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Abstract. Some multi-agent scenarios call for the possibility of evaluating specifications in a
richer domain of truth values. Examples include runtime monitoring of a temporal property over
a growing prefix of an infinite path, inconsistency analysis in distributed databases, and verifi-
cation methods that use incomplete anytime algorithms, such as bounded model checking. In
this paper, we present multi-valued alternating-time temporal logic (mv-ATL∗→), an expressive
logic to specify strategic abilities in multi-agent systems. It is well known that, for branching-
time logics, a general method for model-independent translation from multi-valued to two-valued
model checking exists. We show that the method cannot be directly extended to mv-ATL∗→. We
also propose two ways of overcoming the problem. Firstly, we identify constraints on formulas
for which the model-independent translation can be suitably adapted. Secondly, we present a
model-dependent reduction that can be applied to all formulas of mv-ATL∗→. We show that, in
all cases, the complexity of verification increases only linearly when new truth values are added
to the evaluation domain. We also consider several examples that show possible applications of
mv-ATL∗→ and motivate its use for model checking multi-agent systems.

1. Introduction

Alternating-time temporal logic ATL∗ and its less expressive variant ATL [1, 2] are probably the most
popular logics that allow for reasoning about agents’ abilities in strategic encounters. ATL∗ combines
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features of temporal logic and basic game theory, encapsulated in the main language construct of the
logic, 〈〈A〉〉γ, which can be read as “the group of agents A has a strategy to enforce γ”. Property γ
can include operators X (“next”), G (“always”), F (“eventually”) and/or U (“until”). Much research
on ATL∗ has focused on the way it can be used for verification of multi-agent systems, including
theoretical studies on the complexity of model checking, as well as practical verification algorithms.

Multi-valued semantics have been already proposed for various temporal and temporal-epistemic
logics, and applied in verification of distributed and multi-agent systems. In this paper, we extend the
general approach of [3, 4] to verification of strategic abilities for agents and their coalitions. Many
relevant properties of multi-agent systems are intuitively underpinned by the ability (or inability) of
particular agents to obtain particular outcomes. For example, most functionality requirements can be
specified as the ability of the authorized users to achieve their legitimate goals. At the same time, many
security properties can be phrased in terms of the inability of unauthorized users to compromise the
system. We show that reasoning about, and verification of such statements can be naturally conducted
in richer domains of truth values, regardless of the actual notion of strategic play and constraints on
the agents’ epistemic capabilities. Moreover, multiple truth values incur no significant increase of
either the theoretical or the practical complexity of the model checking problem. In fact, we show that
multi-valued verification of strategic abilities can be usually done by means of an efficient translation
to classical verification. We also present a case study that demonstrates the modeling value of the
approach and its efficiency.

1.1. Multi-Valued Model Checking: Why Bother?

Typically, model checking is a yes/no problem. That is, the output is a classical truth value: > for
“yes”, ⊥ for “no.” However, it is sometimes convenient to consider the output of verification in a
richer domain of values. This can be due to at least three reasons. First, our reasoning about the world
can be based on a non-classical notion of truth (e.g., graded, fuzzy, constructive, defeasible etc.). For
example, if an atomic statement pol (“the area is polluted”) is evaluated according to measurements
conducted in the environment, the possible outputs can include “highly,” “much,” “little,” and “not
at all,” instead of simply “yes” and “no.” Multi-valued semantics take those outputs directly as the
possible truth values of pol, and hence also of more complex formulas involving pol. This is particu-
larly useful in case of model checking realistic systems, as it allows to lift logical reasoning to a richer
domain of answers in a compact way.

Secondly, we can understand the properties of the world in a classical way (being always com-
pletely true or fully false), but our model of the system can be only partially conclusive. A good
example is runtime monitoring of temporal properties, where a temporal formula (interpreted with an
infinite time horizon in mind) is checked on a finite but constantly growing sequence of events, ob-
served so far. Consider for instance specification F cool (“the reactor will be cooled down sometime
in the future”). If cool has already occurred then the formula is clearly true whatever happens next.
What if it has not occurred? Then, the formula may still turn out true (because cool may occur in
subsequent steps), but it can also turn out false; effectively, the truth value is unknown in our current
model. Likewise, formula G cool (“cool will always hold”) can be only proved false in the course
of monitoring, or the model is inconclusive regarding its value. Indeed, well known approaches to
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runtime monitoring use multi-valued interpretation of temporal formulas in finite runs [5, 6].
Conflicting evidence coming from different sources is another reason why one may need to deal

with an imperfect model of the system. This can happen, e.g., in case of a distributed knowledge base,
where some components may be outdated and/or contain unreliable information. In classical logic,
the deductive explosion would make any attempt at reasoning useless. In multi-valued logics, one can
assign a special truth value (“inconsistent”) to situations when conflicting evidence about the value of
p exists, and conduct the verification in the usual way.

Thirdly, even if the model is complete and faithful, the verification procedure can be only partially
conclusive. For instance, in bounded model checking [7, 8], a full transition system is given but the
formula is checked on runs of length at most n. Now, again, F p is clearly true if we find p to occur on
every path in up to n steps. Otherwise, the output is inconclusive (because p might or might not occur
in subsequent steps). The case of G p is analogous.

Note that different sources of multiple truth values can easily combine. For example, runtime
monitoring of a distributed knowledge base may require handling both the possible inconsistency of
data across different locations and the uncertainty about how the system state will evolve. This kind
of scenarios are most conveniently modeled by partially, rather than linearly ordered sets of answers.
Overall, it should be up to the designer to decide which domain of truth values will be used for
verification. In this paper, we provide a general methodology, together with flexible algorithms, that
can be used for any distributive lattice of interpretation.

1.2. Technical Contribution and Outline of the Paper

The focus of the article is on general multi-valued verification of strategic abilities in multi-agent
systems. The main contributions are:

1. We propose a multi-valued variant of alternating-time temporal logic ATL∗, called mv-ATL∗→,
over arbitrary lattices of logical values. We also show that the new logic is a conservative
extension of the standard, 2-valued ATL∗.

2. We study the multi-valued model checking problem for mv-ATL∗→. Similarly to the previous
work on temporal model checking [3, 4], we do not propose dedicated algorithms for mv-ATL∗→.
Instead, we look for general efficient translations from the multi-valued case to the 2-valued
case. In this respect, we:

(a) prove that no model-independent translation exists for the whole language of mv-ATL∗→,

(b) identify a broad subclass of formulas for which such a translation can be obtained,

(c) propose a recursive model-dependent translation that works for all instances of the prob-
lem.

3. We show that all results are insensitive to the actual notion of strategy and strategic play. In
particular, they easily extend to verification of strategies under imperfect information.

4. Finally, we report an implementation of the verification algorithm based on the translation to
2-valued model checking, and evaluate its performance experimentally.
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Point 2 might require further explanation. Multi-valued model checking often provides a concep-
tual approximation of the classical (two-valued) verification problem, especially in case the precise
model is difficult to obtain. On the other hand, we show a technical reduction of multi-valued model
checking to the two-valued variant. Thus, typically, a designer who wants to verify properties of a
complex system, expressed in (classical) ATL∗, would first come up with a conceptual approximation
of the problem in mv-ATL∗→, then use the technical translation of the specification back to model
checking of ATL∗, and finally run the latter by means of an existing tool (such as MCMAS [9]).

The structure of the paper is as follows. We begin by presenting the context of our work: the
alternating time logic ATL∗ in Section 2, and distributive lattices in Section 3. We also introduce
our working example of drones monitoring the pollution in a city. In Section 4, we define the syntax
and semantics of our multi-valued variant of ATL∗, the logic mv-ATL∗→. Section 5 discusses the
model checking problem for mv-ATL∗→ (in general and under certain restrictions). Until that point, we
assume the classical interpretation of transitions in models, i.e., the multi-valued approach is applied
only to the labeling of states. Section 6 extends our definitions and results to models with many-
valued transitions. We also show that the idea of may/must abstraction can be seen as a special case
of model checking mv-ATL∗→. Section 7 adapts our results to verification of strategies for agents with
imperfect information. In Section 8, we present an experimental evaluation of our algorithms, based
on the drones scenario. Finally, we conclude in Section 9.

Previous version of the article. The main concepts and some of the results have appeared in a
preliminary form in the conference paper [10]. The present version extends it with proper proofs, a
comprehensive discussion on motivation and applicability, and a generalization of the framework to
models with multi-valued transitions. We also add a case study (complete with a detailed experimental
evaluation) based on a newly proposed benchmark model.

1.3. Related Work

Multi-valued interpretation of modal formulas has been used in multiple approaches to verification.
The main idea was proposed by Fitting [11, 12] already more than 25 years ago. Further fundamen-
tal work on multi-valued modal logic includes, e.g., [13] where general properties of multi-valued
abstractions were studied, and demonstrated on an example 9-valued bilattice.

In the 2000s, a number of works adapted the idea to verification of distributed and multi-agent
systems. A variant of CTL∗ for models over finite quasi-boolean lattices was proposed in [3], together
with a general translation scheme that reduced multi-valued model checking of CTL∗ specifications to
the standard 2-valued case. This was later extended to multi-valued modal µ-calculus [14, 15, 16, 17],
and to multi-valued modal µ-calculus with knowledge [4].1 Our paper follows this line of work, and
extends the techniques to strategic operators of ATL∗. We also enrich the language with the two-valued
“implication” (or comparison) and ”equivalence” operators→ and∼=, which provide: (i) the notions of
material implication and biconditional, useful in specifying general properties of multi-valued models;
(ii) a way of model checking “threshold properties” analogous to probabilistic temporal logics behind

1Note that, despite having “games” in the title, [16] was not concerned with strategic specifications. “Games” were used
there only in the technical sense, to define the semantics of µ-calculus. However, [18] deals with game applications of [16].
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PRISM [19]. As it turns out, the new operators require non-trivial treatment, significantly different
from the previous works [3, 14, 15, 4, 16, 17].

All the above papers consider general multi-valued verification, i.e., the interpretation can be based
on an arbitrary finite lattice. Another line of work considers model checking over specific domains
of truth values, tailored to a particular class of scenarios. Model checking methods for the special
case of 3-valued temporal logics were discussed in [20, 21, 22] and, recently, in [23]. Two different
methods for approximating the standard two-valued semantics of ATL∗ under imperfect information
by using three-valued ATL∗ are presented and analysed in [24, 25]. However, these approaches use
only Kleene’s three valued logic rather than general distributive lattices. Moreover, a partial algorithm
for model checking two-valued perfect recall via its approximation as three-valued bounded recall is
constructed in [24].

Related approaches include runtime verification, which often uses 3-valued [5] or 4-valued inter-
pretation [6, 14] of temporal formulas. Moreover, a 4-valued semantics has been used to evaluate
database queries [26, 27]. A 3-valued semantics of strategic abilities in models of perfect information
was considered in [28] for verification of alternating µ-calculus, and in [29] for abilities expressed
in ATL.2 In [30], another 3-valued semantics of ATL was studied, for both perfect and imperfect
information. In all those papers (i.e., [28, 29, 30]), the main aim was to verify may/must abstractions
of multi-agent systems. Note that, while the agenda of our paper comes close to that of [29, 30], our
semantics differs from [29] even in the 3-valued case. Moreover, our multi-valued semantics of ATL is
a conservative extension of standard ATL, whereas the one in [29] is not. In contrast, the ATL variant
in [30] is a conservative extension of the 2-valued semantics, and can be in fact considered as a very
special case of our general semantics.

A quite different but related strand of research concerns real-valued logics over probabilistic mod-
els for temporal [31, 32, 33] and strategic specifications [34]. We also mention the research on prob-
abilistic model checking of temporal and strategic logics [35, 36, 19, 37, 38, 39] that evaluates speci-
fications in the 2-valued domain but recognizes different degrees of success and the need to aggregate
them over available strategies and possible paths.

In sum, there have been approaches to general multi-valued model checking of temporal and epis-
temic properties, but no analogous proposals for strategic properties. Furthermore, there were propos-
als for multi-valued verification of strategic properties over specific (and usually very simple) sets of
truth vales, but no framework that studies the same problem for arbitrary lattices. This paper fills the
gap, and combines elements of both strands to obtain a general framework for multi-valued verification
of ability in systems of interacting agents.

2. How to Specify Strategic Abilities

We begin by recalling the basics of two-valued alternating-time temporal logic. We also introduce our
working example that will be used throughout the paper.

2More precisely, the semantics in [29] includes agents’ indistinguishability relations in the model, but it allows for non-
uniform play, thus effectively assuming that the agents have perfect information about the current state of the system while
playing.
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2.1. Syntax

Alternating-time temporal logic [1, 2] generalizes the branching-time temporal logic CTL∗ by replac-
ing path quantifiers E,A with strategic modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ says that a group of agents
A has a collective strategy to enforce temporal property γ. ATL∗ formulas can include temporal oper-
ators: X (“in the next state”), G (“always from now on”), F (“now or sometime in the future”), and
U (strong “until”). Similarly to CTL∗ and CTL, we consider two syntactic variants of the alternating-
time logic, namely ATL∗ and ATL. Formally, let Agt be a finite set of agents, and Prop a countable
set of atomic propositions. The language of ATL∗ is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ, γ ::= ϕ | ¬γ | γ ∧ γ | X γ | γ U γ.

where A ⊆ Agt and p ∈ Prop. Traditionally, only the state formulas ϕ are called formulas of ATL∗.
Derived boolean connectives and constants (∨,>,⊥) are defined as usual. “Sometime”, “weak until”,
and “always from now on” are defined as F γ ≡ >U γ, γ1 W γ2 ≡ ¬((¬γ2)U (¬γ1 ∧ ¬γ2)), and
G γ ≡ γW⊥. Also, we can use [[A]]γ ≡ ¬〈〈A〉〉¬γ to express that, for each strategy of A, property γ
holds on some paths.

ATL (without “star”) is the syntactic variant in which strategic and temporal operators are com-
bined into compound modalities: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉X ϕ | 〈〈A〉〉ϕU ϕ | 〈〈A〉〉ϕW ϕ.

2.2. Models

The semantics of ATL∗ is typically defined over synchronous multi-agent transition systems, i.e.,
models where all the agents simultaneously decide on their next actions, and the combination of their
choices determines the next state, see the following definition.

Definition 2.1. (CGS)
A concurrent game structure (CGS) is a tuple M = 〈Agt, St, Act, d, t, Prop, V 〉, which includes
nonempty finite sets of: agents Agt, states St, actions Act, atomic propositions Prop, and a proposi-
tional valuation V : St→ 2Prop. The function d : Agt× St→ 2Act \ {∅} defines the availability of
actions. The (deterministic) transition function t assigns a successor state q′ = t(q, α1, . . . , α|Agt|) to
each state q ∈ St and any tuple of actions αi ∈ d(i, q), one per agent i ∈ Agt, that can be executed in
q. A pointed CGS is a pair (M, q0), where M is a CGS and q0 ∈ St is the initial state of M .

A path λ = q0q1q2 . . . in a CGS is an infinite sequence of states such that there is a transition
between each qi, qi+1 for each i ≥ 0.

λ[i] denotes the ith position on λ (starting from i = 0) and λ[i,∞] the suffix of λ starting with i.

2.3. Semantics

Given a CGS, we define the strategies and their outcomes as follows. A perfect recall strategy (or IR-
strategy) for agent a is a function sa : St+ → Act such that sa(q0q1 . . . qn) ∈ d(a, qn). A memoryless
strategy (or Ir-strategy) for a is a function sa : St → Act such that sa(q) ∈ d(a, q). A collective
strategy for a group of agentsA = {a1, . . . , ar} is a tuple of individual strategies sA = 〈sa1 , . . . , sar〉.
Note that sA only binds the agents in A, while agents outside A can act as they wish. The set of such



W. Jamroga, B. Konikowska, D. Kurpiewski, and W. Penczek / Multi-Valued Verification of Strategic Ability 7

Figure 1. Map: drone navigation and measurements in an area of Cracow. Location colors indicate whether
the PM2.5 readings are within or beyond the norm

strategies is denoted by ΣIR
A (resp. ΣIr

A). The “outcome” function out(q, sA) returns the set of all paths
that can occur when agentsA execute strategy sA from state q onward. The semantics of perfect recall
ATL∗ is defined as follows:

M, q |= p iff p ∈ V (q), for p ∈ Prop;

M, q |= ¬¬ϕ iff M, q |= ϕ, and M, q |= ¬ϕ iff M, q 6|= ϕ for ϕ 6= ¬ψ for any ψ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= 〈〈A〉〉γ iff there is a strategy sA ∈ ΣIR
A such that, for each path λ ∈ out(q, sA), we have

M,λ |= γ.

M,λ |= ϕ iff M,λ[0] |= ϕ;

M,λ |= ¬¬γ iff M,λ |= γ, and M,λ |= ¬γ iff M,λ 6|= γ for λ 6= ¬γ for any γ;

M,λ |= γ1 ∧ γ2 iff M,λ |= γ1 and M,λ |= γ2;

M,λ |= X γ iff M,λ[1,∞] |= γ; and

M,λ |= γ1 U γ2 iff there is an i ∈ N0 such that M,λ[i,∞] |= γ2 and M,λ[j,∞] |= γ1 for all
0 ≤ j < i,

where N0 is the set of non-negative integers. The memoryless semantics of ATL* uses strategies of
ΣIr
A rather than ΣIR

A .

Example 2.2. (Drones patrolling for pollution)
Consider a team of k drones monitoring air pollution in the city of Cracow, Poland. For this scenario,
we use the map shown in Figure 1. To keep the resulting CGS small, the map is a grid that only
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Figure 2. Model M1: autonomous drones monitoring pollution

includes four locations, and the drones can move between the locations in one direction only (either
North or East).3 The initial location is 0, and the drones are supposed to reach location 3 (called
their “target” location). Each drone has a sensor to measure the level of PM2.5 in the air, that is the
rate of particles with a diameter less than 2.5 microns. The drone can also communicate with the
nearest sensor on the ground that reports the PM2.5 rate on the ground level, as well as the current
measurements of temperature, air pressure, and humidity. Note that some measurements may be
unobtainable at some locations. In particular, no measurements are available at the start location. We
also assume, for the sake of simplicity, that the environment can be viewed as stationary with respect to
the movement of drones, i.e., the measurements at a location do not change throughout the patrolling
mission.

Figure 2 presents a pointed concurrent game structure M1 that models the above scenario for
k = 2 drones. Every drone is a separate agent, with two actions available: N (fly North) and E (fly
East). Due to a limited battery capacity, a drone can only visit l = 2 locations before the battery
dies. Each state of the model includes information about the current locations of the drones, possibly
distinguishing the locations that have been already visited by the team. Note that in our simple scenario
the only pair of locations that can be reached by the drones via two different routes is (3, 3). The
corresponding two states are labeled accordingly (3, 3)1 and (3, 3)2.

Most of the atomic propositions refer to the pollution measurements available to a drone at its
current location. That is, d-poli indicates that the ith drone registers pollution; more precisely: the
sensor of drone i reports that the level of PM2.5 exceeds the norm. Similarly, d-oki indicates that the
sensor of drone i reports a level of PM2.5 within the norm. Moreover, g-poli (resp. g-oki) says that
the ground sensor nearest to drone i reports a level of PM2.5 exceeding the norm (resp. within the
norm). Proposition target indicates states where all drones have reached the target location. Finally,

3A more complex map will be used for the experiments in Section 8.
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proposition allvisited labels the states where the team has already visited all locations in the map: in
case of M1, the only such state is (3, 3)2. �

Example 2.3. (Drones, ctd.)
For the model in Example 2.2, we have, for instance, M1, (0, 0) |= 〈〈1〉〉F d-pol1: drone 1 has a
strategy ensuring that its sensor will eventually register pollution. The stratety itself is simple: when
in the state (0, 0) fly North. Moreover, M1, (0, 0) |= 〈〈1〉〉F d-ok1: it also has a strategy for reaching
a location where it registers no pollution. This time the simplest strategy is to fly East. In fact,
M1, (0, 0) |= 〈〈1〉〉(F d-pol1 ∧ F d-ok1): there is a single strategy for achieving both goals. The drone
needs to fly East first, and then fly North.

Furthermore, no drone can assure on its own that all of the locations will eventually be visited:
M1, (0, 0) |= ¬〈〈1〉〉F allvisited∧¬〈〈2〉〉F allvisited. This can only be ensured if both drones cooperate:
M1, (0, 0) |= 〈〈1, 2〉〉F allvisited. On the other hand, the drones are bound to end up at the target
location, no matter what they decide to do: M1, (0, 0) |= 〈〈∅〉〉F target. �

3. Multi-Valued Domains of Interpretation

As the formulas of our multi-valued version of ATL∗ will be interpreted in distributive lattices of truth
values [40], we recall the relevant notions and results in this section.

3.1. Lattices of Truth Values

Definition 3.1. A lattice is a partially ordered set L = (L,≤), where every pair of elements x, y ∈ L
has the greatest lower bound (called meet and denoted by xu y) and the least upper bound (called join
and denoted by x t y).

Note that the meet and join of any x, y ∈ L are uniquely determined due to the antisymmetry of ≤.
In what follows, we only consider finite lattices. We denote the least and the greatest elements of L

by⊥,>, respectively. Also, we write (i) x1 < x2 iff x1 ≤ x2 and x1 6= x2, and (ii) x1 ./ x2 iff neither
x1 ≤ x2 nor x2 ≤ x1. Moreover, let:

• ↑ x = {y ∈ L | x ≤ y} denote the upward closure of x, and

• ↓ x = {y ∈ L | y ≤ x} denote the downward closure of x.

A lattice L′ = (L′,≤′) is a sublattice of a lattice L = (L,≤) if L′ ⊆ L and ≤′=≤ ∩(L′ × L′).

Definition 3.2. A lattice L = (L,≤) is distributive if, for any x, y, z ∈ L, the following two condi-
tions hold: (i) z t (x u y) = (z t x) u (z t y), (ii) z u (x t y) = (z u x) t (z u y).

Note that, for any lattice L, the operations t and u are associative.

Example 3.3. (Some useful lattices)
Figure 3 presents five distributive lattices with applicability motivated by clear practical intuitions.
The total order 3 is the most popular lattice in multi-valued verification. The intuition is simple: >
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u
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⊥d u ⊥g

⊥

2 + 2× 2 2 + 2× 2 + 2× 2

Figure 3. Distributive lattices and their join-irreducible elements

stands for absolute truth, ⊥ for absolute falsity, and u can be read as “unknown” or “undefined.” That
is, when a formula ϕ is assigned the value u, this indicates that the statement represented by ϕ cannot
be conclusively evaluated (its truth value – in the classical sense – cannot be determined, or even
does not exist at the moment). The lattice is very often used in model checking approaches based on
abstraction, with u assigned to formulas for which the verification has proved inconclusive.

The total order 4 allows for representing graded uncertainty. For instance, in 4-valued approaches
to runtime monitoring, s is interpreted as “still possibly true,” and n stands for “not proved false yet.”
In evidence-based reasoning, the values can correspond to situations when there is much (respectively,
little) evidence supporting ϕ. The lattice can be generalized to the k-valued linear order k, useful
in scenarios where the amount of positive/negative evidence is weakly indicative for the truth of a
statement. Consider a corpus of data coming from event logs that support or reject proposition p.
Then, the logical value of p can be, e.g., defined as the difference between the amounts of positive
and negative evidence. A more sophisticated, partially ordered lattice could also involve the number
of conflicts and the support set size.

The partial order 2× 2 can be used to interpret statements with evidence coming from two differ-
ent, possibly disagreeing sources A and B. Then, the value a can be read as “true according to source
A, but not necessarily according to B,” and analogously for b. The dual interpretation is also possible,
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l1 l2 l3

Figure 4. Non-distributive lattices M5 and N5

i.e., we can use a to represent “false according to source A, but not necessarily according to B”, and
likewise for b. Actually, these two interpretations correspond to two different choices of the set D
of so-called designated values, i.e., values corresponding to truth in classical logic and representing
satisfaction of a formula. Namely, the first interpretation corresponds to D = {a,>}, and the second
— to D = {b,>}. Another useful lattice, 2 + 2× 2, allows for a natural representation of both un-
certainty and disagreement. It provides truth values for statements with inconsistent evidence (i) and
inconclusive evidence (u). Combinations of inconsistency and uncertainty can be easily obtained by
join and meet (u t i, u u i)

For a multi-valued interpretation of the formulas in the drone model, we propose another lattice
denoted by 2 + 2× 2 + 2× 2. The lattice combines two instances of 2× 2: one representing in-
complete evidence of truth, and the other incomplete evidence of falsity. The idea is that a drone i
will evaluate the truth of the proposition poli (“according to i, its current location is polluted”), based
on the readings from its own sensor and the nearest ground sensor. Besides that, the lattice includes
explicit nodes for the maximal and minimal elements, similarly to the previous lattice. This gives us
the following basic truth values and their interpretation:

• >: both readings indicate presence of pollution at the location,

• >d: reading from the drone sensor indicates pollution, while the ground sensor indicates no
pollution or provides no reading,

• >g: reading from the ground sensor shows pollution; absent or negative reading from the drone,

• u: there are no readings, neither from the ground nor from the drone,

• ⊥d: drone sensor indicates no pollution; there is no reading from the ground,

• ⊥g: ground sensor indicates no pollution; no reading from the drone,

• ⊥: no pollution (both readings are within the norm). �

Not every lattice is distributive, as shown in Figure 4. However, distributive lattices have a very
simple characterization: a lattice is distributive iff it contains neither M5 nor N5 as a sublattice [40].

Remark 3.4. (Quasi-boolean lattices and De Morgan algebras)
The operations of join and meet are natural semantic counterparts of disjunction and conjunction.
Some multi-valued approaches also add the complement operation ∼ to the lattice, as the semantic
counterpart of multi-valued negation. A lattice with complement is usually called quasi-Boolean,
and when distributive it is referred to as a De Morgan algebra. The most popular case is the lattice
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underlying 3-valued Kleene logic, used e.g. in [30, 25]. However, the choice of a generic complement
to suit any lattice is problematic from the conceptual point of view. For instance, what should be
the “opposite” value to i in the lattice 2 + 2× 2? In other words, if statement ϕ is assessed as
“inconsistent”, what should be the evaluation of “not ϕ?”. There is no uniform answer to that question,
so in a general approach paper, like ours, a good strategy is to avoid the negation as much as possible.
This is why instead of negation we have chosen to use here another non-monotonic connective: two-
valued implication representing the lattice order, which is useful in all practical cases when we want
to compare the truth values of two formulas.

3.2. Join-Irreducible Elements

Definition 3.5. Let L = (L,≤) be a lattice. An element ` ∈ L is called join-irreducible iff ` 6= ⊥
and, for any x, y ∈ L, if ` = xt y, then either ` = x or ` = y. The set of all join-irreducible elements
of L is denoted by J I(L).

It is well known [41] that every element x 6= ⊥ of a finite distributive lattice can be uniquely
decomposed into the join of all join-irreducible elements in its downward closure, i.e.

x =
⊔

(J I(L) ∩ ↓ x) (1)

Example 3.6. The join-irreducible elements of the distributive lattices in Figure 3 are marked with
black dots. All other ones can be decomposed into the join of some join-irreducible elements. �

We will use the characterization (1) to define translations from multi-valued to standard model
checking through the following theorem.

Theorem 3.7. ([4])
Let L be a finite distributive lattice, and let ` ∈ J I(L). Then the threshold function
f` : L −→ {⊥,>}, defined by

f`(x) =

{
> if x ≥ `
⊥ otherwise

preserves arbitrary bounds, i.e., for an arbitrary set of indices I , we have:

f`(
l

i∈I
xi) =

l

i∈I
f`(xi) and f`(

⊔
i∈I

xi) =
⊔
i∈I

f`(xi). (2)

Remark 3.8. The above does not hold for lattices which are not distributive. To see this, consider the
element `1 of lattice M5, which is join-irreducible. However, f`1 does not preserve the upper bounds,
as f`1(`2 t `3) = f`1(>) = > whereas f`1(`2) t f`1(`3) = ⊥ t⊥ = ⊥.

4. Multi-Valued Strategic Logic mv-ATL∗→
In this section we extend the syntax and semantics of ATL∗ to allow for multi-valued reasoning. That
is, we propose a variant of ATL∗ where formulas are interpreted in an arbitrary lattice L = (L,≤).
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It is sometimes useful to refer to logical values in the object language. To enable this, we assume
that a natural interpretation of suitable constants is given, in the following way.

Definition 4.1. (Interpreted lattice)
Let C be a countable set of symbols. An interpreted lattice over C is a triple L+ = (L,≤, σ), where
(L,≤) is a lattice, and σ : C → L is an interpretation of the symbols in C as truth values in L.

To explicitly show the connection between the named truth values and their names in C, for any
interpreted latticeL+ = (L,≤, σ) and any truth value x ∈ σ(C), we will use the notation x to denote
an arbitrarily selected symbol c ∈ C such that σ(c) = x. We do not make any specific assumptions
about σ. In particular, we do not assume that σ must be surjective, as in many situations only some
truth values in L need to be referred to in formulas. However, in all the examples that follow in this
paper, σ actually is a bijection, since every truth value used there has a specific purpose. Thus, for all
our examples, it holds that C = { l | l ∈ L}, and σ( x ) = x for all x ∈ σ(C).

4.1. Syntax

Since, as explained in Remark 3.4, multi-valued negation can be problematic from the conceptual
viewpoint, we will use instead the binary implication operator → corresponding to the lattice order.
Our implication operator is similar to the well-known implication of many-valued Goedel-Dummet
logic, and in general to relevant implication or residuum of lattice meet, of which the former is just
a special case. However, our implication is a two-valued operator, which makes it better suited for
proof system purposes. As it can be used for comparing truth values of formulas, it is of obvious
practical importance in many applications, where we are mainly interested in ascertaining whether
the truth value of a given formula ϕ is greater than the logical value of some other formula ψ (see
Example 4.3 below for more explanations and illustration). Moreover, in case of two-valued logic,
classical negation can be expressed using→ and the constant representing ⊥.

To increase the expressive power of the language, we also allow for the use of symbols in C.
The resulting logic is called mv-ATL∗→ and has the following syntax:

ϕ ::= c | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | 〈〈A〉〉γ | [[A]]γ,
γ ::= ϕ | γ ∧ γ | γ ∨ γ | X γ | γ U γ | γW γ.

where p ∈ Prop, A ⊆ Agt, and c ∈ C, with Prop being a countable set of atomic propositions, and
C a countable set of constants.

In what follows, by an implication formula we mean any formula of the form ϕ1 → ϕ2. Addition-
ally, we define an equivalence formula as ϕ1

∼= ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).
The sublogic of mv-ATL∗→ without the implication operator will be denoted by mv-ATL∗.

4.2. Semantics

The semantics of mv-ATL∗→ is defined over concurrent game structures with multi-valued interpreta-
tion of atomic propositions.
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Figure 5. Multi-valued model M2 for the drone scenario.

Definition 4.2. (Multi-valued CGS)
Let L+ = (L,≤, σ) be an interpreted lattice. A multi-valued concurrent game structure (mv-CGS)
over L+ is a tuple M = 〈Agt, St, Act, d, t, Prop,V ,L+〉, where Agt, St, Act, d, t, Prop are as
before, and V : Prop × St → L assigns at any state all atomic propositions with truth values from
the logical domain L.

Example 4.3. (Drones ctd.)
A multi-valued model of the drone scenario is presented in Figure 5. To evaluate atomic propositions
and their negations, we use the lattice 2 + 2× 2 + 2× 2 introduced in Section 3.1. Each proposition
poli, i = 1, . . . , k, refers to the level of pollution from the viewpoint of drone i, that is, given by the
available measurements at the current location of the drone. Whenever a proposition evaluates to ⊥,
we omit that valuation from the picture.

�

Logical operators can often be naturally interpreted as either maximizers or minimizers of the
truth values. For example, disjunction (ϕ ∨ ψ) can be understood as a maximizer (“the most that
we can hope to make of either ϕ or ψ”), and conjunction as a minimizer (“the least that we can
guarantee for both ϕ and ψ”). This extends to existential quantification (maximizing) and univer-
sal quantification (minimizing) over paths, strategies, moments in time, etc. Formally, let M =
〈Agt, St, Act, d, t, Prop,V ,L+〉 be an mv-CGS over L+ = (L,≤, σ). The valuation function [·]
is given as below. We sometimes use

d
X{Y } as a shorthand for

d
{Y | X}, and similarly for the

supremum. For any q ∈ St and any path λ in M , we define:
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[c]M,q = σ(c) for c ∈ C;

[p]M,q = V (p, q) for p ∈ Prop;

[ϕ1 ∧ ϕ2]M,q = [ϕ1]M,q u [ϕ2]M,q;

[ϕ1 ∨ ϕ2]M,q = [ϕ1]M,q t [ϕ2]M,q;

[γ1 ∧ γ2]M,λ = [γ1]M,λ u [γ2]M,λ and [γ1 ∨ γ2]M,λ = [γ1]M,λ t [γ2]M,λ;

[ϕ]M,λ = [ϕ]M,λ[0];

[X γ]M,λ = [γ]M,λ[1..∞];

[γ1 U γ2]M,λ =
⊔
i∈N0

d
0≤j<i{[γ2]M,λ[i..∞] u [γ1]M,λ[j..∞]};

[γ1 W γ2]M,λ =
d
i∈N0
{[γ1]M,λ[i..∞]} t

⊔
i∈N0

d
0≤j<i{[γ2]M,λ[i..∞] u [γ1]M,λ[j..∞]};

[〈〈A〉〉γ]M,q =
⊔
sA∈ΣA

d
λ∈out(q,sA){[γ]M,λ};

[[[A]]γ]M,q =
d
sA∈ΣA

⊔
λ∈out(q,sA){[γ]M,λ};

[ϕ1 → ϕ2]M,q = > if [ϕ1]M,q ≤ [ϕ2]M,q and ⊥ otherwise.

It is worth noting that our implication operator differs from the well-known residue of lattice meet in
being two-valued — which makes it better suited for use in any proof system, and more intuitive in
specification of many requirements.

The semantics of the two “until” operators demands a more detailed explanation. The computation
of [γ1 U γ2]M,λ seeks to achieve a position i on path λ, for which the value of γ2 at λ[i], and the
values of γ1 at all the points preceding λ[i], are guaranteed maximal. The semantics of γ1 W γ2 is
based on the well-known unfolding γ1 W γ2 ≡ (G γ1)∨ (γ1 U γ2), transformed here to a multi-valued
interpretation. Note also that in case of the derived temporal operators “sometime” and “always” the
semantic rules reduce to:

[F γ]M,λ =
⊔
i∈N[γ]M,λ[i..∞];

[G γ]M,λ =
d
i∈N[γ]M,λ[i..∞].

Thus, for instance, the formula 〈〈A〉〉F pol can be read as: “the maximal level of pollution readings
that A can guarantee to reach.” Clearly, such statements do not always submit to intuitive understand-
ing, in particular when nested strategic operators are used. Because of that, we will stick to simple
formulas in our working examples, that is, ones that are relatively easy to read.

Example 4.4. (Drones ctd.)
For the model in Figure 5, we have [〈〈1〉〉F pol1]M2,(0,0) = >: there is a strategy for drone 1 to
surely detect pollution (the strategy being to fly North in state (0, 0), and then East in (1, 1) or (1, 2)).
Similarly for the other drone we have [〈〈2〉〉F pol2]M2,(0,0) = > (the same strategy, but now executed
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by drone 2). On the other hand, [〈〈1〉〉G pol1]M2,(0,0) = u: the maximal guaranteed level of detection
throughout the mission is u (obtained by the same strategy again). This means that if drone 1 wants to
maximize its detection level, the best it can achieve is to keep it consistently at the level of “uncertain”
or higher. Finally,

[〈〈1, 2〉〉F (target ∧ allvisited ∧ (pol1 ∨ pol2))]M2,(0,0) = >d.
That is, if the drones cooperate, and their goal is to reach the target, visit all the locations on the way,
and at the end get the pollution detected by at least one of them, then their degree of success is >d
(pollution indicated by the drone sensor but not by the ground sensor). �

The logical constants we have introduced are especially useful in implication formulas, as the
subsequent example demonstrates.

Example 4.5. (Implication formulas)
The “implication” operator provides several interesting specification patterns. For instance, it allows
for specifications that are accepted when the “strength” of a property reaches a given threshold, sim-
ilarly to the probabilistic approaches of [19, 39]. As an example, the formula u → 〈〈1〉〉G pol1 can
be used to specify that the truth value of 〈〈1〉〉G pol1 is at least u (intuitively: there is no evidence that
the formula is false). It is easy to see that the formula is true in the model of Figure 5; formally:
[ u → 〈〈1〉〉G pol1]M2,(0,0) = >. Naturally, any stronger requirement on the value of 〈〈1〉〉G pol1

evaluates to “false,” e.g., [ > → 〈〈1〉〉G pol1]M2,(0,0) = ⊥.
Moreover, the formula 〈〈1〉〉F pol1 → 〈〈2〉〉F pol2 says that the ability of drone 2 to spot pollution

is at least as good as that of drone 2 (the formula evaluates to > in M2, (0, 0)). Finally, 〈〈1〉〉F (pol1 ∼=
>g ) says that the first drone has a strategy to ensure that it will reach a location where only the

ground sensor indicates pollution. Clearly, the last formula evaluates to ⊥ in M2, (0, 0). �

We note that most approaches to general multi-valued model checking of temporal specifica-
tions [3, 14, 4, 16] allow also for multi-valued transitions in the models, analogous to probabilistic
transitions in Markov chains and Markov Decision Processes. That is, transitions can be assigned
“weights” drawn from the same algebra L. Similarly, most 3-valued approaches to temporal abstrac-
tion and model checking implicitly assume 3-valued transitions by distinguishing between may and
must transitions [42, 20, 21, 22]. However, the two approaches differ in how such transitions affect
the semantics of formulas with universal quantification (such as “for all paths γ”). In the general
multi-valued approach, the “weaker” the path is, the more it decreases the value of the formula. In the
3-valued approach, “weaker” paths have less influence on the overall value. We do not engage in this
discussion here, and leave a proper treatment of multi-valued transitions until Section 6.

4.3. Truth Levels

We assume that > is a single designated value, standing for full logical truth. In consequence, the
truth and validity of formulas can be defined in a straightforward way as follows:

Definition 4.6. (Validity levels)
Let M be mv-CGS, q a state in M , and ϕ a state formula of mv-ATL∗→. Then:
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• ϕ is true in M, q (written M, q |= ϕ) iff [ϕ]M,q = >.

• ϕ is valid in M (written M |= ϕ) iff ϕ is true in every state of M .

• ϕ is valid (written |= ϕ) iff ϕ is valid in every mv-CGS M .

• Additionally, for a path formula γ, we can say that γ holds on run λ in a mv-CGS M (written
M,λ |= γ) iff [γ]M,λ = >.

We now show that mv-ATL∗→ agrees with standard ATL∗ on 2-valued models, unlike the 3-valued
version of ATL∗ from [29].

Theorem 4.7. The logic mv-ATL∗→ is a conservative extension of ATL∗, i.e., every CGS M for ATL∗

can be identified with an mv-CGSM ′ for mv-ATL∗→ over the lattice 2 such that, for any ATL∗ formula
ϕ and any state (path) ξ, we have M ′, ξ |= ϕ iff M, ξ |= ϕ.

Proof:
For any CGSM = 〈Agt, St, Act, d, t, Prop,V 〉 for ATL∗, letM ′ = 〈Agt, St, Act, d, t, Prop,V ′,2〉,
where: (i) 2 = ({⊥,>},≤, σ) is an interpreted classical lattice of two truth values over C =

{ ⊥ , > } and σ( l ) = l for any l ∈ {⊥,>}; (ii) V ′(p, q) = > if q ∈ V (p) and ⊥ other-
wise. Then M ′ is an mv-CGS for mv-ATL∗→, and an easy check shows that, for any ATL∗ formula ϕ
and any state (path) ξ, it indeed obtains M ′, ξ |= ϕ iff M, ξ |= ϕ. 2

5. Model Checking mv-ATL∗→
Given an mv-CGS M , a state q in M , and an mv-ATL∗→ formula ϕ, the model checking problem
consists in computing the value of [ϕ]M,q. This can be done in two ways: either by using a dedicated
algorithm, or through an efficient reduction to the ”classical”, 2-valued version of model checking.
The latter option has many advantages. First and foremost, it allows us to benefit from the ongoing
developments in 2-valued model checking, including symbolic model checking techniques, heuristics,
model reduction techniques, etc. In this section, we show how model checking of mv-ATL∗→ can be
reduced to the 2-valued variant of this problem. Since a basic result underlying such reduction holds
for distributive lattices only, throughout the section we assume that all lattices under consideration are
distributive, unless stated to the contrary.

We emphasize again that, while multi-valued model checking typically provides a conceptual
approximation of classical verification, the results in this section are about something else. Here, we
look for a technical reduction from multi-valued to two-valued model checking, with the sole purpose
of facilitating the verification process.

5.1. From Multi-Valued Model Checking to Classical Model Checking

It is well known that model checking multi-valued temporal logics can be reduced to classical, 2-
valued model checking [3, 14, 15, 4]. The reduction is of one-to-many type, i.e., a single instance of
multi-valued model checking translates to linearly many instances of classical model checking. The
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key result in this respect is [3, Theorem 1]. It proposes a method for “clustering” the truth values
from lattice L into a smaller lattice L′ in such a way that the outcome of model checking is preserved.
We will now show that the analogue of that theorem holds for mv-ATL∗, i.e., the sublanguage of
mv-ATL∗→ without the→ operator.

Definition 5.1. 1. By a lattice reduction triple (LRT) we mean a triple (L,Lf , f), where L =
(L,≤) is an arbitrary finite lattice, Lf = (Lf ,≤f ) its sublattice, and f : L → Lf a homomor-
phism — a mapping which preserves arbitrary bounds in L, i.e. such that

f(
l

i∈I
xi) =

l

i∈I
f(xi) and f(

⊔
i∈I

xi) =
⊔
i∈I

f(xi) (3)

for an arbitrary set of indices I .

2. Given an LRT (L,Lf , f) and an mv-CGS M = 〈Agt, St, Act, d, t, Prop,V,L+〉 over an in-
terpreted lattice L+ = (L,≤, σ), by the reduction of M to Lf via f we mean the mv-CGS
f(M) = 〈Agt, St, Act, d, t, Prop,Vf , (Lf ,≤f , σf )〉, where

(a) σf (c) = f(σ(c)) for any c ∈ C, and

(b) Vf (p, q) = f(V(p, q)) for any q ∈ St and p ∈ Prop.

Definition 5.2. For any LRT (L,Lf , f) and any model M over L, by the translation condition for
LRT and formula ϕ we mean the relationship

[ϕ]M,ξ ∈ f−1(x) iff [ϕ]f(M),ξ = x (4)

holding for any state (respectively, path) ξ.

The proof of the theorem follows easily from the key result given below:

Lemma 5.3. Let a state or path formula ϕ be such that

[ϕ]M,ξ =
⊔
i∈I

l

ji∈Ji

[ϕji ]M,ξji
or [ϕ]M,ξ =

l

i∈I

⊔
ji∈Ji

[ϕji ]M,ξji

for any mv-CGSM , any states and/or paths ξ, ξji ofM , any countable sets I, Ji, and state (resp. path)
formulas of mv-ATL∗ ϕji for ji ∈ Ji, i ∈ I , such that all ϕji’s satisfy translation condition (4). Then
ϕ satisfies the translation condition too.

Proof:
We consider the case [ϕ]M,ι =

⊔
i∈I

d
ji∈Ji [ϕji ]M,ιji

; the other case follows by symmetry. As f
preserves the bounds, by the assumption on ϕ we have f([ϕ]M,ι) =

⊔
i∈I

d
ji∈Ji f([ϕji ]M,ιji

). Each
ϕji satisfies (4), so f([ϕ]M,ι) =

⊔
i∈I

d
ji∈Ji [ϕji ]Mf ,ιji

= [ϕ]Mf ,ι, whence [ϕ]Mf ,ι = x iff [ϕ]M,ι ∈
f−1(x), and (4) holds for ϕ. 2

Now, we can formulate the reduction theorem.
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Theorem 5.4. (Reduction theorem)
Let L = (L,≤) be an arbitrary finite lattice, and (L,Lf , f) an LRT. Further, let M be an mv-CGS
over an interpreted lattice L+ = (L,≤, σ) with M = 〈Agt, St, Act, d, t, Prop,V,L+〉 , and let
f(M) = 〈Agt, St, Act, d, t, Prop,Vf , (Lf ,≤f , σf )〉 be the image of M under f . Then, for any state
(respectively, path) formula ϕ of mv-ATL∗ over L and any state (respectively, path) ξ, the following
condition is satisfied:

[ϕ]M,ξ ∈ f−1(x) iff [ϕ]f(M),ξ = x (5)

Proof:
We use induction on the length of a formula. Equation (5) clearly holds for propositional variables and
their negations. Assume it holds for formulas of length at most k, and consider formula ϕ of length
k + 1. Then we have the following cases:

(a) ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2, where each ϕi is a formula of length at most k. Then [ϕ1]M,q =
[ϕ1]M,q u [ϕ2]M,q or [ϕ1]M,q = [ϕ1]M,q t [ϕ2]M,q, respectively, where ϕ1, ϕ2 satisfy (5). As
[ϕ1]M,q is in one of the two dual forms prescribed by Lemma 5.3 for I = {1} and J1 = {1, 2},
by that lemma, ϕ must satisfy (5), too.

(b) γ = γ1 ∧ γ2 or γ = γ1 ∨ γ2 — analogously to (a).

(c) ϕ = Xψ, where ψ is of length at most k. Then [X γ]M,λ = [γ]M,λ[1..∞], and as ψ satisfies (5)
by inductive hypothesis, so obviously does ϕ. The reasoning is similar to (a).

(d) ϕ = Uψ, where [γ1 U γ2]M,λ =
⊔
i∈N0

d
0≤j<i{[γ2]M,λ[i..∞] u [γ1]M,λ[j..∞]};

Since the operator U corresponds to a combination of finite and infinite lower and upper bounds
applied to values of formulas of length at most k for which (5) holds, then by Lemma 5.3
Equation (5) must hold for ϕ too.

(e) ϕ = Wψ, where
[γ1 W γ2]M,λ =

d
i∈N0
{[γ1]M,λ[i..∞]} t

⊔
i∈N0

d
0≤j<i{[γ2]M,λ[i..∞] u [γ1]M,λ[j..∞]};

Since the operator W corresponds to a combination of finite and infinite lower and upper bounds
applied to values of formulas of length at most k for which (5) holds, then by Lemma 5.3
Equation (5) must hold for ϕ too.

(f) ϕ = 〈〈A〉〉γ, where γ is of length at most k. Then γ satisfies (5) by inductive hypothesis, and as
[〈〈A〉〉γ]M,q =

⊔
sA∈ΣA

d
λ∈out(q,sA)[γ]M,λ, then ϕ satisfies (5) by Lemma 5.3.

(g) ϕ = [[A]]γ — analogously to (e).

2

Note that the mapping f can be seen as an abstraction of truth values similar to the well-known
technique of state abstraction [43, 44]. That is, we can view each value x ∈ Lf as an abstract truth
value corresponding to the subset f−1(x) of the original truth values in L. Clearly, those subsets
partition L into equivalence classes. Theorem 5.4 says that if f satisfies conditions (3), then model



20 W. Jamroga, B. Konikowska, D. Kurpiewski, and W. Penczek / Multi-Valued Verification of Strategic Ability

checking in the abstract model Mf yields the equivalence class corresponding to the output of the
original model checking problem in the concrete model M .

How can we use Theorem 5.4 to reduce multi-valued model checking to the 2-valued case? Recall
the threshold functions f` : L −→ {⊥,>}, defined by

f`(x) =

{
> if x ≥ `
⊥ otherwise

We already stated in Theorem 3.7 that those functions preserve bounds. The following is an immediate
corollary of the above:

Corollary 5.5. For any state (respectively, path) formula ϕ of mv-ATL∗ and any state (respectively,
path) ξ, we have

[ϕ]M,ξ ≥ ` iff Mf` , ξ |= ϕ. (6)

Note that each Mf` is a classical, 2-valued model. Together with Equation (1), we have [ϕ]M,ξ =⊔
{` ∈ J I(L) | [ϕ]M`,ξ = >}. This gives us a simple algorithm for computing [ϕ]M,ξ, presented in

Figure 6. The following is straightforward.

Algorithm mchecktr(M, ξ, ϕ);

1. For every join-irreducible logical value ` ∈ J I(L), model-check (classically) ϕ in Mf` , ξ;

2. Collect the values of ` for which the answer was “yes” in a set X ;

3. Return the join of the values in X , i.e.,
⊔
X .

Figure 6. Translation-based model checking for mv-ATL∗

Theorem 5.6. The one-to-many reduction from multi-valued model checking of mv-ATL∗ to 2-valued
model checking of ATL∗ runs in linear time with respect to the size of the model and the number of
truth values.

Example 5.7. (Testing of the drones)
Consider the pollution monitoring scenario from the previous examples. Suppose that we want to test
the design of a drone patrol before its deployment in the physical environment. One way to carry out
offline testing is to model-check the relevant properties of the design against a randomly generated
sample of area maps. For the clarity of the examples we have used a crafted by hand map. For the map
in Figure 1 and the mv-CGS M2 in Figure 5, we obtain the collection of classical models presented in
Figure 7. Note that projections (M2)f> and (M2)f>g are in fact identical, and similarly for (M2)f⊥d

,
(M2)f⊥g

, and (M2)f⊥du⊥g
.
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Figure 7. Model translations for the drone scenario

Suppose now that we want to compute the value of 〈〈1, 2〉〉F (target∧ allvisited∧ (pol1 ∨ pol2)) in
M2, (0, 0). The formula holds in state (0, 0) of models (M2)f>d , (M2)f⊥d

, (M2)f⊥g
, and (M2)f⊥du⊥g

,
but not in (M2)f> and (M2)f>g . Thus, the output of model checking is>d t ⊥d t ⊥g t (⊥du⊥g) =
>d. Moreover, to model-check 〈〈1〉〉F pol1, we observe that the formula holds in all the projection
models in Figure 7. Thus, its value in M2, (0, 0) is > t >d t >g t ⊥d t ⊥g t (⊥d u⊥g) = >. �

The algorithm in Figure 6 is an example of local model checking. That is, given a state (respec-
tively, path) and a formula, it returns the truth value of the formula in that state (respectively, on that
path). In two-valued modal logics, verification of state formulas is often done by means of global
model checking that returns the exact set of states where the input formula holds. For many logics –
including ATL and ATL∗– this provides strictly more information with no extra computational cost.
The analogous problem for multi-valued modal logics would ask for a valuation of the input formula,
i.e., a mapping from the states of the model to the truth values of ϕ. A global model checking algo-
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Algorithm gmchecktr(M,ϕ);

1. Set the initial valuation of ϕ to Vϕ such that Vϕ(q) = ⊥ for every q ∈ St;

2. For every join-irreducible logical value ` ∈ J I(L):

• Compute the set of states Q` that (classically) satisfy ϕ in Mf` ;

• For each q ∈ Q`, do Vϕ(q) := Vϕ(q) t `;

3. Return Vϕ.

Figure 8. Translation-based global model checking for mv-ATL∗

rithm for mv-ATL∗, based on the translation to two-valued model checking, is presented in the next
section, in Figure 8.

5.2. Translating Implication Formulas: Impossibility Result

Unfortunately, Theorem 5.4 cannot be extended to mv-ATL∗→, i.e., to the full language containing
implication formulas of the form ϕ1 → ϕ2, where→ represents the lattice order.

Proposition 5.8. There are lattice reduction triples and formulas of mv-ATL∗→ that do not satisfy
translation condition (5).

Proof:
Consider the lattice Lo = (Lo,≤), where Lo = {0, ..., k − 1, k, ..., 2k − 1}, and ≤ is the usual total
order on Lo. Clearly, in Lo we have 0 = ⊥ and 2k − 1 = > according to our lattice notation. Then
({0, 2k− 1},≤) is a sublattice of Lo and the reduction f : Lo → {0, 2k− 1} given by f(x) = 2k− 1
if x ≥ k, and f(x) = 0 if x < k preserves the bounds in Lo. Thus (Lo, {0, 2k − 1}, f) is a lattice
reduction triple.

Now take arbitrary k1, k2 such that 0 < k1 < k2 < k, and an mv-CGS M over L+
o = (Lo, σ) for

an arbitrary σ : C → Lo such that, for some state q ∈ St ofM and atomic propositions p1, p2 ∈ Prop,
we have V (pi, q) = ki for i = 1, 2.

Next, let ϕ = p2 → p1. Since [pi]M,q = ki for i = 1, 2 and k2 > k1, we have ¬([p2]M,q ≤
[p1]M,q), whence [ϕ]M,q = 0.

However, for the modelM1 obtained fromM with the reduction f we get [pi]M1,q = 0 for i = 1, 2
(as ki < k, f(ki) = 0 for i = 1, 2), where [p2]M1,q ≤ [p1]M1,q, which implies [ϕ]M1,q = 2k − 1.
Yet, as f−1(2k − 1) = {k, k + 1, ..., 2k − 1} we have [ϕ]M,q = 0 6∈ f−1(2k − 1), which contradicts
Equation (5). 2

The above result can be generalized as follows:
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Theorem 5.9. If L = (L,≤) of Theorem 5.4 contains a chain or anti-chain of cardinality n, and
L′ = (L′,≤′) is a sublattice of L of cardinality n′ < n, then there is no function f : L→ L′ satisfying
translation condition (5) if the language under consideration contains implication formulas.

Proof:
Assume X = {x1, x2, . . . , xn} is a chain or anti-chain in L. Let M be a model such that, for some
state s ∈ Q of M and propositional variables p1, p2, . . . , pn ∈ Prop, we have V (s, pi) = ki for i =
1, 2, . . . , n. Consider any f : L → L′. As card(L′) = n′ < n, than there must be k, l ∈ {1, . . . , n}
such that k 6= l and f(xk) = f(xl). Let

ϕ =

{
pl → pk if X is a chain and xk < xl

pk → pl otherwise

Then, clearly, xl 6≤ xk (note that if X is an anti-chain, then xr 6≤ xq for any 1 ≤ r, s ≤ n).
Hence [pl]M,q 6≤ [pk]M,q, and [ϕ]M,q = ⊥. However, as f(xk) = f(xl), we have [pl]M1,q ≤ [pk]M1,q,
whence [ϕ]M1,q = >. Thus f does not satisfy Equation (5). 2

In other words, if the size of the target latticeL′ is strictly smaller than the “diameter” of the source
lattice L (that is, the cardinality of the longest chain or antichain in L), then a “clustering” of truth
values from L into L′ that preserves Equation (5) is impossible. Note that the diameter of any lattice
with more than 2 values must be at least 3, and hence it exceeds the size of the classical 2-valued
lattice 2. The following is an immediate consequence of the above:

Corollary 5.10. For any multi-valued lattice L there is no reduction of L to the 2-valued lattice of
classical truth values that satisfies the translation condition (5) for the whole language of mv-ATL∗→.

5.3. Translating Implication Formulas Even More Impossible

We already know that there is no general translation from multi-valued to two-valued model checking
for implication formulas. Now we will show that the impossibility result can be extended to any
“clustering” of truth values from the original lattice L. To this end, we give a necessary and sufficient
condition for the existence of a function f : L → Lf that preserves bounds in L and satisfies the
translation condition (5) also for implication formulas.

The following lemma states that, in order to obtain the analogue of Theorem 5.4 for implication
formulas, the mapping f would have to preserve both the ordering and incomparability of the elements
in L.

Lemma 5.11. Let (L,Lf , f) be a lattice reduction triple, let M be an mv-CGSs over L, and f(M) its
reduction to Lf . Then translation condition (5) of that theorem is satisfied for all implication formulas
iff the following conditions hold:

C1: (∀x1, x2 ∈ L) [x1 < x2 ⇒ f(x1) < f(x2)]

C2: (∀x1, x2 ∈ L) [x1 ./ x2 ⇒ f(x1) ./ f(x2)]
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Proof:
Note that an implication formula is a state formula, and that for any such formula ψ we have [ψ]M,q ∈
{⊥,>} for any mv-CGS M and any q ∈ St. Thus in order to prove (5) for such formulas, it suffices
to show that, for any implication formula ϕ and any state q:

[ϕ]Mf ,q = > iff [ϕ]M,q ∈ f−1(>) (7)

“(7)⇒⇒⇒ (C1 ∧ C2)”: We start by proving the necessity of conditions C1 and C2. Assume first that f
satisfies (7) for implication formulas. We should prove that f satisfies Conditions C1, C2 for all such
formulas. For what follows, denote ξ = p1 → p2, ψ = p2 → p1, where p1, p2 ∈ Prop, p1 6= p2

where Prop is the set of atomic propositions of our logic).

C1: We argue by contradiction. Suppose x1, x2 ∈ L, x1 < x2 and f(x1) ≥ f(x2). Then, as x1 < x2

implies x1 ≤ x2 and f preserves bounds, we also have f(x1) ≤ f(x2), whence f(x1) = f(x2).

Now let M be an mv-CGS over L such that, for some state q ∈ St, we have V (pi, q) = xi for
i = 1, 2, and let Mf be the image of M under f . Since ψ = p2 → p1 and [p2]M,q = x2 > x1 =
[p1]M,q, we have [ψ]M,q = ⊥. However, [ψ]Mf ,q = >, because [p2]Mf ,q = f(x2) = f(x1) =
[p1]Mf ,q. As ⊥ 6∈ f−1(>), this contradicts (7).

C2: We again argue by contradiction. Suppose x1, x2 ∈ L, x1 ./ x2 and ¬(f(x1) ./ f(x2)). Without
any loss of generality, we can assume that f(x1) ≤ f(x2). Let mv-CGSs M,Mf and state q of
M be like in the preceding item. Then, as [p1]M,q = x1 ./ x2 = [p2]M,q, we have in particular
[p1]M,q 6≤ [p2]M,q. Since ξ = p1 → p2, this implies [ξ]M,q = ⊥. In turn, [ξ]Mf ,q = >, because
[p1]Mf ,q = f(x1) ≤ f(x2) = [p2]Mf ,q, which again contradicts (7).

“(C1 ∧ C2)⇒⇒⇒ (7)”: It remains to prove the sufficiency of conditions C1 and C2. We assume that
C1, C2 hold, and prove that (7) holds for formulas of the form ϕ = ϕ1 → ϕ2. We start by proving
this result for non-nested implication formulas, i.e., we assume that ϕ1, ϕ2 do not contain→. Then,
by Theorem 5.4, (7) holds for ϕ1, ϕ2, which implies that

[ϕi]Mf ,q = f([ϕi]M,q), i = 1, 2. (8)

“(7L)⇒ (7R)”: We begin with the forward implication in (7). Assume that [ϕ]Mf ,q = >. Then
[ϕ1]Mf ,q ≤ [ϕ2]Mf ,q. By (8), this implies f([ϕ1]M,q) ≤ f([ϕ2]M,q. We show by contradiction that

[ϕ1]M,q ≤ [ϕ2]M,q. (9)

Suppose that (9) does not hold, then we have two possible cases:

Case 1: [ϕ1]M,q > [ϕ2]M,q. Then by C1 we have f([ϕ1]M,q) > f([ϕ2]M,q), whence from (8) we get
[ϕ1]Mf ,q > [ϕ2]M1,q and [ϕ]Mf ,q = ⊥— which is a contradiction.

Case 2: [ϕ1]M,q ./ [ϕ2]M,q. Then f([ϕ1]M,q) ./ f([ϕ2]M,q) by C2, whence from (8) we get¬([ϕ1]Mf ,q ≤
[ϕ2]Mf ,q). Consequently, [ϕ]Mf ,q = ⊥— which is again a contradiction.
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Thus (9) above holds, whence [ϕ]M,q = > ∈ f1(>), and the forward implication in (7) holds.

“(7R)⇒ (7L)”: The final step is proving the backward implication in (7). Assume that [ϕ]M,q =
f−1(>). As [ϕ]M,q ∈ {⊥,>} and f(⊥) 6= > by the preservation of bounds by f and the non-
triviality of L,Lf , we obtain [ϕ]M,q = >, whence [ϕ1]M,q ≤ [ϕ2]M,q. Since f preserves bounds,
this implies f([ϕ1]M,q) ≥ f([ϕ2]M,q), whence from (8) we obtain [ϕ1]M1,q ≤ [ϕ2]Mf ,q. This yields
[ϕ]Mf ,q = >, whence the backward implication in (7) holds, too.

Nested formulas: The proof for nested formulas proceeds by induction. Assume that (7) holds for
implication formulas with→ nested at most k times, and assume ϕ is an implication formula with→
nested k + 1 times. Then ϕ = ϕ1 → ϕ2, where→ is nested at most k times in ϕ1, ϕ2. Consequently,
by the inductive assumption (9) holds for ϕ1, ϕ2, and repeating the proof given above for implication
formulas without nesting of→ we can show that (7) holds for ϕ too.

This completes the proof of the sufficiency of C1, C2 for all implication formulas, and the proof
of Lemma 5.11. 2

From Lemma 5.11 we can easily derive by induction the following general result:

Theorem 5.12. Let the (L,Lf , f) be an LRT. Then, the translation condition is satisfied for all for-
mulas of mv-ATL∗→ over L iff conditions C1, C2 of Lemma 5.11 hold.

It can be seen that conditions C1, C2 imply that any translation f meeting them must preserve the
exact structure of the lattice L. An important consequence of that fact is:

Corollary 5.13. Given a lattice L = (L,≤) and its sublattice Lf = (Lf ,≤f ), any function f : L →
Lf preserving the algebra bounds and satisfying translation condition (5) for all implication formulas
must be one-to-one.

Proof:
Suppose that f satisfies the above assumption, x1, x2 ∈ L and x1 6= x2. Then we have one of the
following cases:

1. x1 < x2 or x2 < x1. Then f(x1) 6= f(x2) by C1 of Theorem 5.12.

2. x1 ./ x2. Then f(x1) ./ f(x2) by C2 of Theorem 5.12, which again implies f(x1) 6= f(x2).

2

The meaning of Corollary 5.13 is that there is no way of reducing n-valued model checking to
k-valued model checking for k < n, if we want to handle all implication formulas. Clearly, Corol-
lary 5.10 in Section 5.2 is a special case of the above result.
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5.4. Translation of Model Checking for Some Implication Formulas

By Corollary 5.5, there is a simple translation from multi-valued to classical model checking for
strategic and temporal operators. By Corollary 5.13, we know that it cannot be generally extended to
implication formulas. The next question is: can we construct such a translation for some implication
formulas? If so, for which ones? The impossibility result in Corollary 5.13 is due to the fact that
implication formulas can be used to encode the semantics in the language — including in particular
its n-valued character. However, one usually wants to model-check one formula at a time. Then,
Theorem 5.12 can be in some cases modified to provide the desired reduction:

Theorem 5.14. Let (L,Lf , f) be a lattice reduction triple (LRT), let M be a CGS over L and f(M)
its reduction to Lf . Further, let ϕ be a formula of mv-ATL∗→ and Sub(ϕ) the set of all its subformulas.
Then ϕ satisfies translation condition (5) whenever, for any implication formula φ ∈ Sub(ϕ) such that
φ = ϕ1 → ϕ2, any state (resp. path) ξ, and xi = [ϕi]M,ξ, i = 1, 2, the following conditions hold:

C1’: x1 < x2 ⇒ f(x1) < f(x2) C2’: x1 ./ x2 ⇒ f(x1) > f(x2)

Proof:
To prove the thesis, we assume that C1’, C2’ are satisfied, and show by structural induction that
translation condition (5)

[ψ]Mf ,ξ = x iff [ψ]M,ξ ∈ f−1(x)

holds for any ψ ∈ Sub(ϕ).
For atomic or constant ψ, the thesis follows from Theorem 5.4. Suppose now that Equation (5)

holds for all subformulas of ϕ having rank k, and assume ψ is of rank k + 1. If ψ is obtained from
subformulas of rank at most k using any operator Op other than→, then Equation (5) follows from
the fundamental Lemma 5.3.

Thus, it remains to consider the case of →. Assume ψ = ψ1 → ψ2, with Equation (5) being
satisfied for both ψ1, ψ2. Since ψ is an implication formula, according to what we have already noted
in the proof of Lemma 5.11, proving (5) for ψ reduces to showing condition (7), i.e.,

[ψ]Mf ,q = > iff [ψ]M,q ∈ f−1(>).

Note that since ψ1, ψ2 are in Sub(ϕ), then C1’, C2’ hold for xi = [ϕi]M,q, i = 1, 2. By the inductive
assumption, we also have

[ψi]Mf ,q = f([ψi]M,q), i = 1, 2 (10)

“⇒⇒⇒”: We begin with the forward implication in (7). Assume that [ψ]Mf ,q = >. Then [ψ1]Mf ,q ≤
[ψ2]Mf ,q. By (10), this implies f([ψ1]M,q) ≤ f([ψ2]M,q. We show by contradiction that it implies

[ψ1]M,q ≤ [ψ2]M,q (11)

Suppose that (11) does not hold, then we have two possible cases:
Case 1: [ψ1]M,q > [ψ2]M,q. Then by condition C1’ we have f([ψ1]M,q) > f([ψ2]M,q), whence

from (10) we get [ψ1]Mf ,q > [ψ2]Mf ,q and [ψ]Mf ,q = ⊥, which is a contradiction.
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Case 2: [ψ1]M,q ./ [ψ2]M,q. Then f([ψ1]M,q) > f([ψ2]M,q) by condition C2’, which again leads
to a contradiction by what we have already proved for Case 1.

Thus (11) above holds, whence [ψ]M,q = > ∈ f−1(>), and the forward implication in (7) holds.

“⇐⇐⇐”: The final step consists in proving the backward implication in (7). Assume that [ψ]M,q =
f−1(>). As [ψ]M,q ∈ {⊥,>} and f(⊥) 6= > by the preservation of bounds by f and the non-triviality
of L,Lf , we get [ψ]M,q =>, and consequently [ψ1]M,q ≤ [ψ2]M,q. Since f preserves bounds, this
implies f([ψ1]M,q) ≤ f([ψ2]M,q), whence from (10) we obtain [ψ1]Mf ,q ≤ [ψ2]Mf ,q. This yields
[ψ]Mf ,q = >, whence the backward implication in (7) holds, too. 2

Assume that our mv-CGSs are defined over distributive lattices. We now show that the translation
method of Section 5.1, based on join irreducible elements J I(L), can be applied to a formula ϕ of
ATL∗ and an mv-CGS M , provided that the assumptions of Theorem 5.14 are satisfied. By (1), for
each x ∈ L we have x =

⊔
(J I(L) ∩ ↓ x). Let M ` be the model obtained using the translation

f`. Therefore, according to Theorem 5.14: [ϕ]M`,ξ = x iff [ϕ]M,ξ ∈ f−1
` (x) whence [ϕ]M`,ξ =

> iff [ϕ]M,ξ ∈ ↑`. Thus,

[ϕ]M,ξ =
⊔
{` ∈ J I(L) | [ϕ]M`,ξ = >}. (12)

Example 5.15. Consider model M2 in Figure 5 and formula φ = 〈〈1〉〉G (pol1 → (target ∧ pol2)).
Subformula pol1 can take the following truth values throughout the model: ⊥, u,>d,>. Similarly,
target ∧ pol2 can evaluate to ⊥,>d. Thus by Theorem 5.14 mapping f>d meets translation condi-
tion (5), and we can use the translation method of Section 5.1 to check if the value of φ is at least
>d.

On the other hand, all the other “cutoff” mappings (i.e., f⊥du⊥g , f⊥d
, f⊥g , f>g , and f>) do not

satisfy condition C1’, and hence the correctness of the translation is not guaranteed for those truth
values.

The following is an immediate consequence of Theorem 5.14.

Corollary 5.16. Let L, its sublattice Lf , f : L → Lf , and M,Mf be as in Theorem 5.4. Further, let
ϕ be a formula of mv-ATL∗→ such that every implication subformula of ϕ is of the form ψ1 → ψ2,
where ψi ∈ { ⊥ , > } for some i ∈ {1, 2}. Then ϕ satisfies the translation condition (5).

Proof:
It suffices to observe that if at least one of the formulas ψ1, ψ2 is either ⊥ or > , then the implica-
tion subformula ψ1 → ψ2 trivially satisfies conditions C1’ and C2’ of Theorem 5.14. 2

5.5. Recursive Model Checking of ATL∗

For many model checking instances, the assumptions of Theorem 5.14 do not hold. In those cases,
we cannot translate the multi-valued model checking of mv-ATL∗→ formulas to the classical model
checking for ATL∗. Then, the simplest solution is to adapt the standard recursive algorithm that, in
order to model-check formula ϕ, proceeds bottom-up from the simplest subformulas, and replaces
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them with fresh atomic propositions. In our case, this means that model checking of each implication
formulaϕ1 → ϕ2 consists in computing the values ofϕ1, ϕ2 by means of the translation in Section 5.1,
and then fixing the valuation of the fresh variable pϕ1→ϕ2 according to their comparison. The detailed
algorithm is presented in Figure 9.

The main disadvantage of the above method compared to the direct translation method is that it
requires computing the values of the new atomic propositions for all states of the model M . In other
words, we need to carry out global model checking, whereas for formulas without the implication op-
erator→ both global and local model checking were possible. The method can be possibly improved
if we assume that a specific symbolic model checking method for two-valued ATL∗ is used; we leave
a study of this subject for future work.

Nevertheless, the algorithm presented in Figure 9 has two important consequences. First, it pro-
vides a general linear-time reduction from model checking mv-ATL∗→ (resp. mv-ATL→) to model
checking standard 2-valued ATL∗ (resp. ATL). We state it formally as follows.

Theorem 5.17. The one-to-many reduction from multi-valued model checking of mv-ATL∗→ to 2-
valued model checking of ATL∗ runs in linear time with respect to the size of the model, the length of
the formula, and the number of truth values.

Corollary 5.18. Model checking mv-ATL∗→ (resp. mv-ATL→) is 2EXPTIME-complete (resp. P-
complete) in the size of the model, the length of the formula, and the number of truth values.

Secondly, we note that correctness of the translation does not depend on the type of strategies being
used in the semantics of mv-ATL∗→. As it is, the translation provides a model checking reduction to
the IR variant of ATL∗ (perfect information + perfect recall). If we used memoryless strategies of type

Algorithm gmcheckrec(M,ϕ);

1. If ϕ contains no instance of the comparison operator→, then return gmchecktr(M,ϕ);

2. Else, pick the first implication subformula ϕ1 → ϕ2 in ϕ, and:

• Compute Vϕ1 := gmcheckrec(M,ϕ1) and Vϕ2 := gmcheckrec(M,ϕ2);

• Create an extension M ′ of model M by adding a fresh atomic proposition p, and fixing
its valuation so that V (p, q) = > if Vϕ1(q) ≤ Vϕ2(q) and V (p, q) = ⊥ otherwise;

• Create formula ϕ′ by replacing every occurrence of ϕ1 → ϕ2 by p;

• Return gmcheckrec(M ′, ϕ′).

Figure 9. Recursive global model checking for ATL∗
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sa : St→ Act instead of perfect recall, the translation would yield reduction to the Ir variant of ATL∗

(perfect information + imperfect recall [45]). Since the IR and Ir semantics coincide in 2-valued ATL
(though not in ATL∗!), we get the following.

Theorem 5.19. For mv-ATL→, memory is irrelevant, i.e., its semantics can be equivalently given by
memoryless strategies.

6. Multi-Valued Transitions

In this paper our aim is to propose a framework for a graded interpretation of logical statements
referring to the strategic ability of agents and coalitions. Until this point, the “graded” truth values have
only originated from non-classical interpretation of atomic propositions and literals. Typically, this
happens because when constructing a model we cannot determine the truth of some basic statements
in absolute terms (as either true or false). Instead, we assign such basic statements with their ”truth
degrees” (which can be also seen as “weights of evidence”) drawn from a suitable lattice, which then
propagate to more complex formulas.

Another source of non-classical truth values sometimes considered in the literature is a graded
interpretation of transitions. In that case, each transition is labelled according to its “strength.” An
extension of mv-ATL∗→ with weighted transitions is discussed in this section.

6.1. Weighted Transitions: Potential Interpretations

The shift from 2-valued to multi-valued modal logic typically arises when we extend the domain of
interpretation for atomic propositions in states of the model. The level of truth for p1, p2, . . . , is not
crisp anymore, and this propagates to more complex formulae ϕ via semantic clauses. So far, we
have assumed that the transition relation is crisp, i.e., given states q, q′ and a vector of actions ~α,
the transition from q to q′ labeled by ~α is either fully included in the model, or is completely absent
from it. An alternative would be to consider multi-valued transition relations, with transitions that are
possible to a certain degree.

There are at least two sensible interpretations of such weighted transitions. On the one hand,
the weight can be interpreted as the strength of evidence supporting the existence of the transition.
This approach has been adopted in the previous works on multi-valued temporal logics over arbitrary
lattices of truth values [3, 4], with the additional assumption that the weights of transitions are drawn
from the same lattice as the values of propositions. A characteristic feature of the semantics in [3, 4]
is that, whenever the weights on transitions decrease sufficiently, the value of a temporal formula must
also decrease. Formally, consider a multi-valued transition system M , a state q in M , and a formula
AX ϕ such that [AX ϕ]M,q = x. Moreover, let M ′ be the same as M except for the weights of all
the outgoing transitions from q being strictly lower than x. Then we have [AX ϕ]M ′,q < [AX ϕ]M,q.
Analogous characterizations can be shown for all other temporal operators.

On the other hand, the transition weights can be also interpreted as a qualitative distribution,
similarly to quantitative transitions in Markov chains and Markov decision processes, used in the
semantics of probabilistic temporal logics [46, 35, 19] and their strategic variants [38, 39, 31, 33, 34].
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A natural assumption in that case is that the distribution is complete. In the probabilistic case, it
amounts to the weights on the outgoing edges from q always summing up to 1. The requirement
is essential in models of multi-agent systems, where establishing what cannot happen is often as
important as reasoning about what can.

In the qualitative case, at a minimum, [ϕ]M,q′ = x on all the successors q′ of q should imply
[AX ϕ]M,q = x (and analogously for other temporal operators and strategic operators). In particular, if
the value of ϕ is bound to be > at the next moment – no matter how the systems evolves – then AX ϕ,
〈〈A〉〉X ϕ, etc., should also evaluate to>. It is easy to see that the semantics in [3, 4] do not satisfy this
requirement.

In the remainder of the section, we outline how the probabilistic approach can be adapted to
arbitrary lattices of transition weights. Our proposal is based on the concept of designated paths,
i.e., paths that are considered relevant in a given context. We also show that the idea of may/must
abstraction can be seen as a special, 3-valued case of this kind of reasoning.

6.2. Weighted Transitions in Concurrent Game Structures

Definition 6.1. (Weighted multi-valued CGS)
Assume two lattices: an interpreted lattice L+ = (L,≤, σ) of truth values, and a lattice Lt = (Lt,≤t)
for weights that will be assigned to transitions. A weighted multi-valued concurrent game structure
(wmv-CGS) over L+ and Lt is a tuple M = 〈Agt, St, Act, d, t, w, Prop,V ,L+,Lt〉, where Agt, St,
Act, t, Prop are as in case of an mv-CGS, and w : t → Lt is a weight function which maps each
individual transition in t (i.e., each tuple (q, α1, . . . , αk, t(q, α1, . . . , αk)) to a value in Lt.

The interpretation of mv-ATL∗→ formulas in a wmv-CGS M as above is parameterized by the set D
of designated values in Lt — the logical values whose assignment to a formula makes it deemed to be
satisfied.

A path in an wmv-CGS is defined analogously as in an mv-CGS. A path λ = q0q1q2 . . . is said
to be designated if for every i there are actions α1, . . . , αk such that t(qi, α1, . . . , αk) = qi+1 and
w(qi, α1, . . . , αk, qi+1) ∈ D.

Given D, we reduce a wmv-CGS M to an mv-CGS

MD = 〈Agt, St, Act, d, tD, P rop,V ,L+〉

where

tD(q, α1, . . . , αk) =

{
t(q, α1, . . . , αk) if w(q, α1, . . . , αk, t(q, α1, . . . , αk)) ∈ D
undefined otherwise

Then any state of M is a state of MD, and any designated path in M is a path in MD. As the
interpretation of mv-ATL∗→ in M we take the interpretation of mv-ATL∗→ in MD:

For any state or designated path ξ in M and any formula ϕ in mv-ATL∗→, we take:

[ϕ]M,ξ,D = [ϕ]MD,ξ (13)
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6.3. Embedding May/Must Abstractions

A natural example of many-valued transitions is provided by may-must transitions: the “may” transi-
tions are only possible, but need not happen, while the “must” transitions will necessarily take place.
This kind of models were used in [42]. Also, the may/must abstractions presented in [28, 29, 30]
produce models with the same or similar structure and interpretation. Adapting the notation, those
models take the form MGJ = 〈St, Prop, δmust, δmay, V,L〉, where St, Prop, V are defined as be-
fore, L = {t, f,u}, and δmust, δmay ⊆ St × St are transition relations such that δmust ⊆ δmay.
The language contains negation and conjunction interpreted as in Kleene three-valued calculus over
{t, f,u}, and the AX operator interpreted as:

[AXϕ]MGJ ,q =


t if ∀s′(δmay(s, s′)⇒ [ϕ]MGJ ,s′ = t)
f if ∃s′(δmust(s, s′) ∧ [ϕ]MGJ ,s′ = f)
u otherwise

If, following [42], we disregard explicit inclusion of agents and actions in our approach, then if the
transition relation δmay is a function, such a model can be represented as an wmv-CGS MJKP =
〈St, δmay, P rop,V ,L+,Lt〉 with three-valued transitions, where LT = {>, U,⊥}, and the weight
function w : St× St→ LT is defined by:

w(s, s′) =


> if (s, s′) ∈ δmust
U if (s, s′) ∈ δmay \ δmust
⊥ otherwise

Denote D> = {>},DU = {U,>}. We can show that Godefroid’s-Jagadessan’s semantics based on
MGJ can be expressed using our model MJKP as follows:

Lemma 6.2. If ϕ does not contain the AX operator, then:

1. [ϕ]MGJ ,q = [ϕ]MJKP ,q,D>

2. [AXϕ]MGJ ,q =


t if [AXϕ]MJKP ,q,DU

= t
f if [AXϕ]MJKP ,q,D> = f
u otherwise

Proof:
Since both MJKP and MGJ are based on Kleene 3-valued calculus of propositional formulas, Con-
dition 1 obviously holds. Further, as the translation of MJKP to MDU

preserves all transitions in
δmay, we have [AXϕ]MJKP ,q,DU

= t iff [ϕ]MJKP ,q′,DU
= t for every (q, q′) ∈ δmay. In view of

Condition 1, the latter implies [ϕ]MGJ ,q′ = t for every (q, q′) ∈ δmay. Consequently, the first clause
in Condition 2 holds. For the second clause, note that as MD> only contains transitions in δmust, then
[AXϕ]MJKP ,q,D> = f iff there is a transition (q, q′) ∈ δmust such that [ϕ]MJKP ,q′ = f. Then by
Condition 1 [ϕ]MGJ ,q′ = f, whence [AXϕ]MGJ ,q = f — and so Condition 2 holds. 2
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6.4. Model Checking Multi-Valued CGS with Weighted Transitions

Fortunately, the introduction of weighted transition, while enriching our models and making them
better suited to some practical applications, does not introduce any essential complications into model-
checking compared to mv-CGS’s with two-valued transitions. Thus the results obtained in the latter
case carry over to mv-CGS, and we have the following generalization of the Reduction Theorem 5.4:

Theorem 6.3. Let L = (L,≤) be an arbitrary finite lattice, Lf = (Lf ,≤f ) a sublattice of L,
and let f : L → Lf a mapping which preserves arbitrary bounds in L. Furthermore, let M =
〈Agt, St, Act, d, t, w, Prop,V,L+〉 be an wmv-CGS over an interpreted lattice L+ = (L,≤, σ) over
C, and let Mf = 〈Agt, St, Act, d, t, wf , P rop,Vf , (Lf ,≤f , σf )〉 be the mv-CGS obtained from M
by “clustering” the truth values in M according to f , i.e.:

1. σf (c) = f(σ(c)) for any c ∈ C,

2. wf (τ) = f(w(τ))) for any τ ∈ t, and

3. Vf (p, q) = f(V (p, q)) for any q ∈ St and p ∈ Prop.

Then, for any state (respectively, path) formula ϕ of mv-ATL∗→ over L, any state (respectively,
path) ξ, and any set of designated truth values D, we have

[ϕ]M,ξ,D ∈ f−1(x) iff [ϕ]Mf ,ξ,D = x (14)

Proof:
Straightforward from Equation (13) and Theorem 5.4.

Note that the conditions of the above theorem (preservation of the bounds plus Conditions 1 and
3) correspond to those of Theorem 5.4 , with an analogous Condition 2 for weights added). 2

This theorem can be used, in a way analogous to that employed for mv-ATL∗→ with two-valued
transitions, to reduce mv-model checking for mv-ATL∗→ with mv-transitions to two-valued model
checking. This is because the semantics of mv-ATL∗→ with many-valued transitions contains an em-
bedded reduction of models with mv-transitions to models with two-valued transitions — and for
those models we can again use the reduction based on our threshold functions. Consequently, the
local and global model checking algorithm given in Figure 9 and Figure 8 also carry-over to the case
of many-valued transitions.

Like previously, the positive results quoted above apply to formulas which do not involve the
implication operator. For the formulas involving that operator, the negative result obtained in case
of two-valued transitions of course still holds — because a CGS with two-valued transitions is just a
special case of a CGS with many-valued transitions.

7. Multi-Valued Verification of Agents with Imperfect Information

ATL and ATL∗ were originally proposed for reasoning about agents in perfect information scenarios.
It can be argued that realistic multi-agent systems always include some degree of limited observ-
ability [45, 47, 48, 49, 50, 51, 52]. However, model checking of ATL and ATL∗ with imperfect
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information is hard – more precisely, ∆P
2 - to PSPACE-complete for agents playing memoryless

strategies [45, 53, 54] and undecidable for agents with perfect recall [55]. Furthermore, the imper-
fect information semantics of strategic ability does not admit standard fixpoint equivalences [56],
which makes incremental synthesis of strategies cumbersome. Practical attempts at the problem have
emerged only recently [57, 58, 59, 60, 61, 62], and the experimental results show that verification is
feasible only for very small models.

Such hard problems can be potentially tackled by means of approximation techniques [30, 63]. In
particular, abstraction techniques [43, 30, 23] can be used to cluster multiple states and/or transitions
in the system into abstract states and transitions, thus reducing the model size. However, in order to be
effective, the abstraction must be very coarse, which potentially results in loss of information about the
truth of (some) atomic propositions and the existence of (some) transitions. This leads to a substantial
reduction of the verification cost, possibly at the expense of introducing non-classical truth values of
propositions in some abstract states, as well as transitions of various strength. In consequence, multi-
valued model checking can be extremely useful when reasoning about strategies under uncertainty.

Clearly, all the previously cited reasons for using multi-valued verification (description of the
world based on a non-classical notion of truth, lifting the logical reasoning to a richer domain of an-
swers, inconclusive or inconsistent information about the system, conflicting evidence coming from
different sources, inconclusive verification procedure, etc.) are also relevant for agents with uncer-
tainty. In this section, we show that the framework of mv-ATL∗→ can be easily extended to the case of
imperfect information.

7.1. Logic mv-ATL∗→ with Imperfect Information

Let us extend mv-CGS with epistemic indistinguishability relations ∼1, . . . ,∼k⊆ St × St, one per
agent in Agt. The idea is that, whenever q ∼a q′ and the system is in state q, agent a might think
that the system is actually in q′. Each ∼a is assumed to be an equivalence relation. We also assume
that the resulting model is uniform with respect to the indistinguishability relations, i.e., q ∼a q′

implies da(q) = da(q
′). In other words, the choices available to an agent are identical in the states

indistinguishable for that agent.
In a similar way, strategies under imperfect information must specify identical choices in indis-

tinguishable situations. That is, memoryless strategies with imperfect information (ir strategies, for
short) are functions sa : St → Act such that q ∼a q′ implies sa(q) = sa(q

′). Moreover, perfect
recall strategies with imperfect information (shortly: iR strategies) are functions sa : St+ → Act
st. q0 ∼a q′0, . . . , qn ∼a q′n implies sa(q0 . . . qn) = sa(q

′
0 . . . q

′
n). Again, collective strategies for

A ⊆ Agt are tuples of individual strategies for a ∈ A. We denote them by Σir
A and ΣiR

A , respectively.
The semantics of mv-ATL∗S→, parameterized by the type of strategies S = IR, Ir, ir, iR, can be

defined by replacing the clause for the strategic operators from Section 4 as follows:

[〈〈A〉〉γ]SM,q =
⊔
sA∈ΣS

A

d
λ∈out(q,sA){[γ]SM,λ};

[[[A]]γ]SM,q =
d
sA∈ΣS

A

⊔
λ∈out(q,sA){[γ]SM,λ}.
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Figure 10. Multi-valued model M3 for drones with imperfect information. Epistemic indistinguishability is
depicted by dotted lines.

Example 7.1. (Drones with partial information)
Consider again the drone model introduced in Example 4.3 and Figure 5. We assume now that drone
1 sees its own position but not that of drone 2, whereas drone 2 only sees if the other drone is in the
same location but does not recognize the location itself. Moreover, each drone can identify the initial
state (i.e., (0, 0)), as well as recognize that it has run out of battery (states (3, 3)1 and (3, 3)2). Finally,
drone 2 – not knowing its exact position – may try to fly in a direction which is not available for a
given location (e.g., fly North in location 2). In that case, the attempt fails, and the drone stays in its
current location. The updated mv-CGS M3 is presented in Figure 10.

For the formulas from Example 4.4, we now have :

• [〈〈1〉〉F pol1]
ir
M2,(0,0) = [〈〈1〉〉F pol1]

iR
M2,(0,0) = >, as the strategy to fly North in state (0, 0), and

then East in (1, 1) or (1, 2) is uniform for drone 1;

• [〈〈2〉〉F pol2]
ir
M2,(0,0) = [〈〈2〉〉F pol2]

iR
M2,(0,0) = > (the analogous strategy for drone 2 is not uni-

form, but the agent can achieve the goal by playing N in all the states);
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• [〈〈1, 2〉〉F (target ∧ allvisited ∧ (pol1 ∨ pol2))]
ir
M2,(0,0) = ⊥ because neither of the uniform mem-

oryless strategies leads to a state where target ∧ allvisited holds;

• [〈〈1, 2〉〉F (target ∧ allvisited ∧ (pol1 ∨ pol2))]
iR
M2,(0,0) = >d (example strategy: drone 1 flies

North in the first step, and East in the second, while drone 2 moves East and then North). �

Objective vs. subjective semantics of ability. We note that the above semantic rule corresponds to
the notion of objective ability. That is, given a strategy, we only look at its outcome paths starting
from the current global state of the system q. The alternative, subjective ability, requires the strategy
to succeed on all the paths starting from states indistinguishable from q. Let ∼a(q) = {q′ | q ∼a q′}.
This can be formalized by the following adaptation of the semantic rule:

[〈〈A〉〉γ]SM,q =
⊔
sA∈ΣS

A

d
a∈A

d
q′∈∼a(q)

d
λ∈out(q′,sA){[γ]SM,λ};

[[[A]]γ]SM,q =
d
sA∈ΣS

A

⊔
a∈A

⊔
q′∈∼a(q)

⊔
λ∈out(q′,sA){[γ]SM,λ}.

A more detailed discussion on the epistemic aspects of strategic ability can be found in [64, 65].
We leave the proper treatment of diverse epistemic variants of mv-ATL∗→ for the future.

7.2. Model Checking Techniques and Formal Results

We emphasize again that the correctness of the techniques proposed in Section 5 does not depend on
the actual definition of the strategy sets ΣA. In consequence, the results carry over to the imperfect
information case, and the techniques can be applied in exactly the same way to obtain model checking
reductions from mv-ATL∗S→ to the corresponding 2-valued cases. This demonstrates the power of the
translation method that can be directly applied to a vast array of possible semantics for ATL∗. Again,
multi-valued verification of mv-ATL∗S→ incurs only linear increase in the complexity compared to the
2-valued case.

8. Case Study: Multi-Valued Verification of the Drone Model

Besides the theoretical results discussed in the preceding sections, we present an experimental eval-
uation of our approach to verification of strategic abilities. To this end, we propose a new scalable
benchmark based on the running example employed throughout the paper. We use the CGS template
of the team of drones patrolling for pollution in a city (cf. Examples 4.3 and 7.1, as well as the graphs
in Figures 5 and 10), but with a more complex map to make the study more realistic. The details and
outcomes of the experiments are presented further on in this section.

8.1. Model Description

The benchmark is an extension of the drone model used in the previous sections. To recall, we consider
a number of drones flying over a fixed area, with each drone modeled as a separate agent. The map is
represented by a directed graph that defines the locations Loc and the paths used by the agents to move
between those locations. We employ the map shown in Figure 11. For the experiments, we assume



36 W. Jamroga, B. Konikowska, D. Kurpiewski, and W. Penczek / Multi-Valued Verification of Strategic Ability

Figure 11. The map used in the experiments

that the connections between locations are symmetric (i.e., can be traversed both ways), and hence an
undirected graph is a sufficient representation of the map.

The system consists of a number of drone agents and the environment. The set of all drones is
denoted by D. A drone can use its sensors to measure the pollution at its current location. More-
over, it can communicate with the other drones at the same and adjacent locations using bluetooth,
and obtain their current readings. The readings from all the ground sensors are broadcasted by the
monitoring center, and hence are available to all drones at all times. This is modeled by an epistemic
indistinguishability relation, with the following information available to the drone:

• Its current position (i.e., a location number);

• Reading from the drone sensor in its current position;

• Readings from the adjacent drones;

• Readings from all the ground sensors;

• A battery charge level;

• A set of already visited places.

We assume that the time span of the mission is at most 30 mins (currently, there are still relatively few
types of drones that can fly longer than a couple of minutes, and they are mostly used in industrial and
military contexts). With this provision, we can assume that the environment is stationary throughout
the mission. That is, while traversing the map the drones will always get the same readings from a
given location.
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Each drone can perform five possible actions: go North, South, East, West, and Wait. Any move-
ment consumes energy. When the battery level drops to zero, the only action that the drone can
perform is Wait. This means it will stay at its current location forever (since our model does not fea-
ture battery recharging). However, such an immobilized drone can still broadcast information to the
nearby drones.

As before, we use multi-valued atomic propositions pold, d ∈ D, with values drawn from the
lattice 2 + 2× 2 + 2× 2. The interpretation of pold is given by the combined readings of drone d’s
sensor and of the ground sensor at the current location of d.

The models are scaled with respect to the following parameters:

• A number of drones;

• An initial battery level (the same for each drone).

#drones energy #states tgen tverif output

1 1 5 0.007 0.01 >g
1 2 14 0.005 0.05 >d t >g
1 3 32 0.02 0.10 >d t >g
1 4 61 0.04 0.26 >
1 5 106 0.03 0.38 >
1 10 601 0.37 2.13 >
1 100 16740 8.84 85.91 >
1 1000 178740 85.85 timeout −

2 1 17 0.01 0.08 >g
2 2 98 0.05 0.54 >d t >g
2 3 422 0.34 2.16 >d t >g
2 4 1263 1.23 6.32 >
2 5 3288 3.83 16.77 >
2 10 55757 89.23 719.81 >
2 100 − timeout − −

3 1 65 0.02 0.46 >g
3 2 794 1.02 5.34 >d t >g
3 3 6626 12.44 43.09 >d t >g
3 4 31015 70.55 293.59 >
3 5 122140 414.57 3003.56 >
3 10 − timeout − −

Figure 12. Experimental results for φ1L

8.2. Formulas

In the rest of this section, d will refer to an arbitrary drone in the setD. The first formula to be verified
is

φ1 = EF pold → 〈〈d〉〉F pold
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#drones energy #states tgen
Lower approx. Upper approx.

tverif output tverif output

1 1 5 0.008 0.03 >g 0.02 >g
1 2 14 0.006 0.05 >d t >g 0.06 >d t >g
1 3 32 0.01 0.14 >d t >g 0.21 >d t >g
1 4 61 0.02 0.22 > 0.28 >
1 5 106 0.03 0.39 > 0.48 >
1 10 601 0.27 2.12 > 2.38 >
1 100 16740 9.70 59.27 > 64.40 >
1 1000 178740 92.78 615.23 > 669.85 >
1 10000 1798740 890.85 6125.77 > 6054.80 >
1 12000 2158740 1122.84 timeout − timeout −

2 1 17 0.01 0.18 >g 0.10 >g
2 2 98 0.06 0.66 >d t >g 0.64 >d t >g
2 3 422 0.33 2.63 >d t >g 2.40 >d t >g
2 4 1263 1.21 8.43 > 7.31 >
2 5 3288 3.53 19.08 > 18.19 >
2 10 55757 89.30 323.42 > 321.15 >
2 100 − timeout − − − −

3 1 65 0.05 0.47 >g 0.52 >g
3 2 794 0.95 5.71 >d t >g 5.90 >d t >g
3 3 6626 12.31 55.60 >d t >g 50.19 >d t >g
3 4 31015 78.63 271.55 > 239.28 >
3 5 122140 382.30 1719.81 > 932.31 >
3 10 − timeout − − − −

Figure 13. Experimental results for φ1R

It says that if drone d might detects pollution to some degree, then d has a strategy to guarantee that
this will indeed be the case. Note that the formula is an implication, and hence – due to the results in
Section 5.2 – a straightforward reduction to classical model checking is problematic. Because of that,
we use the recursive reduction algorithm of Section 5.5. That is, we split φ1 into its left hand side
(EF pold) and right hand side (〈〈d〉〉F pold). We also observe that the left hand side of the implication,
expressed in ATL and transformed to the negation normal form, becomes [[∅]]F pold. Thus, in order
to determine the value of φ1, we need to carry out multi-valued model checking of the following two
formulas:

• φ1L = [[∅]]F pold, and

• φ1R = 〈〈d〉〉F pold,

each of them satisfying the preconditions of Theorem 5.4.
We observe that the above specification is relatively weak: it requires that if pollution is present

somewhere then the drone is able to find it at some location. In order to allow for a finer-grained
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specification, we add to the drone model a family of atomic propositions atd,loc with classical, 2-
valued interpretation. More precisely, atd,loc evaluates to > in the states where drone d is at location
loc ∈ Loc, and to⊥ everywhere else. In addition, we allow for cooperation between the drones. More
exactly, we will be looking at joint strategies of the team of all drones D with the following property:
if any of the drones might detect pollution at location loc, then the drones can ensure that one of them
will indeed detect it:

φ2 =
∧

loc∈Loc

(
EF

∨
d∈D

(atd,loc ∧ pold) → 〈〈D〉〉F
∨
d∈D

(atd,loc ∧ pold)
)
.

Again, the formula is an implication, and thus requires separate treatment of the left and right hand
sides of “→.” Here, we only report the verification results for the right-hand subformula, i.e.:

• φloc2R = 〈〈D〉〉F
∨
d∈D(atd,loc ∧ pold)

for an arbitrary selected value of loc.
The considered formulas emphasize the importance of the comparison operator→ for actual spec-

ification of properties. Many (if not most) relevant properties of multi-agent systems are expressed as
an implication: if the assumptions are satisfied, the target property should hold as well. The multi-
valued variant of such requirements demands that ψ is satisfied to at least the same degree as ϕ.

8.3. Semantics and Algorithms

We note that formula φ1L refers only to the abilities of the empty coalition, and hence does not involve
reasoning about imperfect information. In consequence, one can as well evaluate it using the perfect
information semantics of mv-ATL∗. Then, the translation in Section 5.1 reduces the multi-valued
verification of φ1L to model checking of 2-valued ATL with perfect information. We implement the
latter by means of the standard fixpoint algorithm from [2].

In contrast, the semantics of formulas φ1R and φ2R refers to strategies with imperfect information.
Accordingly, the translation in Section 5.1 reduces the problem to model checking of 2-valued ATL
with imperfect information. Since the exact model checking of abilities under imperfect information
is hard, both theoretically [45, 66] and in practice [9, 67, 57], we go around the complexity by using
the fixpoint-based approximate model checking algorithm proposed recently in [63]. That is, the 2-
valued model checking of φ1R proceeds by a model-independent translation to its upper and lower
variants φU1R, φ

L
1R, both of which can be verified by fixpoint algorithms. If the verification output for

φU1R and φL1R matches, it is guaranteed correct for φ1R, too; otherwise, the outcome is inconclusive.
The 2-valued model checking for φ2R is obtained analogously.

As we will see, the output of the lower and the upper approximation always matched in our exper-
iments (cf. Figures 13 and 14), thus providing fully conclusive outcome.

8.4. Experimental Results

The results of the experiments are presented in Figures 12 (for formula φ1L), 13 (formula φ1R), and 14
(formula φ2R). For each of the formulas, we considered several configurations of the drone model.
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The main scaling factor was the number of the drones in the system. The second source of complexity
was the initial energy level (the same for every drone). The initial location on the map was always 0,
for all the drones in the system.

The experiments were conducted on an Intel Core i7-6700 CPU with dynamic clock speed of
2.60–3.50 GHz, 32 GB RAM, running under 64bit Windows 10. The times are given in seconds; the
timeout was set to 2 hours. As the performance results show, multi-valued verification of strategic
ability scales up similarly to two-valued model checking [63], which confirms the theoretical results
in Section 5.5.

The software used to conduct the experiments can be found at the address
https://github.com/blackbat13/stv. The software is implemented in Python 3. As it is an on-going
development, it does not accept any input language. Instead, model generators are used. Models are
generated as transition graphs and stored explicitly in the memory.

As the experiments show, the result of the formula depends mostly on the initial energy of the
drones. If given enough energy, drones can visit every place on the map, hence detecting any pollution.
On the other hand, even a drone with very small capacity of the battery can detect something. As can
be seen in Figures 12 and 13, for the cases in which initial energy of the drones were less than 3,
answer was more informative than simple false, as it would have been if we had used two-valued
logic. It shows that multi-valued logics can provide the designer or analyst with much more useful
information beyond a simple yes/no answer.

energy #states tgen
Lower approx. Upper approx.

tverif output tverif output

1 65 0.04 0.45 ⊥ 0.46 ⊥
2 794 1.05 5.60 >g 5.43 >g
3 6626 12.05 62.64 >g 45.45 >g
4 31015 77.23 233.45 >g 227.44 >g
5 122140 379.29 951.14 >g 854.41 >g
6 349121 1276.82 2706.15 >g 2423.55 >g
7 880562 3446.30 6383.17 >g 6052.17 >g
8 1850861 9718.62 timeout − timeout −

Figure 14. Experimental results: φloc2R for #drones = 3 and loc = 7

9. Conclusions

In this paper we study a variant of alternating-time temporal logic, denoted as mv-ATL∗→, where the
truth values are taken from an arbitrary distributive lattice. We argue that multi-valued model check-
ing of mv-ATL∗→ specifications can be useful, especially for systems whose models cannot be fully
analyzed due to their complexity and/or inaccessibility of the relevant information. Other examples
include systems with information coming from multiple, potentially conflicting sources. We propose
the semantics of mv-ATL∗→ first in the simplest case of perfect information strategies and models with
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crisp, classical transition functions. Then, we show how to extend the framework to the case of multi-
valued transitions, as well as other notions of strategies (in particular, variants of strategic reasoning
for agents with limited observation capabilities).

In terms of technical results, we prove that our multi-valued semantics of mv-ATL∗→ provides a
conservative extension of the classical 2-valued variant. More importantly, we propose efficient (i.e.,
polynomial-time) translations from multi-valued model checking to the 2-valued case. We formally
characterize the conditions under which the translation can be carried out by non-recursive one-to-
many reduction, and propose a recursive procedure for the remaining instances of the problem. The
proposed techniques are elegant enough to be directly applicable to other semantic variants of strategic
ability, for example, those referring to imperfect information scenarios. This allows for non-classical
model checking of abilities while benefiting from the ongoing development of classical model check-
ers and game solvers.

Finally, we back up our proposal by a series of experiments in a simulated scenario of drones
patrolling for pollution in a city. Besides promising performance results, the experiments demonstrate
also the use of the relevant implication, based on comparison of truth values, which is among the main
novel contributions of this paper. The operator can be used to provide a multi-valued counterpart of
material implication, with an intuitive and appealing interpretation. This is especially important in
multi-agent systems where many relevant properties are indeed based on implication, which makes
them difficult to formalize in the multi-valued case.

In the future, we plan to extend the framework of mv-ATL∗→ to richer specification languages,
such as Strategy Logic [68, 69, 70]. We would also like to take a closer look at multi-valued models
arising from state and action abstractions, and to the application of multi-valued model checking to
verification of strategic ability under imperfect information.
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