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In alternating-time temporal logic ATL?, agents with perfect recall assign choices to sequences of states, i.e., to possible
finite histories of the game. However, when a nested strategic modality is interpreted, the new strategy does not take into
account the previous sequence of events. It is as if agents collect their observations in the nested game again from scratch,
thus effectively forgetting what they observed before. Intuitively, it does not fit the assumption of agents having perfect
recall of the past. In this paper, we investigate the alternative semantics for ATL? where the past is not forgotten in nested
games. We show that the standard semantics of ATL? coincides with the “truly perfect recall” semantics for agents with
perfect information and in case of so called “objective” abilities under uncertainty. On the other hand, the two semantics
differ significantly for the most popular (“subjective”) notion of ability under imperfect information. The same applies to the
standard vs. “truly perfect recall” semantics of ATL? with persistent strategies. We compare the relevant variants of ATL?

by looking at their their expressive power, sets of validities, and tractability of model checking.
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1. INTRODUCTION
The alternating-time temporal logic ATL? and its fragment ATL [Alur et al. 1997; 2002] are log-
ics which allow for reasoning about strategic interactions in multi-agent systems (MAS). The main
idea is to extend the framework of temporal logic with the game-theoretic notion of strategic abil-
ity. Hence, ATL? enables to express statements about what agents (or groups of agents) can achieve.
For example, 〈〈a〉〉3wina says that agent a has the ability to eventually win no matter what the other
agents do, while 〈〈a, b〉〉2safe expresses that agents a and b together can force the system to always
remain in a safe state. Such properties can be useful for specification, verification and reasoning
about interaction in agent systems. They have become especially relevant due to active development
of algorithms and tools for verification where the “correctness” property is given in terms of strate-
gic ability [Alur et al. 2000; Alur et al. 2001; Kacprzak and Penczek 2004; Lomuscio and Raimondi
2006; Chen et al. 2013; Huang and van der Meyden 2014; Busard et al. 2014; Pilecki et al. 2014;
Lomuscio et al. 2015; Busard et al. 2015; Busard 2017; Jamroga et al. 2017; Jamroga et al. 2018].
Still, when verifying a system, one must first of all have a clear idea what is to be verified. An impor-
tant challenge for model checking MAS is to define the correctness property in the right way. This
means choosing the right language and the right semantics, one which accurately captures agents’
abilities in a given context. The challenge is not only theoretical. When designing a system, speci-
fying requirements, or verifying its properties, one must choose between many semantic variants of
ATL? that start from different assumptions about the capabilities of agents. For instance, agents may
be able to observe the full state of the system or only parts of it (perfect vs. imperfect information),
and they may base their decisions on the current state only, or on the entire history of the game (per-
fect vs. imperfect recall) [Schobbens 2004; Jamroga and van der Hoek 2004]. Intermediate cases

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
c© 2010 ACM. 1539-9087/2010/03-ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:2

of finite-memory strategies have also been studied [Vester 2013]. Moreover, agents can have ob-
jective or subjective ability to achieve their goals [Bulling and Jamroga 2014], their strategies can
come with or without long-term commitment [Ågotnes et al. 2007; Brihaye et al. 2009], they can
be assumed to play rationally [Bulling et al. 2008], be equipped with bounded resources [Alechina
et al. 2004; Alechina et al. 2009; Alechina et al. 2010; 2011; Bulling and Farwer 2010b; 2010a],
a cost-free mechanism for broadcasting information within a team [Dima et al. 2010; Guelev et al.
2011], and so on.

In this paper, we focus on the commonly accepted perfect recall semantics of strategic ability,
proposed in [Alur et al. 2002; Schobbens 2004]. We point out that, for nested strategic modalities, it
interprets formulae of ATL? in a counterintuitive way. Then, we study a modified the semantics that
avoids the problem. Most importantly, we formally investigate the difference between the standard
and the modified semantics in terms of valid sentences, expressive power, and complexity of model
checking.

1.1. Contribution: Analysis of Perfect Recall in Logics of Strategic Ability
We begin our analysis by observing that the standard perfect recall semantics of ATL? has a coun-
terintuitive flavor: despite using perfect recall strategies, agents may not have access to all of their
past observations. More precisely, agents forget their past observations once they proceed to re-
alize a sub-goal in the game. As an example, consider the formula 〈〈b, c〉〉3〈〈a, b〉〉 gmarriedab

which expresses that Bob and Charles have a joint strategy to ensure that, at some point in the
future, Alice and Bob will be able to get married. Agents’ abilities rely on their knowledge; in case
of perfect recall, one would assume that each agent can use all their past observations to deter-
mine their subsequent actions. However, the standard semantics of ATL? interprets the subformula
〈〈a, b〉〉 gmarriedab in the original model. This amounts to assuming that Bob, when looking for his
best strategy to make 〈〈a, b〉〉〈〈a, b〉〉〈〈a, b〉〉 gmarriedab true, must ignore (or forget) all the observations that he
has made while executing his strategy for 〈〈b, c〉〉〈〈b, c〉〉〈〈b, c〉〉3〈〈a, b〉〉 gmarriedab.

The above feature has some logical and conceptual reasons. ATL? was designed to extend the
branching-time temporal logic CTL? which in turn was built on the assumption that “the future
behavior [of a concurrent program] depends only upon the current state, and not upon how that state
was reached” so that it “reflects the essential properties of genuine concurrent programs” [Emerson
and Halpern 1986]. In logical terms, this means stronger compositionality of the semantics, as the
current state alone suffices to determine the truth value of the formula. In modeling terms, this
amounts to assuming Markovian behavior of the system. The main problem is that, for agents with
perfect recall of the past, the dynamics of their mental states is not Markovian.

In this paper, we study a modified semantics of ATL? where formulae are interpreted in finite
sequences of states rather than single states of the system. We call the semantics truly perfect recall
to emphasize that decisions within a strategy can refer to the whole history of observations made
by the agents. We show that the modified semantics offers a significantly different view of agents’
abilities from the original semantics of ATL?. More precisely, we prove that if agents have imperfect
information then ATL? with truly perfect recall differs from ATL? with standard perfect recall in
terms of expressive power as well as valid sentences. The same can be shown for variants of ATL?

that allow agents to irrevocably commit to their strategies [Ågotnes et al. 2007; Brihaye et al. 2009].
We also point out that truly perfect recall makes model checking ATL? harder than in the standard
semantics.1 Analogously to [Bulling and Jamroga 2014], we conclude that the truly perfect recall
semantics corresponds to a different class of games, and allows for expressing different properties
of those games, than the “classic” variants of ATL? from [Alur et al. 2002; Schobbens 2004].

1That is, the complexity significantly increases for decidable fragments of the problem.
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1.2. Motivation
The work reported in this paper concerns modeling, specification, and reasoning about strategic
abilities in multi-agent systems. We believe that, when doing any kind of reasoning, it is of utmost
importance to get the model and the property right. It is important for modelers to understand the
meaning of the formulae they write down, and thus there is a need to refine existing semantics if
they produce counterintuitive interpretation of the formulae.

In ATL?, the interaction between agents is usually understood as a “game” where the “propo-
nents” (the coalition A in the formula 〈〈A〉〉ϕ) may want to pursue the goal characterized by the
temporal subformula ϕ. They win if there exists a collective strategy such that ϕ is guaranteed even
for the most damaging response of the “opponents” (i.e., the agents outside A).2 An important sub-
class of the games is formed by ones where the goal ϕ refers to abilities in another, nested game.
Notice that strategic abilities in such games have a two-level structure: they refer to existence of
a strategy that enables (or prevents) another strategy. We believe that the template corresponds to
many important properties of multi-agent systems. In particular, reasoning about policies (e.g., secu-
rity policies, social policies, etc.) often follows this conceptual structure. In Section 1.3, we present
several motivating examples to make the intuition more concrete.

To solve any kind of game, the modeler must decide what capabilities he or she will associate
with the players. In particular, one needs to decide what kind of memory (or recall) the proponents
have. Typical options are: perfect recall (agents in A remember all the past observations), finite
or bounded memory (limited by a finite or bounded number of memory cells, or a restricted time
window), and memoryless agents (whose memory is fully encoded in their current local state). Each
option has its uses, and fits different scenarios. The only constraint is conceptual consistency. For
instance, a semantics based on the perfect recall assumption should not admit a formula saying that
agent a knows a strategy to guarantee p in the next step (〈〈a〉〉 gp), and yet she will not know that
p holds, even if she follows the same strategy (¬〈〈a〉〉 gKap). This is the issue that we focus on in
this paper.

1.3. Motivating Examples
The main point that we raise concerns the semantics of formulae that involve nested strategic modal-
ities. That is, formulae of ATL? that specify agents’ ability to endow someone with (or deprive of)
the ability to achieve a given goal. In other words, we are concerned with specifications that address
the existence of strategies which enable (or disable) other strategies. At the first glance, such formu-
lae may seem rather esoteric, and not likely to be encountered in specifications of actual systems.
Below we present a number of examples which demonstrate the opposite, namely that the ability
to influence abilities can be extremely important. Hence, the right semantics of nested strategic
modalities is also of utmost importance for the soundness of reasoning and verification.

Example 1.1 (Coercion in voting). Consider a very simple voting scenario with two agents:
the voter v and the coercer c. The voter casts her vote for a selected candidate i ∈ {1, . . . , n}
(action votei). Upon exit from the polling station, the voter can hand in a proof of how she voted
to the coercer (action give) or refuse to hand in the proof (action ng). The proof may be a certified
receipt from the election authorities, a picture of the ballot taken with a smartphone, etc.: anything
that the coercer will consider believable. After that, the coercer can either punish the voter (action
pun) or not punish (action np). A simple model of the scenario for n = 2 is shown in Figure 1.
Proposition votei labels the states where the voter has already voted for candidate i, and proposition
end indicates that the election is over. Proposition pun labels the states where the voter has been
punished. The indistinguishability relation for the coercer is depicted by dotted lines.

Suppose that the coercer favors candidate 1, and wants to force the voter to vote for that candidate.
The formula 〈〈c〉〉2

(
end → (pun ↔ ¬voted1)

)
expresses that c has a strategy to make sure that,

2In game-theoretic terms, this can be understood as a 2-player zero-sum extensive form game with binary payoffs over
infinite runs, where the rationality criterion is given by maxmin.
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Fig. 1. A simple model of voting and coercion

whenever the election has come to an end, the voter is punished if, and only if, she did not vote
for 1. Based on that, we can use the formula

〈〈v〉〉2
(
¬〈〈c〉〉2

(
end→ (pun↔ ¬voted1)

) )
to specify that the voter can always prevent coercion.3

Example 1.2 (Social fairness). The Ministry of Education should strive to ensure fair access to
university education across the population, e.g., by funding scholarships and stipends for students,
subsidizing infrastructure in underdeveloped regions, etc. The objective is that everybody should be
given an opportunity to study, provided that they choose to do so, and can conceivably make it. Let
E3ψ mean “there is at least one possible path where ψ eventually holds,” i.e., it is at least conceiv-
able that ψ can become true at some future moment. Also, suppose proposition studys models the
situation where s is admitted at the university. Then, E3studys expresses that there exists an objec-
tive possibility that a is admitted. On the other hand, 〈〈s〉〉3studys expresses that s has the ability
to get admitted, no matter what other agents do. Now, the requirement that “the Ministry should be
able to provide fair access to university education” can be captured by the following formula:

〈〈ministry〉〉2
∧
s∈Agt

(
E3studys → 〈〈s〉〉3studys

)
.

3The symbols, notational conventions, and semantics of formulae will be properly introduced in Section 2. Still, we hope
that the reader can – already at this point – get an idea of the kind of abilities that we study in the paper.
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Example 1.3 (Robot soccer). A possible task specification for a member of a RoboCup team is:

〈〈a〉〉3
(

possessionb ∧ 〈〈b〉〉3goalb
)
.

That is, the robot a should seek a strategy to pass the ball to its teammate b (i.e., make proposition
possessionb true) in such a way that b can score a goal for their team (i.e. make goalb true).

Example 1.4 (TCP). The following specification describes an objective of the congestion con-
trol mechanism in the TCP protocol:

〈〈sender〉〉2(send_pkt→ 〈〈receiver〉〉3ack_pkt)

expressing that a sender can maintain that whenever a packet is sent (i.e. proposition send_pkt is
true), the receiver has a strategy to eventually acknowledge it (i.e. to make ack_pkt true). Such
a strategy may include actions such as replying with a delay, so that the receiver buffer does not
overflow.

Example 1.5 (Distribution of cryptographic keys). Public key cryptography is based on gener-
ation of a pair of keys (ska, pka) where ska is agent a’s secret key, and pka is his public key.
The secret key is known only by a, whereas the public key is openly available to everybody (e.g.,
posted on the web). They serve dual cryptographic functions, i.e., messages encrypted by pka can
be decrypted only using ska, and vice versa. The keys can be used for either communication or
authentication. If another agent wants to send a private message to a, she can encrypt the message
with pka and send it to a (who is the only agent possessing the key to decrypt it). If a wants to
authenticate himself to another agent, he sends her a message plus its copy encrypted with his secret
key (typically the communication is supposed to be private, so both parts are additionally encrypted
with b’s public key). When b decrypts the second part with a’s public key and it matches the first
part, then the message must have originated from a. However, this only works when the process of
key distribution is trustworthy, i.e., when a and b know that the public keys pkb, pka indeed come
from b and a, respectively.

Suppose Kim denotes that agent i knows or reads the content of message m. Then, the for-
mula 〈〈a〉〉(3Kbm ∧ 2¬Kcm) expresses that a can ensure that b will eventually read the message
(3Kbm) and at the same time prevent c from ever reading the message (2¬Kcm). Here c is a
potentially malitious agent.

If we are mainly interested in communication then the goal of key exchange between agents a
and b can be specified as:

〈〈a, b〉〉32
∧
m

∧
c 6=a,b

(
〈〈a〉〉(3Kbm ∧2¬Kcm) ∧ 〈〈b〉〉(3Kam ∧2¬Kcm)

)
.

In what follows, we will use a simplified working example to illustrate the main definitions in an
intuitive way. We point out, however, that the working example shares the most important feature
with the above motivating scenarios, in the sense that it asks about existence of a strategy to provide
an agent with (or deprive of) specific strategic ability.

1.4. Related Work
An important strand in research on ATL? emerged in quest of the “right” semantics for strategic abil-
ity for a specific setting. ATL was combined with epistemic logic [van der Hoek and Wooldridge
2003; Jamroga and van der Hoek 2004], and several semantic variants were defined for various as-
sumptions about agents’ memory [Schobbens 2004; Jamroga and van der Hoek 2004; Ågotnes and
Walther 2009; Vester 2013] and available information [Schobbens 2004; Jamroga and van der Hoek
2004; Ågotnes 2006; Jamroga and Ågotnes 2007], cf. also [Bulling and Jamroga 2014; Ågotnes
et al. 2015] for a broader discussion. Moreover, many conceptual extensions have been considered,
e.g., with explicit reasoning about strategies [van der Hoek et al. 2005; Walther et al. 2007; Chat-
terjee et al. 2010; Mogavero et al. 2010a; Mogavero et al. 2014; Huang and van der Meyden 2014;
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Belardinelli 2014; Berthon et al. 2017], bounded resources [Alechina et al. 2009; Alechina et al.
2010; Bulling and Farwer 2010b; Alechina et al. 2017], rationality assumptions in the form of game-
theoretic solution concepts [Bulling et al. 2008], mechanisms for coordination within teams [Hawke
2010; van Ditmarsch and Knight 2014], and persistent commitment to strategies [Ågotnes et al.
2007; Brihaye et al. 2009]. Another strand of papers considered variants of coalitional ability where
members of the team were assumed to have a unified view of the state of the system, either by
sharing their information at no cost throughout the game [Guelev and Dima 2008; Dima et al. 2010;
Guelev et al. 2011], or by aggregating their uncertainty at each step [Diaconu and Dima 2012].

Several papers have come close to what we investigate here. The dynamics of knowledge in the
seminal book [Fagin et al. 1995] was interpreted in infinite runs that included both the past and the
future part of temporal path. A very similar, history-based semantics for ATL? with imperfect infor-
mation and perfect recall (called ATEL-R*) was in fact considered as early as [Jamroga and van der
Hoek 2004], but it was not studied further. Later, [Bulling and Dix 2010] also used a semantic rela-
tion that referred to the history of events. The focus of that work, however, was coalition formation,
and the history-based semantics was used to keep track of the satisfaction of agents’ goals. Fur-
thermore, [Mogavero et al. 2010b] used history-based semantics to study a variant of ATL? where
coalition A can enforce property ψ in state q if, on all plays enforced by A from q, ψ is true when
evaluated from the beginning of the game. This differs from our work as follows. First, we only use
histories to propagate past observations to strategies that are witnesses to nested strategic modali-
ties, and not to evaluate the “winning condition” (our path subformulae are purely future-oriented).
Secondly, [Mogavero et al. 2010b] look only at the perfect information setting, whereas we con-
sider the cases of both perfect and imperfect information (with and without strategic commitment).
Accordingly, our results are very much different. While [Mogavero et al. 2010b] show that their “re-
lentful ATL?” has the same expressive power and model checking complexity as standard ATL?, our
“ATL? with truly perfect recall” has incomparable expressive power and different model checking
complexity. Moreover, it generates a different set of validities than standard ATL?.

History-based semantics for ATL? with imperfect information was also used in several papers by
Dima and his coauthors [Dima et al. 2010; Guelev et al. 2011; Diaconu and Dima 2012], and the
focus of those papers was very close to what we study here. The differences are as follows. First, we
look at the “truly perfect recall” semantics of ATL? in abstract concurrent game structures, whereas
Dima et al. define the semantics in interpreted systems of infinite runs with perfect recall. Secondly,
the semantics of coalitional play in [Dima et al. 2010; Guelev et al. 2011; Diaconu and Dima 2012]
is seriously restricted by assuming that each coalition uses a single, aggregated indistinguishability
relation; in fact, it can be argued that this amounts to treating coalitions as single agents in disguise,
cf. [Kaźmierczak et al. 2014]. Thirdly, we focus on comparing the new semantics to the standard
semantics, while Dima et al. concentrate on development of axiomatic systems and model checking
algorithms for their variants of ATL?. Fourthly, we also investigate the impact of truly perfect recall
in the case when persistent strategic commitment is allowed.4

Finally, [Belardinelli et al. 2017] use the same semantics as we do here. Again, the difference
lies in the purpose of the studies, and the obtained resuls. While we investigate the differences
between the standard, Markovian semantics of ATL? and the “no forgetting” semantics, the focus
of [Belardinelli et al. 2017] is on model checking – in particular, looking for decidable subclasses
of the generally undecidable problem.

1.5. Structure of the Article
The paper is structured as follows. We introduce the classic variants of alternating-time temporal
logic with perfect recall and perfect/imperfect information in Section 2. In Section 3, we point out
the “forgetting” phenomenon in the classical semantics of ATL?, and present the truly perfect recall
semantics that avoids it. In Section 4 we compare the expressive powers of the variants of ATL?

4A variant of ATL? that combines imperfect information, truly perfect recall, and persistent strategies has been considered
in [Guelev and Dima 2012]. We discuss the relationship to our work in Section 7.2.
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with the standard vs. truly perfect recall semantics. In Section 5 we do the same with respect to
the validity sets induced by the two semantics. In Section 6, we briefly address the impact of truly
perfect recall on the computational complexity of model checking for decidable fragments of the
problem. Finally, Section 7 looks at the difference between standard perfect recall and truly perfect
recall in the presence of persistent strategies. We conclude our work in Section 8, and discuss some
directions for future research.

The material presented in this article is based on the conference papers [Bulling et al. 2013; 2014].
It extends the conference versions with detailed proofs, carefully constructed motivating and work-
ing examples, and formal analysis of truly perfect recall under strategic commitment. Moreover,
we extend the analysis to other “modes” of ability under imperfect information – in particular, we
present a surprising result for the objective interpretation of ability. We also add a brief discussion
on the impact of truly perfect recall on the effectiveness and complexity of model checking ATL?.

2. REASONING ABOUT STRATEGIC ABILITY
In this section, we briefly recall the main concepts behind ATL? and its variants.

2.1. Syntax of Alternating-Time Temporal Logic
ATL? [Alur et al. 1997; 2002] can be seen as a generalization of the branching time logic CTL?,
with the path quantifiers E and A being replaced by strategic modalities 〈〈A〉〉. The formula 〈〈A〉〉γ
expresses that group A has a collective strategy to enforce the temporal property γ where γ can
include the temporal operators g (“next”), and U (“until”). Formally, let Π be a countable set of
atomic propositions, and Agt be a finite nonempty set of agents. The language of ATL? is given by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | gγ | γ U γ, where A ⊆ Agt and p ∈ Π.

We define “sometime in the future” as 3γ ≡ >U γ and “always in the future" as 2γ ≡ ¬3¬γ.
Formulae ϕ and γ are called state and path formulae of ATL?, respectively. State formulae consti-
tute the language of ATL?. By requiring that each temporal operator is immediately preceded by a
strategic modality, we obtain the sub-language ATL; for example, 〈〈A〉〉3p is an ATL formula but
〈〈A〉〉32p and 〈〈A〉〉(3p ∧3r) are not.

2.2. Models: Imperfect Information Concurrent Game Structures
We interpret ATL? formulae over imperfect information concurrent game structures (iCGS) [van der
Hoek and Wooldridge 2003; Schobbens 2004]. An iCGS is given by a tuple M =
〈Agt, St,Π, π, Act, d, o, {∼a| a ∈ Agt}〉 consisting of a nonempty finite set of all agents Agt =
{1, . . . , k}, a nonempty set of states St, a set of atomic propositions Π and their valuation
π : Π → 2St, and a nonempty finite set of (atomic) actions Act. Function d : Agt × St → 2Act

defines nonempty sets of actions available to agents at each state; we will usually write da(q) in-
stead of d(a, q). Function o is a (deterministic) transition function that assigns the outcome state
q′ = o(q, α1, . . . , αk) to each state q and tuple of actions or action profile 〈α1, . . . , αk〉 such that
αi ∈ di(q) for 1 ≤ i ≤ k. Finally, each ∼a⊆ St × St is an equivalence relation that represents
the indistinguishability of states from agent a’s perspective.5 We assume that agents have identical
choices in indistinguishable states (da(q) = da(q′) whenever q ∼a q′). We also assume that collec-
tive knowledge is interpreted in the sense of “everybody knows’, i.e., ∼A=

⋃
a∈A ∼a. For mathe-

matical completeness, we define ∼∅ as the identity relation. We will use [q]A = {q′ | q ∼A q′} to
refer toA’s epistemic image of state q. Note that the perfect information concurrent game structures

5The relations capture observational indistinguishability. The knowledge that an agent collects by means of subsequent
observations is not encoded in the model but rather in the constraints on strategies that the agent is allowed to play, see also
the remark after Example 2.1.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:8

q0

q1 q′1

q2 q′2

q3 win q′3

2

(pu
tL

,no
p) (putR ,nop)

(close,nop) (c
lo

se
,n

op
)

(nop,pick
L

)

(nop,pickR )

(n
op

,p
ic

k L
)

(nop,pickR
)

Fig. 2. The iCGS M1 describing the shell game. Tuples (α1, α2) represent the action profiles. α1 denotes an action of
player 1—the shuffler—and action α2 of player 2—the guesser. The dotted line represents 2’s indistinguishability relation;
State q3 is labelled with the only proposition win. For example, when the guesser plays action pickR in state q2 the game
proceeds to state q′3. nop indicates the “do nothing” action.

(CGS) from [Alur et al. 2002] can be seen as a specific type of iCGS that assumes each ∼a to be
the identity relation.

Example 2.1 (Shell game). Consider model M1 in Figure 2 that depicts a simple version of the
shell game. There are two players: the shuffler 1 and the guesser 2. Initially, the shuffler places a ball
in one of two shells (the left or the right). The shells are open, and the guesser can see the location
of the ball. Then the shuffler turns the shells over, so that the ball becomes hidden. The guesser wins
if he picks up the shell containing the ball. Formally: Agt = {1, 2}, St = {q0, q1, q2, q3, q′1, q′2, q′3},
Π = {win}, π(q3) = {win}, Act = {putL, putR, pickL, pickR, close, nop}, d1(q0) = {putL, putR},
d1(q1) = d1(q′1) = {close}, d1(q2) = d1(q′2) = d2(q0) = d2(q1) = d2(q′1) = {nop}, d1(q2) =
d1(q′2) = {pickL, pickR}, di(q3) = di(q4) = {nop} for i ∈ Agt. q ∼i q for all q ∈ St and i ∈ Agt.
Also, q2 ∼2 q

′
2. The function o is illustrated in Figure 2. Obviously, this is a very simplified version

of the shell game as the shuffler does not even shuffle the shells; he simply places the ball in one
of them and closes them. However, the example is rich enough to point out the limitations of the
standard semantics of ATL?.

Two remarks are in order. First, the relation ∼a encodes a’s (in)ability to distinguish pairs of
states, based on the qualities encapsulated in those states. That is, q ∼a q′ iff q and q′ look the
same to a, independent of the history of events that led to them. If one assumes that the agent has
external memory that allows her to remember the history of past events, this must be represented by
an indistinguishability relation on histories, introduced in the next paragraph. Secondly, in order to
describe an actual game, we also need to fix the initial state of an iCGS. A pair (M, q) consisting of
an iCGS M and a state of M is called a pointed iCGS.

A history h is a finite sequence of states q0q1 . . . qn ∈ St+ which results from the execution
of subsequent transitions; that is, there must be an action profile connecting qi with qi+1 for each
i = 0, . . . , n − 1. Two histories h = q0q1 . . . qn and h′ = q′0q

′
1 . . . q

′
m are indistinguishable for

agent a (denoted h ≈a h′) iff n = m and qi ∼a q′i for i = 0 . . . n. This corresponds to the
notion of synchronous perfect recall in temporal-epistemic logic [Fagin et al. 1995]. We also extend
the indistinguishability relation over histories ≈a, to groups: ≈A=

⋃
a∈A ≈a. We write h ◦ h′ to
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refer to the concatenation of the histories h, h′ and last(h) to refer to the first and last state from
history h, respectively. Λfin

M (q) is the set of all histories in model M starting from state q, and
Λfin
M =

⋃
q∈St Λfin

M (q) is the set of all histories in model M .
A path λ = q0q1q2 . . . is an infinite sequence of states such that there is a transition from each qi

to qi+1. We write h ◦λ, where h = q′0q
′
1 . . . q

′
n to refer to the path q′0q

′
1 . . . q

′
nq0q1q2 . . . obtained by

concatenating h and λ, provided that there is a transition from q′n to q0. We use ΛM (q) to refer to the
set of paths in M that start in state q, and define ΛM :=

⋃
q∈StM ΛM (q) to be the set of paths in M .

We use λ[i] to denote the ith position on path λ (starting from i = 0), λ[i, j] (with j ≥ i) to denote
the history qi . . . qj , and λ[i,∞] to denote the subpath of λ starting from i. Whenever the model
is clear from context, we shall omit the subscript. As we will see later, the semantics of formulae
is defined over paths. The truth, however, essentially depends on the sequence of propositional
labels of each state and not on the name of the state. Hence, we say that two paths λ and λ′ are
propositionally equivalent, in notation λ ≡ λ′ if, and only if, λ[i] ∈ π(p) iff λ′[i] ∈ π(p) for all
i ∈ N and p ∈ Π.

2.3. Strategies and Their Outcomes
A strategy of agent a is a conditional plan that specifies what a is going to do in each situation.
It makes sense, from a conceptual and computational point of view, to distinguish between two
types of strategies: an agent may base its decision on the current state or on the whole history of
events that have happened. In this paper, we consider only the latter case. A perfect information
strategy (I-strategy for short) is a function sa : St+ → Act such that sa(q0 . . . qn) ∈ da(qn) for
all q0 . . . qn ∈ St+. An imperfect information strategy (i-strategy) must be additionally uniform,
in the sense that h ≈a h′ implies sa(h) = sa(h′). A collective x-strategy sA with x ∈ {I, i}, is
a tuple of x-strategies, one per agent in A. In particular, for imperfect information, each individual
strategy sa of sA must be uniform. We also note that uniformity restricts each strategy component
of sA with respect to the corresponding individual indistinguishability relation ∼a and not to the
one corresponding to the group: ∼A. We use sA|a to denote agent a’s part of the collective strategy
sA, and s∅ to denote the empty profile which is the only strategy of the empty coalition.

The function outM (h, sA) returns the set of all paths in M starting with history h, that can occur
when sA is executed. Formally:

outM (h, sA) = {h ◦ λ = q0q1q2... | such that for each i ≥ |h| there exists 〈αi−1a1 , . . . , αi−1ak
〉

such that αi−1a ∈ da(qi−1) for every a ∈ Agt, αi−1a = sA|a(q0q1 . . . qi−1) for every a ∈ A, and
o(qi−1, α

i−1
a1 , . . . , αi−1ak

) = qi}.

Example 2.2 (Strategies and outcomes). Consider model M1 from Example 2.1, coalition A =
{1, 2}, and its collective strategy sA = (s1, s2) where s1(q0) = putL, s1(q0q1) = s1(q0q

′
1) = close

and s2(q0q1q2) = pickL. The values of sa(h) are unimportant for all the other combinations of
h ∈ Λfin

M1
and a ∈ A. If sA is executed in state q0, we have outM (q0, sA) = {q0q1q2qω3 }.

In the same model, consider strategy s′A = (s′1, s
′
2), where s′1 assigns an arbitrary permissible

action to each history, s′2(q0q1q2) = s′2(q0q
′
1q
′
2) = pickL and s′2(h) = nop for all other histories.

If q0q1q2 is the current game development (the initial state was q0, followed by q1 and q2), then
outM (q0q1q2, s

′
A) = {q0q1q2qω3 }. At the same time, if s′2(q2) = s′2(q′2) = pickL and s′2(h) = nop

for all other histories, then — if the game starts in q2 — we have: outM (q2, s
′
A) = {q2qω3 }.

Function playsxM (h, sA) returns the set of paths which agents from A consider possible if
the game started with h and strategy sA is executed. For perfect information, playsIM (h, sA) =
outM (h, sA). For imperfect information, playsiM (h, sA) includes also the paths that A think might
occur, i.e., ones starting from histories that are indistinguishable from A’s point of view:
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playsxM (h, sA) =

{
outM (h, sA) for x = I⋃
h≈Ah′ outM (h′, sA) for x = i

Example 2.3 (Subjective outcome of a strategy). Let us revisit the strategies presented in Ex-
ample 2.2. Recall that outM (q2, s

′
A) = {q2qω3 }, and observe that outM (q′2, s

′
A) = {q′2q′ω3 }. Hence

playsiM (q2, s
′
A) = {q2qω3 , q′2q′ω3 }: the history of the game is q2 and since coalition A cannot dis-

tinguish q2 from q′2, both the “winning” and “losing” paths are considered possible when s′A is
executed.

Note that the above definitions of functions out and plays are slightly more general than the ones
from [Alur et al. 2002; Schobbens 2004; Bulling and Jamroga 2014]: outcome paths are constructed
given an initial sequence of states rather than a single state. This will prove convenient when we
define the truly perfect recall semantics of ATL? in Section 3.

2.4. Standard Perfect Recall Semantics
Let M be an iCGS and λ ∈ ΛM . The (standard perfect recall) semantics of ATL? can be defined
via relation |=x, parameterized with x ∈ {i, I}:
M,λ |=x p iff λ[0] ∈ π(p) (where p ∈ Π);
M,λ |=x ¬ϕ iff M,λ 6|=x ϕ;
M,λ |=x ϕ1 ∧ ϕ2 iff M,λ |=x ϕ1 and M,λ |=x ϕ2;
M,λ |=x 〈〈A〉〉ϕ iff there is a collective x-strategy sA such that, for each λ′ ∈ playsxM (λ[0], sA),

we have M,λ′ |=x ϕ;
M,λ |=x

gϕ iff M,λ[1,∞] |=x ϕ;
M,λ |=x ϕ1 U ϕ2 iff there is i ∈ N0 such that M,λ[i,∞] |=x ϕ2 and for all 0 ≤ j < i, we have

that M,λ[j,∞] |=x ϕ1.

Also, for a state q and a state formula ϕ, we define M, q |=x ϕ iff M,λ |=x ϕ for all λ ∈ ΛM (q).
The logical system with the syntax given by ATL? and the semantics by |=x will be referred to

as ATL?x . That is, ATL?I refers to the language of ATL? with the perfect information semantics |=I ,
whereas ATL?i is ATL? with the imperfect information semantics |=i. Moreover, formula ϕ is valid
in ATL?x iff M, q |=x ϕ for all M and states q in M .

Example 2.4 (Shell game ctd.). Consider the iCGS M1 from Figure 2, and assume q2 is the
initial state of the game. It is easy to see that M1, q2 |=I 〈〈2〉〉3win: under perfect information,
the guesser can win by choosing the left shell in q2. On the other hand, M1, q2 6|=i 〈〈2〉〉3win:
under imperfect information, the guesser has no uniform strategy that succeeds from both q2 and
q′2. Finally, if the game begins in q0 then the guesser can win (M1, q0 |=i 〈〈2〉〉3win) by using the
i-strategy: “play pickL (resp. pickR) after history q0q1q2 (resp. q0q′1q

′
2)”. The strategy is uniform

as both histories are distinguishable for the guesser6.

Informally, M,λ |=I 〈〈A〉〉ϕ holds iff there exists a collective I-strategy sA such that ϕ holds
on all outcome paths that result from executing sA after history λ[0]. Thus, in the case of standard
ATL? (with perfect information), the history is always limited to the current state, and thus the
previous states of the play are completely ignored. Notice also that M, q |=i 〈〈A〉〉ϕ requires A to
have a single strategy that is successful in all states indistinguishable from q for any member of the
coalition.

Remark 2.5 (Embedding path quantifiers in ATL?). The path quantifiers of CTL? can be trans-
lated to ATL? as follows: Aϕ ≡ 〈〈∅〉〉ϕ (“for all paths, ϕ”) and Eϕ ≡ ¬A¬ϕ (“there is a path

6We note that the guesser has no memoryless strategy (i.e. a strategy that assigns actions to states only) to win, as such a
strategy had to assign the same choices to q2 and q′2.
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such that ϕ”). We also note that, when all the agents have perfect information, the existential path
quatifier can be equivalently expressed by Eϕ ≡ 〈〈Agt〉〉ϕ.

Remark 2.6 (Reasoning about knowledge). We note in passing that epistemic operators Kaϕ
(“a knows that ϕ”) can be expressed in ATL?i . The standard semantics of Ka is given by:

M, q |= Kaϕ iff M, q′ |= ϕ for every q′ such that q ∼a q′.

It is easy to see that M,λ[0] |= Kaϕ iff M,λ |=i 〈〈a〉〉ϕU ϕ. Equivalently, Kaϕ can be expressed
in ATL?i as 〈〈a〉〉⊥U ϕ.

2.5. Other Semantics of Strategic Ability under Imperfect Information
The concept of ability has received considerable attention in philosophy, logic, and artificial intel-
ligence over the last 70 years, including the seminal works of Ryle [Ryle 1949], McCarthy and
Hayes [McCarthy and Hayes 1969], Chellas [Chellas 1969], Moore [Moore 1977; 1985], and Bel-
nap and Perloff [Belnap and Perloff 1988]. The term corresponds fairly closely to its everyday usage:
that is, ability means the capability to do things, and to bring about states of affairs. Originally, the
focus was mainly on characterizing the abilities of human agents. Shortly afterwards, researchers in
computer science and artificial intelligence got also interested in the notion of what machines can
achieve. The 70 years of research can be briefly summarized as: there is no single formal charac-
terization of ability; in fact, the term can have many different flavours depending on the context and
the scenario to which it is applied.

Roughly speaking, the possible interpretations ofA’s ability to bring about propertyϕ, formalized
by formula 〈〈A〉〉ϕ, can be grouped in four categories:

(1) There exists a specification of A’s behavior σA (not necessarily executable) such that ϕ holds in
every execution of sA;

(2) There is an executable strategy sA such that ϕ holds in every execution of sA (A have objective
ability to enforce ϕ);

(3) A know that there is an executable strategy sA such that ϕ holds in every execution of sA, but
they do not necessarily know the strategy itself (A have a strategy “de dicto” to enforce ϕ).

(4) There is an executable strategy sA such that A know that ϕ holds in every execution of sA (A
have a strategy “de re”, or the subjective ability to enforce ϕ).

Out of those, cases 2 and 4 correspond to the most prominent variants of ability in the literature.
The latter (subjective ability) captures the capabilities of self-sufficient agents and teams, and is
closest to the everyday use of the term, especially in relation to humans. The former (objective
ability) characterizes an important aspect of abilities ascribed to machines and computer programs.
We focus on ATL?i formalizations of the two notions, and refer the interested reader to [Ågotnes
et al. 2015] for a more detailed discussion and further bibliography.

2.5.1. Variants of Subjective Ability. The semantics of ATL?i , presented in the previous subsec-
tions, is based on two fundamental assumptions. First, a coalitional strategy consists of individual
strategies, each of them to be executed by a single member of the coalition. Thus, executability of
a strategy (encoded by the notion of uniform strategy) is based on what individual agents know in a
given situation. Secondly, the coalition knows which combination of individual strategies it should
select if there is one that succeeds from all the situations they consider possible. That is, given a
collective strategy, we look at all the outcome paths starting from histories indistinguishable from
the current one.

Unfortunately, there is no single interpretation of collective knowledge, and hence also collective
indistinguishability for a group of agentsA. The best known possibilities are: mutual knowledgeEA
(also known as “everybody knows”), common knowledge CA, and distributed knowledge DA [Fa-
gin et al. 1995]. The indistinguishability relations on states are lifted from individual epistemic
relations ∼a as follows:
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— ∼DA=
⋂
a∈A ∼a, i.e., distributed knowledge aggregates individual certainty within A,

— ∼EA=
⋃
a∈A ∼a, i.e., “everybody knows” aggregates uncertainty,7

— ∼CA is the transitive closure of ∼EA; that is, common knowledge aggregates uncertainty, plus
uncertainty about uncertainty, etc.

Additionally, we take ∼C∅ and ∼D∅ to coincide with the identity relation.
In the same way, one can define indistinguishability relations on histories. ≈DA is the intersection

of all ≈a relations for a ∈ A, ≈EA is their union, and ≈CA is the transitive closure of ≈EA. It is easy
to see that ≈A=≈EA, i.e., the semantics of 〈〈A〉〉 with imperfect information in Section 2.4 uses the
“everybody knows” type of indistinguishability. This follows the “canonical” semantics given by
Schobbens [Schobbens 2004], and fits the most frequent interpretation of strategic ability in the
literature. Still, the choice of ≈EA is somewhat arbitrary. One may ask what happens if we change
the semantics of ATL?i so that the members of A look at outcome paths they perceive as possible
in the sense of distributed or common knowledge. In particular, would it lead to different properties
of the resulting logic? To study the question formally, we define the semantic relations |=iD and |=iC
as follows. Let playsiD(h, sA) =

⋃
h≈D

Ah
′ out(h′, sA) and playsiC(h, sA) =

⋃
h≈C

Ah
′ out(h′, sA).

Then, |=iD is defined according to the template in Section 2.4, replacing the clause for 〈〈A〉〉ϕ in the
following way:

M,λ |=iD 〈〈A〉〉ϕ iff there is a collective i-strategy sA such that, for each λ′ ∈ playsiD
M (λ[0], sA),

we have M,λ′ |=iD ϕ.

Relation |=iC is constructed analogously.

2.5.2. Objective Ability under Uncertainty. Objective ability refers to existence of a strategy that
is guaranteed to succeed from the perspective of an external observer with complete information
about the current state of the model. That is, only the paths starting from the current global state are
relevant, which can be formalized by playsio(h, sA) = playsI(h, sA) = out(h, sA). Similarly to the
previous semantic variants, relation |=io is defined by replacing the clause for 〈〈A〉〉ϕ as follows:

M,λ |=io 〈〈A〉〉ϕ iff there is a collective i-strategy sA such that, for each λ′ ∈ playsio
M (λ[0], sA),

we have M,λ′ |=io ϕ.

Throughout the paper, we will keep the semantics of ability from Section 2.4 as the baseline. We
will also study to what extent small shifts in the semantics (along the lines discussed in this section)
influence the formal properties of interest.

3. STRATEGIES WITH TRULY PERFECT RECALL
We have already seen that, in ATL?, strategies are synthesised with respect to the current state of
the game (λ[0]), and that “previous events” influence neither the strategy selection nor the resulting
paths. In this section we illustrate how this leads to the forgetting phenomenon. We also introduce a
“no-forgetting” semantics for ATL?.

3.1. Agents with Standard Perfect Recall Forget
In the standard semantics of ATL? agents “forget” information about the past, even if they are
assumed to have perfect recall. For instance, in formula 〈〈a〉〉3〈〈b〉〉2p, agent b must start collecting
observations from scratch when executing her strategy to bring about 2p. The history of the game
determined by the first strategic modality is not taken into account. This leads to counterintuitive
effects, as the following example shows.

Example 3.1 (Forgetting in perfect recall). On one hand, M1, q0 |=i 〈〈2〉〉3win, that is, the
guesser has a uniform strategy to win the shell game starting in q0. On the other hand, M1, q2 |=i

7Notice that ∼E
A is equal to the ∼A relation, introduced in Section 2.2.
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¬〈〈2〉〉3win. As the shuffler in q0 can easily enforce the future state to be q2, we obtain that
M1, q0 |=i 〈〈1〉〉3¬〈〈2〉〉3win. Thus, in (M1, q0), the guesser has the ability to win no matter what
the shuffler does, and at the same time the shuffler has a strategy to deprive the guesser of the ability.

3.2. ATL* with Truly Perfect Recall
To get rid of this “forgetting” behavior, we will use the truly perfect recall semantics of ATL?,
captured by relation |=nf

x , where x ∈ {i, I}. Again, the index indicates whether we refer to the
abilities based on perfect (I) or imperfect information strategies (i). Formulae are interpreted over
triples consisting of a model, a path and an index k ∈ N0 which points to the current position on
the infinite path. Intuitively, the subhistory of the path up to k encodes the past, and the subpath
starting after k, the future. The crucial part of this semantics is that the agents always remember the
sequence of the past events — and they can learn from those events.

Definition 3.2 (Truly perfect recall semantics for ATL?). Let M be an iCGS, λ ∈ ΛM and k ∈
N0. The truly perfect recall semantics of ATL? |=nf

x , parameterized with x ∈ {i, I}, is defined as
follows:

M,λ, k |=nf
x p iff λ[k] ∈ π(p) for p ∈ Π;

M,λ, k |=nf
x ¬ϕ iff M,λ, k 6|=nf

x ϕ;
M,λ, k |=nf

x ϕ1 ∧ ϕ2 iff M,λ, k |=nf
x ϕ1 and M,λ, k |=nf

x ϕ2;
M,λ, k |=nf

x 〈〈A〉〉ϕ iff there exists a collective x-strategy sA such that, for all λ′ ∈
playsxM (λ[0, k], sA), we have M,λ′, k |=nf

x ϕ;
M,λ, k |=nf

x
gϕ iff M,λ, k + 1 |=nf

x ϕ
M,λ, k |=nf

x ϕ1 U ϕ2 iff there exists i ≥ k such that M,λ, i |=nf
x ϕ2 and M,λ, j |=nf

x ϕ1 for all
k ≤ j < i.

Remark 3.3. We note that the semantics of ATL? encoded by |=nf
i is based on the “everybody

knows” type of indistinguishability. Similarly to Section 2.5, one can define analogous semantics
for agents who consider outcome paths starting from the indistguishable states in the sense of com-
mon or distributed knowledge. Objective abilities of agents with truly perfect recall can be also of
interest. Formally, relations |=nf

x for x = iD, iC, io are defined by replacing the clause for 〈〈A〉〉ϕ in
Definition 3.2 as follows:

M,λ, k |=nf
x 〈〈A〉〉ϕ iff there exists a collective i-strategy sA such that, for all λ′ ∈

playsxM (λ[0, k], sA), we have M,λ′, k |=nf
x ϕ;

The logical system with the syntax given by ATL? and the semantics by |=nf
x will be referred to

as ATL?nf,x. Given a state formula ϕ and a history h, we define M,h |=nf
x ϕ iff M,λ, k |=nf

x ϕ for all
λ ∈ ΛM such that λ[0, k] = h. A state formula ϕ is valid in ATL?nf,x iff M, q |=nf

x ϕ for all models
M and states q (note that states can be seen as a special kind of histories); and satisfiable if such a
pair (M, q) exists.

The new semantics differs from the standard semantics of ATL? only in that it keeps track of the
history by incorporating it into each path. Instead of building paths starting in the current state of
the game (λ[0] in the standard semantics), we look at paths λ that describe the play from the very
beginning. λ[0, k − 1] represents the sequence of past states (excluding the current one), λ[k] is
the current state, and λ[k + 1,∞] is the future part of the play. We illustrate the semantics by the
following example.

Example 3.4 (Shell game ctd.). Consider the pointed iCGS (M1, q0) from Figure 2 again.
Whatever the shuffler does in the first two steps, the guesser can adapt its action (in q2 and q′2)
to win the game. In particular, the i-strategy s2 from Example 2.4 can be used to demonstrate that
for all λ ∈ playsi(q0, s2)—for every strategy of 2—we have M1, λ, 0 |=nf

i 3〈〈2〉〉3win. As a conse-
quence, M1, q0 |=nf

i ¬〈〈1〉〉3¬〈〈2〉〉3win.
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q1

q2 q3

q4

win

q5

α β

1

Fig. 3. The iCGS Mf with a single player (1) and two possible actions (α and β) in state q1, which lead to q2 and q3,
respectively. States q2 and q3 are indistinguishable. The player forgets her previous action if a subformula is evaluated in q2
or q3. This happens because, traditionally, paths record only states and not actions executed by the player.

Thus, the truly perfect recall semantics gives the intended result for M1. Note that agents can still
forget the actions that they have performed. Essentially, our notion of true perfect recall is rooted in
the way in which temporal paths are typically defined: as sequences of states rather than sequences
of interleaved states and action profiles.

Remark 3.5 (Forgetting in the truly perfect recall semantics). In Figure 3, a single-player iCGS
Mf is shown. First, we observe that Mf , q1 |=nf

i 〈〈1〉〉3win. The player’s strategy is s1 where
s1(q1) = α. The actions assigned to all other histories by s1 are unimportant. We note that
playsiMf

(q1, s1) = {q1q2qω4 } contains a unique path.

However, it also holds that Mf , q1 6|=nf
i 〈〈1〉〉 g〈〈1〉〉 gwin. When synthesising a strategy s′1 for

the subformula 〈〈1〉〉 gwin, we have playsiMf
(q1q2, s

′
1) = outMf

(q1q2, s
′
1)∪outMf

(q1q3, s
′
1), since

q1q2 ≈1 q1q3.
The player remembers the history, but not the actions which have been played, including her

own. This is the case since, in ATL?, histories are simply sequences of states and not sequences
of interleaved action profiles and states. We consider this as a purely technical issue, as the last
performed action profile can be encoded within a state whenever the need arises. Then, the modeler
can define explicitly which agents can observe what actions.

3.3. Standard vs. True Perfect Recall: When Are They Different?
The definitions of |=x and |=nf

x look different, but that does not necessarily mean that they produce
different evaluations of ATL? formulae. Here, we examine whether it is indeed the case.

3.3.1. Perfect Information. As the difference between ATL?x and ATL?nf,x lies in the “forgetting”
of past observations when evaluating nested formulae, it comes as no real surprise that the two
semantics coincide for perfect information. Agents with perfect information always precisely know
the current global state of the system, and thus they cannot be uncertain about anything, including
their own observations.

THEOREM 3.6. For all iCGSs M , paths λ ∈ ΛM , and ATL? formulae ϕ we have that
M,λ, 0 |=nf

I ϕ iff M,λ |=I ϕ.

PROOF. Let h ◦ λ be an arbitrary path in ΛM with k = |h| − 1 and |h| ≥ 1. First, we observe
that:

playsIM (h, sA) = outM (h, sA) (1)
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for arbitrary collective I-strategies sA. Furthermore, for all collective I-strategies sA and histories
h, there is a collective I-strategy s′A such that:

outM (h, s′A) = {h ◦ λ | last(h) ◦ λ ∈ outM (last(h), sA)} (2)

and also, for all collective I-strategies s′A and histories h there is a collective strategy sA such that:

outM (last(h), s′A) = {last(h) ◦ λ | h ◦ λ ∈ outM (h, sA)} (3)

Informally, in (2) s′A makes the same decisions as sA given that history h has already taken place,
while in (3) s′A makes the same decisions after last(h) ◦ λ as sA would do after history h ◦ λ.

Now, we prove the stronger statement: M,h ◦ λ, k |=nf
I ϕ iff M, last(h) ◦ λ |=I ϕ, for all

h ◦ λ ∈ ΛM and all ATL?-formulae ϕ, such that k = |h| − 1, |h| ≥ 1 . The proof is done by
induction over the formula structure of ϕ.

Base cases: The case for ϕ = p is straightforward. ϕ = 〈〈A〉〉γ where γ does not contain cooper-
ation modalities. By (1-3) we have that the following statements are equivalent:

— M,h ◦ λ, k |=nf
I 〈〈A〉〉γ

— there exists sA such that for all h ◦ λ′ ∈ playsIM (h, sA) we have M,h ◦ λ′, k |=nf
I γ

— there exists sA such that for all last(h)◦λ′ ∈ playsIM (last(h), sA) we have M, last(h)◦λ′ |=I γ
— M, last(h) ◦ λ |=I 〈〈A〉〉γ.

Induction hypothesis: Let ϕ be a formula. Then, the statement is true for all strict (state) subfor-
mulae of ϕ.
Induction step: The cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where γ
contains cooperation modalities.

Let 〈〈Bi〉〉ψi be an outermost ATL?-subformula in γ i.e. there is no other cooperation modality in
γ which strictly contains 〈〈Bi〉〉ψi. Let:

Hi = {(h ◦ λ, k) |M,h ◦ λ, k |=nf
I 〈〈Bi〉〉ψi}

Li = {λ |M,λ |=I 〈〈Bi〉〉ψi}

We observe that the complement of Hi (resp. Li) with respect to Λfin
M is precisely the set {(h ◦

λ, k) | M,h ◦ λ, k |=nf
I ¬〈〈Bi〉〉ψi (resp. {λ | M,λ |=I ¬〈〈Bi〉〉ψi}). By induction hypothesis,

Hi = {(h ◦ λ, k) | last(h) ◦ λ ∈ Li} (4). Direction "⇒“: Let sA be a witnessing strategy for
M,h ◦ λ, k |=nf

I 〈〈A〉〉γ, i.e. ∀λ′ ∈ outM (h, sA) we have M,λ′, k |=nf
I γ. By (4) and (2) it follows

that M, last(h) ◦ λ |=I γ. Direction ”⇐“ follows exactly the same argument.

3.3.2. Imperfect Information. As we have seen, the logics ATL?I and ATL?nf,I for perfect informa-
tion are equivalent. However, the two semantics differ in the imperfect information case. To see this,
consider model M1 and state q0 from Example 3.1. Let ϕ ≡ 〈〈1〉〉3¬〈〈2〉〉3win. In Examples 3.1
and 3.4 we have shown that M1, q0 |=i ϕ but M1, q0 6|=nf

i ϕ. As a consequence, we obtain the
following.

PROPOSITION 3.7. There is an iCGS M , a state q in M , and an ATL? formula ϕ such that
M, q |=i ϕ and M, q 6|=nf

i ϕ.

3.3.3. Other Notions of Subjective Ability. Proposition 3.7 shows that the semantics presented in
Section 3.2 assigns different truth values than the standard one recalled in Section 2.4. This is
at least the case when the set of paths, considered possible from the point of view of coalition
A, is based on the “everybody knows” relation ≈EA. What happens if some other notion of group
indistinguishability is used instead? As it turns out, the pattern is still the same.

PROPOSITION 3.8. There is an iCGS M , a state q in M , and an ATL? formula ϕ such that
M, q |=iD ϕ and M, q 6|=nf

iD ϕ. The same applies to |=iC vs. |=nf
iC .
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PROOF. We observe that the semantics of ATL?i , ATL?iD , and ATL?iC coincide for formulae that
use only singleton coalitions. The same holds for the semantics of the single-agent fragments of
ATL?i,nf , ATL?iD,nf , and ATL?iC,nf . This is because the relations ≈E{a}, ≈

C
{a}, and ≈D{a} are exactly the

same for any a ∈ Agt. In consequence, the model and the formula in the proof of Proposition 3.7
can be used here as well.

Thus, the standard and true perfect recall semantics produce different evaluations of formulae,
regardless of the notion of group knowledge that defines the set of initial states, relevant for the
coalition. One could expect the same pattern if we only look at the executions starting from the
actual state, i.e., in the case of objective ability. Surprisingly, the intuition turns out wrong.

3.3.4. Objective Ability under Imperfect Information

THEOREM 3.9. For all iCGSs M , paths λ ∈ ΛM , and ATL? formulae ϕ we have that
M,λ, 0 |=nf

io ϕ iff M,λ |=io ϕ.

PROOF. We use the tree unfoldings for objective ability from [Bulling and Jamroga 2014,
Section 4.2]. Briefly, To(M, q) is the iCGS where the states are given by the finite histories
in Λfin

M (q), and the indistinguishability relations are defined by ≈a. It was proved in [Bulling
and Jamroga 2014, Theorem 2] that To(M, q), q always satisfies the same formulae of ATL?i
as M, q. Note also that in To(M, q) the notions of standard and true perfect recall coin-
cide. Thus, we get the following chain of equivalences (remember that ϕ is a state formula!):

M,λ |=io ϕ iff To(M,λ[0]), λ |=io ϕ iff To(M,λ[0]), λ, 0 |=nf
io ϕ iff M,λ, 0 |=nf

io ϕ.
The last equivalence follows easily from the construction of the semantic relation |=nf

io .

The result is quite surprising. The change from standard perfect recall to true perfect recall con-
sists in two factors. First, strategies for nested strategic modalities may be evaluated in a tighter
set of execution paths. Secondly, the notion of uniformity changes, because it is based on a tighter
indistinguishability relation. Note that the former does not apply in case of objective ability, but the
latter is still in place. Theorem 3.9 shows that the language of ATL? is not expressive enough to
discern between uniform strategies based on standard vs. true perfect recall.

3.3.5. Summary. Thus, perfect recall and truly perfect recall coincide for agents with perfect
information and for objective abilities under imperfect information. On the other hand, they are
different for subjective abilities of agents with imperfect information, regardless of the type of epis-
temic neighborhood that is used in the semantics to provide the initial states for execution paths.
How big is the impact? At the first glance, the change is not necessarily substantial. We will address
the question formally in the next sections, and show that assuming “no forgetting” in interpretation
of nested modalities changes the class of properties definable by formulae of ATL?, as well as the
set of valid sentences of the logic.

4. TRULY PERFECT RECALL: EXPRESSIVITY
We now proceed to show that the seemingly small change in semantics has important consequences
for the resulting logics. We prove that the forgetting and truly perfect recall variants of ATL? differ
in the properties they allow to express. We will look at which properties of iCGSs can be expressed
in ATL?x and ATL?nf,x, respectively (where x ∈ {i, I}). To do this, we briefly recall the notions of
distinguishing power and expressive power (for more details, see e.g. [Clarke and Schlingloff 2001,
Chapter 21]).

Definition 4.1 (Distinguishing and expressive power). Consider two logical sys-
tems L1 = (L1, |=1) and L2 = (L2, |=2) over the same class of models M
(in our case, the class of iCGSs). By [[ϕ]]|= = {(M, q) |M, q |= ϕ}, we denote
the class of pointed models that satisfy ϕ according to |=. Likewise, [[ϕ,M ]]|= =
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{q |M, q |= ϕ} is the set of states (or, equivalently, pointed models) that satisfy ϕ in a given
structure M .

We say that L2 is at least as expressive as L1 (written: L1 �e L2) iff for every formula ϕ1 ∈ L1

there exists ϕ2 ∈ L2 such that [[ϕ1]]|=1
= [[ϕ2]]|=2

. Moreover, L2 is at least as distinguishing as
L1 (written: L1 �d L2) iff for every model M and formula ϕ1 ∈ L1 there exists ϕ2 ∈ L2 such
that [[ϕ1,M ]]|=1

= [[ϕ2,M ]]|=2
.8 L1 and L2 are equally expressive (resp. equally distinguishing)

iff L2 �x L1 and L1 �x L2 where x = e (resp. x = d). Finally, we say that L2 is strictly more
distinguishing than L1 (written: L1 ≺d L2) iff L2 is at least as distinguishing, but not equally distin-
guishing to L1. The definition of “strictly more expressive” is analogous.

Thus, expressive power refers to the general definability of properties by formulae of a given
logical system. In contrast, distinguishing power captures the ability to discern between particular
models. Note that L1 �e L2 implies L1 �d L2 but the converse is not true. For example, it is known
that CTL has the same distinguishing power as CTL?, but strictly less expressive power [Clarke and
Schlingloff 2001].

4.1. Comparing Expressivity for Perfect Information
Below is an immediate consequence of Theorem 3.6, again highlighting that both semantics coin-
cide for agents with perfect information.

THEOREM 4.2. ATL?I and ATL?nf,I are equally expressive and have the same distinguishing
power.

4.2. Imperfect Information
In what follows, we compare the expressiveness of the truly perfect recall variant of ATL?nf,i with
that of its “forgetting” counterpart ATL?i .

4.2.1. Truly Perfect Recall Does Not Embed Standard Perfect Recall

Example 4.3. Consider the models in Figure 4. We have that M2, a0 |=nf
i 〈〈1〉〉 g〈〈2〉〉 gwin but

M ′2, a0 6|=
nf
i 〈〈1〉〉 g〈〈2〉〉 gwin. In model M2, player 2 can learn the state of the game after the first

move (1 plays α in a0); this is not the case in M ′2. Under the truly perfect recall semantics the two
models are distinguishable, however, the models cannot be distinguished in ATL?i .

To better understand the construction of M2 and M ′2, let us start with the models M ′2
↓

(Figure 4)

and M2
↓
. The latter is simply M ′2

↓
where a0 6∼2 b0. We note that (M2

↓
, a0) and (M ′2

↓
, a0) can

be distinguished in ATL?i : we have M2
↓
, a0 |=i 〈〈1, 2〉〉3win but (?) M ′2

↓
, a0 6|=i 〈〈1, 2〉〉3win

— in M ′2, coalition {1, 2} has precisely the same (imperfect) information as player 2, and cannot
distinguish a0a1 from b0b1.

We construct M↓2 and M ′↓2 by adding transitions (ε, µ) and (µ, µ) to both M2
↓

and M ′2
↓
. M ′↓2 is

shown in Figure 4. Now, (?) no longer holds: player 2 may play µ in a0a1 as well as in b0b1. Thus,
player 1’s action (µ or ε) leads to the winning state.

But even in this setup, (M↓2 , a0) and (M ′2
↓
, a0) may still be distinguished in ATL?i , by e.g.

〈〈2〉〉2¬win: in M↓2 player 2 can ensure that the winning state is never reached, by playing α in
a0a1, which is not true in M ′2

↓, since a0a1 ∼2 b0b1. Even if the second player does not determine
the next-state from a0, a0 6∼2 b0 means that he can prevent winning, no matter what 1 does.

To solve this issue, we need to add more options for player 1 in a0. In M2, 〈〈2〉〉2¬win does
not hold in M2 (nor in M ′2). For instance, if player 1 plays µ, player 2’s former strategy no longer
prevents winning.

8Equivalently: for every pair of pointed models that can be distinguished by some ϕ1 ∈ L1 there exists ϕ2 ∈ L2 that
distinguishes these models.
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Fig. 4. Models M2, M ′
2 and their submodels M↓

2 , M ′↓
2 . All the models include two players 1 and 2. Action tuples

(α1, α2) give the action of player 1 (α1) and of player 2 (α2). The only difference between M2 and M ′
2 is that in model

M2 player 2 can also not distinguish a0 and b0.

The following proposition is based on the fact that no ATL?i formula distinguishes M2 and M ′2
from Example 4.3. The complete proof is given in Appendix A.1.

PROPOSITION 4.4. There are pointed iCGSs which satisfy the same ATL?i -formulae, but can
be distinguished in ATL?nf,i. Thus, ATL?nf,i 6�d ATL?i , and hence also ATL?nf,i 6�e ATL?i .

4.2.2. Standard Perfect Recall Does Not Embed True Perfect Recall. Next, we investigate whether
ATL?nf,i is at least as distinguishing as ATL?i .

Example 4.5. Let us consider the models iCGSs M3 and M ′3 shown in Figure 5. There is
an ATL?i -formula that can distinguish both models: M3, a0 |=i 〈〈1〉〉 g〈〈1〉〉 gwin and M ′3, a0 6|=i

〈〈1〉〉 g〈〈1〉〉 gwin. In the latter case player 1 “forgets” after the first step that the game has started in
state a0, and cannot distinguish states a1 from a2 when evaluating the nested formula. It is easy to
see that there is no uniform strategy that wins from both a1, a2.

This leads to the following result:

PROPOSITION 4.6. There are pointed iCGSs which satisfy the same ATL?nf,i formulae, but can
be distinguished in ATL?i . Thus, ATL?i 6�d ATL?nf,i, and hence also ATL?i 6�e ATL?nf,i.
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Fig. 5. Models M3 and M ′
3

PROOF. We consider modelsM3 andM ′3 from Figure 5. We proveM3, h |=nf
i ϕ iffM ′3, h |=

nf
i ϕ

for all h ∈ Λfin
M3

(a0) and all ϕ ∈ ATL?, by induction over the formula structure of ϕ.
Base cases. Caseϕ = p is straightforward. Caseϕ = 〈〈A〉〉γ where γ does not contain cooperation

modalities. It is sufficient to observe that: (?) playsiM3
(h, sA) = playsiM ′

3
(h, sA) for all collective

strategies sA and histories h ∈ Λfin
M3

(a0).
Induction step. Cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where γ

contains cooperation modalities: Let 〈〈Bi〉〉ψi (with i = 1 . . . k) be an outermost ATL?-subformula
in γ. By induction hypothesis, we have: M3, h |=nf

i 〈〈Bi〉〉ψi iff M ′3, h |=
nf
i 〈〈Bi〉〉ψi — the same

histories h satisfy 〈〈Bi〉〉ψi in both models. It follows (by (?)) that sA is a witnessing strategy for
M3, h |=nf

i 〈〈A〉〉γ iff sA is a witnessing strategy for M ′3, h |=
nf
i 〈〈A〉〉γ.

To conclude the proof, we note that both models can be distinguished in ATL?i as shown in
Example 4.5.

4.2.3. Final Result. As an immediate consequence, we obtain the theorem below.

THEOREM 4.7. The logics ATL?i and ATL?nf,i have incomparable distinguishing and expressive
powers.

4.3. Other Notions of Subjective and Objective Ability
For the other semantics of subjective ability, we observe that all the models used in Section 4.2 in-
clude only uncertainty for agent 2. In consequence, the collective indistinguishability for coalitions
coincides for mutual and common knowledge. Formally: ∼E{1}=∼

C
{1}=∼1, ∼E{2}=∼

C
{2}=∼2, and

∼E{1,2}=∼
C
{1,2}=∼2; the same applies to indistinguishability of histories. Thus, whenever two of the

models satisfy the same formulae of ATL?i (resp. ATL?nf,i ), they must also satisfy the same formulae
of ATL?iC (resp. ATL?nf,iC ). Also, whenever two of the models are discerned by a formula of ATL?i
(resp. ATL?nf,i ), they must also be discerned by a formula of ATL?iC (resp. ATL?nf,iC ). In consequence,
the same models and formulae can be used to demonstrate the following.

THEOREM 4.8. The logics ATL?iC and ATL?nf,iC have incomparable distinguishing and expres-
sive powers.

For the iD-semantics, the argument is similar. The interpretation of strategic modalities for a
singleton coalitions is the same in the iD-semantics and in the i-semantics. Moreover, the relation
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∼D{1,2} is the identity relation, i.e., it is equivalent to perfect information. Thus, the iD-semantics of
〈〈1, 2〉〉ϕ in the models used in Section 4.2 is equivalent to its perfect information semantics, and
hence expressible equivalently by ¬〈〈∅〉〉¬ϕ in the i-semantics (cf. Remark 2.5). This finally implies
that, whenever two of the models satisfy the same formulae of ATL?i (resp. ATL?nf,i ), they must also
satisfy the same formulae of ATL?iD (resp. ATL?nf,iD ).

Furthermore, the discerning formulae in the proofs of Section 4.2 use only abilities of singleton
coalitions. Thus, whenever one of the formulae discern two models in the i-semantics (resp. nf, i-
semantics), it must also discern the models according to the iD-semantics (resp. nf, iD-semantics). In
consequence, the models and formulae from Section 4.2 can be used to demonstrate the following.

THEOREM 4.9. The logics ATL?iD and ATL?nf,iD have incomparable distinguishing and expres-
sive powers.

On the other hand, since the perfect recall and truly perfect recall semantics coincide for objective
ability under imperfect information (Theorem 3.9), we get the following as immediate corollary:

THEOREM 4.10. ATL?io and ATL?nf,io are equally expressive and have the same distinguishing
power.

5. VALIDITIES
Another way of comparing two logical systems is to compare their sets of valid sentences, that is,
the general properties that hold in every model according to the given semantics.

Intuitively, each formula can be interpreted as a game property. Such properties describe the
abilities of agents and their groups, that possibly hold for some games, and do not hold in the others.
While expressiveness concerns which game properties are definable in the language of the logic,
validities are properties that universally hold. Thus, by comparing validity sets of different logical
systems, we can compare the general properties of games induced by the underlying semantics
(cf. [Bulling and Jamroga 2014]).

Given a semantics sem, we use Val(ATL?sem) to denote the set of valid sentences of ATL?sem,
and Sat(ATL?sem) to denote the set of satisfiable sentences of ATL?sem. Intuitively, each formula
ϕ ∈ Val(ATL?sem) describes an invariant property or game rule of ATL?sem. In this section, we
investigate the relationship between Val(ATL?x ) and Val(ATL?x,nf) for x ∈ {I, i}. In particular, a
result of the form Val(ATL?sem1

) ( Val(ATL?sem2
) means that the game rules of ATL?sem2

are a strict
specialization of those of ATL?sem1

.
Finally, we recall that Sat(ATL?sem2

) ( Sat(ATL?sem1
) iff Val(ATL?sem1

) ( Val(ATL?sem2
). Thus,

any result comparing the validity sets of ATL?sem1
and ATL?sem2

immediately implies the dual char-
acterization of satisfiable sentences.

5.1. Perfect Information and Objective Ability under Imperfect Information
The following result is a direct corollary of Theorem 3.6.

THEOREM 5.1. Val(ATL?I ) = Val(ATL?nf,I).

Similarly, the following is an immediate consequence of Theorem 3.9:

THEOREM 5.2. Val(ATL?io) = Val(ATL?nf,io ).

5.2. Imperfect Information
Now we will compare the validity sets of ATL?nf,i and ATL?i .

5.2.1. Epistemic Tree Unfoldings. First, we introduce a class T of iCGSs for which the semantics
of ATL?i and ATL?nf,i coincide. Members of T are infinite epistemic trees obtained by applying an
unfolding procedure on arbitrary models M , with respect to a given initial state q. For the moment,
suppose that all states in M can be distinguished from q. Then, the model M can be unfolded from
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Fig. 6. The no-forgetting epistemic tree unfolding of the iCGS M1 from Figure 2

q to an infinite tree T (M, q) whose states correspond to histories in M . Two nodes h and h′ in a
tree are linked by an epistemic relation belonging to an agent a, written as h ∼a h′ if, and only if,
h ≈a h′ in M .

Now, it might be the case that there are states indistinguishable from q. They have to be considered
as well. Let Q′ = {q′ ∈ M | q ∼Agt q

′} be the set of all states indistinguishable from q for some
agent from Agt. For each state q̂ ∈ Q′ we construct the unfolding T (M, q̂) as described above.
Moreover, we introduce epistemic links between these trees. For each two histories h and h′ in each
of these trees we define h ∼a h′ if, and only if, h ≈a h′ in M . The resulting model, i.e., the
collection of all those trees plus the inter-tree epistemic relations, is denoted by T nf(M, q). We note
in passing that the unfolding was already considered in [Bulling and Jamroga 2014, Example 7]
and shown to be insufficient for ATL?i with the standard semantics. With respect to the truly-perfect
recall semantics, however, the unfolding does the right thing.

Definition 5.3 (No-forgetting epistemic tree unfolding). Consider an iCGS M =
(Agt, St,Π, π, Act, d, o, {∼a| a ∈ Agt}) and a state q of M . We construct the iCGS T (M, q) as
follows:

T (M, q) = 〈AgtT,q, StT,q,ΠT,q, πT,q, ActT,q, dT,q, oT,q, {∼T,qa | a ∈ AgtT,q}〉

where:
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— AgtT,q = Agt, ΠT,q = Π, ActT,q = Act, StT,q = {h | h ∈ Λfin
M }: the sets of agents,

propositions and actions of T (M, q) coincide with those ofM . Each state in T (M, q) is a history
of M which starts in state q.

— πT,q(p) = {h | last(h) ∈ π(p)}, ∀p ∈ Π; each state h from T (M, q) is labelled with the same
propositions as last(h) in M ;

— dT,qa (h) = da(last(h)), ∀h ∈ StT,q; the set of allowed actions in each state h of T (M, q) is the
same as that in each state last(h) of M ;

— q = o(last(h), α1, . . . , αk) ⇐⇒ oT,q(h, α1, . . . , αk) = h◦q, ∀h ∈ StT,q; each transition from
h to h ◦ q′ in T (M, q) corresponds to a transition from last(h) to q′ in M ;

— h ∼T,qa h′ iff h ≈a h′ in M , ∀h, h′ ∈ StT,q; two states h and h′ are indistinguishable for agent
a in T (M, q) if the histories h and h′ are indistinguishable for a in M .

Let Q′ = {q′ | q ∼Agt q
′}. The no-forgetting epistemic tree unfolding of M , denoted T nf(M, q),

is the iCGS:

T nf(M, q) = 〈AgtT
nf,q, StT

nf,q,ΠT nf,q, πT
nf,q, ActT

nf,q, dT
nf,q, oT

nf,q, {∼T
nf,q

a | a ∈ AgtT
nf,q}〉

obtained as follows:

— AgtT
nf,q = AgtT,q , ΠT nf,q = ΠT,q , ActT

nf,q = ActT,q , StT
nf,q =

⋃
q∈Q′ StT,q

— πT
nf
(p) =

⋃
q∈Q′ πT,q(p), ∀p ∈ Π;

— dT
nf,q

a (h) = dT,qa (h), ∀h ∈ StT nf,q;
— h ∼T nf,q

a h′ iff h ≈a h′, ∀h, h′ ∈ StT
nf,q;

Example 5.4 (No-forgetting epistemic tree unfolding). In Figure 6, we show the no-forgetting
epistemic tree unfolding T nf(M1, q0) of model M1 from Figure 2. Note that there are no epistemic
links between different states of T nf(M1, q0), since all corresponding histories are distinguishable
by the second agent in M1. Moreover, in this particular case: T nf(M1, q0) = T (M1, q0).

Figure 7 illustrates the submodelM↑2 ofM2 from Example 4 (on the left), as well as T nf(M↑2 , a0)

(right). The unfolding is obtained by first constructing the components T (M↑2 , a0) and T (M↑2 , b0),
and then adding epistemic links between all indistinguishable states of the latter two models.

5.2.2. True Perfect Recall Inherits Validities from Standard Perfect Recall. The following propo-
sition first establishes that the unfolding is truth-preserving in the truly perfect recall semantics.
Hence, each sentence which is true with respect to a given state q and model M , is also true with
respect to the unfolding of M from q. At the same time, the truly perfect recall and standard ATL?i -
semantics coincide over no-forgetting epistemic tree unfoldings.

PROPOSITION 5.5. M, q |=nf
i ϕ iff T nf(M, q), q |=nf

i ϕ iff T nf(M, q), q |=i ϕ, for all ATL?-
formulae, iCGSs M and states q.

The proof is presented in Appendix A.2. This result is key for obtaining the following:

PROPOSITION 5.6. Val(ATL?i ) ⊆ Val(ATL?nf,i).

PROOF. We prove that Sat(ATL?nf,i) ⊆ Sat(ATL?i ). Let ϕ ∈ Sat(ATL?nf,i). Thus, there exist
M, q such that M, q |=nf

i ϕ. By Proposition 5.5, T nf(M, q) |=i ϕ. Hence ϕ ∈ Sat(ATL?i ).

5.2.3. The Converse Does Not Hold. We now show that there exists a sentence which is valid in
ATL?nf,i, but not in ATL?i . Informally, such a sentence expresses that whenever an agent a has the
ability to maintain p, then the agent preserves this ability in some next-state of the game.

PROPOSITION 5.7. Val(ATL?nf,i) 6⊆ Val(ATL?i ).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:23

a′
2 b′2

win

a′
1 b′1

a0 b0

2

2

(β
,?

)

(β,?)

(µ
,?) (µ

,?)

(?
,α

),(
ε,
µ

)

(?,β)

(ε, µ)
(?

,β
),(
µ,µ

)

(?,α
),(µ

,µ
)

. . . . . . . . . . . .

a0a′1a
′
2 a0a′1b

′
2

win

a0b′1a
′
2 a0b′1b

′
2

win

a0a′1 a0b
′
1

a0 b0

b0a′1 b0b
′
1

b0a′1a
′
2 b0a′1b

′
2

win

b0b′1a
′
2 b0b′1b

′
2

win

. . . . . . . . . . . .

2

2

2

2 2

(β
,?)

(β,?)

(γ,?)

(γ
,?

)

(?,α
),(ε,γ

)

(?,β
)

(ε,
γ
)

(?
,β

),(
γ

,γ
)

(?
,α

),
(γ

,γ
)

(?
,α

),(
ε,
γ

)

(?
,β

)

(ε
,
γ
)

(?,β
),(γ

,γ
)

(?,α
), (γ

,γ
)

M↑2 T nf(M↑2 , a0)

Fig. 7. The submodel M ′
2
↑ of M ′

2 (Example 4), is shown on the left. On the right, we have the epistemic tree unfolding
T nf(M ′

2
↑, a0). The epistemic links between states a0a′1, b0b′1 and b0a′1, a0b′1 have been omitted.

PROOF. We consider the formula ϕ ≡ 〈〈a〉〉2p → E g〈〈a〉〉2p where E gψ ≡ ¬〈〈∅〉〉 g¬ψ.
Informally, E gψ says that there is a path on which ψ holds in the next moment. Thus, ϕ expresses
that, if agent a has the ability to maintain p forever, then he retains the ability in at least one successor
of the current state. We will show that ϕ is valid in ATL?nf,i , but not in ATL?i .

For the former, suppose that M, q |=nf
i 〈〈a〉〉2p, let sa be a witnessing strategy and λ =

qq1q2 . . . ∈ playsiM (q, sa). Since playsiM (qq1, sa) ⊆ playsiM (q, sa) we have M,λ, 1 |=nf
i 〈〈a〉〉2p

and also M,λ, 0 |=nf
i

g〈〈a〉〉2p. Thus, M,λ, 0 |=nf
i E g〈〈a〉〉2p,

For the latter, we use modelM ′3 in Figure 5, extended with proposition p which holds everywhere
except for b2. That is, M ′3, q |= p iff M ′3, q 6|= win. Clearly, M ′3, a0 |=i 〈〈1〉〉2p. On the other hand,
M ′3, a0 6|=i E g〈〈1〉〉2p. In consequence, ϕ is not valid in ATL?i , which concludes the proof.
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5.2.4. Final Result. It is immediate from Propositions 5.6 and 5.7 that ATL?nf,i describes a more
specific class of games than ATL?i : games in which players do not forget past events:

THEOREM 5.8. Val(ATL?i ) ( Val(ATL?nf,i). Consequently, also Sat(ATL?nf,i) ( Sat(ATL?i ).

Thus, games of truly perfect recall can be seen as a special subclass of games with “standard”
perfect recall, as captured by the original semantics of ATL?i in [Schobbens 2004].

5.3. Other Notions of Subjective Ability
For the types of subjective ability that look at the paths starting from the common knowledge neigh-
borhood (resp. distributed knowledge neighborhood) of the current state, we observe that:

(1) The inclusion result (Proposition 5.6) carries over to the |=iC (resp. |=iD ) semantics. A closer
inspection of the proof of Proposition 5.5 (invariance under unfolding) reveals that it never uses
any specific properties of the “everybody knows” relation ≈A. Thus, one can replace every oc-
currence of playsi with playsi

C (resp. playsi
D) in the proof, and obtain a proof that:

— M, q |=nf
iC ϕ iff T nf(M, q), q |=nf

iC ϕ iff T nf(M, q), q |=iC ϕ, and
— M, q |=nf

iD ϕ iff T nf(M, q), q |=nf
iD ϕ iff T nf(M, q), q |=iD ϕ.

In consequence, we get that Val(ATL?iC) ⊆ Val(ATL?nf,iC) and Val(ATL?iD) ⊆ Val(ATL?nf,iD) by
the same argument as in the proof of Proposition 5.6.

(2) The formula ϕ ≡ 〈〈a〉〉2p → E g〈〈a〉〉2p, used in the proof of Proposition 5.7, contains only
singleton coalitions. Thus, its truth value is the same no matter which subjective semantics is used
(they coincide for abilities of individual agents). In consequence, one can use the argument in the
proof of Proposition 5.7 to show that ϕ is a validity of ATL?nf,iC and ATL?nf,iD , but not of ATL?iC and
ATL?iD . This in turn implies that Val(ATL?nf,iC) 6⊆ Val(ATL?iC) and Val(ATL?nf,iD) 6⊆ Val(ATL?iD)
by the same argument as in the proof of Proposition 5.6.

As a result, we obtain the following analogue of Theorem 5.8.

THEOREM 5.9.

(1) Val(ATL?iC) ( Val(ATL?nf,iC). Consequently, also Sat(ATL?nf,iC) ( Sat(ATL?iC).
(2) Val(ATL?iD) ( Val(ATL?nf,iD). Consequently, also Sat(ATL?nf,iD) ( Sat(ATL?iD).

6. MODEL CHECKING
Model checking is the problem of establishing whether a logical formula is satisfied in a given
structure. The complexity of model checking is especially insightful for the development of ver-
ification tools for particular logics. Decision problems for games with imperfect information and
perfect recall are known to be computationally hard even for 2-player games, and undecidable when
coalitional strategies are considered [Peterson and Reif 1979; Pnueli and Rosner 1990; Peterson
et al. 2001; Berwanger and Kaiser 2010; Dima and Tiplea 2011]. On the other hand, some decid-
able cases have also been identified [Chatterjee et al. 2007; Berwanger and Kaiser 2010; Berwanger
et al. 2011; Guelev et al. 2011; Berwanger and Mathew 2014; Berwanger et al. 2015], most notably
the verification of abilities of single individual agents. In this section, we point out that the truly
perfect recall semantics shares (un)decidability of model checking with the standard perfect recall
variant, but it makes verification more costly in the decidable cases.

Note: the purpose of this section is not to establish new technical results, but to shortly review the
impact of “no forgetting” from the computational perspective. Because of that, we mostly focus on
the complexity of model checking for ATL (without “?”) which is the syntactic fragment of ATL?

where every strategic modality is immediately followed by a temporal operator, and every temporal
operator is immediately preceded by a strategic modality.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:25

6.1. Verification of ATL?
nf,i vs. ATL?

i

Since the two semantics coincide for perfect information, we only consider the case of imperfect
information. We begin by quoting a rather pessimistic result for verification of alternating-time
specifications with imperfect information and perfect recall.

THEOREM 6.1 ([DIMA AND TIPLEA 2011]). Model checking ATLi (and hence also ATL?i ) is
undecidable.

The undecidability result was proved by a reduction of the halting problem that employed a 3-
player iCGS and a formula with no nested cooperation modalities [Dima and Tiplea 2011]. We
recall that, when no nested cooperation modalities are present, the ATL?nf,i semantics coincides with
that of ATL?i . Thus, we get the following as a consequence.

COROLLARY 6.2. Model checking of ATLnf,i (and hence also ATL?nf,i) is undecidable.

What about decidable fragments of the problem? Restricting the class of models to turn-based
structures will not work, as the proof in [Dima and Tiplea 2011] can be adapted to yield a turn-based
model in the reduction of the halting problem. On the other hand, [Guelev et al. 2011] proposed an
effective algorithm for model checking ATL with truly perfect recall and coalitions whose strategies
are based on the distributed knowledge relation within the coalition. This is in turn equivalent to
model checking the “singleton fragment” of ATL with truly perfect recall, i.e., the fragment of
ATLnf,i with strategic modalities restricted to coalitions of size at most one [Kaźmierczak et al.
2014]). More formally:

THEOREM 6.3 ([GUELEV ET AL. 2011]). Model checking of the singleton fragment of ATLnf,i

is decidable and can be done in nonelementary time with respect to the size of the model and the
length of the formula. For formulae of strategic depth9 of at most k, the model checking problem is
in kEXPTIME.

The lower bounds can be derived from the following result for model checking of temporal-
epistemic logic with perfect recall.

THEOREM 6.4 ([SHILOV ET AL. 2004; SHILOV ET AL. 2006]). Model checking CTLK with
perfect recall is decidable with nonelementary upper and lower bounds with respect to the size of
the model and the length of the formula. For formulae of knowledge depth10 of at most k, the model
checking problem is kEXPTIME-complete.

From this, we obtain the following characterization of complexity for the singleton fragments of
ATLi and ATLnf,i.

THEOREM 6.5. Model checking of the singleton fragment of ATLnf,i is complete in nonelemen-
tary time with respect to the size of the model and the length of the formula. For formulae of strategic
depth of at most k, the model checking problem is kEXPTIME-complete.

PROOF. The upper bound is straightforward from Theorem 6.3.
For the lower bound, observe that every formula of CTLK with perfect recall can be equivalently

translated into ATLnf,i by replacing Aϕ with 〈〈∅〉〉ϕ and Kaϕ with 〈〈a〉〉⊥U ϕ. By Theorem 6.4, we
get the hardness result.11

THEOREM 6.6. Model checking of the singleton fragment of ATLi is EXPTIME-complete
with respect to the size of the model and the length of the formula. It remains EXPTIME-complete
for formulae of bounded length.

9The maximum number of nested strategic operators different than 〈〈∅〉〉. The fact that 〈〈∅〉〉 can be excluded from the count
follows from the state-splitting construction: it only produces exponential blowup of the state space for nonempty coalitions.
10The maximum number of nested epistemic operators.
11The idea of the proof was hinted to us by Catalin Dima in a personal communication.
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Fig. 8. Have the cake or eat it? The cake dilemma: CGS M8

PROOF. We proceed recursively (bottom-up), starting with subformulae that contain no nested
strategic modalities, and replacing them with fresh atomic propositions that hold in exactly the same
subset of states. By Theorem 6.3, the procedure runs in exponential time. The lower bound follows
from Theorem 6.4.

Thus, assuming truly perfect recall under imperfect information changes the verification com-
plexity for worse. On the other hand, it simplifies the underlying tree unfoldings (cf. Section 5.2),
which can potentially make verification easier, especially for simple (and short) formulae of ATL.
Moreover, model checking ATLnf,i is no harder than verification of temporal-epistemic logic with
perfect recall [van der Meyden and Shilov 1999; Shilov et al. 2004; Shilov et al. 2006]. Thus, ATLnf,i

buys the expressivity of strategic operators for no extra computational price. We also note that the
increase in complexity is due to the perfect recall assumption itself, and not due to the interaction
of strategic modalities with truly perfect recall.

6.2. Other Semantics of Ability under Imperfect Information
Since mutual knowledge, common knowledge, and distributed knowledge coincide for single
agents, the same results follow for the subjective ability based on distributed knowledge and com-
mon knowledge neighborhoods, i.e., ATLiD , ATLnf,iD , ATLiC and ATLnf,iC . More precisely:

THEOREM 6.7.

(1) Model checking the full logics of ATLiD , ATLiC , ATLnf,iD , and ATLnf,iC is undecidable.
(2) Model checking of the singleton fragment of ATLiD and ATLiC is EXPTIME-complete with

respect to the size of the model and the length of the formula. It remains EXPTIME-complete
for formulae of bounded length.

(3) Model checking of the singleton fragment of ATLnf,iD and ATLnf,iC is complete in nonelementary
time with respect to the size of the model and the length of the formula. For formulae of strategic
depth of at most k, the model checking problem is kEXPTIME-complete.

Interestingly, since ATLio and ATLnf,io coincide, we get that true perfect recall does not increase
the complexity of verification for objective abilities:

THEOREM 6.8.

(1) Model checking ATLio is undecidable.
(2) Model checking of the singleton fragment of ATLio and ATLnf,io is EXPTIME-complete.

This suggests that reasoning about objective abilities under imperfect information can be a valu-
able alternative to the more popular, subjective semantics also from the complexity point of view.

7. TRULY PERFECT RECALL UNDER STRATEGIC COMMITMENT
We pointed out in Section 3 that, when proceeding from a higher-level goal to a subgoal, the seman-
tics of ATL? “forgets” past observations of agents—even if the agents are assumed to have perfect
recall. A similar feature was observed in [Ågotnes et al. 2007; Brihaye et al. 2009] with respect to
agents’ strategies: they do not persist from outer to nested strategic modalities. Strategies in ATL?

are revocable in the sense that an agent is not bound by her strategy anymore when proceeding
from the main game to a subgame. In many cases, this makes the meaning of ATL? specifications
counterintuitive.
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Consider formula ϕ ≡ 〈〈a〉〉2〈〈a〉〉 geat which says that Alice has a strategy to maintain forever
her ability to eat the cake. The formula is easily satisfiable in ATL?; a simple model for ϕ is pre-
sented in Figure 8. However, the only way for Alice to keep her ability to eat the cake is by never
eating the cake, which is somewhat paradoxical. If Alice executes the strategy, she will deprive
herself of the ability she wants to maintain in the first place.

Also, consider the formula 〈〈c〉〉2〈〈a, b〉〉3marriedab which expresses that Charlie can provide
Alice and Bob with the ability to get married. One can imagine that Charlie can achieve that, e.g.,
by becoming the local superintendent registrar or a local priest, and granting every marriage request
from his friends. However, the ATL? interpretation of the formula is that Alice and Bob must find a
strategy for 3marriedab against every possible behavior of Charlie, despite the fact that Charlie did
select his strategy in order to make 〈〈a, b〉〉3marriedab true.

We will now briefly recall two variants of ATL? that were proposed to handle specifications
where persistence of strategies is important [Ågotnes et al. 2007; Brihaye et al. 2009]. We will
also extend the variants to the case of imperfect information. After that, we will point out that the
“forgetting” phenomenon applies also to ATL? with persistent strategies, and we will look at the
formal consequences of the fact. In what follows, we only focus on the most popular semantics
for agents with perfect recall (i.e., perfect information and subjective ability under uncertainty).
We conjecture that analogous results can be obtained for the other kinds of ability under imperfect
information, but we leave the detailed analysis out of this work.

7.1. ATL* with Long-Term Commitment
7.1.1. Irrevocable ATL?. The simplest interpretation of ATL? formulae, that assumes “irrevoca-

bility” or long-term commitment of agents’ strategies, was proposed in [Ågotnes et al. 2007]. The
logic takes the syntax of ATL? but changes the semantics to ensure persistence of strategies.12 In the
original version, this is done by unfolding the CGS to a tree and then pruning all the transitions that
are inconsistent with the strategies selected by agents. Here, we give an equivalent semantics based
on the idea of “strategy contexts”, cf. [Brihaye et al. 2009; Jamroga et al. 2005; Walther et al. 2007]
or Section 7.1.2 for more details. Formally, the semantics is given in terms of the semantic relation
|=x,c that interprets a formula, given an iCGS, a path in it, and a strategy context which “stores” the
strategies selected so far by the agents. Parameter x ∈ {I, i} indicates whether we assume agents to
have perfect or imperfect information. We first recall the definition of strategy update.

Definition 7.1 (Strategy update [Brihaye et al. 2009]). Given collective strategies sA and sB of
group A and B, respectively, we define the strategy sB † sA as follows: sB † sA|i(h) = sA|i(h) if
i ∈ A and sB † sA|i(h) = sB |i(h) if i ∈ B \A.

Thus, sB † sA combines the strategies sA and sB , and the actions specified by sA will override
those specified by sB for agents in A ∩B. The semantic relation |=x,c is defined as follows:

M,λ, s |=x,c p iff λ[0] ∈ π(p) (where p ∈ Π);
M,λ, s |=x,c ¬ϕ iff M,λ, s 6|=x,c ϕ;
M,λ, s |=x,c ϕ1 ∧ ϕ2 iff M,λ, s |=x,c ϕ1 and M,λ, s |=x,c ϕ2;
M,λ, s |=x,c 〈〈A〉〉ϕ iff there is a collective x-strategy sA such that for all λ′ ∈ playsx(λ[0], sA †
s), we have M,λ′, sA † s |=x,c ϕ;

M,λ, s |=x,c
gϕ iff M,λ[1,∞], s |=x,c ϕ;

M,λ, s |=x,c ϕ1 U ϕ2 iff there is i ∈ N0 such that M,λ[i,∞], s |=x,c ϕ2 and for all 0 ≤ j < i,
we have M,λ[j,∞], s |=x,c ϕ1.

12The logic is called MIATL? for “ATL? with irrevocable strategies and memory” in [Ågotnes et al. 2007]. Here, we rather
use the acronym ATL?c to indicate that we deal with the same formulae as in ATL?, but strategy commitment is required in
the semantics.
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q0
(nop, nop)
(nop,fire)
(fire, nop)

q1

fired

q2 (nop, nop)
(fire,fire) (fire,fire)

Fig. 9. The cake dilemma with multi-player coordination: CGS M9

Note that the above clauses define two different logics: ATL?I,c (ATL? with perfect information and
strategy commitment) which corresponds to MIATL? from [Ågotnes et al. 2007], and ATL?i,c (ATL?

with imperfect information and strategy commitment) which, to the best of our knowledge has not
been considered anywhere yet. We also observe that in ATL?I,c and ATL?i,c strategies are indeed
irrevocable. The first strategy selected by an agent is never overridden by a subsequent strategy.
This is reflected in the order of strategy updates: the oldest updates are applied last.

Given a state q and a state formula ϕ, we define M, q |=x,c ϕ iff M,λ, s∅ |=x,c ϕ for all λ ∈
ΛM (q), where s∅ refers to the only possible strategy of the empty coalition. Moreover, ϕ is valid in
ATL?x,c iff M, q |=x,c ϕ for every iCGS M and state q in it.

Example 7.2. Consider CGS M8 in Figure 8. Unlike in the standard semantics of ATL?, we
have M8, q0 6|=x,c 〈〈a〉〉2〈〈a〉〉 geat. Suppose that the formula holds in M8, q0. On one hand, if
Alice selects the “eat” strategy eat then the formula ϕ ≡ 〈〈a〉〉2〈〈a〉〉 geat can be only satisfied if
M8, q0q1(q2)ω, eat |=x,c 2〈〈a〉〉 geat, but this is not possible since M8, q1 6|=x,c 〈〈a〉〉 geat. On the
other hand, if Alice selects the “do nothing” strategy nop then the formula ϕ can be only satisfied
if M8, (q0)ω,nop |=x,c 2〈〈a〉〉 g¬eat, which is not possible since M8, q0, nop 6|=x,c 〈〈a〉〉 g¬cake:
Alice is already bound to her “do nothing” strategy.

7.1.2. ATL* with Strategy Contexts. “ATL? with strategy contexts” [Brihaye et al. 2009] offers
a more elaborate framework for reasoning about strategy commitment. Compared to ATL?I,c and
ATL?i,c, it allows agents to commit, override and revoke their strategies. The syntax extends the
language of ATL? with a strategic release operator 〉A〈 , and the semantics |=x,sc differs from the
one presented in Section 7.1.1 by the following clauses:

M,λ, s |=x,sc 〈〈A〉〉ϕ iff there is a collective x-strategy sA such that for each λ′ ∈ playsx(λ[0], s†
sA), M,λ′, s † sA |=x,sc ϕ;

M,λ, s |=x,sc 〉A〈 ϕ iff M,λ, s\A |=x,sc ϕ;

where s\A denotes the strategy context with strategies of agents from A being removed. We empha-
size the swap in the update operator in comparison to ATL?x,c: s † sA versus sA † s. Thus, according
to relation |=x,sc, newer strategies override older ones.

Again, we define M, q |=x,sc ϕ iff M,λ, s∅ |=x,sc ϕ and M, q, s |=x,sc ϕ iff M,λ, s |=x,sc ϕ for
all λ ∈ ΛM (q). Moreover, ϕ is valid iff M, q |=x,sc ϕ for every M, q.

Example 7.3. Figure 9 depicts a two-player variant of the “cake dilemma.” This time, two
agents – Alice and Bob – are needed to fire a missile; if they do not coordinate, the game stays
in the initial state q0. Now, we have for example that M9, q0 |=x,sc 〈〈a〉〉N〈〈b〉〉 gfired.13 To achieve
this, we select the strategy “fire the missile whenever the system is in state q0, and do nop elsewhere”
when evaluating the modality 〈〈a〉〉 for Alice, and the same strategy later on, when evaluating the
modality 〈〈b〉〉 for Bob. However, M9, q0 6|=x 〈〈a〉〉N〈〈b〉〉 gfired: when evaluating 〈〈b〉〉 gfired in the
standard ATL? semantics, Bob cannot assume that Alice’s strategy will persist, and therefore every
strategy of his may result in the path qω0 . This illustrates that the semantics |=x,sc allows agents to
base their decisions on the strategies previously selected by other players, which was not possible
in the original semantics of ATL?.

13Recall thatNϕ ≡ ϕU ϕ stands for “ϕ holds in the current moment.”
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Also, M9, q0 |=x,sc 〈〈a, b〉〉2(¬fired ∧ 〉a, b〈 〈〈a, b〉〉 gfired): the right-hand-side of the conjunc-
tion expresses that Alice and Bob release their strategy and then are free to choose a new one.
Therefore, “ATL? with strategy contexts” allows agents to explicitly decommit previously selected
strategies.

Finally, notice thatM9, q0 |=x,sc 〈〈a, b〉〉2〈〈a, b〉〉 gfired because Alice and Bob override their for-
mer strategy when trying to satisfy the subformula 〈〈a, b〉〉 gfired. Therefore, unlike ATL?x,c, strate-
gies in “ATL? with strategy contexts” are not irrevocable.

Remark 7.4. It was shown in [Brihaye et al. 2009, Proposition 3] that the strategic release oper-
ator 〉A〈 adds no expressive power to “ATL? with strategy contexts.” For instance, 〉A〈 〈〈B〉〉γ can
be equivalently rewritten as 〈〈B〉〉¬〈〈A \B〉〉¬γ (B has a strategy such that agents outside A cannot
prevent γ). Thus, we can omit strategic release from the syntax without losing generality of our
results. In the rest of the paper, we will only use formulae defined by the standard syntax of ATL?,
exactly like for the other logics studied here.

Assuming that we use only the standard syntax of ATL?, the semantic relations |=x,sc define,
again, two logical systems: ATL?I,sc (ATL? with perfect information and strategy contexts), which
corresponds to ATL?sc,∞ from [Brihaye et al. 2009], and ATL?i,sc (ATL? with imperfect informa-
tion and strategy contexts) which is a new variant of alternating-time temporal logic to our best
knowledge.

7.1.3. Comparing Logics of Strategy Commitment. In Sections 7.1.1 and 7.1.2, we have presented
four variants of alternating-time logic for reasoning about persistent strategies: ATL?I,c, ATL?i,c,
ATL?I,sc, and ATL?i,sc. How do the variants relate? We show that ATL?x,c can be in fact embed-
ded in ATL?x,sc for x ∈ {I, i}. To this end, we define a translation trA such that, for all mod-
els M , path λ, strategy context sA and formula ϕ of ATL?, we have that M,λ, sA |=x,c ϕ iff
M,λ, sA |=x,sc trA(ϕ):

trA(p) = p

trA(¬ϕ) = ¬trA(ϕ)

trA(ϕ1 ∧ ϕ2) = trA(ϕ1) ∧ trA(ϕ2)

trA(〈〈B〉〉ϕ) = 〈〈B \A〉〉trB∪A(ϕ)

trA( gϕ) = gtrA(ϕ)

trA(ϕ1 U ϕ2) = trA(ϕ1)U trA(ϕ2)

PROPOSITION 7.5. For each iCGS M , path λ ∈ ΛM , collective strategy sA where A ⊆ Agt,
and ATL?c formula ϕ we have that M,λ, sA |=x,c ϕ iff M,λ, sA |=x,sc trA(ϕ) for x ∈ {i, I}.

PROOF. The proof is done by induction over the formula structure of ϕ.
Base cases: Case ϕ = p is straightforward. Case ϕ = 〈〈B〉〉γ where γ contains no cooperation

modalities. First, we observe (?) sB † sA = sB\A † sA = sA † sB\A: all individual strategies of
agents inA∩B are overridden by those of sA in sB †sA thus if two coalitions are disjoint the update
order for their collective strategies is irrelevant; and (??) trX(γ) = γ if γ contains no cooperation
modalities.

Next, M,λ, sA |=x,c 〈〈B〉〉γ iff there exists sB such that ∀λ′ ∈ playsx(λ[0], sB † sA) we have
M,λ′, sB † sA |=x,c γ. By (?),(??) M,λ′, sB † sA |=x,c γ iff M,λ′, sA † sB\A |=x,c trB∪A(γ).
Since trB∪A(γ) contains no cooperation modalities, the semantics |=x,c and |=x,sc coincide for
trB∪A(γ): M,λ′, sA †sB\A |=x,c trB∪A(γ) iff M,λ′, sA †sB\A |=x,sc trB∪A(γ) iff M,λ, sA |=x,c

〈〈B \A〉〉trB∪A(γ) iff M,λ, sA |=x,c trA(〈〈B〉〉γ).
Induction step: Cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈B〉〉γ where γ

contains cooperation modalities. Let ξ be an arbitrary outermost occurrence of a formula 〈〈B′〉〉γ′
in γ. We label each state λ′[0] such that M,λ′, sB † sA |=x,c ξ (for some λ′ ∈ ΛM and each
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Fig. 10. M10: the shell game with final shuffling

collective strategy sB † sA), with a new proposition pξ which does not occur in Π. We note that
each strategy sA∪B may be written as sB † sA. By induction hypothesis, M,λ′, sB † sA |=x,c ξ
iff M,λ′, sB † sA |=x,sc trB∪A(ξ). We replace each occurrence of a subformula ξ by pξ in γ. The
resulting formula contains no cooperation modalities. We proceed exactly as in the second base
case.

Note that, in particular, M, q |=x,c ϕ iff M, q |=x,sc tr∅(ϕ). Thus, we obtain the following as an
immediate consequence of Proposition 7.5.

COROLLARY 7.6. ATL?x,sc is at least as expressive and as distinguishable as ATL?x,c for x ∈
{i, I}. That is, ATL?x,c �d ATL?x,sc and ATL?x,c �e ATL?x,sc.

PROPOSITION 7.7. ATL?x,c is not as distinguishable as ATL?x,sc, i.e., ATL?x,sc 6�d ATL?x,c.

The proof is given in Appendix A.3.
Corollary 7.6 and Proposition 7.7 imply the following.

THEOREM 7.8. ATL?x,sc is strictly more distinguishing and expressive than ATL?x,c. That is,
ATL?x,sc ≺d ATL?x,c and ATL?x,sc ≺e ATL?x,c.

7.2. Commitment and Truly Perfect Recall
In the previous section, we have presented two variants of how strategic commitment can be added
to the standard semantics of ATL?. How doe it change the picture? First, we show that persistent
strategies per se do not rule out counterintuitive effects.

Example 7.9 (Shell game with final shuffling). Consider the iCGS M10 from Figure 10. It de-
picts a version of the shell game in which the shuffler can switch the shells quickly in the very last
moment (after the ball has been enclosed). This is modeled by the action move available to the shuf-
fler at states q2 and q′2. First, we observe that – in contrast to Example 2.4 – the guesser no longer has
a strategy to eventually win in q0, that is, M10, q0 6|=i 〈〈2〉〉3win. On the other hand, if the shuffler is
committed to some (arbitrary) strategy s1, the guesser can secure a win:M10, q0, s1 |=i,sc 〈〈2〉〉3win.
Thus, M10, q0 |=i,sc ¬〈〈1〉〉¬〈〈2〉〉3win: there is no strategy of player 1 that would prevent player 2
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from winning, provided that 1 knows the strategy of 2 in advance.14 So, there are situations where
it makes sense to consider strategy commitment.

On the other hand, we still have M10, q2, s1 |=i,sc ¬〈〈2〉〉3win regardless of the strategy s1 of the
shuffler. Thus, again, M10, q0 |=i,sc 〈〈1〉〉3¬〈〈2〉〉3win, which is counterintuitive.

Example 7.9 shows that, when reasoning about persistent strategies of agents, we also need to
carefully define the semantics in order to avoid the “forgetting” phenomenon. This leads to the
following semantics of strategic ability with commitment.

Definition 7.10 (ATL?nf,x,sc). The semantics |=nf
x,sc of ATL?nf,x,sc, with x ∈ {i, I} is defined by

changing the clause for 〈〈A〉〉γ in the following way:

M,λ, k, s |=nf
x,sc 〈〈A〉〉ϕ iff there is a collective x-strategy sA such that, for each λ′ ∈

playsx(λ[0, k], s † sA), we have M,λ′, s † sA |=nf
x,sc ϕ;

The other semantic clauses are defined analogously to Definition 3.2.

Definition 7.11 (ATL?nf,x,c). The semantics of ATL?nf,x,c can be defined in two alternative (equiv-
alent) ways: either we directly update the semantic clauses from Section 7.1.1, or we apply the trans-
lation from Section 7.1.3 and use the semantics of ATL?nf,x,sc from Definition 7.10. To simplify the
presentation, we chose the latter option. Thus, for an ATL? formula ϕ, we defineM,λ, k, sA |=nf

x,c ϕ

iff M,λ, k, sA |=nf
x,sc trA(ϕ).

Remark 7.12. The way in which we defined the semantics of ATL?nf,x,c immediately implies
that ATL?nf,x,c �e ATL?nf,x,sc, and hence also ATL?nf,x,c �d ATL?nf,x,sc.

The notions of truth of a state formula in a pointed model and validity of a formula are defined as
in the previous sections.

Example 7.13 (Commitment and truly perfect recall). Consider the iCGSM10 again. Similarly
to Example 3.4, we now have that M10, q0 |=nf

i,sc ¬〈〈1〉〉3¬〈〈2〉〉3win. If the shuffler commits to
doing nothing (action nop) in q2 (resp. q′2), the guesser uses the history-based strategy from Exam-
ple 2.4. If the shuffler intends late shuffling (action move), the guesser uses the “swap” strategy of
picking, i.e. in comparison to the previous strategy selects pickL instead of pickR, and pickR for
pickL.

Remark 7.14. Another variant of alternating-time temporal logic with imperfect information,
truly perfect recall, and strategy contexts has been already proposed and studied in [Guelev and
Dima 2012]. The differences to our work are as follows. First, the variant of ATL? in [Guelev and
Dima 2012] features very ornate syntax, including past tense operators, collective knowledge opera-
tors, and strategic modalities that indicate which members of the coalition are allowed to revise their
strategies, and which are not. This makes comparative analysis rather difficult to conduct. Secondly,
their semantics differs from the standard approach by assuming runs to be interleaved sequences
of states and action profiles, which affects indistinguishability relations. Thirdly, the interaction
between the strategic and the epistemic aspects is further complicated by extending epistemic rela-
tions to indistinguishability over strategies. All of this is for a reason: the focus of [Guelev and Dima
2012] is on providing a rich logical framework where all aspects of persistent play under imperfect
information can be modeled, described, and studied. In contrast, we start with a simple update of
the standard semantics of persistent play from [Ågotnes et al. 2007; Brihaye et al. 2009], and focus
on a comparison between different semantics of perfect recall.

14Note that ¬〈〈1〉〉¬〈〈2〉〉3win is a formula of ATL? but not ATL. The same property can be equivalently expressed with
the ATL formula ¬〈〈1〉〉N(¬〈〈2〉〉3win).
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7.3. Expressivity of ATL* with Commitment and Truly Perfect Recall
In this section we study the relation between the “forgetting” and “no forgetting” variants of ATL?

with strategy commitment, i.e., ATL?x,c vs. ATL?nf,x,c and ATL?x,sc vs. ATL?nf,x,sc.

7.3.1. Perfect Information. Similarly to Section 4.1 we have the following results for the perfect
information case. The proof is done analogously to Proposition 3.6 (see Appendix A.3 for details).

PROPOSITION 7.15. For allM,λ, s and every ATL? formula ϕ, we have thatM,λ, 0, s |=nf
I,sc ϕ

iff M,λ, s |=I,sc ϕ.

Thus, similarly to the setting with standard non-persistent strategies, the truly perfect recall and
standard perfect recall semantics are equivalent under perfect information. We obtain the following
as an immediate corollary.

COROLLARY 7.16. ATL?I,sc and ATL?nf,I,sc are equally expressive and have the same sets of va-
lidities. By Proposition 7.5, the same holds for ATL?I,c vs. ATL?nf,I,c.

7.3.2. Imperfect Information. The next theorem shows that, under imperfect information, the truly
perfect recall semantics for persistent strategies differs from the standard one.

PROPOSITION 7.17. There is a pointed iCGS (M, q) and an ATL? formula ϕ such that
M, q |=i,sc ϕ and M, q 6|=nf

i,sc ϕ.

PROOF. The result follows from Examples 7.9 and 7.13 for M = M10, q = q0 and ϕ ≡
〈〈1〉〉3¬〈〈2〉〉3win.

The following propositions compare the distinguishing power of the truly perfect recall vs. “for-
getting” semantics for ATL?i,sc, and ATL?i,c. The proofs are given in Appendix A.3.

PROPOSITION 7.18. There are iCGSs which satisfy the same formulae of ATL?i,sc, but can be
distinguished in ATL?nf,i,c. That is, ATL?nf,i,c 6�d ATL?i,sc.

PROPOSITION 7.19. There are iCGSs which satisfy the same formulae of ATL?nf,i,sc, but can be
distinguished in ATL?i,c. That is, ATL?i,c 6�d scATL?nf,i.

Combining Propositions 7.18 and 7.19 with Proposition 7.5 and Remark 7.12, we get that:

THEOREM 7.20. For all L1 ∈ {ATL?i,sc,ATL?i,c} and L2 ∈ {ATL?nf,i,sc,ATL?nf,i,c}, the logics L1

and L2 are incomparable with respect to distinguishing and expressive power.

7.4. Comparing Validity Sets
Finally, we compare the sets of valid sentences of the “no forgetting” logics ATL?nf,x,c and ATL?nf,x,sc
with those of their “forgetting” counterparts.

7.4.1. Perfect Information. The following is an immediate consequence of Propositions 7.15
and 7.5.

PROPOSITION 7.21. ATL?I,sc and ATL?nf,I,sc have the same sets of validities. The same holds for
ATL?I,c vs. ATL?nf,I,c.

7.4.2. Imperfect Information. For imperfect information, we can obtain the result below analo-
gously to Proposition 5.6, i.e., by using epistemic tree unfoldings.

PROPOSITION 7.22. Val(scATL?i ) ⊆ Val(scATL?nf,i). Thus, also Val(ATL?i,c) ⊆
Val(ATL?nf,i,c).

A detailed proof is presented in Appendix A.3.
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PROPOSITION 7.23. Val(ATL?nf,i,c) 6⊆ Val(ATL?i,c). Thus, also Val(ATL?nf,i,sc) 6⊆
Val(ATL?i,sc).

PROOF. We can reuse formula ϕ from the proof of Proposition 5.7 because it does not contain
nested modalities—apart from ∅—and over such formulae the commitment and no-commitment
semantics coincide.

Similarly to Theorem 5.8, we immediately obtain the following characterization:

THEOREM 7.24. Val(scATL?i ) ( Val(scATL?nf,i) and Val(ATL?i,c) ( Val(ATL?nf,i,c)

Thus, games of truly perfect recall can be seen as a special subclass of games with “standard”
perfect recall also in the case of persistent strategies, as captured by the semantics of strategic ability
proposed in [Ågotnes et al. 2007; Brihaye et al. 2009].

8. CONCLUSIONS
In this paper, we formally study a semantics of strategic ability which propagates agents’ observa-
tions to nested strategic modalities. Thus, unlike the standard semantics of alternating-time logic
ATL?, it models agents who never forget their past observations. Formally, this is done by keeping
not only the future, but also the past in the path that serves as the reference to the semantic rela-
tion. Most importantly, we investigate the relationship between the two approaches, encoded by the
“forgetting” and the “truly perfect recall” semantics. Both approaches turn out to be equivalent for
agents with perfect information of the global state of the system. In the more interesting case of in-
complete information, however, the two kinds of semantics are significantly different. In particular,
they yield logical systems that are incomparable with respect to their expressive as well as distin-
guishing power. Equally interesting is the comparison of general properties of games induced by
the different semantics. Formally, this means to compare the sets of validities generated by the al-
ternative semantics. We show that the validities according to the truly perfect recall semantics form
a strict superset of the “forgetting” validities. Thus, they capture a more specific class of games than
the standard ATL?i .

The same pattern of results carries over to the setting where agents are assumed to persist with
their strategies by some kind of (irrevocable or revocable) strategic commitment.

It is usually assumed that agents A can enforce ϕ if they have a strategy which succeeds on all
executions from states that are epistemically possible for someone inA. That is, the semantics looks
at the execution paths starting from the “everybody knows” neighborhood. On the other hand, there
is no particular conceptual reason for using this type of collective indistinguishability. An interesting
question arises: are our results specific to this particular semantics, or do they hold in other variants
of ATL? for imperfect information? Along this line, we show that the same properties are obtained
as long as the set of execution paths is based on an established notion of collective knowledge
(common knowledge, distributed knowledge). Furthermore, rather surprisingly, we prove that the
pattern is significantly different for so called objective ability: in that case, the true perfect recall is
already provided by the standard future-based semantics.

From the computational point of view, reasoning about agents with perfect recall is always com-
plex, but assuming truly perfect recall for subjective abilities makes it even harder, as exemplified by
the nonelementary complexity of model checking even for abilities of individual agents. That seems
to suggest that, in practice, using the truly perfect recall semantics puts one at a disadvantage. To
remain within EXPTIME, one should stick to the future-based semantics, or switch to objective
ability for which the two kinds of semantics coincide. We point out, however, that the most impor-
tant thing in verification is to verify the right property in the right model. In particular, the input
model must match the relevant aspects of the system, and the formula together with its semantic
interpretation must capture the property that we want to verify. The same applies to any other kind
of reasoning and analysis. We believe that, when reasoning about agents who are supposed to mem-
orize their observations, the truly perfect recall semantics of ability is the right one. Our technical
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results show that it cannot be replaced by the standard, more compositional semantics of ATL?i , de-
spite the latter offering somewhat lower complexity of related computational tasks. This is because
the properties definable in both frameworks are essentially different, and because ATL?i allows for
paradoxical specifications that should not be satisfiable for agents with real perfect memory.
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A. PROOFS

A.1. Proofs of Section 4

PROPOSITION 4.4. There are pointed iCGSs which satisfy the same ATL?i -formulae, but can be
distinguished in ATL?nf,i. Thus, ATL?nf,i 6�d ATL?i , and hence also ATL?nf,i 6�e ATL?i .

PROOF. Let M2 and M ′2 be the iCGSs shown in Figure 4 and ϕ be some ATL?-formula.
We define M↑2 (resp. M↓2 ) as the sub-model of M2 obtained by keeping only the states x ∈
{a0, b0, a′1, b′1, a′2, b′2} (resp. x ∈ {a0, b0, a1, b1, a2, b2}) and removing all other states and sub-
sequent transitions. The model M ′↑2 and M ′↓2 are defined analogously as sub-models of M ′2.

First, we observe that M↑2 and M↓2 (resp. M ′↑2 , M ′↓2 ) are bisimilar. As a consequence, we have:

M2, xj |=i ϕ iff M2, x
′
j |=i ϕ for x ∈ {a, b} and j ∈ {1, 2} (1)

and analogously for M ′2. Moreover, we have

M2, xj |=i ϕ iff M ′2, xj |=i ϕ for x ∈ {a, b, a′, b′} and j ∈ {1, 2} (2)

We prove:

(?) M2, a0 |=i ϕ iff M ′2, a0 |=i ϕ

by induction over the formula structure of ϕ.
Base cases: Case ϕ = p. Straightforward. Case ϕ = 〈〈A〉〉γ where γ contains no cooperation

modalities. For A ∈ {∅, {1}} the proposition follows immediately as each strategy of A gener-
ates the same set playsiM (a0, sA) in both models.

Suppose A = {2}. Direction “⇐": as playsiM ′
2
(a0, sA) = outM ′

2
(a0, sA) ∪ outM ′

2
(b0, sA) and

playsiM2
(a0, sA) = outM2

(a0, sA), we have playsiM2
(a0, sA) ⊆ playsiM ′

2
(a0, sA). (?) follows im-

mediately.
Direction “⇒”: let s2 be an arbitrary uniform strategy of player 2 in M2. We investigate

playsiM2
(a0, s2). First: (i) we observe that player 2 cannot prevent any of a′1, b

′
1 from being pos-

sible next-states of the game. Second: (ii) for each action in {α, β, µ} which player 2 may play
in both a0a′1 and a0b′1 (the same action must be planned for both histories, since they are indistin-
guishable to 2 and s2 is uniform), playsiM2

(a0, s2) contains a path on which win eventually holds
(e.g. a0b′1(b′2)ω if α is played) and one on which win never holds (a0a′1(a′2)ω if α is played). The
statements (i),(ii) also hold in M ′2. Player 2 can neither prevent win nor ensure win from a0a

′
1 and

a0b
′
1, in either model. This concludes case A = {2}.

Suppose A = {1, 2}. Direction “⇐ ”: we again note playsiM2
(a0, sA) ⊆ playsiM ′

2
(a0, sA).

Direction “⇒”: Let sA = (s1, s2) be an arbitrary uniform strategy for A. We first observe that
playsiM2

(a0, sA) contains a unique path, however playsiM ′
2
(a0, sA) contains two paths. Starting from

sA we build s′A = (s′1, s
′
2) such that both paths from playsiM ′

2
(a0, s

′
A) are propositionally equivalent

to that from playsiM2
(a0, sA): win is either maintained false or eventually (and thereafter always)

fulfilled. The construction is as follows: s′j(a0) = sj(a0) for j ∈ {1, 2} (s′A replicates sA in the
initial state);
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for histories h ∈ {a0a1, a0a′1}:
if s2(h) = α then s′1(h) = ε and s′2(h) = µ;
if s2(h) = β then s′1(h) = µ and s′2(h) = µ;
otherwise s′1(h) = s1(h) and s′2(h) = s2(h);

for history h = a0b
′
1:

if s2(h) = α then s′1(h) = µ and s′2(h) = µ;
if s2(h) = β then s′1(h) = ε and s′2(h) = µ;
otherwise s′1(h) = s1(h) and s′2(h) = s2(h);

For all other histories, the assigned actions are unimportant. We note that s2 is uniform, and also that
in the absence of actions µ and ε we would, e.g, have that M2, a0 |=i 〈〈1, 2〉〉3win but M ′2, a0 6|=i

〈〈1, 2〉〉3win.
Induction step: The cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where

γ contains cooperation modalities. Let ξ be an arbitrary occurrence of an outermost formula 〈〈A′〉〉γ′
in γ. We note that M2, x |=i ξ iff M ′2, x |=i ξ by induction hypothesis if x = a0 and by (1-
2), otherwise. We label each state x of M2 and M ′2 where ξ holds by a new proposition pξ. The
resulting models retain properties (1-2). We replace each ξ by pξ in γ and obtain a formula without
cooperation modalities. We proceed as in the second base case. This concludes the proof of (?).

In Ex. 4.3 we have shown that both pointed models can be distinguished in ATL?nf,i. For every
ATL?i -formula ϕ we have a0 ∈ [[ϕ,M2]]|=i

iff a0 ∈ [[ϕ,M ′2]]|=i
but a0 ∈ [[ϕ′,M2]]|=nf

i
and a0 6∈

[[ϕ′,M ′2]]|=nf
i

for some ϕ′. Thus, we have that ATL?nf,i 6�d ATL?i .

A.2. Proofs of Section 5

PROPOSITION 5.5. M, q |=nf
i ϕ iff T nf(M, q), q |=nf

i ϕ iff T nf(M, q), q |=i ϕ, for all ATL?-
formulae, iCGSs M and states q.

PROOF. To simplify the notations, we write T nf instead of T nf(M, q). We observe the following,
from the construction of T nf:

(1) λ ∈ ΛM iff λ̂ = h0h1 . . . hi . . . ∈ ΛT nf where hi = λ[0, i] and i ∈ N;

h ∈ Λfin
M iff ĥ = h0h1 . . . hk−1 ∈ Λfin

T nf where hi = h[0, i] for i < k and k = |h|.
Moreover, λ and λ̂ are propositionally equivalent.

(2) h ≈Ma h′ iff ĥ ≈T nf

a ĥ′ for all a ∈ Agt.
(3) for each collective strategy sA in M there exists a collective strategy ŝA in T nf

such that λ ∈ out(h, sA) iff λ̂ ∈ out(ĥ, ŝA) and vice-versa.

We assume that it is clear from context how the different histories are concatenated, e.g.
(q0), (q0q1), (q0q1q2), . . .. To increase the readability, we omit parentheses.

We prove both equivalences separately.

(i) M, q |=nf
i ϕ iff T nf, q |=nf

i ϕ. We prove the stronger statement: M,h ◦ λ, k |=nf
i ϕ iff T nf, ĥ ◦

λ̂, k |=nf
i ϕ, where k = |h| − 1. Our claim follows for k = 0. The proof is by induction over the

formula structure of ϕ.
Base cases: Case ϕ = p. It is sufficient to note that (h ◦ λ)[k] ∈ πM (p) iff (ĥ ◦ λ̂)[k] ∈ πT nf

(p).
Case ϕ = 〈〈A〉〉γ where γ contains no cooperation modalities. From (2-3) it follows that λ ∈
playsiM (h, sA) iff λ̂ ∈ playsiT nf(ĥ, ŝA). Since λ and λ̂ are propositionally equivalent (c.f. (1)):
M,h ◦ λ |=nf

i 〈〈A〉〉γ iff T nf, ĥ ◦ λ̂ |=nf
i 〈〈A〉〉γ.

Induction step: Cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where γ
contains cooperation modalities. Let {〈〈Bi〉〉ψi | i = 1, . . . , k} be the set of outermost (positive)
ATL?-subformulae in γ. We define the following two sets:

Hi = {(h ◦ λ, k) |M,h ◦ λ, k |=nf
i 〈〈Bi〉〉ψi}
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Fig. 11. Simplified cake dilemma: with and without diet

Ĥi = {(ĥ ◦ λ̂, k) | T nf, ĥ ◦ λ̂, k |=nf
i 〈〈Bi〉〉ψi}

By induction hypothesis, we have that Ĥi = {(ĥ ◦ λ̂, k) | (h ◦ λ, k) ∈ Hi} as all formulae have
a simpler structure that ϕ (?).
We now consider the two directions of (i): ”⇒“: Let sA be a witnessing strategy for 〈〈A〉〉γ from
history h ◦ λ and index k, i.e. ∀λ ∈ playsiM (h, sA) : M,λ, k |=nf

i γ. By (2) and (3), there exists
a strategy ŝA in T nf such that:

{λ̂ | λ̂ ∈ playsiM (h, sA)} = {λ | λ ∈ playsiT nf(ĥ, ŝA)}

We note that for all h it holds that ŝA(ĥ) = sA(h) = sA(last(ĥ)). The claim now follows by (?).
The direction ”⇐“ follows exactly the same argument.

(ii) T nf, q |=nf
i ϕ iff T nf, q |=i ϕ. As before, we prove the stronger claim T nf, ĥ ◦ λ̂, k |=nf

i ϕ iff
T nf, last(ĥ) ◦ λ̂ |=i ϕ where k = |ĥ| − 1, by induction over the formula structure of ϕ. Then, the
claim follows for k = 0.
Base cases: Case ϕ = p is straightforward. Case ϕ = 〈〈A〉〉γ where γ contains no cooperation

modalities. From (1-3) we observe that for each uniform collective strategy sA and history ĥ ∈
Λfin
T nf , there exists a uniform collective strategy s′A such that playsiT nf(ĥ, sA) = {ĥ ◦ λ̂ | last(ĥ) ◦

λ̂ ∈ playsiT nf(last(ĥ), s′A)}. Informally, each state last(ĥ) encodes a history. Hence, if coalition
A has a perfect-recall strategy w.r.t. ĥ, then cf. (2-3) it can implement a strategy with the same
effects from last(ĥ) alone. Similarly, for each collective strategy s′A and ĥ ∈ Λfin

T nf there exists a
collective strategy sA such that playsiT nf(last(ĥ), s′A) = {last(ĥ) ◦ λ̂ | ĥ ◦ λ̂ ∈ playsiT nf(ĥ, sA)}.
Thus T nf, ĥ ◦ λ̂, k |=nf

i 〈〈A〉〉γ iff T nf, last(ĥ) ◦ λ̂ |=i 〈〈A〉〉γ.
Induction step: Cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where γ
contains cooperation modalities.
Let {〈〈Bi〉〉ψi | i = 1, . . . , k} be the set of outermost (positive) ATL?-subformulae in γ. We also
define the following sets:

Ĥi = {(ĥ ◦ λ̂, k) | T nf, ĥ ◦ λ̂, k |=nf
i 〈〈Bi〉〉ψi} and

L̂i = {λ̂ | T nf, λ̂ |=i 〈〈Bi〉〉ψi}.
By induction hypothesis: Ĥi = {(ĥ ◦ λ̂, k) | last(ĥ) ◦ λ̂ ∈ L̂i} (?). We now consider the two
directions of (ii): “⇒”: Let sA be a witnessing strategy for 〈〈A〉〉γ from ĥ ◦ λ̂ and index k, i.e.
∀λ̂′ ∈ playsiT nf(sA, ĥ), we have T nf, λ̂′, k |=nf

i γ. By (2) and (3) there exists a s′A such that:

playsiT nf(sA, ĥ) = {ĥ ◦ λ̂ | last(ĥ) ◦ λ̂ ∈ playsiT nf(s′A, last(ĥ))}

The claim now follows by (?). Direction “⇐” follows exactly the same argument.
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A.3. Proofs of Section 7

PROPOSITION 7.7. ATL?x,c is not as distinguishable as ATL?x,sc, i.e., ATL?x,sc 6�d ATL?x,c.

PROOF. We show that M11, q0 |=x,c ϕ iff M ′11, q0 |=x,c ϕ for all ϕ ∈ ATL?x,c, for models M11

and M ′11 shown in Figure 11. We first observe that:

M11, q1, s |=x,c ϕ iff M ′11, q1, s |=x,c ϕ for all ϕ ∈ ATL?x,c and all strategies s 6= s∅ (1)

playsxM11
(q, s) = outM11(q, s) for all states q of M11 and all strategies s. (2)

We prove: (?) M11, q0, s |=x,c ϕ =⇒ M ′11, q0, s |=x,c ϕ for all strategies s in M11 and all
ϕ ∈ ATL?x,c.

Base cases: Case ϕ = p is straightforward. Case ϕ = 〈〈A〉〉γ where γ does not contain coop-
eration modalities. Since Agt = {1} in M11, we have only two possible coalitions: A = ∅ or
A = {1}. We consider each possiblity in turn. First, suppose A = {1}, M11, q0, s |=x,c 〈〈1〉〉γ
and let s1 be a witnessing strategy i.e. M11, λ[0], s1 † s |=x,c γ for all λ ∈ outM11

(q0, s1 † s).
Since s1 † s is a {1}-strategy (if s = s∅ then s1 † s = s1 otherwise: s1 † s = s), it follows that
outM11

(q0, s1 †s) = outM ′
11

(q0, s1 †s) by construction of the models. ThenM ′11, λ[0], s1 †s |=x,c γ
and therefore M ′11, q0, s |=x,c 〈〈1〉〉γ.

Second, suppose A = ∅. If s 6= s∅ the argument is exactly as above. If s = s∅ we observe that
playsxM11

(q0, s∅) = {q+0 qω1 , qω0 } and that playsxM ′
11

(q0, s∅) = {q+0 qω2 , q
+
0 q

ω
1 , q

ω
0 }. It is sufficient to

note that each path in playsxM11
(q0, s∅) is propositionally equivalent to one in playsxM ′

11
(q0, s∅) and

vice-versa.
Induction step: Cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where γ

contains cooperation modalities and A = {1}. Suppose M11, q0, s |=x,c 〈〈1〉〉γ and let s1 be a
witnessing strategy. For each outermost ATL?-subformula 〈〈Bi〉〉ψi in γ (with i = 1, . . . , k), strategy
s∗ and state q such that M11, q, s

∗ |=x,c 〈〈Bi〉〉ψi, we observe that s∗ can only be of the form s′ † s1.
Hence s∗ = s1 since s1 is irrevocable. Then M11, q, s

∗ |=x,c 〈〈Bi〉〉ψi iff M11, q, s1 |=x,c ψi.
Therefore we can treat ϕ exactly as in the base case. The same holds for A = ∅.

We prove (??) M ′11, q0, s
′ |=x,c ϕ =⇒ M11, q0, t(s

′) |=x,c ϕ where t(s′) is the strategy s such
that s(h) = nop if s′(h) = diet and s(h) = s′(h), otherwise. Also, t leaves the empty strategy
unchanged: t(s∅) = s∅.

Base cases: Case ϕ = p is straightforward. Case ϕ = 〈〈A〉〉γ where γ does not contain coop-
eration modalities. As before, we first consider A = {1}. Suppose M ′11, q0, s

′ |=x,c 〈〈1〉〉γ,
s = t(s′) and s1 be a witnessing strategy of the former, i.e. M ′11, λ[0], s1 † s′ |=x,c γ for all
λ ∈ outM11

(q0, s1 † s′). We note that s1 † s′ is a {1}-strategy and that outM ′
11

(q0, s
′) and

outM11
(q0, s) contain unique paths which are propositionally equivalent. For instance, if s′ executes

diet for some history yielding path q+0 q
ω
2 then s will execute nop for that same history resulting in

the path qω0 . Therefore we have M11, λ[0], s1 † s |=x,c γ thus M11, q0, s |=x,c 〈〈1〉〉γ. For A = ∅ we
follow exactly the same argument.

Induction step: Cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where
γ contains cooperation modalities and A = {1}. Suppose M ′11, q0, s

′ |=x,c 〈〈1〉〉γ and let s1 be a
witnessing strategy. For each outermost ATL?-subformula 〈〈Bi〉〉ψi in γ (with i = 1, . . . , k), strategy
s∗ and state q such that M11, q, s

∗ |=x,c 〈〈Bi〉〉ψi, we observe that s∗ can only be of the form s′ † s1.
Hence s∗ = s1 since s1 is irrevocable. Then M ′11, q, s

∗ |=x,c 〈〈Bi〉〉ψi iff M ′11, q, s1 |=x,c ψi.
Therefore we can treat ϕ exactly as in the base case. The same holds for A = ∅.

From (?), (??) it follows that: M11, q0, s∅ |=x,c ϕ iff M ′11, q0, s∅ |=x,sc ϕ, which concludes this
part of the proof.
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Let ϕ = 〈〈1〉〉2(cake ∧ ¬〈〈1〉〉 g¬cake). The formula expresses that player 1 has a strategy to
maintain cake, however given that strategy it is not possible for him/her to achieve ¬cake in the next
state. We have M11, q0 6|=x,sc ϕ but M ′11, q0 |=x,sc ϕ, which concludes the proof.

PROPOSITION 7.15. For allM,λ, s and every ATL? formula ϕ, we have thatM,λ, 0, s |=nf
I,sc ϕ

iff M,λ, s |=I,sc ϕ.

PROOF. For each history η ∈ Λfin
M , and strategy s, we define:

s+η(h) =

{
s(last(η) ◦ h′) iff h = η ◦ h′
s(last(η)) iff h = η
undefined otherwise

s−η(h) =

{
s(η) iff h = last(η)
s(η ◦ h′) iff h = last(η) ◦ h′
undefined otherwise

Informally, s+η reproduces s starting from history η[0, |η|−1], while s−η reproduces s as if history
η[0, |η| − 1] did not occur. We recall from the proof of Proposition 3.6, that:

playsIM (h, sB † sA) = outM (h, sB † sA) (1)

for all h ∈ ΛM and all collective-A ∪B strategies sB † sA. Also for all collective strategies sA and
histories h ∈ ΛM , there is a collective strategy s′A such that:

outM (h, s † sA) = {h ◦ λ | last(h) ◦ λ ∈ outM (last(h), s−h † s′A)} (2)

and also, for each collective strategy s′A there is a collective strategy sA such that:

outM (last(h), s † s′A) = {last(h) ◦ λ | h ◦ λ ∈ outM (h, s+h † sA)} (3)

We show (?)M,h ◦ λ, k, s |=nf
I,sc ϕ iff M, last(h) ◦ λ, s−h |=I,sc ϕ, for all paths h ◦ λ ∈ ΛM , such

that k = |h| − 1, |h| ≥ 1 and all scATL?-formulae ϕ. The proof is by induction over the formula
structure of ϕ. The proposition follows from (?) for k = 0.

Base cases: The case ϕ = p is straightforward. Case ϕ = 〈〈A〉〉γ where γ does not contain coop-
eration modalities.
M,h ◦ λ, k, s |=nf

I,sc 〈〈A〉〉γ iff

— ∃sA such that ∀h ◦ λ′ ∈ playsIM (h, s † sA) we have M,h ◦ λ′, k, s † sA |=nf
I,sc γ iff (by (1-3))

— ∃s′A such that ∀last(h) ◦ λ′ ∈ playsIM (last(h), s−h † s′A) we have last(h) ◦ λ′, s−h † sA |=I,sc γ
iff

— M, last(h), s−h ◦ λ |=I,sc 〈〈A〉〉γ.

Induction step: The cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where
γ contains cooperation modalities.

We consider the two directions of (?):“⇒”: Suppose M,h ◦ λ, k, s |=nf
I,sc 〈〈A〉〉γ and let sA be

a witnessing strategy, i.e. M,h ◦ λ′, k, s † sA |=nf
I,sc γ for all h ◦ λ′ ∈ outM (h, s † sA). Also, let

〈〈Bi〉〉ψiwith i = 1, . . . , k be an outermost ATL?-subformula in γ. As before, we define:

Hi = {(h ◦ λ, k) |M,h ◦ λ, k, s † sA |=nf
I,sc 〈〈Bi〉〉ψi}

Li = {λ |M,λ, s |=I,sc 〈〈Bi〉〉ψi}
By induction hypothesis, Hi = {(h ◦ λ, k) | last(h) ◦ λ ∈ Li} (4). By (4) and (2) our claim follows
immediately. Direction “⇐” follows exactly the same argument.

PROPOSITION 7.18. There are iCGSs which satisfy the same formulae of ATL?i,sc, but can be
distinguished in ATL?nf,i,c. That is, ATL?nf,i,c 6�d ATL?i,sc.
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PROOF. The proof is similar to that of Proposition 4.4. First, we use the models M2 and M ′2
from Figure 4 to show that M2, a0 |=i,sc ϕ iff M ′2, a0 |=i,sc ϕ. We start by observing that a strategy
is uniform in M2 iff is also uniform in M ′2. This holds since player 2 has a unique available action
in a0 (and b0) respectively.

We define the strategy t(sA) with respect to sA as follows:

t(sA) =

{
s′A if A = {1, 2}
sA otherwise

where s′A denotes the collective strategy whose construction was illustrated in the proof of Propo-
sition 4.4. We observe that, s and t(s) differ only in those actions assigned to histories prefixed by
a0. Thus:

M2, xj , s |=i,sc ϕ iff M2, x
′
j , t(s) |=i,sc ϕ (4)

for x ∈ {a, b}, j ∈ {1, 2} and all strategies s (the same is the case for M ′2)

M2, xj , s |=i,sc ϕ iff M ′2, xj , t(s) |=i,sc ϕ (5)

for x ∈ {a, b, a′, b′}, j ∈ {1, 2} and each strategy s.
We prove:

(?) M2, a0, sB |=i,sc ϕ iff M ′2, a0, t(sB) |=i,sc ϕ, for all B ∈ {∅, 1, 2, {1, 2}}

by induction over the formula structure of ϕ. Note that our claim follows for B = ∅, since t(s∅) =
s∅. Base cases:The case ϕ = p is straightforward. Case ϕ = 〈〈A〉〉γ where γ contains no strategic
modalities.

Suppose A ∪ B ∈ {∅, {1}}. The proposition follows immediately as playsiM2
(a0, sB † sA) =

playsiM ′
2
(a0, sB † sA).

Suppose A ∪ B = {2}. We consider each direction of (?) in turn: “⇐": Since playsiM ′
2
(a0, sB †

sA) = outM ′
2
(a0, sB † sA) ∪ outM ′

2
(b0, sB † sA) and playsiM2

(a0, sB † sA) = outM2
(a0, sB † sA),

we have playsiM2
(a0, sB † sA) ⊆ playsiM ′

2
(a0, sB † sA). (?) follows immediately.

Direction “⇒” follows the very same reasoning as that from the proof of Proposition 4.4, where
s2 is replaced by sA∪B . Note that sA∪B = t(sA∪B), since A ∪B = {2}.

SupposeA∪B = {1, 2}. Direction “⇐ ”: we note playsiM2
(a0, sB †sA) ⊆ playsiM ′

2
(a0, sB †sA).

Direction “⇒”: the set playsiM2
(a0, sB†sA) contains a unique path, while playsiM2

(a0, t(sB†sA))
contains two paths. By the construction of t, the latter two paths are propositionally equivalent to
the former.

Induction step: The cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where
γ contains cooperation modalities. Let ξ be an arbitrary occurrence of an outermost formula 〈〈A′〉〉γ′
in γ. We note that M2, x, s |=i,sc ξ iff M ′2, x, t(s) |=i,sc ξ by induction hypothesis if x = a0 and by
(1-2), otherwise. We label each state x of M2 and M ′2 where ξ holds by a new proposition pξ. The
resulting models retain properties (1-2). We replace each ξ by pξ in γ and obtain a formula without
cooperation modalities. We proceed as in the second base case. This concludes the proof of (?).

Second, we show that the models from Figure 4 can be distinguished by an ATL?nf,i,c-formula.
Recall that Eϕ ≡ ¬〈〈∅〉〉¬ϕ. Then, we have M2, a0 |=nf

i,sc E g〈〈2〉〉 gwin but M ′2, a
′
0 6|=

nf
i,sc

E g〈〈2〉〉 gwin: in M2, there is a path on which player 2 can ensure win by itself in the next state.
The latter does not hold in M ′2.

PROPOSITION 7.19. There are iCGSs which satisfy the same formulae of ATL?nf,i,sc, but can be
distinguished in ATL?i,c. That is, ATL?i,c 6�d scATL?nf,i.
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PROOF. The proof is similar to that of Proposition 4.6. First, we use models M3 and M ′3 from
Figure 5 to show (?) M3, h, s |=nf

i,sc ϕ iff M ′3, h, t(s) |=
nf
i,sc ϕ for all histories h ∈ Λfin

M3
(a0) and all

ATL?-formulae ϕ. We start by defining the strategy t(sA) with respect to sA, as follows:

t(sA) =

{
s′A if A = {2}
sA otherwise

where s′A(b1) = sA(a1) and s′A(h) = sA(h) for all h ∈ Λfin
M3

. Note that, for all strategies s, t(s) is
a uniform strategy in M ′3.

The proof is by induction over the formula structure of ϕ.
Base cases: Case ϕ = p is straightforward. Case ϕ = 〈〈A〉〉γ where γ contains no strategic modal-

ities. It is sufficient to observe:

playsiM3
(h, s † sA) = playsiM ′

3
(h, t(s) † t(sA)) (1)

for all collective strategies sA and h ∈ Λfin
M3

(a0). We note that s and t(s) produce the same effects
when the initial state is a0, for all uniform strategies s. However, we use t(s) instead of s since the
latter may not be uniform inM ′3 — the transformation t enforces uniformity by ensuring that agents
play the same action in indistinguishable states a1 and b1 of M ′3.

Cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where γ contains cooper-

ation modalities. Suppose M3, h, s |=nf
i,sc 〈〈A〉〉γ and let sA be a witnessing strategy. Let 〈〈Bi〉〉ψi

(with i = 1 . . . k) be an outermost ATL?-subformula in γ. By induction hypothesis, we have:
M3, h, s † sA |=nf

i,sc 〈〈Bi〉〉ψi iff M ′3, h, t(s † sA), |=nf
i,sc 〈〈Bi〉〉ψi. Moreover, t(s † sA) = t(s) † t(sA)

— applying the uniformity constraint on s † sA is equivalent to applying it on s and sA individually.
It follows by (1) that sA is a witnessing strategy for M3, h |=nf

i 〈〈A〉〉γ iff t(sA) is a witnessing
strategy for M ′3, h |=

nf
i 〈〈A〉〉γ.

Finally, to show that M3 and M ′3 can be distinguished by an ATL?i,c-formula we consider the
formula ϕ ≡ E g〈〈2〉〉 gwin from Proposition 7.18. We have thatM3, a0 |= ϕ andM ′3, a

′
0 6|= ϕ.

PROPOSITION 7.22. Val(scATL?i ) ⊆ Val(scATL?nf,i). Thus, also Val(ATL?i,c) ⊆
Val(ATL?nf,i,c).

PROOF. We proceed similarly to the proof of Proposition 5.5. First, we show:

M, q, s |=nf
i,sc ϕ iff T nf(M, q), q, t(s) |=nf

i,sc ϕ iff T nf(M, q), q, t(s) |=i,sc ϕ

for all ATL?-formulae, iCGSs M , states q, strategies s which are uniform w.r.t. Agt and where t(s)
is the strategy s′ in T nf(M, q), such that s′(ĥ) = s(h), for all h ∈ Λfin

M (q) and t(s∅) = s∅. We first
observe that t(s † s′) = t(s) † t(s′). The proof also relies on the observations (1-3) from the proof
of Proposition 5.5. We prove both equivalences separately.

(i). M, q, s |=nf
i ϕ iff T nf, q, t(s) |=nf

i ϕ. We prove the stronger statement: M,h ◦ λ, k, s |=nf
i ϕ

iff T nf, ĥ ◦ λ̂, k, t(s) |=nf
i ϕ, where k = |h| − 1. Our claim follows for k = 0. The proof is by

induction over the formula structure of ϕ.
Base cases: Case ϕ = p. It is sufficient to note that (h ◦ λ)[k] ∈ πM (p) iff (ĥ ◦ λ̂)[k] ∈ πT nf

(p).
Case ϕ = 〈〈A〉〉γ where γ contains no cooperation modalities. From (2-3) it follows that λ ∈
playsiM (h, s † sA) iff λ̂ ∈ playsiT nf(ĥ, t(s) † t(sA)). Since λ and λ̂ are propositionally equivalent
cf. (1), we have: M,h ◦ λ, s |=nf

i 〈〈A〉〉γ iff T nf, ĥ ◦ λ̂, t(s) |=nf
i 〈〈A〉〉γ.

Induction step: Cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where γ
contains cooperation modalities. We consider the two directions of (i) in turn: “⇒”: Suppose
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M,h ◦ λ, k, s |=nf
i,sc 〈〈A〉〉γ and let sA be a witnessing strategy i.e. M,h ◦ λ′, k, s † sA |=nf

i,sc γ

for all paths h ◦ λ′ ∈ playsiM (h, s † sA). Also, let 〈〈Bi〉〉ψi with i = 1, . . . , k be an outermost
ATL?-subformula in γ and define the sets:

Hi = {(h ◦ λ, k) |M,h ◦ λ, k, s † sA |=nf
i,sc 〈〈Bi〉〉ψi}

Ĥi = {(ĥ ◦ λ̂, k) | T nf, ĥ ◦ λ̂, k, t(s) † t(sA) |=nf
i,sc 〈〈Bi〉〉ψi}

By induction hypothesis, Ĥi = {(ĥ ◦ λ̂, k) | (h ◦ λ, k) ∈ Hi} (4). Also, from (2-3) we have:

{λ̂ | λ̂ ∈ playsiM (h, s † sA)} = {λ | λ ∈ playsiT nf(ĥ, t(s) † t(sA))}
The claim now follows by (4). Direction ”⇐“ follows exactly the same argument.

(ii). T nf, q, s |=nf
i ϕ iff T nf, q, s |=i ϕ. As before, we prove the stronger claim (?) T nf, ĥ◦ λ̂, k, s |=nf

i

ϕ iff T nf, last(ĥ) ◦ λ̂, s |=i ϕ where k = |ĥ| − 1, by induction over the formula structure of ϕ.
Then (ii) follows for k = 0.
Base cases: Case ϕ = p is straightforward. Case ϕ = 〈〈A〉〉γ where γ contains no cooperation

modalities. From (1-3) we observe that for each uniform collective strategy sA and history ĥ ∈
Λfin
T nf , there exists a uniform collective strategy s′A such that:

playsiT nf(ĥ, s † sA) = {ĥ ◦ λ̂ | last(ĥ) ◦ λ̂ ∈ playsiT nf(last(ĥ), s † s′A)}

Informally, each state last(ĥ) encodes a history. Hence, the action of coalition A assigned by a
perfect-recall strategy to ĥ can be executed with the same effects from last(ĥ) alone. Similarly,
for each collective strategy s′A and history ĥ ∈ Λfin

T nf there exists a collective strategy sA such
that:

playsiT nf(last(ĥ), s † s′A) = {last(ĥ) ◦ λ̂ | ĥ ◦ λ̂ ∈ playsiT nf(ĥ, s † sA)}

We conclude that T nf, ĥ ◦ λ̂, k, s |=nf
i 〈〈A〉〉γ iff T nf, last(ĥ) ◦ λ̂, s |=i 〈〈A〉〉γ.

Induction step: Cases ϕ = ¬ϕ′ and ϕ = ϕ′ ∧ ϕ′′ are straightforward. Case ϕ = 〈〈A〉〉γ where γ
contains cooperation modalities.
Direction “⇒”: Supose T nf, ĥ ◦ λ̂, k, s |=nf

i,sc 〈〈A〉〉γ and let sA be a witnessing strategy i.e.
T nf, ĥ ◦ λ̂′, k, s † sA |=nf

i,sc γ for all paths ĥ ◦ λ̂′ ∈ playsiT nf(ĥ, s † sA). Also, let 〈〈Bi〉〉ψi with
i = 1, . . . , k be an outermost ATL?-subformula in γ and define:

Ĥi = {(ĥ ◦ λ̂, k) | T nf, ĥ ◦ λ̂, k, s † sA |=nf
i,sc 〈〈Bi〉〉ψi}

L̂i = {λ̂ | T nf, λ̂, s † sA |=i,sc 〈〈Bi〉〉ψi}
By induction hypothesis: Ĥi = {(ĥ ◦ λ̂, k) | last(ĥ) ◦ λ̂ ∈ L̂i} (5). Finally, by (2,3) we have:

playsiT nf(s † sA, ĥ) = {ĥ ◦ λ̂ | last(ĥ) ◦ λ̂ ∈ playsiT nf(t(s † sA), last(ĥ))}
The claim now follows by (5). Direction “⇐” follows exactly the same argument.

We show Sat(scATL?nf,i) ⊆ Sat(ATL?i,sc). Suppose ϕ ∈ Sat(scATL?nf,i). Thus there exists an
iCGSM and state q such thatM, q, s∅ |=nf

i,sc ϕ. By (i, ii) and since t(s∅) = s∅, T nf(M, q), s∅ |=i ϕ.
Hence ϕ ∈ Sat(ATL?i,sc).
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