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ABSTRACT
Typical analysis of Markovian models of processes refers
only to the expected utility that can be obtained by the
process. On the other hand, modal logic offers a system-
atic method of characterizing processes by combining various
modal operators. A multivalued temporal logic for Markov
chains and Markov decision processes has been recently pro-
posed in [8, 9]. Here, we discuss how it can be extended to
the multi-agent case.
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1. INTRODUCTION
There are many different models of agents and multi-

agent systems; however, most of them follow a similar pat-
tern. First of all, they include information about possible
situations (states of the system) that defines relations be-
tween states and and their external characteristics (essen-
tially, “facts of life” that are true in these states). Second,
they provide information about relationships between states
(e.g, possible transitions between states).

Models that share this structure can be, roughly speak-
ing, divided into two classes. Qualitative models provide
no numerical measures for these relationships. Quantitative
models assume that relationships are measurable, and pro-
vide numerical information about the degrees of relations.
In [8, 9], we explored analogies between transition systems
and Markovian models in order to provide a more expressive
language for reasoning about, and specification of agents in
stochastic environments. Here, we tentatively extend the
framework to the multi-agent case.

We begin by summarizing our proposal of Markov tem-
poral logic mtl from [8, 9]. Then, we point out that multi-
agent Markov decision processes (mmdps) [5] share many
features with concurrent game structures (which are models
of the popular strategic logic atl [1]). In order to explore
the similarity, we first propose a refinement of mmdps that
allows to model both quantitative and qualitative properties
of a process. Then, we extend the syntax and semantics of
mtl so that strategic abilities of groups of agents can be
expressed.

Analysis of quantitative process models is usually based
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on the notion of expected reward. On the other hand, logi-
cal approaches are usually concerned with “limit properties”
like the existence of an execution that displays a specific
temporal pattern. We believe that both kinds of properties
are interesting and worth using to describe processes. For
instance, besides the expected value of cumulative future
reward, we can ask of the maximal (or minimal) cumula-
tive reward. Or, we might be concerned with the expected
value of minimal guaranteed reward etc. A typical analysis
of Boutilier’s mmdps is even more constrained, as we assume
that all the agents in the system cooperate to achieve a com-
mon goal (i.e., maximize their common expected cumulative
reward). Our extension allows to study the outcomes that
can be obtained by various groups of agents.

In the context of multi-robot systems, the framework of
Markov temporal logic can be used in several ways:

1. Models of mtl can include quantitative as well as qual-
itative properties. Thus, one can use the models to
represent (and study) domains in which both measur-
able and non-measurable features are important.

2. Given a model of a system, formulae of Markov tem-
poral logic can be used for verification of temporal and
strategic properties of its components.

3. Perhaps more importantly, formulae of mtl can be
used to define the intentional setting of the system.
That is, one can use an mtl formula to specify the
objective that is supposed to be pursued and the team
of agents that is going to pursue it. Additionally, mtl
allows to specify the anticipated behavior of the rest
of agents.

Given a model and a specification of the objective,
the semantics of mtl provides unambiguous means for
evaluation of available policies.

4. Formulae of mtl can be also used for specification of
models and their components, since each formula of
mtl defines a class of models in which the formula is
valid.

In this paper, we focus especially on points 3 (the rescue
mission example in Section 4) and 4 (Section 5).

2. MARKOV TEMPORAL LOGIC
In this section we recall Markov Temporal Logic (mtl)

from [8, 9]. The logic allows for flexible reasoning about
outcomes of agents acting in stochastic environments. The
core of the logic is called mtl0, and addresses outcomes of



Markov chains. Intuitively, mtl0 is a quantitative analogue
of the branching-time logic ctl* [7]. mtl1 can be used to
reason about Markov decision processes, and extends mtl0

with a strategic operator that refers to the outcome that is
made by the “best” policy. In consequence, it can be seen
as a quantitative analogue of the single-agent fragment of
atl* [1] with nondeterministic models.

2.1 Basic Models: Markov Chains and Markov
Decision Processes

Typically, a Markov chain [12, 10] is a directed graph with
probabilistic transition relation. In our definition, we in-
clude also a device for assigning states with utilities and/or
propositional values. This is done through utility fluents
which generalize atomic propositions in modal logic in the
sense that they can take both numerical and qualitative
truth values.

Definition 1 (Domain of truth values). A domain
D = 〈U,>,⊥, u〉 consists of: (1) a set U ⊆ R of utility val-
ues (or simply utilities); (2) special values >,⊥ standing for

the logical truth and falsity, respectively; Û = U∪{>,⊥} will
be called the extended utility set; and, finally, (3) a comple-

ment function u : Û → Û . A domain should satisfy the
conditions specified in [8, 9], omitted here for lack of space.

Definition 2 (Markov chain). A Markov chain over
domain D = 〈U,>,⊥, u〉, and a set of utility fluents Π is a
tuple M = 〈St, τ, π〉, where:

• St is a set of states (we will assume that the set is
finite and nonempty throughout the rest of the paper);

• τ : St × St → [0, 1] is a stochastic transition relation
that assigns each pair of states q1, q2 with a probability
τ(q1, q2) that, if the system is in q1, it will change its
state to q2 in the next moment. For every q1 ∈ St,
τ(q1, ·) is assumed to be a probability distribution, i.e.∑

q∈St τ(q1, q) = 1.

By abuse of notation, we will sometimes write τ(q) to
denote the set of states accessible in one step from q,
i.e. {q′ | τ(q, q′) > 0}.

• π : Π× St→ Û is a valuation of utility fluents.

A run in Markov chain M is an infinite sequence of states
q0q1 . . . such that each qi+1 can follow qi with a non-zero
probability. The set of runs starting from state q is de-
noted by RM (q).1 Let λ = q0q1... be a run and i ∈ N0.
Then: λ[i] = qi denotes the ith position in λ, and λ[i..∞] =
qiqi+1 . . . denotes the infinite subpath of λ from position i
on.

Markov decision processes [4, 3] extend Markov chains
with an explicit action structure: transitions are now con-
nected to actions that generate them.

Definition 3 (Markov decision process). A Markov
decision process over domain D = 〈U,>,⊥, u〉, and a set of
utility fluents Π is a tuple M = 〈St,Act, τ, π〉, where: St, π
are like in a Markov chain, Act is a nonempty finite set of
actions, and τ : St × Act × St → [0, 1] is a stochastic tran-
sition relation; τ(q1, α, q2) defines the probability that, if the
system is in q1 and the agent executes α, the next state will

1If the model is clear from the context, the subscripts will
be omitted.

be q2. For every q ∈ St, α ∈ Act, we assume that either (1)
τ(q, α, q′) = 0 for all q′ (i.e., α is not enabled in q), or (2)
τ(q, α, ·) is a probability distribution.

Additionally, we define act(q) = {α ∈ Act | ∃q′.
τ(q, α, q′) > 0} as the set of enabled actions in q.

A policy is a conditional plan that specifies future actions
of the decision-making agent. Policies can be stochastic as
well, thus allowing for randomness in the agent’s play.

Definition 4. A policy (or strategy) in a Markov deci-
sion process M = 〈St,Act, τ, π〉 is a function s : States ×
Act→ [0, 1] that assigns each state q with a probability dis-
tribution over the enabled actions act(q). That is, s(q, α) ∈
[0, 1] for all q ∈ St, α ∈ act(q), and

∑
α∈act(q) s(q, α) = 1.

Values of s(q, α) for α /∈ act(q) are irrelevant.
The set of all policies in a model is denoted by Σ.

Note that, if the agent’s policy is fixed, a Markov decision
process reduces to a Markov chain.

Definition 5. Policy s : States × Act → [0, 1] instan-
tiates mdp M = 〈St,Act, τ, π〉 to a Markov chain M †
s = 〈St′, τ ′, π′〉 with St′ = St, π′ = π, and τ ′(q, q′) =∑

α∈act(q) s(q, α) τ(q, α, q′).

2.2 Logical operators as Minimizers and Max-
imizers

Note that – when truth values represent utility of an agent
– temporal operators “sometime” and “always” have a very
natural interpretation. “Sometime p” (3p) can be rephrased
as “p is achievable in the future”. Thus, under the assump-
tion that agents want to obtain as much utility as possible,
it is natural to view the operator as maximizing the util-
ity value along a given temporal path. Similarly, “always p”
(2p) can be rephrased as “p is guaranteed from now on”. In
other words, 2p asks for the minimal value of p on the path.
On a more general level, every universal quantifier is essen-
tially a minimizer of truth values, while existential quanti-
fiers can be seen as maximizers. Thus, Aγ (“for all paths γ”)
minimizes the utility specified by γ across all paths that can
occur, etc. Also, conjunction and disjunction can be seen
as a minimizer and a maximizer: ϕ ∨ ψ reads easily as “the
utility that can be achieved through ϕ or ψ”, while ϕ ∧ ψ
reads as “utility guaranteed by both ϕ and ψ”.

2.3 MTL0: A Logic of Markov Chains
Operators of mtl0 include path quantifiers E,A,M for the

maximal, minimal, and average outcome of a set of tempo-
ral paths, respectively, and temporal operators 3,2,m for
the maximal, minimal, and average outcome along a given
path.2 Propositional operators follow the same pattern:
∨,∧,⊕ refer to maximization, minimization, and weighted
average of outcomes obtained from different utility channels
or related to different goals. Finally, we have the “defuzzifi-
cation” operator 4, which provides a two-valued interface to
the logic. ϕ1 4 ϕ2 yields“true” if the outcome of ϕ1 is less or
equal to ϕ2, and“false”otherwise. Among other advantages,
it allows to define the classical computational problems of
validity, satisfiability and model checking for mtl.

2We allow to discount future outcomes with a discount fac-
tor c. Also, we introduce the “until” operator U , which is
more general than 3.



Let Bool(ω) = ¬ω | ω ∧ ω | ω ⊕c ω | ω 4 ω denote quasi-
Boolean combinations of formulae of type ω. The syntax of
mtl0 can be defined by the following production rules:

ϕ ::= p | Bool(ϕ) | Eγ | Mγ,
γ ::= ϕ | Bool(γ) | f

c γ | 2cγ | γ Uc γ | mcγ,

where p ∈ Π is a utility fluent, and c ∈ (0, 1] is a discount
factor. Additionally, we define ϕ1

∼= ϕ2 ≡ (ϕ1 4 ϕ2)∧(ϕ2 4
ϕ1). Boolean constants T,F (standing for“true”and“false”),
disjunction, and the “sometime” temporal operator 3 are
defined in the standard way. We may also use the following
shorthands for discount-free versions of temporal operators:f≡ f

1 ,3 ≡ 31,2 ≡ 21, U ≡ U1 .

Example 1. Let r be a utility fluent that represents the
immediate reward at each state. The following mtl0 for-
mulae define some interesting characteristics of a process:
Mm0.9r (expected average reward with time discount 0.9),
Am0.9r (guaranteed average reward with the same discount
factor), M2r (expected minimal undiscounted reward), and
A3r (guaranteed maximal reward).

The main idea behind mtl0 is that formulae can refer
to both quantitative utilities and qualitative truth values.
Thus, we treat complex formulae as fluents, just like the
atomic utility fluents from Π, through a valuation function
that assigns formulae with extended utility values from Û .
Let M = 〈St, τ, π〉 be a Markov chain over domain D =
〈U,>,⊥, u〉 and a set of utility fluents Π. The valuation
function [·] is defined below.

• [p]M,q = π(p, q), for p ∈ Π;

• [¬ϕ]M,q = [ϕ]M,q;

• [ϕ1 ∧ ϕ2]M,q = min([ϕ1]M,q, [ϕ2]M,q);

• [ϕ1 ⊕c ϕ2]M,q = (1− c) · [ϕ1]M,q + c · [ϕ2]M,q;

• [ϕ1 4 ϕ2]M,q = > if [ϕ1]M,q ≤ [ϕ2]M,q and ⊥ else;

• [Eγ]M,q = sup{[γ]M,λ | λ ∈ R(q)};
• The Markovian path quantifier Mγ produces the ex-

pected truth value γ across all the possible runs, cf. [8,
9] for the formal construction;

• [ϕ]M,λ = [ϕ]M,λ[0];

• [¬γ]M,λ, [γ1 ∧ γ2]M,λ, [γ1 ⊕c γ2]M,λ, [γ1 4 γ2]M,λ: anal-
ogous to Boolean combinations of “state formulae” ϕ;

• [ f
c γ]M,λ = c · [γ]M,λ[1..∞];

• [2cγ]M,λ = infi=0,1,...{ci[γ]M,λ[i..∞]};
• [γ1 Uc γ2]M,λ = supi=0,1,...{

min( min0≤j<i{cj [γ1]M,λ[j..∞]}, ci[γ2]M,λ[i..∞])
}
;

• The Markovian temporal operator mc produces the av-
erage discounted reward along the given run:

[mcγ]M,λ =

{
(1− c)

∑∞
i=0 c

i[γ]M,λ[i...∞] if c < 0

limi→∞
1

i+1

∑i
j=0[γ]M,λ[i...∞] if c = 0

2.4 MTL1: A Logic of Markov Decision Pro-
cesses

In order to facilitate strategic reasoning about Markov
decision processes, we use a strategic quantifier 〈〈a〉〉 , similar
to the cooperation modality from alternating-time temporal
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Figure 1: Simple mmdp with two agents 1, 2

logic atl [1]. The intuitive meaning of 〈〈a〉〉ϕ is “the most
that the decision maker can make out of ϕ”.

The syntax of mtl1 is given by the following grammar:

ϑ ::= p | Bool(ϑ) | 〈〈a〉〉ϕ,
ϕ ::= ϑ | Bool(ϕ) | Eγ | Mγ,
γ ::= ϕ | Bool(γ) | f

c γ | 2cγ | γ Uc γ | mcγ.

An example formula of mtl1 is 〈〈a〉〉Amr which maximizes
the guaranteed average reward r with respect to available
policies. Note that a is just a fixed symbol and not a pa-
rameter of the strategic operator.

Let M = 〈St,Act, τ, π〉 be a Markov decision process over
domain D = 〈U,>,⊥, u〉 and a set of utility fluents Π. The
truth value of formulae in M is determined by the valuation
function [·] that extends the valuation of mtl0 formulae from
Section 2.3 as follows:

• [p]M,q = π(p, q), for p ∈ Π;

• [¬ϑ]M,q, [ϑ1 ∧ ϑ2]M,q, [ϑ1 ⊕c ϑ2]M,q, [ϑ1 4 ϑ2]M,q: anal-
ogous as for “state formulae” ϕ;

• [〈〈a〉〉ϕ]M,q = sup{[ϕ]M†s,q | s ∈ Σ};
• [ϑ]M†s,q = [ϑ]M,q.

3. BEYOND MDP: THE MULTI-AGENT CASE
In the more general case, a system can include multiple

agents/processes, interacting with each other. On the lan-
guage level, we propose to extend the strategic operator 〈〈a〉〉
to a family of operators 〈〈A〉〉 , parameterized with groups of
agents A. Intuitively, 〈〈A〉〉ϕ refers to how much agents A
can “make out of” ϕ by following their best joint policy.
This yields a language similar to the alternating-time tem-
poral logic atl* from [1], albeit with strategic operators
separated from path quantifiers.

On the semantic level, we observe the similarity between
multi-agent Markov decision processes [5] and concurrent
game structures [1] (cf. Figures 1 and 2). As models for
our multi-agent mtl, we will therefore use a refinement of
mmdps similar to the versions of mdps and Markov chains
presented in Section 2.1. The semantics of 〈〈A〉〉ϕ is based
on maximization of the value of ϕ with respect to A’s joint
strategies. We assume that the opponents play a strategy
that minimizes ϕ most. This way, operator 〈〈A〉〉 corre-
sponds to the maxmin of the two-player game where A is
the (collective) maximizer, and the rest of agents fills in the
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Figure 2: Simple concurrent game structure

role of the (collective) minimizer. Note that such a seman-
tics entails that the opponents of A must also play only
memoryless (i.e., Markovian) strategies.

3.1 MTL2: Syntax
Let Agt be the set of all agents. The only difference be-

tween the syntax of mtl2 and the single-agent mtl1 is that,
instead of the single strategic operator 〈〈a〉〉 , we have now
a family of operators 〈〈A〉〉 , one for each group of agents
A ⊆ Agt. 〈〈A〉〉ϕ maximizes the value of ϕ against the most
dangerous response from Agt\A. In many cases, however, it
is not appropriate to assume such a hostile play of Agt \A.
As an alternative, we propose operator (stra ξ), similar to
the “strategic commitment” operator from [13]. (stra ξ)ϑ
reads as: “suppose that agent a plays strategy ξ, then ϑ
holds”. Thus, (stra ξ) assumes a particular strategy on the
part of agent a. The strategy can be obtained e.g. by
learning, statistical analysis, or game-theoretic rationality
assumptions.

3.2 MTL2: Semantics
The semantics of mtl2 is defined for a version of multi-

agent Markov decision processes that incorporate qualitative
as well as quantitative atomic properties of states.

Definition 6 (mmdp). A multi-agent Markov decision
process over domain D = 〈U,>,⊥, u〉, a set of utility flu-
ents Π, and a set of strategic terms Ξ is a tuple M =
〈Agt, St, {Acti}i∈Agt, τ, π, [[·]]〉, where: Agt = {1, . . . , k} is
the set of agents, Acti is the set of individual actions of
agent i, and Act =

∏
i∈AgtActi is the space of joint actions

( action profiles). St, τ, π are like in a Markov decision pro-
cess. The denotation of terms [[·]] will be defined shortly.

For a joint action α, we define αi to denote agent i’s
individual part in α, and we extend the notation to sets
of joint actions and agents. Also, let A be a set of ac-
tion profiles, and α a collective action of agents A. Then,
A|α = {β ∈ A | βA = α} is the set of action profiles that
include α.

Definition 7. An individual strategy (policy) si : St×
Acti → [0, 1] of agent i is defined as in Markov decision
processes (only now it refers to i’s individual actions Acti).
The set of all i′s strategies is denoted by Σi. A collective
strategy sA for team A ⊆ Agt is simply a tuple of individual

strategies, one per agent from A. The set of all A’s collective
strategies is given by ΣA =

∏
i∈A Σi. The set of all strategy

profiles in a model is given by Σ = ΣAgt.
Now the denotation of strategic terms can be defined. [[·]]

is a mapping that takes a strategic term ξ ∈ Ξ and an agent
i ∈ Agt, and returns a strategy of i, that is, [[ξ]]i ∈ Σi.

For a collective strategy s, we define si as the i’s individual
part in s. We also extend the notation to sets of agents.

Definition 8. Policy s ∈ ΣA instantiates mmdp M =
〈Agt, St, {Acti}i∈Agt, τ, π, [[·]]〉 to a simpler mmdp M † s =
〈Agt \A,St, {Acti}i∈Agt\A, τ

′, π, [[·]]〉 with

τ ′(q, α, q′) =
∑

α′∈(act(q)|α)

(
∏
i∈A

si(q, α′)) τ(q, α′, q′).

If A = Agt, then s instantiates M to a Markov chain.

The semantics of mtl2 formulae extends that of mtl1 with
the following clauses:

• [〈〈A〉〉ϕ]M,q = sups∈ΣA
inft∈ΣAgt\A

{[ϕ]M†〈s,t〉,q};
• [(stra ξ)ϑ]M,q = [ϑ]M†[[ξ]],q.

Additionally, we can extend operator (str ) to collective
strategies:

(str{a1,...,ar} 〈ξ1, . . . , ξr〉) = (stra1 ξ1) . . . (strar ξr).

Example 2. Consider the multi-agent Markov decision
process from Figure 1. If the agents cooperate, they can max-
imize the expected achievable reward quite successfully, as
[〈〈1, 2〉〉M3R]q1 = 0.9 (best policy: both agents play β in q1
with probability 1; the choices at other states are irrelevant).
If agent 1 is to maximize the expected achievable reward on
his own, against adversary behavior of agent 2, then he is
bound to be less successful: [〈〈1〉〉M3R]q1 = 0.6. (Note also
that in this case 1 should employ a different policy, namely
play α in q1 with probability 1.) Finally, assuming random
(instead of adversary) behavior of agent 2 improves 1’s rate
of success only slightly: [(str2 ξu)〈〈1〉〉M3R]q1 = 0.68, and
the best policy for 1 is again to play α in q1 (and do anything
at the other states).

4. SPECIFICATION OF TEAMS AND OB-
JECTIVES

In this paper, we argue that modal logics of strategies and
time have much to offer in terms of a specification language
for multi-agent Markov processes. In particular, formulae
like the ones presented in the previous sections can be used
to specify objectives behind mmdps. Note that the evaluation
of formula 〈〈A〉〉ϕ is in fact underpinned by search for a policy
for group A that maximizes the value of ϕ. Thus, with
〈〈A〉〉ϕ we specify both the objective function which is to be
maximized (ϕ), and the team of agents that should perform
the task (A).

An mmdp is just a structure of (abstract) agents, states,
transitions, and local rewards. It is typically assumed that
the global objective is to maximize the expected cumula-
tive (or average) reward, perhaps with a temporal discount.
Also, the team is assumed to consist of all the agents in the
system. Here, we argue that there are other meaningful ob-
jectives for mmdps, and that it makes sense to consider a
subset of agents as the “proponents”. We support our argu-
ment with a “rescue mission” example.



4.1 Example: Rescue Mission
The scenario is as follows: a group of k robots operates

in a burning house in order to save people who are inside.
There are n people inside and the house consists of m places.
The state of each robot can be characterized by its status
(alive or dead), current position, and an indication whether
the robot is carrying some person (and, if so, which person).
Similarly, a person can be characterized by its current sta-
tus and position.3 Each place can be burning, damaged, or
still in a good shape. Regarding actions, robots and people
that are alive can try to move North, South, East or West.
Robots can additionally Pick up a person or Lay it on the
ground. Every agent can also decide to do nothing (Nop).
Two utility fluents are used: saved represents the percentage
of people who are safely outside the building; robs refers to
the percentage of robots that are still functioning.

The structure of states, actions, and fluents (including the
domain of truth values D) is formally defined below.

D = 〈[0, 1],>,⊥, u〉 with > = 1, ⊥ = 0, and u = 1− u;

Agt = Robots ∪ People, where
Robots = {1, . . . , k}, People = {k + 1, . . . , k + n};
St =

∏k+n
i=1 Sti × PlStatm, where

Sti = Places×Status× (People∪{nobody}) for i ∈ Robots,
Sti = Places× Status for i ∈ People,
Places = {1, . . . , m, outside}, Status = {alive, dead},
PlStat = {burning, damaged, OK};
Act =

∏k+n
i=1 Acti, where

Acti = {N, S, E, W, P ick, Lay, Wait} for i ∈ Robots,
Acti = {N, S, E, W, Wait} for i ∈ People;

Π = {saved, robs};
Let q = 〈q1, . . . , qk+n, ps1, . . . , psm〉, and let #S denote the
number of elements of set S. Then:

π(saved, q) =
#{i∈People|qi=〈outside,alive〉}

n
,

π(robs, q) =
#{i∈Robots|qi=〈__,alive,__〉}

k
.

The structure of transitions reflects events that can hap-
pen during the mission. For instance, a robot’s attempt to
go North should result with getting to the subsequent place
with a high probability if there is a door (or open space) be-
tween the places and none of them is burning. In case there
is fire in one of the places, the probability should be lower,
and the probabilities that the robot becomes dead or staying
in the same place should increase etc. We do not give the
transitions explicitly here, but an example structure of this
kind should be easy to imagine.

At least several different formulae of mtl2 can be used to
specify the operating team and its global objective (whose
value is to be maximized):

• 〈〈Robots〉〉M32saved: if the team consists only of the
robots (and people inside the house are just objects
of the mission), then the robots should seek a policy
which maximizes the expected percentage of people
who will safely get out of the building (and stay there).
Note that, indeed, we should not strive to maximize
the expected cumulative utility (as is usually the case
for mdps): what we are interested in is getting most
people out eventually, and the intermediary values of
[saved] do not matter.

• 〈〈Robots〉〉M3saved: the above formula can be further
simplified if it is enough to get a person out alive (re-
gardless of what happens to him/her afterwards).

3If it is being carried by a robot, the information will be
included in the robot’s state.

• 〈〈Robots〉〉M30.95saved: we can use a discount factor
to favor more immediate results.

• 〈〈Robots ∪ P 〉〉M3saved: the robots can be helped by
a subset P of People.

• (strPeople ξu)〈〈Robots〉〉M3saved: in the previous spec-
ifications, we implicitly assumed that the “opponents”
will behave in the worst possible way. It is usually
more realistic to assume a more balanced pattern of
behavior, e.g. the uniform distribution of actions.

• 〈〈Robots〉〉A3saved: a politician’s perspective. Before
the elections, it may be a good idea to maximize the
guaranteed number of the rescued (instead of going for
the expected value).

• (strPeople ξu)〈〈Robots〉〉(M3saved⊕0.1M2robs): finally,
keeping the robots themselves from destruction can be
taken into account (although with much less impor-
tance than rescue of humans).

Note that the usual analysis of mmdps is just a special
case of what we can express with mtl. Namely, it can be
specified by the mtl2 formula 〈〈Agt〉〉Mmcr, where r is the
fluent representing the local reward at each state, and c is
the temporal discount value.

There are two problems with finding optimal strategies in
such a setting, as the example clearly demonstrates. First,
the complexity of models involving multiple agents is often
highly prohibitive. Second, agents do not have perfect infor-
mation about the current state of the system in most scenar-
ios (i.e., observability is limited). However, both problems
are inherent for mmdps in general, and we do not discuss
them further in this paper.

4.2 Some Notes on Specification of Objectives
In general, when team A ⊆ Agt is supposed to maximize

the objective expressed by an mtl0 formula ϕ, we can con-
sider 3 types of specifications, depending on what kind of
behavior we expect from the rest of agents:

1. Adversary behavior: 〈〈A〉〉ϕ is used (which refers to the
most harmful policy of Agt \A);

2. Collaborative behavior: 〈〈Agt〉〉ϕ is used, since all the
agents are de facto members of the team;

3. Anticipated behavior: (strAgt\A ξ)〈〈Agt〉〉ϕ is used, where
ξ denotes the behavior of the “opponents” that we an-
ticipate.

5. SPECIFICATION OF MMDP’S WITH MTL2

In Section 4, we showed how various objectives can be
specified for a given multi-agent Markov decision process.
In this section, we take a different perspective, and show
how mmdps themselves can be specified. To this end, we
first define what it means for a formula to be valid and/or
satisfiable.

In particular, one can specify properties of strategies, thus
imposing constraints on the denotation of strategic terms [[·]].
We show two important examples of such specifications in
Section 5.2.

5.1 Levels of Truth
Since every domain must include a distinguished value for

the classical (complete) truth, validity of formulae can be
defined in a straightforward way.



Definition 9 (Levels of validity). Let M be a multi-
agent Markov decision process, q a state in M, and ϑ a
formula of mtl2. Then:

• ϑ is true in M, q (written M, q |= ϑ) iff [ϑ]M,q = >.

• ϑ is valid in M (written M |= ϑ) iff it is true in every
state of M.

• ϑ is valid for multi-agent Markov decision processes
(written |= ϑ) iff it is valid in every mmdp M.

Definition 9 allows to define the typical decision problems
for mtl2 in a natural way:

• Given a formula ϑ, the validity problem asks if |= ϑ;

• Given a formula ϑ, the satisfiability problem asks if
there are M, q such that M, q |= ϑ;

• Given a model M, state q and formula ϑ, the model
checking problem asks if M, q |= ϑ.

For example, we can search for a model in which the guar-
anteed average reward r is at least 0.6 in the long run by
solving the satisfiability problem for formula 0.6 4 Amr.

5.2 Characterization of Nash Equilibrium
Multi-agent Markov decision processes strictly generalize

extensive game forms from game theory (in mmdps, players
act simultaneously, cycles are allowed, and payoffs/utilities
can be defined for each state). Thus, extensive games can
be seen as special instances of mmdps.

Definition 10. By a game model we denote an acyclic
finite connected mmdp M.

The state with no incoming transitions is called the initial
state. The “sink” states with no outgoing transitions are
called final states.4 Let StF be the set of final states in
M. M includes utility fluents u1, . . . , uk such that π(ui, q) ∈
U for q ∈ StF , and π(ui, q) = ⊥ otherwise. The fluents
represent the payoffs for agents at the end of the game.

For such models, we can use formulae of mtl2 for a simple
characterization of Nash equilibrium and subgame-perfect
Nash equilibrium. First, formula BRi(ξ, ϕ) specifies that
the i’s strategy within ξ is the best response to the Agt \
{i}’s part of ξ if ϕ specifies the objective (utility) of agent i.
Then, NE(ξ, ϕ1, . . . , ϕk) says that no agent can unilaterally
deviate to get a better payoff when i’s payoff is defined by
formula ϕi.

BRi(ξ, ϕ) ≡ (strAgt\{i} ξ[Agt \ {i}])〈〈i〉〉ϕ 4 (strAgt ξ)〈〈∅〉〉ϕ,

NE(ξ, ϕ1, . . . , ϕk) ≡
∧

a∈Agt

BRi(ξ, ϕi).

Proposition 1. Let M be a game model with initial state
q0. Then M, q0 |= NE(ξ,M3u1, . . . ,M3uk) iff ξ denotes a
Nash equilibrium in M.

A strategy profile is in subgame-perfect Nash equilibrium
iff it is in NE for every subgame of the game:

SPN(ξ, ϕ1, . . . , ϕk) ≡ 〈〈∅〉〉A2NE(ξ, ϕ1, . . . , ϕk).

4We can add loops at these states to make the model for-
mally consistent with the definition of mmdps.

Proposition 2. Let M be a game model with initial state
q0. Then M, q0 |= SPN(ξ,M3u1, . . . ,M3uk) iff ξ denotes
a subgame-perfect Nash equilibrium in M.

The above characterizations of Nash equilibrium and subgame-
perfect Nash are straightforward adaptations of characteri-
zations from [2, 13]. However, they are much more compact
than there because we do not have to enumerate all possi-
ble payoff values. Moreover, they work also for games with
chance moves and infinite sets of utility values.

6. CONCLUSIONS
We extend the Markov Temporal Logic mtl from [8, 9]

to handle Markovian models with multiple agents acting in
parallel. We show how formulae of the resulting logic can
be used to define global objectives out of local reward val-
ues, and we demonstrate the potential on a “rescue mis-
sion” example. Finally, we discuss specification of multi-
agent Markov decision processes themselves. In particu-
lar, we show that the new version of mtl can be used for
compact characterizations of Nash equilibria and subgame-
perfect Nash equilibria in extensive games.
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