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Abstract. Typical analysis of Markovian models of processes refers only
to the expected utility that can be obtained by the process. On the
other hand, modal logic offers a systematic method of characterizing
processes by combining various modal operators. A multivalued temporal
logic for Markov chains and Markov decision processes has been recently
proposed in [1]. Here, we discuss how it can be extended to the multi-
agent case. We relate the resulting logic to existing (two-valued) logics of
strategic ability, and present fixpoint characterizations for some natural
combinations of strategic and temporal operators.
Keywords: temporal logic, multi-agent system, Markov decision process.

1 Introduction

There are many different models of agents and multi-agent systems; however,
most of them follow a similar pattern. First of all, they include information
about possible situations (states of the system) that defines relations between
states and their external characteristics (essentially, “facts of life” that are true
in these states). Second, they provide information about relationships between
states (e.g., possible transitions between states). Models that share this structure
can be, roughly speaking, divided into two classes. Qualitative models provide
no numerical measures for these relationships. Quantitative models assume that
relationships are measurable, and provide numerical information about the de-
grees of relations. In [1], we explored analogies between transition systems and
Markovian models in order to provide a more expressive language for reasoning
about, and specification of agents in stochastic environments. In [2], we tenta-
tively extended the framework to the multi-agent case. Here, we present some
formal results on the multi-agent version of the language.

Analysis of quantitative process models is usually based on the notion of ex-
pected reward. On the other hand, logical approaches are most often concerned
with “limit properties” like the existence of an execution path that displays a spe-
cific temporal pattern. We believe that both kinds of properties are interesting
and worth using to describe processes. For instance, besides the expected value
of cumulative future reward, we can ask of the maximal (or minimal) cumulative
reward. Or, we might be concerned with the expected value of minimal guaran-
teed reward etc. A typical analysis of multi-agent Markov decision processes is



even more constrained, as we assume that all the agents in the system cooperate
to achieve a common goal (i.e., maximize their common expected cumulative
reward). Our extension allows to study the outcomes that can be obtained by
various groups of agents.

The roots of our proposal can be traced back to multivalued logics on one
hand (e.g., fuzzy logics [3] and probabilistic logics [4, 5]), and (crisp) modal logics
of probability [6–8] on the other. A closer inspiration comes from multi-valued
modal logics [9–13]. Of the latter, [11–13] are particularly relevant, as they define
multi-valued versions of temporal logic. Still, the version of Markov Temporal
Logic proposed here is (to our best knowledge) the first multivalued logic for
reasoning about strategic abilities of agents in stochastic multi-agent systems.

We begin by recalling the basic idea of Markov Temporal Logic (mtl) from [1]
(Section 2). The remaining sections present the original contribution of the pa-
per: the syntax and semantics of the multi-agent mtl was only presented at a
workshop with informal proceedings [2], and the theoretical results (relationship
to ATL∗, fixpoint properties) are entirely new.

2 Markov Temporal Logic

In this section we recall the idea of Markov Temporal Logic (mtl) from [1]. The
logic allows for flexible reasoning about outcomes of agents acting in stochastic
environments. The core of the logic is called mtl0, and addresses outcomes of
Markov chains. Intuitively, mtl0 can be seen as a quantitative analogue of the
branching-time logic ctl* [14].

2.1 Basic Models: Markov Chains

Typically, a Markov chain [15, 16] is a directed graph with probabilistic transition
relation. In our definition, we include also a device for assigning states with
utilities and/or propositional values. This is done through utility fluents which
generalize atomic propositions in modal logic in the sense that they can take
both numerical and qualitative truth values.

Definition 1 (Domain of truth values). A domain D = 〈U,>,⊥, u〉 consists
of: (1) a set U ⊆ R of utility values (or simply utilities); (2) special values
>,⊥ standing for the logical truth and falsity, respectively; Û = U ∪ {>,⊥}
will be called the extended utility set; and, finally, (3) a complement function
u : Û → Û . A domain should satisfy the conditions specified in [1], omitted here
for lack of space.

Definition 2 (Markov chain). A Markov chain over domain D = 〈U,>,⊥, u〉,
and a set of utility fluents Π is a tuple M = 〈St, τ, π〉, where:

– St is a set of states (we will assume that the set is finite and nonempty
throughout the rest of the paper);



– τ : St× St→ [0, 1] is a stochastic transition relation that assigns each pair
of states q1, q2 with a probability τ(q1, q2) that, if the system is in q1, it will
change its state to q2 in the next moment. For every q1 ∈ St, τ(q1, ·) is
assumed to be a probability distribution, i.e.

∑
q∈St τ(q1, q) = 1.

By abuse of notation, we will sometimes write τ(q) to denote the set of states
accessible in one step from q, i.e. {q′ | τ(q, q′) > 0}.

– π : Π × St→ Û is a valuation of utility fluents.

A run in Markov chain M is an infinite sequence of states q0q1 . . . such that
each qi+1 can follow qi with a non-zero probability. The set of runs starting
from state q is denoted by RM (q).1 Let λ = q0q1... be a run and i ∈ N0. Then:
λ[i] = qi denotes the ith position in λ, and λ[i..∞] = qiqi+1 . . . denotes the
infinite subpath of λ from position i on.

2.2 Logical Operators as Minimizers and Maximizers

Note that – when truth values represent utility of an agent – temporal operators
“sometime” and “always” have a very natural interpretation. “Sometime p” (3p)
can be rephrased as “p is achievable in the future”. Thus, under the assumption
that agents want to obtain as much utility as possible, it is natural to view the
operator as maximizing the utility value along a given temporal path. Similarly,
“always p” (2p) can be rephrased as “p is guaranteed from now on”. In other
words, 2p asks for the minimal value of p on the path. On a more general
level, every universal quantifier is essentially a minimizer of truth values, while
existential quantifiers can be seen as maximizers. Thus, Eγ (“there is a path
such that γ”) maximizes the utility specified by γ across all paths that can
occur; likewise, Aγ (“for all paths γ”) minimizes the value of γ across paths.
Also, disjunction and conjunction can be seen as a maximizer and a minimizer:
ϕ ∨ ψ reads easily as “the utility that can be achieved through ϕ or ψ”, while
ϕ ∧ ψ reads as “utility guaranteed by both ϕ and ψ”.

2.3 MTL0: A Logic of Markov Chains

Operators of mtl0 include path quantifiers E,A,M for the maximal, minimal, and
average outcome of a set of temporal paths, respectively, and temporal operators
3,2,m for the maximal, minimal, and average outcome along a given path.2
Propositional operators follow the same pattern: ∨,∧,⊕ refer to maximization,
minimization, and weighted average of outcomes obtained from different utility
channels or related to different goals. Finally, we have the “defuzzification” oper-
ator 4, which provides a two-valued interface to the logic. ϕ1 4 ϕ2 yields “true”
if the outcome of ϕ1 is less or equal to ϕ2, and “false” otherwise. Among other
advantages, it allows to define the classical computational problems of validity,
satisfiability and model checking for mtl.
1 If the model is clear from the context, the subscripts will be omitted.
2 We allow to discount future outcomes with a discount factor c. Also, we introduce

the “until” operator U , which is more general than 3.



Let Bool(ω) = ¬ω | ω∧ω | ω⊕cω | ω 4 ω denote quasi-Boolean combinations
of formulae of type ω. The syntax of mtl0 can be defined by the following
production rules:

ϕ ::= p | Bool(ϕ) | Eγ | Mγ,
γ ::= ϕ | Bool(γ) | g

c γ | 2cγ | γ Uc γ | mcγ,

where p ∈ Π is a utility fluent, and c is a discount factor such that 0 < c ≤ 1.
Additionally, we define ϕ1

∼= ϕ2 ≡ (ϕ1 4 ϕ2) ∧ (ϕ2 4 ϕ1). Boolean constants
T,F (“true”, “false”), disjunction, and the “sometime” temporal operator 3 are
defined in the standard way. The following shorthands are used for discount-free
versions of temporal operators: g≡ g

1 ,3 ≡ 31,2 ≡ 21, U ≡ U1 .

Example 1. Let r be a utility fluent that represents the immediate reward at each
state. The following mtl0 formulae define some interesting characteristics of a
process: Mm0.9r (expected average reward with time discount 0.9), Am0.9r (guar-
anteed average reward with the same discount factor), M2r (expected minimal
undiscounted reward), and A3r (guaranteed maximal reward).

The main idea behind mtl0 is that formulae can refer to both quantitative
utilities and qualitative truth values. Thus, we treat complex formulae as fluents,
just like the atomic utility fluents from Π, through a valuation function that
assigns formulae with extended utility values from Û . Let M = 〈St, τ, π〉 be a
Markov chain over domain D = 〈U,>,⊥, u〉 and a set of utility fluents Π. The
valuation function [·] is defined below.

– [p]M,q = π(p, q), for p ∈ Π;
– [¬ϕ]M,q = [ϕ]M,q;
– [ϕ1 ∧ ϕ2]M,q = min([ϕ1]M,q, [ϕ2]M,q);
– [ϕ1 ⊕c ϕ2]M,q = (1− c) · [ϕ1]M,q + c · [ϕ2]M,q;
– [ϕ1 4 ϕ2]M,q = > if [ϕ1]M,q ≤ [ϕ2]M,q and ⊥ else;
– [Eγ]M,q = sup{[γ]M,λ | λ ∈ R(q)};
– The Markovian path quantifier Mγ produces the expected truth value γ

across all the possible runs, cf. [16] for the formal construction;
– [ϕ]M,λ = [ϕ]M,λ[0];
– [¬γ]M,λ, [γ1 ∧ γ2]M,λ, [γ1 ⊕c γ2]M,λ, [γ1 4 γ2]M,λ: analogous to Boolean com-

binations of “state formulae” ϕ;
– [ g

c γ]M,λ = c · [γ]M,λ[1..∞];
– [2cγ]M,λ = infi=0,1,...{ci[γ]M,λ[i..∞]};
– [γ1 Uc γ2]M,λ = supi=0,1,...

{
min( min0≤j<i{cj [γ1]M,λ[j..∞]}, ci[γ2]M,λ[i..∞])

}
;

– The Markovian temporal operator mc produces the average discounted re-
ward along the given run:

[mcγ]M,λ =

 (1− c)
∑∞

i=0 c
i[γ]M,λ[i...∞] if c < 1

lim supi→∞
1

i+1

∑i
j=0[γ]M,λ[j...∞]+lim infi→∞

1
i+1

∑i
j=0[γ]M,λ[j...∞]

2 if c = 1
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Fig. 1. (A) Simple mmdp with two agents; (B) Simple concurrent game structure

3 Reasoning about Stochastic Multi-Agent Processes

Strategic abilities were already considered in mtl1, the version of Markov Tem-
poral Logic for reasoning about Markov decision processes [1]. In consequence,
mtl1 can be seen as a quantitative analogue of the single-agent fragment of
ATL∗ [17] with memoryless strategies. In the more general case, a system can
include multiple agents/processes, interacting with each other. To address their
properties, a family of operators 〈〈A〉〉 can be used, parameterized with groups of
agents A. Intuitively, 〈〈A〉〉ϕ refers to how much agents A can “make out of” ϕ by
following their best joint policy. This yields a language similar to the alternating-
time temporal logic ATL∗ from [17], albeit with strategic operators separated
from path quantifiers.

Markov decision processes [18, 19] extend Markov chains with an explicit
action structure: transitions are generated by actions of an (implicit) decision
maker. Multi-agent Markov decision processes (mmdp) [20] extend Markov de-
cision processes to the multi-agent setting: transitions are now labeled by com-
binations of agents’ actions. We observe the similarity between mmdp’s and
concurrent game structures which are the models of ATL∗ (cf. Figure 1).

As models for our multi-agent mtl, we will use a refinement of mmdp’s similar
to the version of Markov chains presented in Section 2.1. The semantics of 〈〈A〉〉ϕ
is based on maximization of the value of ϕ with respect to A’s joint strategies.
We assume that the opponents play a strategy that minimizes ϕ most. This way,
operator 〈〈A〉〉 corresponds to the maxmin of the two-player game where A is the
(collective) maximizer, and the rest of agents fills in the role of the (collective)
minimizer. Note that such a semantics entails that the opponents of A must also
play only memoryless (i.e., Markovian) strategies.



3.1 MTL2: Syntax

Let Agt be the set of all agents. mtl2 adds to mtl0 a family of operators 〈〈A〉〉,
one for each group of agents A ⊆ Agt. Formally, the syntax of mtl2 is given by
the following grammar:

ϑ ::= p | Bool(ϑ) | 〈〈A〉〉ϕ,
ϕ ::= ϑ | Bool(ϕ) | Eγ | Mγ,
γ ::= ϕ | Bool(γ) | g

c γ | 2cγ | γ Uc γ | mcγ.

An example formula of mtl2 is 〈〈1, 2〉〉Amr which makes agents 1 and 2 maximize
the guaranteed average reward r with respect to their available policies.

3.2 MTL2: Semantics

The semantics of mtl2 is defined for a version of multi-agent Markov decision
processes that incorporates qualitative as well as quantitative atomic properties
of states.

Definition 3 (mmdp). A multi-agent Markov decision process over domain
D = 〈U,>,⊥, u〉 and a set of utility fluents Π is a tupleM = 〈Agt, St, {Acti}i∈Agt, τ, π〉,
where: St, π are like in a Markov chain, Agt = {1, . . . , k} is the set of agents,
Acti is the set of individual actions of agent i, and Act =

∏
i∈AgtActi is the space

of joint actions ( action profiles). τ : St×Act×St→ [0, 1] is a stochastic transi-
tion relation; τ(q1, α, q2) defines the probability that, if the system is in q1 and the
agents execute α, the next state will be q2. For every q ∈ St, α ∈ Act, we assume
that either (1) τ(q, α, q′) = 0 for all q′ (i.e., α is not enabled in q), or (2) τ(q, α, ·)
is a probability distribution. Additionally, we define act(q) = {α ∈ Act | ∃q′.
τ(q, α, q′) > 0} as the set of enabled action profiles in q.

For a joint action α, we define αi to denote agent i’s individual part in α,
and we extend the notation to sets of joint actions and agents. Also, let A be
a set of action profiles, and α a collective action of agents A. Then, A|α =
{β ∈ A | βA = α} is the set of action profiles that include α.

A policy is a conditional plan that specifies future actions of an agent. Policies
can be stochastic as well, thus allowing for randomness in the agent’s play.

Definition 4. An individual strategy (policy) of agent i is a function si : St×
Acti → [0, 1] that assigns each state q with a probability distribution over i’s
enabled actions act(q)i. That is, s(q, αi) ∈ [0, 1] for all q ∈ St, αi ∈ act(q)i,
and

∑
αi∈act(q)i s(q, αi) = 1. Values of s(q, αi) for αi /∈ act(q)i are irrelevant.

The set of all i′s strategies is denoted by Σi. A collective strategy sA for team
A ⊆ Agt is simply a tuple of individual strategies, one per agent from A. The set
of all A’s collective strategies is given by ΣA =

∏
i∈AΣi. The set of all strategy

profiles in a model is given by Σ = ΣAgt.

For a collective strategy s, we define si as the i’s individual part in s. We
also extend the notation to sets of agents.



Definition 5. Policy s ∈ ΣA instantiates mmdpM = 〈Agt, St, {Acti}i∈Agt, τ, π〉
to a simpler mmdp M† s = 〈Agt \A,St, {Acti}i∈Agt\A, τ

′, π〉 with

τ ′(q, α, q′) =
∑

α′∈(act(q)|α)

(
∏
i∈A

si(q, α′)) τ(q, α′, q′).

If A = Agt, then s instantiates M to a Markov chain.

The semantics of mtl2 extends that of mtl0 with the following clauses:

– [p]M,q = π(p, q), for p ∈ Π;
– [¬ϑ]M,q, [ϑ1 ∧ ϑ2]M,q, [ϑ1 ⊕c ϑ2]M,q, [ϑ1 4 ϑ2]M,q: analogous as for “state

formulae” ϕ;
– [〈〈A〉〉ϕ]M,q = sups∈ΣA

inft∈ΣAgt\A
{[ϕ]M†〈s,t〉,q};

In order to keep consistent with qualitative logics of strategic ability, we assume
that instantiation of an mmdp by a policy s is “soft” in the sense that nested
strategic operators discard previous instantiations and instantiate the original
model again: [〈〈A〉〉ϕ]M†s,q = [〈〈A〉〉ϕ]M,q.

Example 2. Consider the multi-agent Markov decision process from Figure 1A,
consisting of two agents (1 and 2). If the agents cooperate, they can maximize
the expected achievable reward quite successfully, as [〈〈1, 2〉〉M3R]q1 = 0.9 (best
policy: both agents play β in q1 with probability 1; the choices at other states are
irrelevant). If agent 1 is to maximize the expected achievable reward on his own,
against adversary behavior of agent 2, then he is bound to be less successful:
[〈〈1〉〉M3R]q1 = 0.6. Also, in this case agent 1 should employ a different policy,
namely play α in q1 with probability 1.

4 Formal Results

The semantics of mtl, presented in the previous section, portrays it as a language
of arithmetic expressions that can be used to define numerical characteristics of
Markov processes. However, mtl can be also seen as a logic, i.e. a set of sentences
that are true in some contexts, and false (at least to a degree) in others. This
view allows us to use the conceptual apparatus of mathematical logic to study
e.g. the expressivity of the language. Also, we can state interesting properties of
the domain (multi-agent stochastic processes) through formulae of mtl. To this
end, we first define what it means for a formula to be valid and/or satisfiable.

4.1 Levels of Truth

Since every domain must include a distinguished value for the classical (com-
plete) truth, validity of formulae can be defined in a straightforward way.

Definition 6 (Levels of validity). Let M be a multi-agent Markov decision
process, q a state in M, and ϑ a formula of mtl2. Then:



– ϑ is true in M, q (written M, q |= ϑ) iff [ϑ]M,q = >.
– ϑ is valid in M (written M |= ϑ) iff it is true in every state of M.
– ϑ is valid for multi-agent Markov decision processes (written |= ϑ) iff it is

valid in every mmdp M.
– Additionally, for path formulae γ, we can say that γ holds on run λ in mmdp
M (written M, λ |= γ) iff [γ]M,λ = >.

The notion of validity helps to express general properties of stochastic multi-
agent systems in a neat logical way. Moreover, Definition 6 allows to define the
typical decision problems for mtl2 in a natural way:

– Given a formula ϑ, the validity problem asks if |= ϑ;
– Given a formula ϑ, the satisfiability problem asks if there are M, q such that
M, q |= ϑ;

– Given a model M, state q and formula ϑ, the model checking problem asks
if M, q |= ϑ.

For example, we can search for a model in which agent a can guarantee the
average reward r to be at least 0.6 in the long run by solving the satisfiability
problem for formula 0.6 4 〈〈a〉〉Amr.

We consider model checking the most important of the three problems, since
in the analysis of a stochastic system the domain specification is usually given by
a procedural representation (rather than axiomatic theory). Some work on model
checking multi-valued temporal logics has been reported in [11, 12]. Perhaps
even more importantly, computing approximate “solutions” of mdp’s is one of
the central issues studied by the Markov community. Integration of the two
approaches seems a very promising (and exciting) path for future research.

4.2 Concurrent Game Structures as MMDP’s. Correspondence
between MTL2 and ATL*

Multi-agent Markov decision processes can be seen as generalizations of concur-
rent game structures [17], in which quantitative information is added through
non-classical values of atomic statements and probabilities of transitions. Con-
versely, concurrent game structures can be seen as a subclass of mmdp’s with all
fluents assuming only classical truth values.

Definition 7. Let M be an mmdp. Formula ϕ is propositional in M iff it can
take only the values of >,⊥, i.e., [ϕ]M,q ∈ {>,⊥} for all q ∈ St. A concurrent
game structure is an mmdp with only propositional fluents.

This way, we obtain the class of models that are used for qualitative alternating-
time logics, i.e. ATL and ATL∗. Of course, when interpreting formulae of quali-
tative ATL/ATL∗, one must as well ignore the probabilities that are present in
Markov decision processes. Note also that the semantics of the original ATL/ATL∗
uses the “history-based” notion of a strategy (i.e., strategies assign choices to
histories rather than single states), while our mtl2 is underpinned by a much



weaker notion of memoryless (or positional) strategies. This makes the two logics
formally incomparable. However, we can show that mtl2 strictly generalizes the
memoryless version of ATL∗. The latter was studied in [21] under the acronym
of ATLIr∗ (ATL with Perfect Information and imperfect recall), and we will use
the name here.

Proposition 1. Let M be a transition system, and ϕ a formula of ATLIr∗.
Moreover, let ϕ′ be the result of replacing every occurrence of 〈〈A〉〉 with 〈〈A〉〉A
in ϕ for all A ⊆ Agt. Then, M, q |=mtl2

ϕ′ iff M, q |=ATLIr∗
ϕ.

Proof (sketch). Let σA denote the set of deterministic memoryless strategies of
group A.3 The proof follows by induction on the structure of ϕ; here, we only
sketch the induction step for the most important case, namely ϕ ≡ 〈〈A〉〉

Ir
γ. We

recall from [21] the semantics of 〈〈A〉〉
Ir
: let outM(q, s) be the set of paths in M

that can result from execution of strategy s from state q on; then,M, q |= 〈〈A〉〉Irγ
iff there is s ∈ σA such that for every λ ∈ outM(q, s) we have M, λ |= γ.

“mtl2 ⇒ ATLIr∗”: Let M, q |=mtl2
〈〈A〉〉Aγ. Then, [〈〈A〉〉Aγ]M,q = >, and so

sups∈ΣA
inft∈ΣAgt\A

infλ∈RM†〈s,t〉(q)[γ]M†〈s,t〉,λ = >; let s∗ be a strategy that
maximizes the above expression. Note that all the state subformulae of γ will be
in fact evaluated in the original mmdpM, so we get that inft∈ΣAgt\A

infλ∈RM†〈s∗,t〉(q)

[γ]M,λ = >. Thus, ∀t∈ΣAgt\A
∀λ∈RM†〈s∗,t〉(q)[γ]M,λ = >, and by the induction

hypothesis we obtain that ∀t∈ΣAgt\A
∀λ∈RM†〈s∗,t〉(q)M, λ |=ATLIr∗

γ. Now we ob-
serve that if s ∈ ΣA is a randomized strategy and bsc ∈ σA is any deter-
minization of s then RM†〈bsc,t〉(q) ⊆ RM†〈s,t〉(q), so also for bs∗c we have that
∀t∈ΣAgt\A

∀λ∈RM†〈bs∗c,t〉(q)M, λ |=ATLIr∗
γ. Finally, we take t to be the uniform

randomized strategy of Agt\A since it does not remove any paths from the model:
RM†〈bs∗c,uniform〉(q) = outM(q, bs∗c). In consequence, ∀λ∈outM(q,bs∗c)M, λ |=ATLIr∗

γ, which concludes this part of the proof.

“ATLIr∗ ⇐ mtl2”: LetM, q |=ATLIr∗
〈〈A〉〉

Ir
γ. Then, ∃s∈σA

∀λ∈outM(q,s)M, λ |=ATLIr∗

γ. We take such s. By induction, ∀λ∈outM(q,s)M, λ |=mtl2
γ. Take any t ∈ ΣAgt\A,

then RM†〈s,t〉(q) ⊆ outM(q, s), and hence also ∀λ∈RM†〈s,t〉(q)M, λ |=mtl2
γ. As

σA ⊆ ΣA, we finally get that ∃s∈ΣA
∀t∈ΣAgt\A

∀λ∈RM†〈s,t〉(q)M, λ |=mtl2
γ. In con-

sequence, sups∈ΣA
inft∈ΣAgt\A

infλ∈RM†〈s,t〉(q)[γ]M†〈s,t〉,λ = >, which concludes
the proof.

Proposition 2. There is a transition system M with states q, q′ which cannot
be distinguished by any formula of ATL∗ nor ATLIr∗, and can be distinguished
by a formula of mtl2.

Proof. Consider the transition system in Figure 2, which can be seen as a con-
current game structure with a single agent (Agt = {1}) and a single action that
can be executed (Act = {α}). Note that states q1, q2 are bisimilar under ctl*
bisimulation, so the same ctl* properties hold in both states (cf. e.g. [22]). Since
the agent cannot make any real choices, both ATL∗ and ATLIr∗ have no more
3 Recall that ΣA is the set of all (possibly randomized) memoryless strategies of A.
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Fig. 2. mtl2 vs. ATL∗: probabilities matter!

distinguishing power for this model as ctl*, and hence the same properties of
ATL∗ (resp. ATLIr∗) hold in q1, q2 as well.

On the other hand, we have that [〈〈1〉〉Mmp]q1 = 0.5 = [〈〈1〉〉Em0.5p]q1 , and
[〈〈1〉〉Mmp]q2 = 0.1 6= 0.5 = [〈〈1〉〉Em0.5p]q2 . Thus, for ϕ ≡ (〈〈1〉〉Mmp ∼= 〈〈1〉〉Em0.5p),
we have q1 |= ϕ and q2 6|= ϕ (and even q2 |= ¬ϕ).

The above example shows that a proper notion of bisimulation for Markov
decision processes must take into account transition probabilities.

4.3 State-Based Formulae and Bellman Equations

“Atl without star” (or “vanilla atl”) is the most often used variant of alternating-
time temporal logic, mainly due to the complexity of its model checking prob-
lem and the fact that its semantics can be defined entirely in relation to states.
“Vanilla” atl can be seen as a syntactic restriction of atl*, in which every tem-
poral modality is preceded by exactly one path quantifier. In this section, we
consider a similar syntactic restriction on mtl2; we call it state-based mtl2.

Definition 8. State-based mtl2 ( smtl2 in short) is given as follows:

ϑ ::= p | Bool(ϑ) | 〈〈A〉〉ϕ,
ϕ ::= Eγ | Mγ,
γ ::= g

c ϑ | 2cϑ | ϑUc ϑ | mcϑ.

Proposition 3 presents fixpoint characterizations for most modalities of smtl2.
Note that the last validity from the list is in fact a modal formulation of Bellman
equation, which is the basic law used in analysis of Markov decision processes.
The other formulae can be seen as variants of the equation for non-standard
analysis based on minimal/maximal rather than average rewards. The results
from [12] suggest that 〈〈A〉〉M2c and 〈〈A〉〉MUc do not have fixpoint characteri-
zations, but this remains to be formally proven.

Proposition 3. The following formulae of smtl2 are valid:



– 〈〈A〉〉E2cϕ ∼= ϕ ∧ 〈〈A〉〉E g
c 〈〈A〉〉E2cϕ;

– 〈〈A〉〉A2cϕ ∼= ϕ ∧ 〈〈A〉〉A g
c 〈〈A〉〉A2cϕ;

– 〈〈A〉〉Eϕ1 Uc ϕ2
∼= ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉E g

c 〈〈A〉〉Eϕ1 Uc ϕ2;
– 〈〈A〉〉Aϕ1 Uc ϕ2

∼= ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉A g
c 〈〈A〉〉Aϕ1 Uc ϕ2;

– 〈〈A〉〉Emcϕ ∼= ϕ⊕c 〈〈A〉〉E g〈〈A〉〉Emcϕ;
– 〈〈A〉〉Amcϕ ∼= ϕ⊕c 〈〈A〉〉A g〈〈A〉〉Amcϕ;
– 〈〈A〉〉Mmcϕ ∼= ϕ⊕c 〈〈A〉〉M g〈〈A〉〉Mmcϕ.

Proof (sketch). We will sketch the proof of the first validity; the others can be
proved in an analogous way.

Let L = [〈〈A〉〉E2cϕ]M,q and R = [ϕ ∧ 〈〈A〉〉E g
c 〈〈A〉〉E2cϕ]M,q. It is easy

to see that R = min([ϕ]M,q, c · sups∈ΣA
inft∈ΣAgt\A

supq′∈τM†〈s,t〉(q)
sups′∈ΣA

inft′∈ΣAgt\A
{[E2cϕ]M†〈s′,t′〉,q′}). Moreover, by [1, Proposition 8], we get that L =

min([ϕ]M,q, c · sups∈ΣA
inft∈ΣAgt\A

supq′∈τM†〈s,t〉(q)
{[E2cϕ]M†〈s,t〉,q′}). Thus, in

order to prove L = R, it is sufficient to prove that

sups∈ΣA
inft∈ΣAgt\A

supq′∈τM†〈s,t〉(q)
{[E2cϕ]M†〈s,t〉,q′}

= sups∈ΣA
inft∈ΣAgt\A

supq′∈τM†〈s,t〉(q)
sups′∈ΣA

inft′∈ΣAgt\A
{[E2cϕ]M†〈s′,t′〉,q′}.

The difference between the sides of the equation is that in the left hand side
optimal strategies s, t are chosen once (at state q), while in the right hand
side strategies are re-evaluated after each step. Let s∗ be a strategy of A that
optimizes L, and let us take s and s′ in R to be the same as s∗ in L. We
observe that inft∈ΣAgt\A

supq′∈τM†〈s∗,t〉(q)
{[E2cϕ]M†〈s∗,t〉,q′} is indeed equal to

inft∈ΣAgt\A
supq′∈τM†〈s∗,t〉(q)

inft′∈ΣAgt\A
{[E2cϕ]M†〈s∗,t′〉,q′}. Thus, we obtain that

A have at least as good options in R as in L, and hence L ≤ R.
For the other direction, note that s, t in R are only relevant wrt the agents’

actions in state q (later s′, t′ will be used). By unfolding R, we obtain an infinite
sequence of collective action profiles sn(qn), tn(qn) which maximize (over A’s
actions) and minimize (over Agt\A’s actions) the value of E2cϕ in the next step.
Now we observe that, when the system returns to state q, the same strategies
s, t will be again optimal for the respective parties since the same expression will
be maximized/minimized. Thus, the sequence of action profiles can be combined
into a single pair of memoryless strategies s∗, t∗, which maximizes/minimizes
E2cϕ as good as the original sequence of strategies. In consequence, also R ≤ L.

5 Conclusions

We extend the Markov Temporal Logic mtl from [1] to handle Markovian models
with multiple agents acting in parallel. In terms of formal results, we show that
the resulting logic strictly embeds ATLIr∗, i.e., alternating-time temporal logic
with memoryless strategies. We also present fixpoint characterizations for some
natural combinations of strategic, path, and temporal operators, that can be
seen as analogues of Bellman equation. The characterizations enable computing
the truth values of many mtl2 formulae by solving sets of simple equations.
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