
Module Checking for Uncertain Agents

Wojciech Jamroga1 and Aniello Murano2

1 Institute of Computer Science, Polish Academy of Sciences, Poland
2 Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione, Università

degli Studi di Napoli Federico II, Italy
w.jamroga@ipipan.waw.pl, aniello.murano@unina.it

Abstract. Module checking is a decision problem proposed in late 1990s
to formalize verification of open systems, i.e., systems that must adapt
their behavior to the input they receive from the environment. It was
recently shown that module checking offers a distinctly different perspec-
tive from the better-known problem of model checking. Module checking
has been studied in several variants. Syntactically, specifications in tem-
poral logic CTL and strategic logic ATL have been used. Semantically,
the environment was assumed to have either perfect or imperfect infor-
mation about the global state of the interaction. In this work, we rectify
our approach to imperfect information module checking from the pre-
vious paper. Moreover, we study the variant of module checking where
also the system acts under uncertainty. More precisely, we assume that
the system consists of one or more agents whose decision making is con-
strained by their observational capabilities. We propose an automata-
based verification procedure for the new problem, and establish its com-
putational complexity.

Keywords: module checking, strategic logic, imperfect information

1 Introduction

Module checking [20, 22] is a formal method to automatically check for correct-
ness of open systems. The system is modeled as a module that interacts with
its environment, and correctness means that a desired property must hold with
respect to all possible interactions. The module can be seen as a transition
system with states partitioned into ones controlled by the system and by the en-
vironment. The environment represents an external source of nondeterminism,
because at each state controlled by the environment the computation can con-
tinue with any subset of its possible successor states. In consequence, we have
an infinite number of computation trees to handle, one for each possible behav-
ior of the environment. Properties for module checking are usually specified in
temporal logics CTL or CTL* [9, 11].

It was believed for a long time that module checking of CTL/CTL* is a spe-
cial (and rather simplistic) case of model checking strategic logics ATL/ATL* [2].
Because of that, active research on module checking subsided shortly after its
conception. The belief has been recently refuted in [17]. There, it was proved

that module checking includes two features inherently absent in the semantics of
ATL, namely irrevocability and nondeterminism of strategies. This made module
checking an interesting formalism for verification of open systems again.

In [18], we extended module checking to handle specifications in the more
expressive logic ATL. However, [18] focused on modules of perfect information,
i.e., ones where all the participants have, at any moment, complete and accu-
rate knowledge of the current global state of the system. The assumption is
clearly unrealistic, as almost all agents must act under uncertainty. In this pa-
per, we focus on that aspect, and investigate verification of open systems that
include uncertain agents. In fact, our study in [18] mentioned systems where
the environment might have imperfect information. However, our treatment of
such scenarios did not really capture the feasible patterns of behavior that can
be produced by uncertain environments. Here, we give a new interpretation to
the problem. Moreover, we generalize ATL module checking to modules that
include uncertainty also on the part of the system. Finally, we investigate formal
properties of the new problem in terms of expressive power, automata-based
algorithms, and computational complexity.

Related work. Module checking was introduced in [20, 22], and later extended
in several directions. In [21], the basic CTL/CTL* module checking problem was
extended to the setting where the environment has imperfect information about
the state of the system. In [7], it was extended to infinite-state open systems
by considering pushdown modules. The pushdown module checking problem
was first investigated for perfect information, and later, in [4, 6], for imperfect
information. [13, 3] extended module checking to µ-calculus specifications, and
in [26] the module checking problem was investigated for bounded pushdown
modules (or hierarchical modules). Recently, module checking was also extended
to specifications in alternating-time temporal logics ATL/ATL* [18]. From a
more practical point of view, [24, 25] built a semi-automated tool for module
checking in the existential fragment of CTL, both in the perfect and imperfect
information setting. Moreover, an approach to CTL module checking based on
tableau was exploited in [5]. Finally, an extension of module checking was used
to reason about three-valued abstractions in [15, 10, 16, 14].

It must be noted that literature on module checking became rather sparse
after 2002. This should be partially attributed to the popular belief that CTL
module checking is nothing but a special case of ATL model checking. The belief
has been refuted only recently [17], which will hopefully spark renewed interest
in verification of open systems by module checking.

2 Verification of Open Multi-Agent Systems

We first recall the main concepts behind module checking of multi-agent systems.

2.1 Models and Modules

Modules in module checking [20] were proposed to represent open systems –
that is, systems that interact with an environment whose behavior cannot be

determined in advance. Examples of modules include: an ATM interacting with
customers, a steel factory depending on fluctuations in iron supplies, a Mars
explorer adapting to the weather conditions, and so on. In their simplest form,
modules are represented by unlabeled transition systems with the set of states
partitioned into those “owned” by the system, and the ones where the next
transition is controlled by the environment.

Definition 1 (Module). A module is a tuple M = 〈AP, Sts, Ste, q0,→,PV 〉,
where AP is a finite set of (atomic) propositions, St = Sts ∪ Ste is a nonempty
finite set of states partitioned into a set Sts of system states and a set Ste of
environment states, →⊆ St × St is a (global) transition relation, q0 ∈ St is an
initial state, and PV : St→ 2AP is a valuation of atomic propositions that maps
each state q to the set of atomic propositions that are true in q.

Modules can be seen as a subclass of more general models of interaction,
called concurrent game structures [2].

Definition 2 (CGS). A concurrent game structure (CGS) is a tuple M =
〈AP,Agt, St, Act, d, o,PV 〉 including nonempty finite set of propositions AP ,
agents Agt = {1, . . . , k}, states St, (atomic) actions Act, and a propositional
valuation PV : St → 2AP . The function d : Agt × St → 2Act defines nonempty
sets of actions available to agents at each state, and the (deterministic) transition
function o assigns the outcome state q′ = o(q, α1, . . . , αk) to each state q and
tuple of actions αi ∈ d(i, q) that can be executed by Agt in q.

We will write di(q) instead of d(i, q), and denote the set of collective choice
of group A at state q by dA(q) =

∏
i∈A di(q). We will also use APM ,AgtM , StM

etc. to refer to the components of M whenever confusion can arise.
A pointed CGS is a pair (M, q0) of a CGS and an initial state in it.

2.2 Multi-Agent Modules

Multi-agent modules have been proposed in [18] to allow for reasoning about
open systems that are themselves implemented as a composition of several au-
tonomous processes.

Definition 3 (Multi-agent module). A multi-agent module is a pointed con-
current game structure that contains a special agent called “the environment”
(e ∈ Agt). We call a module k-agent if it consists of k agents plus the environ-
ment (i.e., the underlying CGS contains k + 1 agents).

The module is alternating iff its states are partitioned into those owned by the
environment (i.e., |d(a, q)| = 1 for all a 6= e) and those where the environment
is passive (i.e., |d(e, q)| = 1). That is, it alternates between the agents’ and
the environment’s moves. Moreover, the module is turn-based iff the underlying
CGS is turn-based.3

3 A CGS is turn-based iff every state in it is controlled by (at most) one agent. That
is, for every q ∈ St, there is an agent a ∈ Agt such that |d(a′, q)| = 1 for all a′ 6= a.

qc

choice

qrb qrw

qb

black

qpr qw

white

qer

error

(r
eq
b
,-
,-
) (reqw

,-,-)

(-,p
o
u
r,-)

(-
,i
gn
,-
)

(-,p
o
u
r,-)

(-,ign
,∗)

(-,pour,milk)

(-,-,milk)(-,-,-)

(-
,-

,-
)

(-,-,-)

(-,-,-)

Fig. 1. Multi-agent coffee machine Mcaf

We note in passing that the original modules from [20] were turn-based (and
hence also alternating). On the other hand, the version of module checking for
imperfect information in [21] assumed that the system and the environment can
act simultaneously.

Example 1. A multi-agent coffee machine is presented in Figure 1. The module
includes two agents: the brewer (br) and the milk provider (milky). The brewer’s
function is to pour coffee into the cup (action pour), and the milk provider can
add milk on top (action milk). Moreover, each of them can be faulty and ignore
the request from the environment (ign). Note that if br and milky try to pour
coffee and milk at the same time, the machine gets to an error state. Finally,
the environment has actions reqb, reqw available in state qc, meaning that it
requests black (resp. white) coffee. Since the module is alternating, we adhere
to the popular convention of marking system states as white, and environment
states as grey.

2.3 Module Checking

The generic module checking problem can be defined as follows. Assume a modal
logic L whose formulae are interpreted in pointed concurrent game structures
according to the semantic relation |=L .4 For example, L can be the computation
tree logic CTL [9, 11] or alternating-time temporal logic ATL [2]. Given a CGS
M , the set of all infinite computations of M starting from the initial state q0
is described by an St-labeled tree that we call the computation tree of M and

4 We will omit the subscript whenever it is clear from the context.

denote by tree(M). The tree is obtained by unwinding M from q0 in the usual
way. We omit the formal construction for lack of space, and refer the interested
reader to [20, 17]. By exec(M), we denote the set of all the trees obtained by
pruning some environment choices from tree(M) in such a way that, for each
node in the tree, at least one choice remains. Note that, from a mathematical
point of view, every tree T ∈ exec(M) is an infinite pointed concurrent game
structure with the same set of agents as M , and nodes in StT corresponding to
(some) sequences of states from StM . The extent of the pruning is encoded in the
actual set of nodes StT and the availability function dTe that captures the actions
available to the environment in the nodes of the tree. Formally, T1 is a pruning
of T2 iff: (i) StT1 ⊆ StT2 , (ii) ActT1 ⊆ ActT2 , (iii) for every v ∈ StT1 , a 6= e,
we have dT1

a (v) = dT2
a (v) and ∅ 6= dT1

e (v) ⊆ dT2
e (v), (iv) oT1 = (oT2 | StT1), (v)

PV T1 = (PV T2 | StT1), and (vi) the root of T1 is the same as the root of T2.

Definition 4 (Module checking). For a pointed CGS (M, q0) and a formula
ϕ of logic L, we say that (M, q0) reactively satisfies ϕ, denoted by M, q0 |=r

L
ϕ, iff

for every tree T ∈ exec(M) we have that T |=r
L
ϕ. Again, we will omit subscripts

if they are clear from context. The problem of deciding whether M reactively
satisfies ϕ is called module checking [22].

Note that, for most modal logics, M |=r
L
ϕ implies M |=L ϕ but the converse

does not hold. Also, M 6|=r
L
ϕ is in general not equivalent to M |=r

L
¬ϕ.

Example 2. Consider the coffee machine from Example 1 with the CTL specifica-
tion EFwhite saying that there exists at least one possible path where eventually
white coffee will be served. Clearly, Mcaf |=CTL

EFwhite. On the other hand,
Mcaf 6|=r

CTL
EFwhite. Think of a line of customers who never order white coffee.

It corresponds to an execution tree of Mcaf that prunes off all nodes labeled
with qrw, and such a tree cannot satisfy EFwhite.

2.4 Reasoning about Strategic Behavior: Alternating Time Logic

Alternating-time temporal logic ATL/ATL* [2] generalizes the branching-time
logic CTL/CTL* [9, 11] by means of strategic modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ
expresses that the group of agents A has a collective strategy to enforce temporal
property γ. The language ATL* is given by the grammar below:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γU γ.

whereA ⊆ Agt is any subset of agents, and p is a proposition. Temporal operators
X, U stand for “next” and “until”, respectively. The “sometime” and “always”
operators can be defined as Fγ ≡ >U γ and Gγ ≡ ¬F¬γ. Also, we can use
[[A]]γ ≡ ¬〈〈A〉〉¬γ to express that no strategy of A can prevent property γ.
Similarly to CTL, ATL is the syntactic variant in which every occurrence of a
strategic modality is immediately followed by a temporal operator.

Given a CGS, we define the strategies and their outcomes as follows. A
strategy for agent a is a function sa : St → Act such that sa(q) ∈ da(q).5

A collective strategy for a group of agents A = {a1, . . . , ai} is simply a tuple
of individual strategies sA = 〈sa1 , . . . , sai〉. The “outcome” function out(q, sA)
returns the set of all paths that can occur when agents A execute strategy sA
from state q on. Finally, for a path λ ∈ Stω, we use λ[i] to denote the ith
state on λ, and λ[i..∞] to denote the ith suffix of λ. The semantics |=

ATL
of

alternating-time logic is defined below:

M, q |= p iff q ∈ PV (p), for p ∈ AP ;

M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= 〈〈A〉〉γ iff there is a collective strategy sA for A such that, for every
λ ∈ out(q, sA), we have M,λ |= γ.

M,λ |= ϕ iff M,λ[0] |= ϕ;

M,λ |= ¬γ iff M,λ 6|= γ;

M,λ |= γ1 ∧ γ2 iff M,λ |= γ1 and M,λ |= γ2;

M,λ |= Xγ iff M,λ[1,∞] |= γ; and

M,λ |= γ1 U γ2 iff there is an i ∈ N0 such thatM,λ[i,∞] |= γ2 andM,λ[j,∞] |=
γ1 for all 0 ≤ j < i.

Example 3. Consider the CGS from Figure 1. Clearly, Mcaf 6|= 〈〈br〉〉Fwhite:
the brewer cannot provide the customer with white coffee on its own. In fact,
even both coffee agents together cannot guarantee that, since the customer may
never order white coffee: Mcaf 6|= 〈〈br,milky〉〉Fwhite. On the other hand, they
can produce black coffee regardless of what the customer asks for: Mcaf |=
〈〈br,milky〉〉Fblack. Finally, they can deprive the customer of coffee if they con-
sistently ignore her requests: Mcaf |= 〈〈br,milky〉〉G(¬black ∧ ¬white).

Embedding CTL* in ATL*. The path quantifiers of CTL* can be expressed
in the standard semantics of ATL* as follows [2]: Aγ ≡ 〈〈∅〉〉γ and Eγ ≡ 〈〈Agt〉〉γ.
We point out that the above translation of E does not work for several extensions
of ATL*, e.g., with imperfect information, nondeterministic strategies, and irre-
vocable strategies. On the other hand, the translation of A into 〈〈∅〉〉 does work for
all the semantic variants of ATL* considered in this paper. Thanks to that, we
can define a translation atl(ϕ) from CTL* to ATL* as follows. First, we convert ϕ
so that it only includes universal path quantifiers, and then replace every occur-
rence of A with 〈〈∅〉〉. For example, atl(EG(p1∧AFp2)) = ¬〈〈∅〉〉F(¬p1∨¬〈〈∅〉〉Fp2).
Note that if ϕ is a CTL formula then atl(ϕ) is a formula of ATL. By a slight
abuse of notation, we will use path quantifiers A,E in ATL formulae whenever
it is convenient.

5 Unlike in the original semantics of ATL* [2], we use memoryless rather than perfect
recall strategies. It is well known, however, that the semantics based on the two
notions of strategy coincide for all formulae of ATL, cf. [2, 27].

2.5 Module Checking of ATL* Specifications

ATL* module checking has been proposed and studied in [18]. The problem
can be defined by the straightforward combination of our generic treatment
of module checking from Section 2.3 and the semantics of ATL* presented in
Section 2.4.

Example 4. Consider the multi-agent coffee machine Mcaf from Example 1.
Clearly, Mcaf 6|=r 〈〈br,milky〉〉Fwhite because the environment can keep request-
ing black coffee. On the other hand, Mcaf |=r 〈〈br,milky〉〉Fblack: the agents can
provide the user with black coffee whatever she requests. They can also deprive
the user of coffee completely – in fact, the brewer alone can do it by consistently
ignoring her requests: Mcaf |=r 〈〈br〉〉G(¬black ∧ ¬white).

The above formulae can be also used for model checking, and they would
actually generate the same answers. So, what’s the benefit of module checking? In
module checking, we can condition the property to be achieved on the behavior of
the environment. For instance, users who never order white coffee can be served
by the brewer alone: Mcaf |=r AG¬reqw → 〈〈br〉〉Fblack. Note that the same
formula in model checking trivially holds since Mcaf 6|= AG¬reqw. Likewise,
we have Mcaf |= AG¬reqb → 〈〈br〉〉Fwhite, whereas module checking gives a
different and more intuitive answer: Mcaf 6|=r AG¬reqb→ 〈〈br〉〉Fwhite. That is,
the brewer cannot handle requests for white coffee on its own, even if the user
never orders anything else.

3 Imperfect Information

In Section 2, we summarized the main developments in module checking for
multi-agent systems with perfect information. That is, we implicitly assumed
that both the system and the environment always know the precise global state
of the computation. The framework was extended to handle uncertain envi-
ronments in [21] (for temporal logic specifications) and [18] (for specifications of
strategic ability). In this paper, we revise and extend our previous work from [18].
The novel contribution is threefold. First, we give a new interpretation of ATL
module checking for uncertain environments (Section 3.1). The one proposed
in [18], while mathematically sound, arguably does not capture the feasible pat-
terns of behavior that can be produced by uncertain environments. Secondly, we
generalize the problem to modules that include uncertainty also on the part of
the system (Section 3.2). Thirdly, we investigate formal properties of the new
problem, in terms of expressive power (Section 4) as well as algorithms and
computational complexity (Section 5).

3.1 Handling Environments with Imperfect Information

So far, we have only considered multi-agent modules in which the environment
has complete information about the state of the system. In many practical sce-
narios this is not the case. Usually, the agents have some private knowledge

that the environment cannot access. As an example, think of the coffee machine
from Example 1. A realistic model of the machine should include some internal
variables that the environment (i.e., the customer) is not supposed to know dur-
ing the interaction, such as the amount of milk in the container or the amount
of coins available for giving change. States that differ only in such hidden in-
formation are indistinguishable to the environment. While interaction with an
“omniscient” environment corresponds to an arbitrary pruning of transitions in
the module, in case of imperfect information the pruning must coincide whenever
two computations look the same to the environment.

To handle such scenarios, the definition of multi-agent modules was extended
as follows [18].

Definition 5 (Multi-agent module with uncertain environment). A multi-
agent module with uncertain environment is a multi-agent module further equipped
with an indistinguishability relation ∼e⊆ St×St that encodes uncertainty of the
environment. We assume ∼e to be an equivalence.

We will additionally require that the available choices of the environment are
consistent with its indistinguishability relation.

Definition 6 (Uniformity of modules). A multi-agent module with uncertain
environment is uniform wrt relation ∼e iff q ∼e q

′ implies de(q) = de(q
′).

In [18], we assumed that an uncertain environment can only prune whole
subtrees of the execution tree, and when it does, it must do it uniformly. This
was arguably a very rough treatment of how the environment can choose to
behave. We propose a more subtle treatment below.

Let M be a uniform multi-agent module with uncertain environment. First,
we extend the indistinguishability relation to the nodes in the computation tree
of M . Formally, two nodes v and v′ in tree(M) are indistinguishable (v ∼= v′)
iff (1) the length of v, v′ in tree(M) is the same, and (2) for each i, we have
v[i] ∼e v

′[i]. Secondly, we will only consider prunings of tree(M) that are im-
perfect information-consistent. Formally, T ∈ tree(M) is imperfect information-
consistent iff it is uniform wrt∼=. We denote the set of such prunings by execi(M).
Clearly, execi(M) ⊆ exec(M).

The module checking problem for uncertain environments is defined analo-
gously to the perfect information case:

Definition 7 (Module checking for uncertain environments). Given a
multi-agent module with uncertain environment M and a formula ϕ of logic L,
the corresponding module checking problem is defined by the following clause:

M |=r,i
L
ϕ iff T |=L ϕ for every T ∈ execi(M).

Example 5. Consider an extension of the multi-agent coffee machine from Ex-
ample 1, where the environment can choose to reset the machine while it is
preparing coffee. If the machine is reset after the coffee is poured but before
it is served, the system proceeds to the error state. Moreover, pressing reset in

∼e∼e∼e

qc

choice

qrb
reqb

qrw
reqw

qb

black

qpr qw

white

qer

error

q⊥

out

(r
eq
b
,-
,-
) (reqw

,-,-)

(∗
,p
o
u
r,-)

(∗
,i
gn
,-
)

(∗
,p
o
u
r,-)

(∗,ign
,∗)

(∗,pour,milk)

(-,-,milk)(-,-,-)

(r
es
et
,-,
∗)

(reset,-,-)

(-,-,-)

(-
,-

,-
)

(-,-,-)

(-,-,-)

Fig. 2. Multi-agent coffee machine with reset Mcaf2

the error state initiates a recovery procedure that brings the system back to the
initial state qc. On the other hand, if the system is not reset while in the error
state then it proceeds to the “out of order” state qout, and requires interven-
tion of an external repair crew. Furthermore, we assume that the environment
has no access to the local states of the system agents br,milky. Since states
qrb, qrw, qpr, qer should intuitively differ only in local states of those agents, they
are indistinguishable to the environment (see Figure 2). Note that we do not
label states grey and white anymore, as the module is not alternating.

Let us define the “recovery formula” as ϕrecv ≡ AG(error → AXchoice),
saying that the system always recovers after an error. Now we have for example
that Mcaf2 |=r,i ϕrecv → AG¬white. This is because the user cannot distinguish
between situations when an error has occurred, and ones where the coffee has
been poured and waits for milk to be added. If she chooses to reset the machine in
the first kind of nodes, she has to do reset also in the latter, and then white coffee
can never be completed. Thus, for such behaviors of the user, the agents cannot
provide her with white coffee anymore: Mcaf2 |=r,i ϕrecv → ¬〈〈br,milky〉〉Fwhite.

On the other hand, the agents retain the ability to serve black coffee whenever
it is requested – in fact, the brewer can make it on its own: Mcaf2 |=r,i ϕrecv →
AG(reqb→ 〈〈br〉〉Fblack). Moreover, for such inputs, the agents cannot crash the
system: Mcaf2 |=r,i ϕrecv → ¬〈〈br,milky〉〉Fout, which is rather a good thing.
Finally, even if the user never tries recovery, the agents can keep the system
from crashing, and serve white coffee whenever it is requested (they simply avoid
pouring coffee and milk at the same time). Formally, let ϕnorecv ≡ AG(error →

AX¬choice); then, Mcaf2 |=r,i ϕnorecv → 〈〈br,milky〉〉G¬out and Mcaf2 |=r,i

ϕnorecv → AG(reqw→ 〈〈br,milky〉〉Fwhite).

3.2 Imperfect Information Module Checking

The treatment of module checking, presented in the previous section, allows for
uncertainty on the part of the environment, but assumes perfect information on
the part of the system. That is, the agents that comprise the system can always
fully observe the global state of the system, including each other’s variables as
well as the local state of the environment. Is this assumption realistic? Clearly
not. One can perhaps use perfect information models when the hidden informa-
tion is irrelevant for the agent’s decision making, i.e., the agents need only their
local views to choose their course of action (cf. the coffee machine example) but
even that is seldom justified.

Definition 8 (Multi-agent module with imperfect information). A multi-
agent module with imperfect information is a multi-agent module further equipped
with indistinguishability relations ∼a⊆ St× St, one per agent a ∈ Agt.

Each multi-agent module with imperfect information M is required to be uni-
form wrt every relation ∼a in M .

Now we proceed analogously to Section 3.1. Let M be a multi-agent module
with imperfect information, and L be a suitable logic. Two nodes v and v′ in
tree(M) are indistinguishable to the environment (v ∼=e v

′) iff (1) the length
of v, v′ in tree(M) is the same, and (2) for each i, we have v[i] ∼e v

′[i]. Then,
execi(M) consists of all the prunings in exec(M) that are uniform wrt ∼=e. The
corresponding module checking problem is again defined by the clause:

M |=r,i
L
ϕ iff T |=L ϕ for every T ∈ execi(M).

One thing remains to be settled. What logic is suitable for specification of
agents with imperfect information? In this paper, we use a semantic variant of
ATL* proposed in [27]. First, a (memoryless) strategy sa is uniform iff q ∼a q

′

implies sa(q) = sa(q′). A collective strategy sA is uniform iff it consists of uni-
form individual strategies. Then, the semantics |=

ATLi
of “ATL* with imperfect

information” is obtained by replacing the clause for 〈〈A〉〉γ as follows:

M, q |= 〈〈A〉〉γ iff there is a uniform collective strategy sA such that, for every
a ∈ A, every q′ with q ∼a q

′, and every λ ∈ out(q′, sA), we have M,λ |= γ.

Example 6. Let us go back to the multi-agent coffee machine with reset from
Example 5. We will now additionally assume that milky cannot detect the pour
action of the brewer, formally: qrw ∼milky qpr. Let us denote the resulting multi-
agent model by Mcaf3 . Then, the agents are still able to keep the machine from
crashing, even for users that do no recovery, but they are not able anymore to
guarantee that white coffee requests are served. Formally, Mcaf3 |=r,i ϕnorecv →
〈〈br,milky〉〉G¬out (the right strategy assumes that milky never pours milk), and
Mcaf3 6|=r,i ϕnorecv → AG(reqw → 〈〈br,milky〉〉Fwhite) (in a uniform strategy, if
milky decides to do no action at qrw, it has to do the same at qpr).

q0 q1

q2

win

q3

a

L

R
R

L

q0 q1

q2

win

q3

a

L

R
L

R

Fig. 3. Variants of the “poor duck problem” from [8]

4 Expressive Power of Imperfect Information Module
Checking

In this section, we show that ATL module checking offers a distinctly different
perspective when imperfect information is added. Before we proceed, we briefly
recall the notions of distinguishing power and expressive power (cf. e.g. [29]).

Definition 9 (Distinguishing and expressive power). Let L1 = (L1, |=1)
and L2 = (L2, |=2) be two logical systems over the same class of models M. By
[[φ]]|= = {(M, q) | M, q |= φ}, we denote the class of pointed models that satisfy
φ in the semantics given by |=. Likewise, [[φ,M]]|= = {q |M, q |= φ} is the set of
states (or, equivalently, pointed models) that satisfy φ in a given structure M .

L2 is at least as expressive as L1 (written: L1 �e L2 iff for every formula
φ1 ∈ L1 there exists φ2 ∈ L2 such that [[φ1]]|=1

= [[φ2]]|=2
.

L2 is at least as distinguishing as L1 (written: L1 �d L2 iff for every model
M and formula φ1 ∈ L1 there exists φ2 ∈ L2 such that [[φ1,M]]|=1

= [[φ2,M]]|=2
.6

Note that L1 �e L2 implies L1 �d L2 but the converse is not true. For example,
it is known that CTL has the same distinguishing power as CTL*, but strictly
less expressive power. We also observe that module checking ATL* can be seen
as a logical system where the syntax is given by the syntax of ATL*, and the
semantics is given by |=r. For module checking “ATL* with imperfect informa-
tion”, the semantics is given by |=r,i. Thus, we can use Definition 9 to compare
the expressivity of both decision problems.

Theorem 1. The logical system (ATL*, |=r,i) has incomparable distinguishing
power (and thus also incomparable expressive power) to (ATL∗, |=r).

Proof. First we prove that there are multi-agent modules M,M ′ that satisfy the
same formulae of ATL* wrt the semantic relation |=r, but are distinguished by

6 Equivalently: for every pair of pointed models that can be distinguished by some
φ1 ∈ L1 there exists φ2 ∈ L2 that distinguishes these models.

q0 q1

q2

win

q3

a, b

〈L,L〉
〈R,R〉

〈L
,R〉〈R

,L〉
〈L
,R
〉

〈R
,L
〉

〈L,L〉
〈R,R〉

q0 q1

q2

win

q3

a, b

〈L,L〉
〈L,R〉
〈R,R〉

〈R
,L〉 〈R

,L
〉

〈L,L〉
〈L,R〉
〈R,R〉

Fig. 4. “Coordinated poor duck problem” with 2 agents a and b

an ATL* formula wrt the semantic relation |=r,i. As M , take the “poor duck”
model from Figure 3 (left) with q0 be the initial state, and add the environ-
ment agent e in such a way that it never influences the evolution of the system
(i.e., |de(q)| = 1 for all q ∈ St). Moreover, let M ′ be a modified variant of M
where the outgoing transitions from q1 are swapped, see Figure 3 (right). Clearly,
exec(M) = execi(M) = {T (M)}, and analogously for M ′ (there is only one way
how the environment can act). Thus, the semantic relation |=r (resp. |=r,i) coin-
cides on M and M ′ with |=

ATL
(resp. |=

ATLi
). Furthermore, M,M ′ are in strategic

bisimulation [1], and hence they satisfy the same formulae of ATL* wrt |=
ATL

.
On the other hand, M 6|=ATLi

〈〈a〉〉Fwin and M ′ |=ATLi
〈〈a〉〉Fwin.

Secondly, we prove that there are multi-agent modules M,M ′ that satisfy
the same formulae of ATL* wrt the semantic relation |=r,i, but are distinguished
by an ATL* formula with the semantic relation |=r. As M and M ′, take now
the left hand side and right hand side models from Figure 4, respectively. Again,
the initial is q0 and the environment is idle in all states. We leave it for the
reader to check that in both models all the coalitions can only enforce trivial
path properties (i.e., ones that hold on all paths starting from q0, q1) by using
uniform strategies. Thus, M and M ′ satisfy the same formulae of ATLi*. On
the other hand, M 6|=

ATL
〈〈a〉〉Fwin and M ′ |=

ATL
〈〈a〉〉Fwin.

5 Algorithms and Complexity

Our algorithmic solution to the problem of ATL* module checking with imperfect
information exploits the automata-theoretic approach. It combines and extends
that ones used to solve the CTL* module checking with imperfect information
and the ATL* model checking with perfect information problems. Precisely, we
make use of alternating parity tree automata on infinite tress and reduce the
addressed decision problem to the checking for automata emptiness. In this sec-
tion we first introduce some preliminary definition regarding these automata and
then we show how to use them to our purpose. For the sake of clarity we also
give a proper definition of infinite labeled trees.

Let Υ be a set. An Υ -tree is a prefix closed subset T ⊆ Υ ∗. The elements of
T are called nodes and the empty word ε is the root of T . For v ∈ T , the set
of children of v (in T) is child(T , v) = {v · x ∈ T | x ∈ Υ}. For v ∈ T , a (full)
path π of T from v is a minimal set π ⊆ T such that v ∈ π and for each v′ ∈ π
such that child(T , v′) 6= ∅, there is exactly one node in child(T , v′) belonging to
π. Note that every infinite word w ∈ Υω can be thought of as an infinite path
in the tree Υ ∗, namely the path containing all the finite prefixes of w. For an
alphabet Σ, a Σ-labeled Υ -tree is a pair T = 〈T , V 〉 where T is an Υ−tree and
V : T → Σ maps each node of T to a symbol in Σ.

In nondeterministic tree automata, on reading a node of the input tree, it is
possible to send at most one copy of the automaton in every single child, in accor-
dance with the nondeterministic transition relation. Alternating tree automata,
instead, are able to send several copies of the automaton along the same child,
by means of a transition relation that uses positive Boolean combinations of
directions and states. The formal definition of alternating tree automata follows.
For more details we refer to [28, 12].

Definition 10. An alternating tree automaton (ATA, for short) is a tuple A =
< Σ, D, Q, q0, δ, F >, where Σ is the alphabet, D is a finite set of directions,
Q is the set of states, q0 ∈ Q is the initial state, δ : Q × Σ → B+(D × Q) is
the transition function associating to each state and alphabet symbol a positive
Boolean combination of pairs (d, q), where d is a direction and q is a state, and
F is the accepting condition defined later.

To give an intuition on how an ATA A works, assume that it is in a state
q, reading a node tree labeled by σ and δ(q, σ) = ((0, q1) ∨ (1, q2)) ∧ (1, q1).
Then the automaton can just send two copies in direction 1 with state q1 and
q2, respectively. The connectives ∨ and ∧ in δ represent, respectively, choice
and concurrency. Nondeterministic tree automata are alternating tree automata
in which the concurrency feature is not allowed. A run of an alternating tree
automaton A on a Σ-labeled tree < T , V >, with T = D∗, is a (D∗×Q)-labeled
N-tree < Tr, r > such that the root is labeled with (ε, q0) and the labels of each
node and its successors satisfy the transition relation. A run 〈Tr, r〉 is accepting
iff all its infinite paths satisfy the acceptance condition. In this paper we are
interested in the parity acceptance condition and, as its special case, the Büchi
acceptance condition. A parity condition F maps all states of the automaton
to a finite set of colors C = {Cmin, . . . , Cmax} ⊂ N. Thus, F : Q → C. For a
path π, let m(π) be the maximal color that appears infinitely often along π.
Then, π satisfies the parity condition F iff m(π) is even. The Büchi acceptance
condition is a parity condition with only two colors, i.e., C = {1, 2}. By L(A) we
denote the set of trees accepted by A. We say that the automaton is not empty
if L(A) 6= ∅. We name ATA along with the parity and Büchi conditions PATA
and BATA for short, respectively. In both cases of PATA and BATA emptiness
can be checked in EXPTIME [12].

In ATL* module checking with (im)perfect information given a module M
and an ATL* formula ϕ we check whether M |=r,(i) ϕ by checking whether

T |= ϕ for every T ∈ exec(i)(M). Consequently, M 6|=r,(i) ϕ iff there exists a tree

T ∈ execi(M) such that T |= ¬ϕ. In the perfect information case, to solve this
problem one can build a PATAA, accepting all such T trees and reduce the model
checking question “does M |=r ϕ ?” by checking for the automaton emptiness.
In particular, the automaton uses one direction for each possible decision and,
input trees and run trees have exactly the same shape. In the case of imperfect
information, we are forced to restrict our reasoning to uniform strategies and
this deeply complicates the construction of the automaton. Indeed, not all the
trees in execi(M) can be taken into consideration but only those coming from
uniform strategies. This has to be taken into account both on the side of the
environment agent, while performing the pruning, and the other players playing
in accordance with the modalities indicated by the ATL* formula. Uniformity
forces to use the same action in indistinguishable states. To accomplish this, the
automaton takes as input not trees T from execi(M), but rather corresponding
“thin” trees T ′ such that each node v′ in T ′ is meant to represent all nodes H in
T that are indistinguishable to v′. Then, the automaton will send to v just |H|
different states all with the same direction, to force all of them to respect the
same strategy. Thus, the input tree can be seen as a profile of uniform strategies,
e.g., once a uniform strategy has been fixed, it collects all the possible outcomes
obtained by combining this strategy with all possible uniform strategies coming
from the other players. It is worth noting that the run tree has the shape of the
desired T ∈ execi(M). In a way this is the witness of our automata approach.

To give few more details, let [St]∼i be the equivalence class build upon the
states that are indistinguishable to agent i. We use as directions of the automaton
Πi[St]∼i. Agents can then choose actions upon their visibility. The automaton
has to accept trees corresponding to uniform strategy profiles whose composition
with the module satisfy ¬ϕ. Thus, a run of the automaton proceeds by simulating
an unwinding of the module, pruned at each step according to the strategy
profile and the satisfiability of the formula is checked on the fly. Starting from
an ATL* formula the automaton we obtain is an exponential PATA. In case of
ATL, the automaton is a polynomial BATA. Since the module-checking problem
with imperfect information is 2EXPTIME-complete for CTL* and EXPTIME-
complete for CTL even in case the formula is of bounded size, we get the following
result.

Theorem 2. The module-checking problem with imperfect information is
2EXPTIME-complete for ATL* and EXPTIME-complete for ATL. For formulae
of bounded size the problem is EXPTIME-complete in both cases.

6 Conclusions

We have presented an extension of the module checking problem that handles
specifications of strategic ability for modules involving imperfect information.
As usual for computational problems, the key features are expressivity and com-
plexity. We show that this new variant of module checking fares well in both

respects. On one hand, the computational complexity is the same as that of
module checking CTL/CTL* with imperfect information. On the other hand,
ATL/ATL* module checking under imperfect information has incomparable ex-
pressive power to ATL/ATL* module checking for perfect information, which
means that the two variants of the problem offer distinctly different perspectives
at verification of open systems.

In the future, we plan to characterize the correspondence of imperfect infor-
mation module checking to an appropriate variant of model checking (in the spirit
of [17]). We are also going to look at the relation of module checking to model
checking of temporal logics with propositional quantification [19, 23]. Last but
not least, we would like to apply the framework to verification of agent-oriented
programs.

Acknowledgements. Aniello Murano acknowledges the support of the FP7
EU project 600958-SHERPA. Wojciech Jamroga acknowledges the support of
the FP7 EU project ReVINK (PIEF-GA-2012-626398).

References

1. T. Ågotnes, V. Goranko, and W. Jamroga. Alternating-time temporal logics with
irrevocable strategies. In Proceedings of TARK XI, pages 15–24, 2007.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713, 2002.

3. B. Aminof, A. Legay, A. Murano, O. Serre, and M. Y. Vardi. Pushdown module
checking with imperfect information. Inf. Comput., 223(1):1–17, 2013.

4. B. Aminof, A. Murano, and M. Vardi. Pushdown module checking with imperfect
information. In Proceedings of CONCUR, LNCS 4703, pages 461–476. Springer-
Verlag, 2007.

5. S. Basu, P. S. Roop, and R. Sinha. Local module checking for CTL specifications.
Electronic Notes in Theoretical Computer Science, 176(2):125–141, 2007.

6. L. Bozzelli. New results on pushdown module checking with imperfect information.
In Proceedings of GandALF, volume 54 of EPTCS, pages 162–177, 2011.

7. L. Bozzelli, A. Murano, and A. Peron. Pushdown module checking. Formal Methods
in System Design, 36(1):65–95, 2010.

8. N. Bulling and W. Jamroga. Comparing variants of strategic ability: How uncer-
tainty and memory influence general properties of games. Journal of Autonomous
Agents and Multi-Agent Systems, 28(3):474–518, 2014.

9. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proceedings of Logics of Programs Workshop,
volume 131 of Lecture Notes in Computer Science, pages 52–71, 1981.

10. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games:
Uncertainty, but with precision. In Proceedings of LICS, pages 170–179. IEEE
Computer Society, 2004.

11. E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 995–1072. Elsevier Science Pub-
lishers, 1990.

12. E. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science,
pages 368–377. IEEE, 1991.

13. A. Ferrante, A. Murano, and M. Parente. Enriched µ-calculi module checking.
Logical Methods in Computer Science, 4(3:1):1–21, 2008.

14. M. Gesell and K. Schneider. Modular verification of synchronous programs. In
Proceedings of ACSD, pages 70–79. IEEE, 2013.

15. P. Godefroid. Reasoning about abstract open systems with generalized module
checking. In Proceedings of EMSOFT, volume 2855 of LNCS, pages 223–240.
Springer, 2003.

16. P. Godefroid and M. Huth. Model checking vs. generalized model checking: Se-
mantic minimizations for temporal logics. In Proceedings of LICS, pages 158–167.
IEEE Computer Society, 2005.

17. W. Jamroga and A. Murano. On module checking and strategies. In Proceedings of
the 13th International Conference on Autonomous Agents and Multiagent Systems
AAMAS 2014, pages 701–708, 2014.

18. W. Jamroga and A. Murano. Module checking of strategic ability. In Proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems
AAMAS 2015, pages 227–235, 2015.

19. O. Kupferman. Augmenting branching temporal logics with existential quantifi-
cation over atomic propositions. Journal of Logic and Computation, 9(2):135–147,
1999.

20. O. Kupferman and M. Vardi. Module checking. In Procedings of CAV, volume
1102 of LNCS, pages 75–86. Springer, 1996.

21. O. Kupferman and M. Vardi. Module checking revisited. In Proceedings of CAV,
volume 1254 of LNCS, pages 36–47. Springer, 1997.

22. O. Kupferman, M. Vardi, and P. Wolper. Module checking. Information and
Computation, 164(2):322–344, 2001.

23. A. D. C. Lopes, F. Laroussinie, and N. Markey. Quantified CTL: expressiveness
and model checking. In Proceedings of CONCUR, pages 177–192, 2012.

24. F. Martinelli. Module checking through partial model checking. Technical report,
CNR Roma - TR-06, 2002.

25. F. Martinelli and I. Matteucci. An approach for the specification, verification and
synthesis of secure systems. Electronic Notes in Theoretical Computer Science,
168:29–43, 2007.

26. A. Murano, M. Napoli, and M. Parente. Program complexity in hierarchical module
checking. In Proceedings of LPAR, volume 5330 of Lecture Notes in Computer
Science, pages 318–332. Springer, 2008.

27. P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science, 85(2):82–93, 2004.

28. W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer
Science, 2, 1990.

29. Y. Wang and F. Dechesne. On expressive power and class invariance. CoRR,
abs/0905.4332, 2009.

