgetting and no-forgetting variants of ATL? differ in the
properties they allow to express. We will look at which properties of
iCGS can be expressed in ATL?

x and ATL?
nf,x, respectively. To do this,

we briefly recall the notions of distinguishing power and expressive
power (cf. e.g. [11]).

Definition 2 (Distinguishing and expressive power) Let L1 =
(L1, |=1) and L2 = (L2, |=2) be two logical systems over the
same class of models M—the class of iCGS in our case. By
[[ϕ]]|= = {(M, q) |M, q |= ϕ}, we denote the class of pointed
models that satisfy ϕ according to |=. Likewise, [[ϕ,M ]]|= =
{q |M, q |= ϕ} is the set of states (or, equivalently, pointed mod-
els) that satisfy ϕ in a given structure M .

L2 is at least as expressive as L1 (written: L1 �e L2) iff for every
formula ϕ1 ∈ L1 there exists ϕ2 ∈ L2 such that [[ϕ1]]|=1

= [[ϕ2]]|=2
.

L2 is at least as distinguishing as L1 (written: L1 �d L2) iff for ev-
ery model M and formula ϕ1 ∈ L1 there exists ϕ2 ∈ L2 such
that [[ϕ1,M ]]|=1

= [[ϕ2,M ]]|=2
. Finally, we say that L1 and L2 are

equally expressive (resp. distinguishing) iff L2 �x L1 and L1 �x L2

where x = e (resp. x = d).

Note that L1 �e L2 implies L1 �d L2 but the converse is not true.
For example, it is known that CTL has the same distinguishing power
as CTL?, but strictly less expressive power [11].

Perfect Information Since the difference between ATL?
x and

ATL?
nf,x lies in the “forgetting” of past observations when evaluat-

ing nested formulae, it comes as no real surprise that the two seman-
tics coincide for perfect information. Due to the perfect knowledge
agents cannot learn anything new; and thus, they can also not forget.

Proposition 1 For all iCGSs M , λ ∈ ΛM , and ATL? formulae ϕ
we have that M,λ, 0 |=nf

I ϕ iff M,λ |=I ϕ.

Proof. The proof is done by structural induction over the formula
structure. The base case (ϕ = p) is omitted. We formulate the in-
duction hypothesis as M,h ◦ λ, k |=nf

I ϕ iff M, last(h) ◦ λ |=I ϕ,
where k = |h| − 1 and |h| ≥ 1, for all path formulae ϕ. Then, the
claim follows for |h| = 1. We only prove the interesting case where
ϕ ≡ 〈〈A〉〉γ.

Firstly, for a given I-strategy sA and history
h with |h| ≥ 1 we define sA

⊕h−1 as follows:
s
⊕h−1

A (h′) = sA(h[0, |h| − 2]◦h′) if h[0, |h| − 2]◦h′ is a
valid history in the model and arbitrarily otherwise. That is, the new
strategy always simulates sA, thus assuming that history h (without
the current state) took place.

(⇒) Assume M,h ◦ λ, k |=nf
I 〈〈A〉〉γ. Thus, there is an I-strategy

sA such that for all paths λ′ ∈ out(h, sA), we have thatM,λ′, k |=nf
I

γ. We note that λ′ is of the form h ◦ λ′′, where last(h) ◦ λ′′ ∈
out(last(h), ŝA) and ŝA is the strategy such that ŝ⊕h−1

A = sA.
By applying the induction hypothesis, we obtain that M, last(h) ◦

λ′′ |=I γ, for all paths last(h) ◦ λ′′ ∈ out(last(h), ŝA). Hence,
M, last(h) ◦ λ |=I 〈〈A〉〉γ.

(⇐) Let h be a valid history of M such that M, last(h) ◦ λ |=I

〈〈A〉〉γ and |h| ≥ 1. Thus, there exists a strategy sA, such that for
all λ′ ∈ out(last(h), sA), M,λ′ |=I γ. Note that λ′ is of the form
last(h) ◦ λ′′, thus, by applying the induction hypothesis, we have
M,h ◦ λ′′, k |=nf

I γ for all h ◦ λ′′ ∈ out(h, sA⊕h−1) where k =
|h| − 1. It follows that M,h ◦ λ, k |=nf

I 〈〈A〉〉γ. �

The result below (and also Theorem 3) is an immediate conse-
quence. It shows that the logics ATL?

I and ATL?
nf,I for perfect infor-

mation are essentially equivalent.

Theorem 1 ATL?
I and ATL?

nf,I are equally expressive and have the
same distinguishing power.

Imperfect Information In what follows, we compare the ex-
pressiveness of our no-forgetting logic ATL?

nf,i with that of its for-
getting counterpart ATL?

i . First, we show that the two semantics
differ. We consider model M1 and state q0 from Example 3. Let
ϕ ≡ 〈〈s〉〉3¬〈〈g〉〉3win. In Examples 3 and 4 we have shown that
M1, q0 |=i ϕ but M1, q0 6|=nf

i ϕ. Thus, we have:

Proposition 2 There is an iCGS M , a state q in M , and an ATL?-
formula ϕ such that M, q |=i ϕ and M, q 6|=nf

i ϕ.

Example 5 We consider the models in Figure 2. We have that
M2, a0 |=nf

i 〈〈1〉〉 f〈〈2〉〉 fwin but M ′2, a0 6|=nf
i 〈〈1〉〉 f〈〈2〉〉 fwin.

In model M2 player 2 can learn in which state the game is after the
first move (1 plays α in a0); this is not the case inM ′2. Therefore, un-
der the no-forgetting semantics the two models are distinguishable.

Proposition 3 There are pointed iCGSs which satisfy the same
ATL?

i -formulae, but can be distinguished in ATL?
nf,i: ATL?

nf,i 6�d

ATL?
i .

Proof. [sketch] Let M2 and M ′2 be the iCGSs shown in Figure 2
and ϕ be any ATL?-formula. Clearly, we have: (1) M2, xj |=i ϕ
iff M2, x

′
j |=i ϕ for x ∈ {a, b} and j = 1, 2, and analogously

for M ′2. Moreover, we have (2) M2, xj |=i ϕ iff M ′2, xj |=i ϕ for
x ∈ {a, b, a′, b′} and j = 1, 2. Now, we prove (?) M2, a0 |=i ϕ iff
M ′2, a0 |=i ϕ by structural induction on ϕ. Basis case: The case for
atomic propositions is clear. Next, we consider ϕ = 〈〈A〉〉γ where
γ contains no strategic quantifiers. The cases A ∈ {∅, {1}} follow
trivially as each strategy ofA generates the same outcome set in both
models.
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Figure 2. Models M2 (left-hand-side) and M ′2 (right-hand side). Both
models consist of two players 1 and 2. Action tuples (α1, α2) give the

action of player 1 (α1) and of player 2 (α2). The only difference between
both models is that in model M2 player 2 can also not distinguish a0 and b0.

Case A = {2}. The direction “⇐” in (?) is clear as any
(uniform) strategy in M ′2 generates the same outcome set as in
M2. “⇒” Let s1 be an arbitrary strategy in M2. We investigate
playsiM2

(a0, s1). First we note that playsiM2
(a0, s1) includes either

{a0a′1(a′2)ω, a0b
′
1(b′2)ω}, or {a0a′1(b′2)ω, a0b

′
1(a′2)ω}. What is es-

sential is that the outcome set contains a path on which win holds and
one where win never holds. The same is true for playsiM2

(a0, s
′
1) for

any strategy s′1 in M ′2. Now, it is easy to see that there cannot be any
formula γ which distinguishes both models.

Case A = {1, 2}. The reasoning is similar to the previous case.
However, we need to make sure that {2} has a uniform strategy in
a0a1 and b0b1 in M ′2 which ensures winning (or not winning) when
cooperating with player 1. This requires the additional action γ in
states a1 and b1 in both models. Without it we would, e.g, have that
M2, a0 |=i 〈〈1, 2〉〉3win but M ′2, a0 6|=i 〈〈1, 2〉〉3win.

Induction step: The cases for negation and conjunction are as
usual. It remains to consider ϕ = 〈〈A〉〉γ where γ contains strate-
gic quantifiers. From the previous considerations, we know that the
claim follows immediately forA ∈ {∅, {1}} (as the outcome sets are
equivalent) and from (2). The remaining two cases follow from (1),
(2) and the specific structure of the models. Due to space limitation
we skip the formal details. This concludes this part of the proof.

In Ex. 5 we have shown that both pointed models can be dis-
tinguished in ATL?

nf,i. For every ATL?
i -formula ϕ we have a0 ∈

[[ϕ,M2]]|=i
iff a0 ∈ [[ϕ,M ′2]]|=i

but a0 ∈ [[ϕ′,M2]]|=nf
i

and a0 6∈
[[ϕ′,M ′2]]|=nf

i
for some ϕ′. Thus, we have that ATL?

nf,i 6�d ATL?
i . �

Next, we investigate whether ATL?
nf,i is at least as distinguishing

as ATL?
i .

Example 6 Let us consider the two iCGSs M3 and M ′3 shown in
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Figure 3. M3 (resp. M ′3) is the iCGS shown on the left-hand-side (resp.
right-hand-side) of the Figure. For an explanation, please consider Fig. 2.

Figure 3. There is an ATL?
i -formula that can distinguish both mod-

els: M3, a0 |=i 〈〈1〉〉 f〈〈2〉〉 fwin and M ′3, a0 6|=i 〈〈1〉〉 f〈〈2〉〉fwin. In the latter case player 2 “forgets” that the game has started
in state a0. Thus, in M2 the player cannot distinguish the states a1
from a2 when evaluating the nested formula. It is easy to see that
there is no uniform winning strategy from a1 and a2 in M ′2, respec-
tively.

Proposition 4 There are pointed iCGSs which satisfy the same
ATL?

nf,i formulae, but can be distinguished in ATL?
i : ATL?

i 6�d

ATL?
nf,i.

Proof. [sketch] We consider models M3 and M ′3 from Figure 3. We
only give an informal argument that there is no ATL?

nf,i-formula that
can distinguish (M3, a0) from (M ′3, a0). Clearly, the only way to
distinguish both pointed models is that some state formula is evalu-
ated in a1 or b1. The paths that start in (M3, a0) are isomorphic to
those that start in (M ′3, a0). Moreover, in both models all histories
that pass through a1 are distinguishable from those that pass through
b1, because the former start in a0 while the latter start in b0. Thus,
there is no way that a formula can distinguish the pointed models
under the no-forgetting semantics. But both models can be distin-
guished in ATL?

i as shown in Example 6. �

Theorem 2 The logics ATL?
i and ATL?

nf,i have incomparable distin-
guishing and expressive powers.

5 Comparing Validities
Another way of comparing two logics is to compare the sets of va-
lidities that they induce, that is, the general properties of games that
can be specified and studied (cf. [6]). Intuitively, each formula can
be interpreted as a property of interaction between agents in a iCGS.
While expressiveness concerns the ability to capture such properties,
validities are properties that universally hold. Thus, by comparing va-
lidity sets of different semantics, one is able to compare the general
properties of games induced by the semantics (cf. [6]).

Perfect Information The following result is a direct corollary of
Proposition 1. The result is not surprising as agents with perfect in-
formation cannot learn from past events: they have perfect informa-
tion about the current state and the truth of temporal formulae does
only depend on the current and future states. Thus, under perfect in-
formation both semantics yield the same logics.

Theorem 3 Val(ATL?
I ) = Val(ATL?

nf,I).



Imperfect Information Now we will compare the validity sets of
ATL?

nf,i and ATL?
i . Due to the lack of space we can only give proof

sketches.

Proposition 5 Val(ATL?
i ) ⊆ Val(ATL?

nf,i)

Proof. [sketch] We show that Sat(ATL?
nf,i) ⊆ Sat(ATL?

i ). Suppose
ϕ ∈ Sat(ATL?

nf,i). Then, there is an iCGS M and a state q such that
M, q |=nf

i ϕ. For the moment suppose that all states can be distin-
guished from q. Then, the model M can be unfolded from state q to
an infinite tree T (M, q) the states of which correspond to histories
in M . Two nodes h and h′ in these trees are linked by an epistemic
relation for an agent a, h ∼a h

′, iff h ≈a h
′ in M . Actually, these

models correspond to the objective epistemic tree unfoldings pro-
posed in [6]. It is easy to see that the epistemic relation in the tree
already encodes no-forgetting; thus, both semantics |=i and |=nf

i co-
incide over them.

Now, it might be the case that there are states indistinguishable
from q. They have to be considered as well. Let Q′ = {q′ | q ∼Agt
q′} be the set of all states indistinguishable from q for some agent
from Agt. For each state q̂ ∈ Q′ we construct the unfolding T (M, q̂)
as described above. Moreover, we introduce epistemic links between
these trees. For any two histories h and h′ in any of these trees we
define h ∼a h′, iff h ≈a h′ in M . Let the resulting model—the
collection of all these trees plus the inter-tree epistemic relations—
be denoted by T̂ (M, q). Actually, this unfolding was considered as
a naive epistemic unfolding in [6, Example 7] which was shown to
be insufficient for ATL?

i . In our setting however, we can show that
M, q |=nf

i ϕ iff T̂ (M, q), q |=nf
i ϕ iff T̂ (M, q), q |=i ϕ which shows

that ϕ ∈ Sat(ATL?
i ). �

Proposition 6 Val(ATL?
nf,i) 6⊆ Val(ATL?

i )

Proof. [sketch] We consider the formula ϕ ≡ 〈〈a〉〉2p →
E f〈〈a〉〉2p where Eϕ ≡ ¬〈〈∅〉〉 f¬ϕ. Essentially, we can use
model M ′3 from Figure 3 to show that ϕ 6∈ Val(ATL?

i ). If we inter-
pret {1, 2} as a single player we have M ′3, a0 |=i 〈〈{1, 2}〉〉2¬win
but M ′3, a0 6|=i E f〈〈{1, 2}〉〉2¬win, which concludes this part.

Now, suppose that M, q |=nf
i 〈〈a〉〉2p and let sa be a wit-

nessing strategy and qq1q2 . . . ∈ playsi(q, sa). Then, we have
M, qq1 . . . , 1 |=nf

i 〈〈a〉〉2p because playsi(qq1, sa) ⊆ playsi(q, sa);
so, M, q, 0 |=nf

i E f〈〈a〉〉2p which concludes the proof. �

With these propositions it is immediate that ATL?
nf,i describes a more

specific class of games than ATL?
i —games in which players do not

forget past events:

Theorem 4 Val(ATL?
i ) ( Val(ATL?

nf,i)

6 Conclusion
In this paper, we formally study the semantics for ATL? which, un-
like the standard semantics, assumes that agents forget none of their
past observations. In particular, we investigate the relation between
the standard perfect recall semantics and the new semantics of truly
perfect recall (or no-forgetting). In the case of perfect information
the no-forgetting semantics turns out to be equivalent to the standard
one—due to the perfect knowledge agents cannot learn anything new
and thus they also cannot forget. In the case of incomplete informa-
tion, however, we show that the new semantics is incomparable to the
standard one with respect to the expressive as well as distinguishing

power. Equally interesting is the comparison of general properties
of games induced by the different semantics. Formally, we compare
the sets of validities (similarly to [6]), and show that the truly per-
fect recall semantics captures a more specific class of games than the
standard semantics of ATL?

i does.
In our future work, we plan to study how strategy commitment is

affected by our new semantics. Therefore, we plan to investigate the
two strategy commitment logics presented in [4] and [1]. Also, we
plan to investigate the complexity of model checking and satisfiabil-
ity checking for the alternating-time logics with truly perfect recall.
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