
Module Checking of Strategic Ability

Wojciech Jamroga
Institute of Computer Science
Polish Academy of Sciences

w.jamroga@ipipan.waw.pl

Aniello Murano
Dipartimento di Ingegneria Elettrica e

Tecnologie dell’Informazione
Università degli Studi di Napoli Federico II, Italy

aniello.murano@unina.it

ABSTRACT
Module checking is a decision problem proposed in late 1990s
to formalize verification of open systems, i.e., systems that
must adapt their behavior to the input they receive from
the environment. It was recently shown that module check-
ing offers a distinctly different perspective from the better-
known problem of model checking. So far, specifications in
temporal logic CTL have been used for module checking. In
this paper, we extend module checking to handle specifica-
tions in alternating-time temporal logic (ATL). We define
the semantics of ATL module checking, and show that its
expressivity strictly extends that of CTL module checking,
as well as that of ATL itself. At the same time, we show
that ATL module checking enjoys the same computational
complexity as CTL module checking. We also investigate
a variant of ATL module checking where the environment
acts under uncertainty. Finally, we revisit the semantics of
ability in the module checking problem, and propose a vari-
ant where strategies of agents in the module depend only on
what the agents are able to observe.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms
Theory, Verification

Keywords
Module checking, model checking, verification, alternating-
time logic, strategic behavior

1. INTRODUCTION
Model checking is a well-established formal method to au-

tomatically check for global correctness of systems [10, 33].
In order to verify whether a system is correct with respect
to a desired property, we describe its structure with a math-
ematical model, specify the property with a logical formula,

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

and check formally if the model satisfies the formula. Model
checking was first proposed for analysis of closed systems
whose behavior is completely determined by their internal
states and transitions. In this setting, models are often given
as state transition graphs that usually include some degree
of internal nondeterminism. An unwinding of the graph re-
sults in an infinite tree, formally called computation tree,
that collects all possible evolutions of the system. Model
checking of a closed system amounts to checking whether the
tree satisfies the logical specification. Properties for model
checking are usually specified in temporal logics CTL, LTL,
CTL* [14], or strategic logics ATL, ATL* [2, 3].

In module checking [22, 25], the system is modeled as a
module that interacts with its environment, and correctness
means that a desired property must hold with respect to all
possible interactions. The module can be seen as a transi-
tion system with states partitioned into ones controlled by
the system and by the environment. Notice that the environ-
ment represents an external additional source of nondeter-
minism, because at each state controlled by the environment
the computation can continue with any subset of its possible
successor states. In other words, while in model checking we
have only one computation tree to check, in module check-
ing we have an infinite number of trees to handle, one for
each possible behavior of the environment. Properties for
module checking are usually given in CTL or CTL*.

It was believed for a long time that module checking of
CTL/CTL* is a special (and rather simplistic) case of model
checking ATL/ATL*. Because of that, active research on
module checking subsided shortly after its conception. The
belief has been recently refuted in [20]. There, it was proved
that module checking includes two features inherently ab-
sent in the semantics of ATL, namely irrevocability and non-
determinism of strategies. This made module checking an
interesting formalism for verification of open systems again.

In this paper, we extend module checking to handle spec-
ifications in the more expressive logic ATL. We define the
semantics of ATL module checking, and show that its expres-
sivity strictly extends that of CTL module checking, as well
as that of ATL itself. At the same time, we show that ATL
module checking enjoys the same computational complexity
as CTL module checking. We also investigate a variant of
ATL module checking where the environment acts under un-
certainty, and show – again – that the computational price
to pay is not high. Finally, we discuss the semantics of abil-
ity in the module checking problem. It turns out that the
irrevocability of environment’s strategies may yield counter-
intuitive interpretation of what agents can enforce. To deal

with it, we propose a variant where strategies of agents in
the module cannot depend on the whole strategy of the envi-
ronment, but only on what the agents have so far observed.

Related work. Module checking was introduced in [22,
25], and later extended in several directions. In [23], the ba-
sic CTL/CTL* module checking problem was extended to
the setting where the environment has imperfect informa-
tion about the state of the system. In [8], it was extended to
infinite-state open systems by considering pushdown mod-
ules. The pushdown module checking problem was first in-
vestigated for perfect information, and later, in [5, 7], for
imperfect information; the latter variant was proved unde-
cidable in [5]. [15, 4] extended module checking to µ-calculus
specifications, and in [32] the module checking problem was
investigated for bounded pushdown modules (or hierarchi-
cal modules). From a more practical point of view, [28, 29]
built a semi-automated tool for module checking in the exis-
tential fragment of CTL, both in the perfect and imperfect
information setting. Moreover, an approach to CTL mod-
ule checking based on tableau was exploited in [6]. Finally,
an extension of module checking was used to reason about
three-valued abstractions in [17, 11, 18, 16].

It must be noted that literature on module checking be-
came rather sparse after 2002, especially when compared to
the body of work on model checking. This must be partially
attributed to the popular belief that CTL module checking
is nothing but a special case of ATL model checking. The
belief has been refuted only recently [20], which will hope-
fully spark renewed interest in verification of open systems
by module checking.

2. PRELIMINARIES

2.1 Models and Modules
In this paper, we consider several frameworks for model-

ing and verification of temporal properties. Modules in mod-
ule checking [22] were proposed to represent open systems
– that is, systems that interact with an environment whose
behavior cannot be determined in advance. In their simplest
form, modules are unlabeled transition systems with the set
of states partitioned into those “owned” by the system, and
the ones where the next transition is controlled by the en-
vironment. Models of alternating-time temporal logic [3],
called concurrent game structures, are multi-player transi-
tion systems with transitions labeled by tuples of actions,
one from each agent.

Definition 1 (Module). A module is a tuple M =
〈AP, Sts, Ste, q0,→,PV 〉, where AP is a finite set of (atomic)
propositions, St = Sts∪Ste is a nonempty finite set of states
partitioned into a set Sts of system states and a set Ste of
environment states, →⊆ St× St is a (global) transition re-
lation, q0 ∈ St is an initial state, and PV : St→ 2AP maps
each state q to the set of atomic propositions true in q.

Definition 2 (CGS). A concurrent game structure is
a tuple M = 〈AP,Agt, St, Act, d, o,PV 〉 including nonempty
finite set of propositions AP , agents Agt = {1, . . . , k}, states
St, (atomic) actions Act, and a propositional valuation PV :
St → 2AP . The function d : Agt × St → 2Act defines
nonempty sets of actions available to agents at each state,
and the (deterministic) transition function o assigns the out-
come state q′ = o(q, α1, . . . , αk) to each state q and tuple of
actions αi ∈ d(i, q) that can be executed by Agt in q.

qc

choice

qbblack qw white

Figure 1: Coffee machine Mcaf . Environment states
are marked grey; system states are marked white.

A pointed CGS is a pair (M, q0) of a concurrent game
structure and an initial state in it.

Nondeterministic choices of agents in a CGS can be repre-
sented by sets of actions. In this sense, agent a can select at
state q any nonempty set ααα ⊆ d(a, q), and the set of succes-
sors of ααα is simply the union of successor sets for each action
in α. Then, modules can be seen as a subclass of concur-
rent game structures – more precisely, 2-player turn-based1

pointed CGS’s with agents Agt = {sys, env}.

Example 1. Consider a coffee machine that allows cus-
tomers to choose between ordering black or white coffee.
After the selection, the machine delivers the product and
waits for further selections, cf. Figure 1. The environment
represents all possible infinite lines of customers, each with
their own plans and preferences. We formally define the cof-
fee machine as a module Mcaf = 〈AP, Sts, Ste, q0,→,PV 〉
such that AP = {choice, black,white}, Sts = {qb, qw}, Ste =
{qc}, q0 = qc, →= {(qc, qb), (qc, qw), (qb, qc), (qw, qc)}, and
PV (black) = {qb}, PV (white) = {qw}, PV (choice) = {qc}.
We leave rewriting Mcaf as a CGS to the reader.

2.2 CTL Module Checking
CTL* is a branching–time temporal logic [12], where path

quantifiers, E (“for some path”) and A (“for all paths”), can
be followed by an arbitrary linear-time formula, allowing
boolean combinations and nesting over temporal operators
X (“next”), U (“strong until”), F (“eventually”), and G (“al-
ways”). There are two types of formulas in CTL*: state
formulas ϕ, whose satisfaction is related to a specific state
(or node of a labeled tree), and path formulas γ, whose sat-
isfaction is related to a specific path. Formally:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eγ,
γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γU γ.

where p is an atomic proposition. The other operators can
be defined as: Aγ ≡ ¬E¬γ, Fγ ≡ trueU γ, and Gγ ≡ ¬F¬γ.

CTL [10] is a restricted subset of CTL*, obtained replac-
ing the syntax of path formulas γ as follows: γ := Xϕ |
ϕUϕ | ϕWϕ (“weak until”), i.e., every path quantifier must
be immediately followed by a temporal operator.

We define the semantics of CTL* (and its fragment CTL)
with respect to a St-labeled tree 〈T, V 〉 with propositional
valuation PV .2 Let x ∈ T and λ ⊆ T be a path from x.

1A CGS is turn-based iff every state in it is controlled by
(at most) one agent. That is, for every q ∈ St, there is an
agent a ∈ Agt such that |d(a′, q)| = 1 for all a′ 6= a.
2For the formal definition of labeled trees, cf. e.g. [22, 20].

By λ[i] we denote the i-st element of λ and by λ[1..∞] the
suffix of λ starting at λ[1]. For a state (resp., path) formula
ϕ (resp. γ), the satisfaction relation 〈T, V 〉,PV , x |=CTL ϕ
(resp., 〈T, V 〉,PV , λ |=CTL γ) is defined as follows:

• 〈T, V 〉,PV , x |=CTL p iff p ∈ PV (x);

• 〈T, V 〉,PV , x |=CTL Eγ iff there exists a path λ from
x such that 〈T, V 〉,PV , λ |=CTL γ;

• 〈T, V 〉,PV , λ |=CTL ϕ iff 〈T, V 〉,PV , λ[0] |=CTL ϕ;

• 〈T, V 〉,PV , λ |=CTL Xγ iff 〈T, V 〉,PV, λ[1..∞] |=CTL γ;

• 〈T, V 〉,PV , λ |=CTL γ1 U γ2 iff there is y ∈ λ such that
〈T, V 〉,PV , λy |=CTL γ2 and 〈T, V 〉,PV , λz |=CTL γ1

for all z ∈ λ such that z ≺ y.

The clauses for negation and conjunction are standard. More-
over, 〈T, V 〉,PV , λ |=CTL γ1 W γ2 iff either 〈T, V 〉,PV , λ |=CTL

γ1 U γ2 or 〈T, V 〉,PV , λ |=CTL Gγ1. Given a formula ϕ, we
say that 〈T, V 〉 satisfies ϕ if 〈T, V 〉,PV , ε |=CTL ϕ.

For a module M = 〈AP, Sts, Ste,→, q0,PV 〉, the set of
all (maximal) computations of M starting from the initial
state q0 is described by a St-labeled tree 〈TM , VM 〉, called
computation tree, which is obtained by unwinding M from
the initial state in the usual way. The problem of decid-
ing, for a given branching-time formula ϕ over AP , whether
〈TM ,PV ◦VM 〉 3 satisfies ϕ, denoted M |=CTL ϕ, is the usual
model-checking problem [10, 33]. On the other hand, for an
open system, 〈TM , VM 〉 corresponds to a very specific envi-
ronment, i.e. the maximal environment that never restricts
the set of its next states. When we examine specification
ϕ w.r.t. a module M , the formula ϕ should hold not only
in 〈TM , VM 〉, but in all the trees obtained by pruning some
environment transitions from 〈TM , VM 〉. The set of these
trees is denoted by exec(M) and is formally defined as fol-
lows. For each state q ∈ St, let succ(q) be the ordered tuple
of q′ node successors of q, i.e., q → q′. A tree 〈T, V 〉 is in
exec(M) iff T ⊆ TM , V is the restriction of VM to the tree
T , and for all x ∈ T the following holds:

• if VM (x) = w ∈ Sts and succ(q) = 〈q1, . . . , qn〉, then
children(T, x) = {x · 1, . . . , x · n} (note that for 1 ≤
i ≤ n, V (x · i) = VM (x · i) = qi);

• if VM (x) = w ∈ Ste and succ(q) = 〈q1, . . . , qn〉, then
there is a sub-tuple 〈qi1 , . . . , qip〉 of succ(q) such that
children(T, x) = {x · i1, . . . , x · ip} (note that for 1 ≤
j ≤ p, V (x · ij) = VM (x · ij) = qij).

Intuitively, when the module M is in a system state qs,
then all states in succ(qs) are possible successors. When M
is in an environment state qe, then the possible next states
(that are in succ(qe)) depend on the current environment.
Since the behavior of the environment is nondeterministic,
we have to consider all the nonempty sub-tuples of succ(qe).

For a module M and a CTL(*) formula ϕ, we say that
M reactively satisfies ϕ, denoted by M |=r

CTL
ϕ, if all the

trees in exec(M) satisfy ϕ. The problem of deciding whether
M reactively satisfies ϕ is called module checking [25]. Note
thatM |=r

CTL
ϕ impliesM |=CTL ϕ (since 〈TM , VM 〉 ∈ exec(M)),

but the converse in general does not hold. Also, note that
M 6|=r

CTL
ϕ is not equivalent to M |=r

CTL
¬ϕ.

3PV ◦ VM denotes the composition of the functions PV
and VM that allows to re-label each state-labeled node u
in 〈TM , VM 〉 with PV (VM (u)).

q1

clean1

q2

clean2

move,open

move,open

sta
y,∗

move
,cl

ose
stay,∗

move,close

Figure 2: Vacuum cleaner vs. gate controller: Mclean

Example 2. Consider the coffee machine from Example 1.
Clearly, Mcaf |=CTL EFblack as it is (in principle) possible to
deliver black coffee. On the other hand, Mcaf 6|=r

CTL
EFblack.

Think of a line of customers who never order black coffee. It
corresponds to an execution tree of Mcaf with no node labeled
with black, and such a tree does not satisfy EFblack.

2.3 Alternating Time Logic ATL/ATL*
Alternating-time temporal logic [3] generalizes CTL* by

replacing path quantifiers E,A with strategic modalities 〈〈A〉〉.
Informally, 〈〈A〉〉γ expresses that the group of agents A has
a collective strategy to enforce temporal property γ. The
language ATL* is given by the grammar below:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | γU γ.

where A ⊆ Agt is any subset of agents, and p is a proposi-
tion. “Sometime” and “always” are obtained like in CTL*.
Also, we can use [[A]]γ ≡ ¬〈〈A〉〉¬γ to express that no strat-
egy of A can prevent property γ. Similarly to CTL, ATL is
the syntactic variant in which every occurrence of a strategic
modality is immediately followed by a temporal operator.

Given a CGS, we define the strategies and their outcomes
as follows. A perfect recall strategy for agent a is a function
sa : St+ → Act such that sa(q0q1 . . . qn) ∈ d(a, qn). A mem-
oryless strategy for a is a function sa : St → Act such that
sa(q) ∈ d(a, q). A collective strategy for a group of agents
A = {a1, . . . , ar} is simply a tuple of individual strategies
sA = 〈sa1 , . . . , sar 〉. The “outcome” function out(q, sA) re-
turns the set of all paths that can occur when agents A
execute strategy sA from state q on. The semantics |=ATL

of alternating-time logic is obtained from that of CTL* by
replacing the clause for Eγ as follows:

M, q |=ATL 〈〈A〉〉γ iff there is a perfect recall strategy
sA for A such that for every λ ∈ out(q, sA) we have
M,λ |=ATL γ.

The problem of deciding whether a pointed CGS (M, q0)
satisfies the ATL formula ϕ is called ATL model checking.

Example 3. A vacuum cleaner robot can move between
(and clean) two cubicles, while a controller can open/close
the gate between the cubicles. A simple CGS modeling the
scenario is depicted in Figure 2. The wildcard (∗) stands for
any action of the respective agent. We assume q1 to be the
initial state.

Clearly, Mclean |=ATL 〈〈robot, ctrl〉〉Fclean1 and Mclean |=ATL

〈〈robot, ctrl〉〉Fclean2: if the robot and the controller cooper-
ate, they can get any room cleaned. On the other hand,
the robot cannot clean the other cubicle on its own, e.g.,
Mclean 6|=ATL clean1 → 〈〈robot〉〉Fclean2. Actually, the con-
troller has a sure strategy to prevent that (by never opening

qc

choice

qrb qrw

qb

black

qpr qw

white

qer

error

(r
eq
b,
-,
-)

(reqw
,-,-)

(-,p
o
u
r,-)

(-
,i
gn
,-
)

(-,p
o
u
r,-)

(-,ign
,∗)

(-,
pou

r,m
ilk)

(-,-,milk)(-,-,ign)

(-
,-
,-
)

(-,-,-)

(-,-,-)

Figure 3: Multi-agent coffee machine Mcaf2

the gate): Mclean |=ATL clean1 → 〈〈ctrl〉〉G¬clean2. The robot
can also prevent cleaning the other room, by never deciding
to move: Mclean |=ATL clean1 → 〈〈robot〉〉G¬clean2.

Embedding CTL* in ATL*. The path quantifiers of
CTL* can be expressed in the standard semantics of ATL* as
follows [3]: Aγ ≡ 〈〈∅〉〉γ and Eγ ≡ 〈〈Agt〉〉γ. We point out that
the above translation of E does not work for several exten-
sions of ATL*, e.g., with imperfect information, nondeter-
ministic strategies, and irrevocable strategies. On the other
hand, the translation of A into 〈〈∅〉〉 does work for all the
semantic variants of ATL* considered in this paper. Thanks
to that, we can define a translation atl(ϕ) from CTL* to
ATL* as follows. First, we convert ϕ so that it only in-
cludes universal path quantifiers, and then replace every oc-
currence of A with 〈〈∅〉〉. For example, atl(EG(p1 ∧AFp2)) =
¬〈〈∅〉〉F(¬p1 ∨ ¬〈〈∅〉〉Fp2). Note that if ϕ is a CTL formula
then atl(ϕ) is a formula of ATL. By a slight abuse of no-
tation, we will use path quantifiers A,E in ATL formulae
whenever it is convenient.

3. ATL MODULE CHECKING
We are now ready to propose how module checking for

ATL specifications can be defined.

3.1 Multi-Agent Modules

Definition 3 (Multi-agent module). A multi-agent
module is a pointed concurrent game structure that contains
a special agent called “the environment” (env ∈ Agt). We
call a module k-agent if it consists of k agents plus the en-
vironment (i.e., the underlying CGS contains k+ 1 agents).

The module is alternating iff its states are partitioned into
those owned by the environment (i.e., |d(a, q)| = 1 for all
a 6= env) and those where the environment is passive (i.e.,
|d(env, q)| = 1). That is, it alternates between the agents’
and the environment’s moves. Moreover, the module is turn-
based iff the underlying CGS is turn-based.

We remark in passing that the original modules [22] were
turn-based (and hence also alternating). On the other hand,
the version of module checking for imperfect information [23]
assumed that the system and the environment can act simul-
taneously.

Example 4. A multi-agent refinement of the coffee ma-
chine is presented in Figure 3. The module includes two
agents: the brewer (br) and the milk provider (milky). The
brewer’s function is to pour coffee into the cup (action pour),
and the milk provider can add milk on top (action milk).
Moreover, each of them can be faulty and ignore the request
from the environment (ign). Note that if br and milky try
to pour coffee and milk at the same time, the machine gets
jammed and needs repair. Finally, the environment has ac-
tions reqb, reqw available in state qc, meaning that it re-
quests black (resp. white) coffee. Since the module is al-
ternating, we have kept the convention of marking system
states as white, and environment states as grey.

3.2 Multi-Agent Module Checking
We define the ATL module checking problem analogously

to CTL module checking. Given a multi-agent module M
and an ATL* formula ϕ, we say that M reactively satisfies
ϕ, denoted M |=r

ATL
ϕ, if all the trees in exec(M) satisfy

ϕ. Similarly to CTL, M |=r
ATL

ϕ implies M |=ATL ϕ (since
〈TM , VM 〉 ∈ exec(M) and 〈TM , VM 〉 is strategically bisimilar
to M [1]), but the converse in general does not hold. Again,
note that M 6|=r

ATL
ϕ is not equivalent to M |=r

ATL
¬ϕ.

Example 5. What questions can be answered with ATL
module checking? Consider the multi-agent coffee machine
Mcaf2 from Example 4. Clearly, Mcaf2 6|=r

ATL
〈〈br,milky〉〉Fwhite

because the environment can keep requesting black coffee. On
the other hand, Mcaf2 |=r

ATL
〈〈br,milky〉〉Fblack: the agents

can provide the user with black coffee whatever she requests.
They can also deprive the user of coffee completely – in fact,
the brewer alone can do it by consistently ignoring her re-
quests: Mcaf2 |=r

ATL
〈〈br〉〉G(¬black ∧ ¬white).

All the above formulae can be also be used for model check-
ing, and they would actually generate the same answers. So,
what’s the benefit of module checking? In module checking,
we can condition the property to be achieved on the behav-
ior of the environment. For instance, users who never order
white coffee can be served by the brewer alone: Mcaf2 |=r

ATL

AG¬reqw → 〈〈br〉〉Fblack. Note that the same formula in
model checking does not express any interesting property. In
fact, it trivially holds since Mcaf2 6|=ATL AG¬reqw. Like-
wise, we have Mcaf2 |=ATL AG¬reqb→ 〈〈br〉〉Fwhite, whereas
module checking gives a different and more intuitive answer:
Mcaf2 6|=r

ATL
AG¬reqb → 〈〈br〉〉Fwhite. That is, the brewer

cannot handle requests for white coffee on his own, even if
the user never orders anything else.

More realistic examples can include a group of software
agents serving customers on behalf of an online shop (each
agent dealing with different merchandise), or a sensor net-
work reacting to the stream of traffic data. We leave formal
treatment of the examples to the reader’s imagination.

4. EXPRESSIVE POWER OF ATL MODULE
CHECKING

In this section, we show that ATL module checking strictly
enhances the expressivity of both CTL module checking and
ATL model checking.

4.1 ATL vs. CTL Module Checking
First, we prove that function atl(ϕ) presented in Sec-

tion 2.3 provides a sufficient syntactic translation to embed
CTL module checking.

Theorem 1. For every module M and CTL* formula ϕ,
we have M |=r

CTL
ϕ iff M |=r

ATL
atl(ϕ).

Proof. M |=r
CTL

ϕ iff for every T ∈ exec(M) it holds
that T |=CTL ϕ. Thus, equivalently, ∀T ∈ exec(M) . T |=ATL

atl(ϕ). But this is equivalent to M |=r
ATL

atl(ϕ).

Note that, for a CTL formula ϕ, we have that atl(ϕ) is a
formula of ATL. Thus, Theorem 1 provides also an embed-
ding of module checking for “CTL without star.” The next
theorem shows that there is no embedding the other way.

Theorem 2. There exists a pair of multi-agent modules
M1,M2 that reactively satisfy the same formulae of CTL*
(and hence also CTL), but are reactively distinguished by a
formula of ATL (and hence also ATL*).

Proof. Take M1 = Mcaf2 and M2 identical to M1 except
that state qrb is controlled by milky.

Now, observe that env has the same “pruning strategies”
in M1,M2, and that they yield bisimilar subtrees. More
formally, for every T1 ∈ exec(M1) there is bisimilar T2 ∈
exec(M2), and vice versa. Thus, M1 |=r

CTL
ϕ iff ∀T ∈

exec(M1) . T |=CTL ϕ iff ∀T ∈ exec(M2) . T |=CTL ϕ iff
M2 |=r

CTL
ϕ.

Furthermore, take ϕ ≡ 〈〈milky〉〉G(¬black ∧ ¬white). It is
easy to see that M1 6|=r

ATL
ϕ but M2 |=r

ATL
ϕ.

4.2 ATL Module vs. Model Checking
As we show below, ATL module checking subsumes ATL

model checking modulo renaming. Moreover, there are prop-
erties captured by |=r

ATL
that cannot be discerned by |=ATL .

Theorem 3. For every module M and ATL* formula ϕ
such that M and ϕ do not contain agent env, we have that
M |=r

ATL
ϕ iff M |=ATL ϕ.

Proof. The equivalence is actually less straightforward
than it seems, since |=ATL evaluates nested cooperation modal-
ities in new tree unfoldings starting from the current state
of the model, whereas |=r

ATL
evaluates nested cooperation

modalities in the original tree unfolding. Thus, |=r
ATL

comes
close to the “no forgetting” semantics of ATL studied in [9].
Still, for perfect information, a pointed model is strategi-
cally bisimilar with its tree unfolding, and hence satisfies
the same formulae of ATL* [1].

Formally, if M |=r
ATL

ϕ then 〈TM , VM 〉 |=ATL ϕ, and hence
M |=ATL ϕ (by the result from [1]). Conversely, if M |=ATL

ϕ then by the same result 〈TM , VM 〉 |=ATL ϕ, and hence also
M |=r

ATL
ϕ as exec(M) = {〈TM , VM 〉} when env /∈M .

Theorem 4. There exists a pair of modules that satisfy
the same formulae of ATL* (and hence also ATL), but are
reactively distinguished by a formula of ATL (and hence also
ATL*).

Proof. We know from [20] that there exists a pair of
single-agent modules M1,M2 that satisfy the same formulae
of ATL* but are reactively distinguished by an CTL formula.
By Theorem 1, they are also reactively distinguished by an
ATL formula.

5. ALGORITHMS AND COMPLEXITY
Our algorithmic solution to the problem of ATL module

checking exploits the automata-theoretic approach. More
precisely, we make use of parity tree automata on infinite
tress. We refer to [34] for an introduction. The approach we
use combines and extends that ones used to solve the CTL*
module checking and the ATL* model checking problems.

5.1 Trees for Strategies
Recall that M 6|=r

ATL
〈〈A〉〉γ iff there exists 〈TM , VM 〉 ∈

exec(M) not satisfying 〈〈A〉〉γ. Moreover, for memoryfull
strategies, M |=ATL 〈〈A〉〉γ iff ∃sA∀sĀout(M, (sA, sĀ)) |= γ,
where Ā stands for the remaining agents not in A. Thus
〈TM , VM 〉 6|=ATL 〈〈A〉〉γ means that for each possible strategy
sA for A there exists a strategy sĀ for agents not in A such
that γ does not hold on the resulting path(s).

Consider the tree 〈T ′M , VM 〉 that is obtained from 〈TM , VM 〉
by pairing each possible perfect recall strategy for agents not
in A with only one perfect recall strategy for agents in A. In
other words, the tree is obtained from 〈TM , VM 〉 by pruning
at each node, for all strategies sĀ, all but one subtree among
those induced by sĀ.

Then, 〈〈A〉〉γ does not hold according to the |=r
ATL

seman-
tics iff there exists such a tree that satisfies the CTL* for-
mula A¬γ. We denote the set of such trees by exec(M,A),
and call it the A-executions of M . This set is formally de-
scribed below. The essence of our algorithm is to build an
automaton that accepts all such trees. Then the emptiness
of the automaton ensures that the multi-agent module sat-
isfies the formula.

Let M be a multi-agent module and A ⊆ Agt a set of
agents. First observe that the tree unwinding 〈TM , VM 〉 of
M is done in such a way that looking at each node, by
following backwards the path up to the root, it is possible to
recover the sequence of states in St∗ that leads to that node.
This is important in ATL* as the strategies are memoryfull.
Consequently, w.l.o.g. we can assume that each node in TM
belongs to St∗, as we do in the rest of this section. The set
exec(M,A) is defined below by refining the first bullet in
the definition of exec(M) as follows:

• if VM (x) = w ∈ Sts and x = λ · q′ ∈ St∗ then
children(T, x) contains all strings of the form λ · q′ · q′′
where q′′ is such that there is a move vector 〈α1, . . . , αk〉
such that (1) αb = sb(λ ·q′) = d(b, q′) for all agents b ∈
Ā, (2) o(q′, α1, . . . , αk) = q′′, and (3) V (x · q′′) = q′′.

5.2 Automata-Based Procedure for ATL Mod-
ule Checking

We will now sketch a module checking procedure that
adapts the automata-theoretic approaches used in [25] and [3].
Given a module M and a CTL* formula, the former returns
a Rabin tree automaton AM accepting all trees in exec(M)
that do not satisfy the formula. The latter, given a CGS G
and an ATL* formula 〈〈A〉〉γ, returns a Rabin tree automa-
ton AG accepting all trees compatible with every strategy
of agents in A.

Consider now a multi-agent module M ′. We construct
a Rabin tree automaton AM′ that combines the ideas be-
hind the constructions of AM and AG, and accepts all trees
in exec(M ′, A). That is, it accepts all trees compatible with
the strategies in Ā and respecting all possible behaviors (i.e.,
prunings) from the environment. More precisely, AM′ repro-
duces the transition relation of AM over the environment
states Ste and that of AG over system states Sts. Note
that, similarly to AM and AG, the automaton AM′ turns
out to have a doubly exponential number of states and an
exponential number of pairs in the size of the formula. Now,
it suffices to apply the classical algorithm that checks empti-
ness of the automaton [13], i.e., checks whether L(AM′) = ∅.

Theorem 5. The algorithm returns “yes” iff M |=r
ATL

ϕ.

Proof. Follows from the construction.

5.3 Complexity of Module Checking: ATL*
We start with the general result, and then consider the so

called program complexity.

Theorem 6. The module-checking problem for ATL* is
2EXPTIME-complete.

Proof. For the lower bound, recall that both CTL* mod-
ule checking and ATL* model checking are 2EXPTIME-
hard. Since ATL* module checking embeds both problems
through polynomial-time reductions, the hardness result im-
mediately follows.

For the upper bound, consider the automata-theoretic
procedure presented in Section 5.2. Recall that the automa-
ton being constructed (AM′) has a doubly exponential num-
ber of states and an exponential number of pairs in the size
of the formula. Moreover, the algorithm for checking empti-
ness of the automaton is exponential in the number of pairs
but polynomial in the number of states [13]. Thus, the over-
all algorithm runs in time which is doubly exponential in the
size of the input formula.

Similarly to model checking, the input to module checking
typically consists of a large model (specifying the agents and
their interaction with the environment) and a short formula
(referring to a simple temporal pattern, e.g., reaching a state
where some atomic formula p holds). Thus, the fact that the
complexity is high wrt to the length of the formula is not
significant in itself. It is much more important to see how the
complexity scales in relation to the size of the model. To this
end, program complexity is often used, where one assumes
the length of the formula to be bounded by a constant, and
hence not a parameter of the complexity function.

Theorem 7. For ATL* formulas of bounded size, the mod-
ule checking problem is P-complete.

Proof. In case of an ATL* formula with bounded size,
first note that, as both AM and AG are polynomial in the
size of the model, it is also the case for the Rabin automaton
AM′ . Then the polynomial-time upper bound follows from
further observing that the number of pairs in all these au-
tomata is independent from the size of the model (i.e., it is
a constant value in this case). For the lower bound we recall
that both CTL* module checking and ATL* model checking
are P-hard in case of bounded-size formulas.

5.4 Complexity of Module Checking: ATL
We now look at the more restricted syntactic variant ATL.

Theorem 8. Module checking ATL is EXPTIME-complete.

Proof sketch. We use a similar approach to the one in
Section 5.2. The construction yields a Buchi tree automaton
(rather than a Rabin tree automaton) exponential in the size
of the formula, whose emptiness is solvable in polynomial-
time [35, 24]. For the lower bound, we recall that module
checking of CTL is EXPTIME-hard.

Theorem 9. Module checking ATL for formulae of bounded
size is P-complete.

Proof. Straightforward, from Theorem 7 and the fact
that CTL module checking and ATL model checking are
P-hard in case of bounded-size formulas.

Summary of complexity results. Summing up, we do
not lose anything in terms of complexity by “upgrading”
CTL* module checking to specifications written in ATL*.
Both the general complexity results and the program com-
plexities are exactly the same. Since ATL* module checking
is more expressive than CTL* module checking, it seems we
pay no (significant) price for the expressivity enhancement.

For“vanilla”ATL, module checking is EXPTIME-complete,
which is the same as CTL module checking, but distinctly
harder than for ATL model checking. Still, the complexity
increase is only wrt the length of the formula; the program
complexities in all the three cases are the same.

6. IMPERFECT INFORMATION
So far, we have only considered multi-agent modules in

which the environment has complete information about the
state of the system. In many practical scenarios this is not
the case. Usually, the agents have some private knowledge
that the environment cannot access. As an example, think
of the coffee machine from Example 4. A realistic model of
the machine should include some internal variables that the
environment (i.e., the customer) is not supposed to know
during the interaction, such as the amount of milk in the
container or the amount of coins available for giving change.
States that differ only in such hidden information are indis-
tinguishable to the environment. While interaction with an
“omniscient” environment corresponds to an arbitrary prun-
ing of transitions in the module, in case of imperfect informa-
tion the pruning must coincide whenever two computations
look the same to the environment.

6.1 Imperfect Information Module Checking
To handle such scenarios, we extend the definition of multi-

agent modules as follows.

Definition 4 (Multi-agent module with imp. inf.).
A multi-agent module with imperfect information is a multi-
agent module further equipped with an indistinguishability
relation ∼⊆ St× St. We assume ∼ to be an equivalence.

We write [St] for the set of equivalence classes of St under
∼. Clearly, in case of perfect information, ∼ is the equality
relation, and [St] = St. Since the environment should know
its own choices, we require that for every q, q′ ∈ St such that
q ∼ q′ we have that denv(q) = denv(q′). We also assume that
if q ∼ q′ then the set of atomic propositions holding in q and
q′ must coincide.

The ATL module checking problem is defined as in the
perfect information case, with the following difference: exec(M)
consists only of trees that are consistent with the partial in-
formation available to the environment. Formally, two nodes
v and v′ in 〈TM , VM 〉 are indistinguishable (v ∼= v′) iff (1)
the length of v, v′ in 〈TM , VM 〉 is the same, and (2) for each
i, we have v[i] ∼ v′[i]. Then, whenever v ∼= v′ then each tree
in exec(M) must prune either both subtrees rooted at v, v′,
or none of them.

6.2 Automata and Complexity
As noted in [23], checking for consistency in pruned trees is

the main source of difficulty in dealing with module checking
with imperfect information. In consequence, the procedure
we have used in Section 5 to solve ATL(*) module check-
ing for perfect information is no longer valid. Instead, we

will use an extension of the approach proposed in [23], which
makes use of alternating tree automata. These are automata
able to send several copies of themselves in the same direc-
tion of a tree [24]. We use this extra feature to send the same
copy of the automaton to states that look the same to the
environment. This will ensure the consistency of pruning.
The idea leads to the following result.

Theorem 10. The module-checking problem is 2EXPTIME-
complete for ATL* and EXPTIME-complete for ATL. For
formulae of bounded size the problem is EXPTIME-complete
in both cases.

Proof sketch. For the lower bounds, recall that module
checking under imperfect information is 2EXPTIME-hard
for CTL* and EXPTIME-hard for CTL. Also, for a fixed size
formula, the problem is EXPTIME-hard in both cases [23].

For the upper bounds, we build alternating tree automata
that adapt the constructions presented in the proofs of The-
orems 6 and 8 regarding the transition relations involving en-
vironment states. More precisely, given a multi-agent mod-
ule with imperfect information M having a set of states St
and indistinguishability relation ∼, we use as directions the
elements of [St] in a similar way to [23]. The constructed
automaton requires, in case of ATL, a Büchi acceptance con-
dition and its size is polynomial in both the formula and the
system. In case of ATL*, a Rabin condition is required and
the size of the automaton becomes exponential in size of
the formula, while remaining polynomial in the size of the
system. As checking the emptiness for Büchi and Rabin al-
ternating tree automata is solvable in EXPTIME [24], the
upper bounds follow, also in case of bounded-size formu-
lae.

7. REACTIVE VS. PROACTIVE SEMANTICS
OF ATL MODULE CHECKING

The“r”in |=r
ATL

stands for“reactive”, and indeedM |=r
ATL

ϕ is often read as “Module M reactively satisfies ϕ.” It em-
phasizes that the system can react – and adapt – to the
behavior of the environment in order to get formula ϕ sat-
isfied. This poses no problem when ϕ is a CTL formula,
i.e., ϕ requires a certain temporal pattern to be objectively
possible (through the path quantifier E) or unavoidable (via
A). However, things become trickier when ϕ refers to strate-
gic abilities of agents. Recall that M |=r

ATL
〈〈A〉〉γ expresses

that the agents in A can adapt to every strategy of the envi-
ronment so that they bring about γ. Among other things, it
means that A can choose their strategy differently depend-
ing on the future moves of the environment. To make this
observation more formal, we rephrase the semantics of ATL
module checking from Section 3 in a similar way to the well
known game semantics of first order logic [27, 19].

7.1 Module Checking as a Game
To make things simpler, we will only use ATL* formulae

in negation normal form (NNF). That is, we add the disjunc-
tion and dual strategic modalities as primitives, and allow
explicit negation only on the level of atomic propositions. It
is easy to transform any formula of ATL to an equivalent
formula in NNF by applying de Morgan laws and “flipping”
modalities whenever necessary.

Definition 5 (Semantic game for |=r
ATL

). We define
the semantic game Γ(ϕ,M) for formula ϕ in multi-agent

module M as a turn-based extensive form game with two
players v (the verifier) and r (the refuter). Γ(ϕ,M) consists
of the root, controlled by r, with one move for each labeled
tree 〈T, V 〉 ∈ exec(M), leading to Γ0(ϕ, 〈T, V 〉) constructed
recursively as follows:.

1. If ϕ ≡ p then Γ0(ϕ, 〈T, V 〉) consists of a single node
where v wins iff p holds in the initial state of 〈T, V 〉;

2. If ϕ ≡ ¬p then Γ0(ϕ, 〈T, V 〉) consists of a single node
where v wins iff p does not hold in the initial state of
〈T, V 〉;

3. If ϕ ≡ ϕ1 ∧ ϕ2 then Γ0(ϕ, 〈T, V 〉) consists of the root,
controlled by r, with two available moves: one leading
to Γ0(ϕ1, 〈T, V 〉) and the other to Γ0(ϕ2, 〈T, V 〉);

4. ϕ ≡ ϕ1 ∨ ϕ2: analogously to (3), but the root is con-
trolled by v;

5. If ϕ ≡ 〈〈A〉〉γ then Γ0(ϕ, 〈T, V 〉) consists of the root,
controlled by v, with one move per strategy sA of A.
The move leads to a node of r with one move per path
λ ∈ out(〈T, V 〉, sA), leading to Γ0(γ, 〈T, V 〉, λ);

6. ϕ ≡ [[A]]γ: analogously to (5), but the root is controlled
by r, and its successors by v;

7. γ ≡ γ ∧ γ and γ ≡ γ ∨ γ: analogously to (3), (4);

8. If γ ≡ Xγ1 then Γ0(γ, 〈T, V 〉, λ) = Γ0(γ1, 〈T, V 〉λ[1],
λ[1..∞]), where 〈T, V 〉x is the subtree of 〈T, V 〉 starting
from node x;

9. If γ ≡ γ1 U γ2 then Γ0(γ, 〈T, V 〉, λ) consists of the root,
controlled by v, with one move per i = 0, 1, The
move leads to a node of r with one move per j =
0, . . . , i − 1, leading to Γ0(γ1, 〈T, V 〉λ[j], λ[j..∞]), plus

an additional move leading to Γ0(γ2, 〈T, V 〉λ[i], λ[i..∞]);

10. If γ ≡ γ1 W γ2 then Γ0(γ, 〈T, V 〉, λ) consists of the
root, controlled by v, with one move per i = 0, 1, . . . ,∞.
The move leads to a node of r with one move per j =
0, . . . , i − 1, leading to Γ0(γ1, 〈T, V 〉λ[j], λ[j..∞]), plus

an additional move leading to Γ0(γ2, 〈T, V 〉λ[i], λ[i..∞])
in case i <∞;

The idea of the semantic game (sometimes also called di-
alogical game) is very simple. One player (v) tries to prove
that the formula holds, while the other (r) tries to prevent.
The verifier controls all the existentially quantified parts of
the formula, and the refuter controls all the universal quanti-
fiers. Moreover, when deciding on a subformula, the respec-
tive players can use their knowledge of the choices made for
the outer operators. Now, the formula holds if the verify
can prove it true no matter what the refuter does to prevent
that.

Definition 6 (Game semantics for |=r
ATL

). As usual
for extensive form games, a strategy of player π ∈ {v, r} in
Γ(M,ϕ) is a function that maps the nodes controlled by π to
the available choices. To distinguish the strategies of agents
in M from the strategies in Γ(M,ϕ), we will call the latter
semantic strategies. Note that semantic strategies are by
definition deterministic. A verifier’s strategy is winning if
every full path in Γ(M,ϕ) consistent with the strategy ends
in a winning state.

We say that M |≈rATLϕ iff the verifier has a winning se-
mantic strategy in Γ(M,ϕ).

The semantics is correct in the following sense (the proof
is straightforward, and we omit it due to lack of space):

Proposition 11. M |≈rATLϕ iff M |=r
ATL

ϕ.

7.2 Proactive Semantics of Module Checking
The game semantics of |=r

ATL
brings forward what we ob-

served at the beginning of this section: that the strategy sA
of agents A in formula 〈〈A〉〉γ can be adapted to the whole
strategy of the environment. That is because the success
of sA is evaluated not in the original model M , but in the
tree corresponding to one of the environment’s strategies.
In many scenarios, this does not seem right. In particu-
lar, it corresponds to what some authors call non-behavioral
strategies [31, 30]. Game semantics allows us to deal with
the problem in a straightforward way, by defining a cluster-
ing of nodes in the semantic game that differ only in the
future behavior of the environment, and changing the type
of the verifier’s strategies accordingly.

Definition 7 (Proactive semantic game). Given M
and ϕ, we construct the new semantic game Γpa(M,ϕ) as
an extensive game of imperfect information. Γpa(M,ϕ) has
the same players, nodes, and transitions as Γ(M,ϕ). The
only difference is that it adds an indistinguishability relation
for the v player. Let tree(ϑ) denote the execution tree asso-
ciated with the game node ϑ. Note that tree(ϑ) is always a
subtree of some tree in exec(M). Also, let form(ϑ) be the
subformula of ϕ associated with ϑ, and formpos(ϑ) be its
position within ϕ.

Now, two nodes ϑ1, ϑ2 controlled by v are indistinguish-
able iff: (i) form(ϑ1) = form(ϑ2) = 〈〈A〉〉γ, (ii) formpos(ϑ1) =
formpos(ϑ2), and (iii) root(tree(ϑ1)) = root(tree(ϑ2)).

Note that the root of tree(ϑ) is labeled by the sequence
of states that have been visited between the initial state
and the execution point behind ϑ. Thus, two v’s nodes in
Γpa(M,ϕ) are indistinguishable if the verifier is about to
propose a strategy for some agents A, the nodes correspond
to the same subformula of ϕ (meaning exactly the same sub-
forumla, including its position within ϕ), and they consider
the same history of execution in the module. The indistin-
guishability relation is an equivalence, and its abstraction
classes are called information sets. In games with imperfect
information, a strategy of player π is a function that maps
π’s information sets to π’s choices.

Definition 8 (Proactive semantics). We say that M
proactively satisfies ϕ (M |=pa

ATL
ϕ) iff the verifier has a win-

ning semantic strategy in Γpa(M,ϕ).

That is, we require the verifier to be able to win the se-
mantic game without knowing the future choices of the en-
vironment in advance. The following is straightforward by
the fact that we only constrain the choice of strategies for
positive strategic modalities.

Theorem 12. If M |=pa
ATL

ϕ then M |=r
ATL

ϕ

More interestingly, the converse does not hold.

Theorem 13. |=pa
ATL

is not equivalent to |=r
ATL

even for
turn-based single-agent modules.

Proof. Take module M1 from Figure 4 and formula ϕ ≡
EXAXp→ 〈〈a〉〉Fp. Now, M1 |=r

ATL
ϕ but M1 6|=pa

ATL
ϕ.

q0

q1 q2

q3p q4

(-
,α
) (-,β

)

(α
,-) (β,-)(α

,-)

(β
,-)

(-
,-
)

(-,-)

Figure 4: Single-agent module M1

We observe that our proactive semantics of module check-
ing comes close to the behavioral semantics of Strategy Logic
in [31]. Note, however, that our definition is based on se-
mantic strategies in a dialogical game, whereas the approach
of [31] was based on Skolem dependence functions.

8. CONCLUSIONS
We have presented an extension of the module checking

problem to specifications written in the strategic logic ATL*.
As usual for computational problems, the key features are
expressivity and complexity. We show that our proposal
fares well in this respect. On one hand, the computational
complexity of ATL/ATL* module checking is no worse than
that of CTL/CTL* module checking, and its program com-
plexity is the same as that of ATL/ATL* model checking.
On the other hand, ATL/ATL* module checking has strictly
more expressive power than both CTL/CTL* module check-
ing and ATL/ATL* model checking. The results are en-
couraging, and can hopefully lead to a revival of research on
practical verification procedures based on module checking.

In the rest of the paper, we consider two semantic vari-
ations of ATL module checking: one where we can model
information internal to the module, and hence unaccessible
to the environment, and another one where strategies of the
agents in the module cannot be based on the plans of the
environment. The former variation brings further encourag-
ing complexity results. For the latter, we show that it brings
a distinctly different interpretation of agents’ ability when
interacting with the outside world. We also conjecture that
it should not increase the computational costs of module
checking, but no concrete results have been obtained yet.

Interesting paths for future research include a formal char-
acterization of the correspondence to model checking in the
spirit of [20], and automata-based procedures as well as com-
plexity and expressivity results for the proactive semantics
of module checking. We are also going to look at the rela-
tion of module checking to model checking of temporal logics
with propositional quantification [21, 26].

Acknowledgements. Aniello Murano acknowledges the
support of the FP7 EU project 600958-SHERPA. Wojciech
Jamroga acknowledges the support of the FP7 EU project
ReVINK (PIEF-GA-2012-626398).

REFERENCES
[1] T. Ågotnes, V. Goranko, and W. Jamroga.

Alternating-time temporal logics with irrevocable
strategies. In D. Samet, editor, Proceedings of TARK
XI, pages 15–24, 2007.

[2] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time Temporal Logic. In Proceedings of
the 38th Annual Symposium on Foundations of
Computer Science (FOCS), pages 100–109. IEEE
Computer Society Press, 1997.

[3] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time Temporal Logic. Journal of the
ACM, 49:672–713, 2002.

[4] B. Aminof, A. Legay, A. Murano, O. Serre, and M. Y.
Vardi. Pushdown module checking with imperfect
information. Inf. Comput., 223(1):1–17, 2013.

[5] B. Aminof, A. Murano, and M. Vardi. Pushdown
module checking with imperfect information. In
Proceedings of CONCUR, LNCS 4703, pages 461–476.
Springer-Verlag, 2007.

[6] S. Basu, P. S. Roop, and R. Sinha. Local module
checking for ctl specifications. Electronic Notes in
Theoretical Computer Science, 176(2):125–141, 2007.

[7] L. Bozzelli. New results on pushdown module checking
with imperfect information. In Proceedings of
GandALF, volume 54 of EPTCS, pages 162–177, 2011.

[8] L. Bozzelli, A. Murano, and A. Peron. Pushdown
module checking. Formal Methods in System Design,
36(1):65–95, 2010.

[9] N. Bulling, W. Jamroga, and M. Popovici. Agents
with truly perfect recall: Expressivity and validities.
In Proceedings of ECAI, pages 177–182, 2014.

[10] E. Clarke and E. Emerson. Design and synthesis of
synchronization skeletons using branching time
temporal logic. In Proceedings of Logics of Programs
Workshop, volume 131 of Lecture Notes in Computer
Science, pages 52–71, 1981.

[11] L. de Alfaro, P. Godefroid, and R. Jagadeesan.
Three-valued abstractions of games: Uncertainty, but
with precision. In Proceedings of LICS, pages 170–179.
IEEE Computer Society, 2004.

[12] E. Emerson and J. Halpern. ”sometimes” and ”not
never” revisited: On branching versus linear time
temporal logic. Journal of the ACM, 33(1):151–178,
1986.

[13] E. Emerson and C. Jutla. Tree automata, mu-calculus
and determinacy. In Foundations of Computer
Science, 1991. Proceedings., 32nd Annual Symposium
on, pages 368–377. IEEE, 1991.

[14] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, pages 995–1072. Elsevier Science
Publishers, 1990.

[15] A. Ferrante, A. Murano, and M. Parente. Enriched
µ-calculi module checking. Logical Methods in
Computer Science, 4(3:1):1–21, 2008.

[16] M. Gesell and K. Schneider. Modular verification of
synchronous programs. In Proceedings of ACSD, pages
70–79. IEEE, 2013.

[17] P. Godefroid. Reasoning about abstract open systems
with generalized module checking. In Proceedings of

EMSOFT, volume 2855 of LNCS, pages 223–240.
Springer, 2003.

[18] P. Godefroid and M. Huth. Model checking vs.
generalized model checking: Semantic minimizations
for temporal logics. In Proceedings of LICS, pages
158–167. IEEE Computer Society, 2005.

[19] J. Hintikka. Game-theoretical semantics: insights and
prospects. Notre Dame Journal of Formal Logic,
23(2):219–241, 1982.

[20] W. Jamroga and A. Murano. On module checking and
strategies. In Proceedings of the 13th International
Conference on Autonomous Agents and Multiagent
Systems AAMAS 2014, pages 701–708, 2014.

[21] O. Kupferman. Augmenting branching temporal logics
with existential quantification over atomic
propositions. Journal of Logic and Computation,
9(2):135–147, 1999.

[22] O. Kupferman and M. Vardi. Module checking. In
Procedings of CAV, volume 1102 of LNCS, pages
75–86. Springer, 1996.

[23] O. Kupferman and M. Vardi. Module checking
revisited. In Proceedings of CAV, volume 1254 of
LNCS, pages 36–47. Springer, 1997.

[24] O. Kupferman, M. Vardi, and P. Wolper. An
automata-theoretic approach to branching-time model
checking. Journal of the ACM, 47(2):312–360, 2000.

[25] O. Kupferman, M. Vardi, and P. Wolper. Module
checking. Information and Computation,
164(2):322–344, 2001.

[26] A. D. C. Lopes, F. Laroussinie, and N. Markey.
Quantified CTL: expressiveness and model checking.
In Proceedings of CONCUR, pages 177–192, 2012.

[27] K. Lorenz and P. Lorenzen. Dialogische Logik.
Darmstadt, 1978.

[28] F. Martinelli. Module checking through partial model
checking. Technical report, CNR Roma - TR-06, 2002.

[29] F. Martinelli and I. Matteucci. An approach for the
specification, verification and synthesis of secure
systems. Electronic Notes in Theoretical Computer
Science, 168:29–43, 2007.

[30] F. Mogavero, A. Murano, G. Perelli, , and M. Vardi.
What makes ATL* decidable? a decidable fragment of
strategy logic. In Proceedings of CONCUR, pages
193–208, 2012.

[31] F. Mogavero, A. Murano, G. Perelli, and M. Vardi.
Reasoning about strategies: On the model-checking
problem. ACM Transactions on Computational Logic,
15(4):1–42, 2014.

[32] A. Murano, M. Napoli, and M. Parente. Program
complexity in hierarchical module checking. In
Proceedings of LPAR, volume 5330 of Lecture Notes in
Computer Science, pages 318–332. Springer, 2008.

[33] J. Queille and J. Sifakis. Specification and verification
of concurrent programs in Cesar. In Symposium on
Programming, volume 137 of LNCS, pages 337–351.
Springer, 1981.

[34] W. Thomas. Automata on infinite objects. Handbook
of Theoretical Computer Science, 2, 1990.

[35] M. Vardi and P. Wolper. Automata-theoretic
techniques for modal logics of programs. Journal of
Computer and System Sciences, 32(2):183–221, 1986.

