
Modular Interpreted Systems

Wojciech Jamroga
Department of Informatics

Clausthal University of Technology, Germany
wjamroga@in.tu-clausthal.de

Thomas Ågotnes
Department of Computer Engineering

Bergen University College, Norway
tag@hib.no

ABSTRACT
We propose a new class of representations that can be used for mod-
eling (and model checking) temporal, strategic and epistemic prop-
erties of agents and their teams. Our representations borrow the
main ideas from interpreted systems of Halpern, Fagin et al.; how-
ever, they are also modular and compact in the way concurrent pro-
grams are. We also mention preliminary results on model checking
alternating-time temporal logic for this natural class of models.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems; I.2.4 [Artificial Intelligence]: Knowledge Rep-
resentation Formalisms and Methods—Modal logic

General Terms
Theory

Keywords
open computational systems, temporal and strategic logics, model-
ing methodology, model checking

1. INTRODUCTION
The logical foundations of multi-agent systems have received

much attention in recent years. Logic has been used to represent
and reason about, e.g., knowledge [7], time [6], cooperation and
strategic ability [3]. Lately, an increasing amount of research has
focused on higher level representation languages for models of such
logics, motivated mainly by the need for compact representations,
and for representations that correspond more closely to the actual
systems which are modeled. Multi-agent systems are open systems,
in the sense that agents interact with an environment only partially
known in advance. Thus, we need representations of models of
multi-agent systems which are modular, in the sense that a compo-
nent, such as an agent, can be replaced, removed, or added, without
major changes to the representation of the whole model. However,
as we argue in this paper, few existing representation languages are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2007 IFAAMAS .

both modular, compact and computationally grounded on the one
hand, and allow for representing properties of both knowledge and
strategic ability, on the other.

In this paper we present a new class of representations for mod-
els of open multi-agent systems, which are modular, compact and
come with an implicit methodology for modeling and designing
actual systems.

The structure of the paper is as follows. First, in Section 2, we
present the background of our work – that is, logics that combine
time, knowledge, and strategies. More precisely: modal logics that
combine branching time, knowledge, and strategies under incom-
plete information. We start with computation tree logic CTL, then
we add knowledge (CTLK), and then we discuss two variants of
alternating-time temporal logic (ATL): one for the perfect, and one
for the imperfect information case. The semantics of logics like the
ones presented in Section 2 are usually defined over explicit models
(Kripke structures) that enumerate all possible (global) states of the
system. However, enumerating these states is one of the things one
mostly wants to avoid, because there are too many of them even
for simple systems. Thus, we usually need representations that are
more compact. Another reason for using a more specialized class of
models is that general Kripke structures do not always give enough
help in terms of methodology, both at the stage of design, nor at im-
plementation. This calls for a semantics which is more grounded, in
the sense that the correspondence between elements of the model,
and the entities that are modeled, is more immediate. In Section 3,
we present an overview of representations that have been used for
modeling and model checking systems in which time, action (and
possibly knowledge) are important; we mention especially repre-
sentations used for theoretical analysis. We point out that the com-
pact and/or grounded representations of temporal models do not
play their role in a satisfactory way when agents’ strategies are
considered. Finally, in Section 4, we present our framework of
modular interpreted systems (MIS), and show where it fits in the
picture. We conclude with a somewhat surprising hypothesis, that
model checking ability under imperfect information for MIS can be
computationally cheaper than model checking perfect information.
Until now, almost all complexity results were distinctly in favor of
perfect information strategies (and the others were indifferent).

2. LOGICS OF TIME, KNOWLEDGE, AND
STRATEGIC ABILITY

First, we present the logics CTL, CTLK, ATL and ATLir that are
the starting point of our study.

2.1 Branching Time: CTL
Computation tree logic CTL [6] includes operators for temporal

properties of systems: i.e., path quantifier E (“there is a path”), to-

gether with temporal operators: f(“in the next state”), 2 (“always
from now on”) and U (“until”).1 Every occurrence of a temporal
operator is immediately preceded by exactly one path quantifier
(this variant of the language is sometimes called “vanilla” CTL).

Let Π be a set of atomic propositions with a typical element p.
CTL formulae ϕ are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E fϕ | E2ϕ | EϕU ϕ.

The semantics of CTL is based on Kripke models M = 〈St,R, π〉,
which include a nonempty set of states St, a state transition relation
R ⊆ St × St, and a valuation of propositions π : Π → P(St).
A path λ in M refers to a possible behavior (or computation) of
system M, and can be represented as an infinite sequence of states
q0q1q2... such that qiRqi+1 for every i = 0, 1, 2, We denote
the ith state in λ by λ[i]. A q-path is a path that starts in q. Inter-
pretation of a formula in a state q in model M is defined as follows:

M, q |= p iff q ∈ π(p);

M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;

M, q |= E fϕ iff there is a q-path λ such that M, λ[1] |= ϕ;

M, q |= E2ϕ iff there is a q-path λ such that M, λ[i] |= ϕ for
every i ≥ 0;

M, q |= EϕU ψ iff there is a q-path λ and i ≥ 0 such that
M, λ[i] |= ψ and M, λ[j] |= ϕ for every 0 ≤ j < i.

2.2 Adding Knowledge: CTLK
CTLK [19] is a straightforward combination of CTL and standard

epistemic logic [10, 7]. Let Agt = {1, ..., k} be a set of agents with
a typical element a. Epistemic logic uses operators for representing
agents’ knowledge: Kaϕ is read as “agent a knows that ϕ”. Models
of CTLK extend models of CTL with epistemic indistinguishability
relations ∼a⊆ St × St (one per agent). We assume that all ∼a are
equivalences. The semantics of epistemic operators is defined as
follows:

M, q |= Kaϕ iff M, q |= ϕ for every q′ such that q ∼a q′.

Note that, when talking about agents’ knowledge, we implic-
itly assume that agents may have imperfect information about the
actual current state of the world (otherwise the notion of knowl-
edge would be trivial). This does not have influence on the way
we model evolution of a system as a single unit, but it will become
important when particular agents and their strategies come to the
fore.

2.3 Agents and Their Strategies: ATL
Alternating-time temporal logic ATL [3] is a logic for reason-

ing about temporal and strategic properties of open computational
systems (multi-agent systems in particular). The language of ATL
consists of the following formulae:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 fϕ | 〈〈A〉〉2ϕ | 〈〈A〉〉ϕU ϕ.
where A ⊆ Agt. Informally, 〈〈A〉〉ϕ says that agents A have a col-
lective strategy to enforce ϕ. It should be noted that the CTL path
quantifiers A,E can be expressed with 〈〈∅〉〉, 〈〈Agt〉〉 respectively.

The semantics of ATL is defined in so called concurrent game
structures (CGSs). A CGS is a tuple

M = 〈Agt, St,Act, d, o,Π, π〉,
1Additional operators A (“for every path”) and 3 (“sometime in
the future”) are defined in the usual way.

consisting of: a set Agt = {1, . . . , k} of agents; set St of states;
valuation of propositions π : Π → P(St); set Act of atomic ac-
tions. Function d : Agt × St → P(Act) indicates the actions
available to agent a ∈ Agt in state q ∈ St. Finally, o is a de-
terministic transition function which maps a state q ∈ St and an
action profile 〈α1, . . . , αk〉 ∈ Actk, αi ∈ d(i, q), to another state
q′ = o(q, α1, . . . , αk).

DEFINITION 1. A (memoryless) strategy of agent a is a function
sa : St → Act such that sa(q) ∈ d(a, q).2 A collective strategy SA

for a team A ⊆ Agt specifies an individual strategy for each agent
a ∈ A. Finally, the outcome of strategy SA in state q is defined as
the set of all computations that may result from executing SA from
q on:

out(q, SA) = {λ = q0q1q2... | q0 = q and for every i = 1, 2, ...
there exists 〈αi−1

1 , ..., αi−1
k 〉 such that αi−1

a = SA(a)(qi−1)
for each a ∈ A, αi−1

a ∈ d(a, qi−1) for each a /∈ A, and
o(qi−1, α

i−1
1 , ..., αi−1

k) = qi}.

The semantics of cooperation modalities is as follows:

M, q |= 〈〈A〉〉 fϕ iff there is a collective strategy SA such that,
for every λ ∈ out(q, SA), we have M, λ[1] |= ϕ;

M, q |= 〈〈A〉〉2ϕ iff there exists SA such that, for every λ ∈
out(q, SA), we have M, λ[i] for every i ≥ 0;

M, q |= 〈〈A〉〉ϕU ψ iff there exists SA such that for every λ ∈
out(q, SA) there is a i ≥ 0, for which M, λ[i] |= ψ, and
M, λ[j] |= ϕ for every 0 ≤ j < i.

2.4 Agents with Imperfect Information: ATLir

As ATL does not include incomplete information in its scope, it
can be seen as a logic for reasoning about agents who always have
complete knowledge about the current state of the whole system.
ATLir [21] includes the same formulae as ATL, except that the co-
operation modalities are presented with a subscript: 〈〈A〉〉ir indicates
that they address agents with imperfect information and imperfect
recall. Formally, the recursive definition of ATLir formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉ir
fϕ | 〈〈A〉〉ir2ϕ | 〈〈A〉〉irϕU ϕ

Models of ATLir, concurrent epistemic game structures (CEGS),
can be defined as tuples M = 〈Agt, St,Act, d, o,∼1, ...,∼k,Π, π〉,
where 〈Agt, St,Act, d, o,Π, π〉 is a CGS, and ∼1, ...,∼k are epis-
temic (equivalence) relations. It is required that agents have the
same choices in indistinguishable states: q ∼a q′ implies d(a, q) =
d(a, q′). ATLir restricts the strategies that can be used by agents
to uniform strategies, i.e. functions sa : St → Act, such that: (1)
sa(q) ∈ d(a, q), and (2) if q ∼a q′ then sa(q) = sa(q′). A collective
strategy is uniform if it contains only uniform individual strategies.
Again, the function out(q, SA) returns the set of all paths that may
result from agents A executing collective strategy SA from state q.
The semantics of ATLir formulae can be defined as follows:

M, q |= 〈〈A〉〉ir
fϕ iff there is a uniform collective strategy SA

such that, for every a ∈ A, q′ such that q ∼a q′, and λ ∈
out(SA, q′), we have M, λ[1] |= ϕ;

2This is a deviation from the original semantics of ATL [3], where
strategies assign agents’ choices to sequences of states, which sug-
gests that agents can by definition recall the whole history of each
game. While the choice of one or another notion of strategy affects
the semantics of the full ATL∗, and most ATL extensions (e.g. for
games with imperfect information), it should be pointed out that
both types of strategies yield equivalent semantics for “pure” ATL
(cf. [21]).

M, q |= 〈〈A〉〉ir2ϕ iff there exists SA such that, for every a ∈ A,
q′ such that q ∼a q′, and λ ∈ out(SA, q′), we have M, λ[i]
for every i ≥ 0;

M, q |= 〈〈A〉〉irϕU ψ iff there exist SA such that, for every a ∈ A,
q′ such that q ∼a q′, and λ ∈ out(SA, q′), there is i ≥ 0 for
which M, λ[i] |= ψ, and M, λ[j] |= ϕ for every 0 ≤ j < i.

That is, 〈〈A〉〉irϕ holds iff A have a uniform collective strategy, such
that for every path that can possibly result from execution of the
strategy according to at least one agent from A, ϕ is the case.

3. MODELS AND MODEL CHECKING
In this section, we present and discuss various (existing) rep-

resentations of systems that can be used for modeling and model
checking. We believe that the two most important points of refer-
ence are in this case: (1) the modeling formalism (i.e., the logic
and the semantics we use), and (2) the phenomenon, or more gen-
erally, the domain we are going to model (to which we will often
refer as the “real world”). Our aim is a representation which is rea-
sonably close to the real world (i.e., it is sufficiently compact and
grounded), and still not too far away from the formalism (so that
it e.g. easily allows for theoretical analysis of computational prob-
lems). We begin with discussing the merits of “explicit” models –
in our case, these are transition systems, concurrent game structures
and CEGSs, presented in the previous section.

3.1 Explicit Models
Obviously, an advantage of explicit models is that they are very

close to the semantics of our logics (simply because they are the
semantics). On the other hand, they are in many ways difficult to
use to describe an actual system:

• Exponential size: temporal models usually have an exponen-
tial number of states with respect to any higher-level descrip-
tion (e.g. Boolean variables, n-ary attributes etc.). Also, their
size is exponential in the number of processes (or agents)
if the evolution of a system results from joint (synchronous
or asynchronous) actions of several active entities [15]. For
CGSs the situation is even worse: here, also the number of
transitions is exponential, even if we fix the number of states.3

In practice, this means that such representations are very sel-
dom scalable.

• Explicit models include no modularity. States in a model
refer to global states of the system; transitions in the model
correspond to global transitions as well, i.e., they represent
(in an atomic way) everything that may happen in one single
step, regardless of who has done it, to whom, and in what
way.

• Logics like ATL are often advertised as frameworks for mod-
eling and reasoning about open computational systems. Ide-
ally, one would like the elements of such a system to have
as little interdependencies as possible, so that they can be
“plugged” in and out without much hassle, for instance when
we want to test various designs or implementations of the
active component. In the case of a multi-agent system the

3Another class of ATL models, alternating transition systems [2]
represent transitions in a more succinct way. While we still have
exponentially many states in an ATS, the number of transitions is
simply quadratic wrt. to states (like for CTL models). Unfortu-
nately, ATS are even less modular and harder to design than concur-
rent game structures, and they cannot be easily extended to handle
incomplete information (cf. [9]).

need is perhaps even more obvious. We do not only need
to “re-plug” various designs of a single agent in the overall
architecture; we usually also need to change (e.g., increase)
the number of agents acting in a given environment without
necessarily changing the design of the whole system. Unfor-
tunately, ATL models are anything but open in this sense.

Theoretical complexity results for explicit models are as follows.
Model checking CTL and CTLK is P-complete, and can be done in
time O(ml), where m is the number of transitions in the model,
and l is the length of the formula [5]. Alternatively, it can be done
in time O(n2l), where n is the number of states. Model checking
ATL is P-complete wrt. m, l and ∆P

3 -complete wrt. n, k, l (k being
the number of agents) [3, 12, 16]. Model checking ATLir is ∆P

2 -
complete wrt. m, l and ∆P

3 -complete wrt. n, k, l [21, 13].

3.2 Compressed Representations
Explicit representation of all states and transitions is inefficient

in many ways. An alternative is to represent the state/transition
space in a symbolic way [17, 18].

Such models offer some hope for feasible model checking prop-
erties of open/multi-agent systems, although it is well known that
they are compact only in a fraction of all cases.4 For us, however,
they are insufficient for another reason: they are merely optimized
representations of explicit models. Thus, they are neither more
open nor better grounded: they were meant to optimize implemen-
tation rather than facilitate design or modeling methodology.

3.3 Interpreted Systems
Interpreted systems [11, 7] are held by many as a prime example

of computationally grounded models of distributed systems. An in-
terpreted system can be defined as a tuple IS = 〈St1, ..., Stk, Stenv,R, π〉.
St1, ..., Stk are local state spaces of agents 1, ..., k, and Stenv is the
set of states of the environment. The set of global states is defined
as St = St1 × ...× Stk × Stenv; R ⊆ St × St is a transition relation,
and π : Π → P(St). While the transition relation encapsulates
the (possible) evolution of the system over time, the epistemic di-
mension is defined by the local components of each global state:
〈q1, ..., qk, qenv〉 ∼i 〈q′1, ..., q′k, qenv〉 iff qi = q′i .

It is easy to see that such a representation is modular and com-
pact as far as we are concerned with states. Moreover, it gives a
natural (“grounded”) approach to knowledge, and suggests an in-
tuitive methodology for modeling epistemic states. Unfortunately,
the way transitions are represented in interpreted systems is neither
compact, nor modular, nor grounded: the temporal aspect of the
system is given by a joint transition function, exactly like in ex-
plicit models. This is not without a reason: if we separate activities
of the agents too much, we cannot model interaction in the frame-
work any more, and interaction is the most interesting thing here.
But the bottom line is that the temporal dimension of an interpreted
system has exponential representation. And it is almost as difficult
to “plug” components in and out of an interpreted system, as for an
ordinary CTL or ATL model, since the “local” activity of an agent is
completely merged with his interaction with the rest of the system.

3.4 Concurrent Programs
The idea of concurrent programs has been long known in the

literature on distributed systems. Here, we use the formulation
from [15]. A concurrent program P is composed of k concur-
rent processes, each described by a labeled transition system Pi =
〈Sti,Acti,Ri,Πi, πi〉, where Sti is the set of local states of process

4Representation R of an explicit model M is compact if the size of
R is logarithmic with respect to the size of M.

i, Acti is the set of local actions, Ri ⊆ Sti×Acti×Sti is a transition
relation, and Πi, πi are the set of local propositions and their valu-
ation. The behavior of program P is given by the product automa-
ton of P1, ...,Pk under the assumption that processes work asyn-
chronously, actions are interleaved, and synchronization is obtained
through common action names.

Concurrent programs have several advantages. First of all, they
are modular and compact. They allow for “local” modeling of com-
ponents – much more so than interpreted systems (not only states,
but also actions are local here). Moreover, they allow for represent-
ing explicit interaction between local transitions of reactive pro-
cesses, like willful communication, and synchronization. On the
other hand, they do not allow for representing implicit, “inciden-
tal”, or not entirely benevolent interaction between processes. For
example, if we want to represent the act of pushing somebody, the
pushed object must explicitly execute an action of “being pushed”,
which seems somewhat ridiculous. Side effects of actions are also
not easy to model. Still, this is a minor complaint in the context
of CTL, because for temporal logics we are only interested in the
flow of transitions, and not in the underlying actions. For temporal
reasoning about k asynchronous processes with no implicit interac-
tion, concurrent programs seem just about perfect.

The situation is different when we talk about autonomous, pro-
active components (like agents), acting together (cooperatively or
adversely) in a common environment – and we want to address
their strategies and abilities. Now, particular actions are no less im-
portant than the resulting transitions. Actions may influence other
agents’ local states without their consent, they may have side ef-
fects on other agents’ states etc. Passing messages and/or calling
procedures is by no means the only way of interaction between
agents. Moreover, the availability of actions (to an agent) should
not depend on the actions that will be executed by other agents at
the same time – these are the outcome states that may depend on
these actions! Finally, we would often like to assume that agents act
synchronously. In particular, all agents play simultaneously in con-
current game structures. But, assuming synchrony and autonomy
of actions, synchronization can no longer be a means of coordina-
tion.

To sum up, we need a representation which is very much like
concurrent programs, but allows for modeling agents that play syn-
chronously, and which enables modeling more sophisticated inter-
action between agents’ actions. The first postulate is easy to satisfy,
as we show in the following section. The second will be addressed
in Section 4.

We note that model checking CTL against concurrent programs
is PSPACE-complete in the number of local states and the length
of the formula [15].

3.5 Synchronous CP and Simple Reactive Mod-
ules

The semantics of ATL is based on synchronous models where
availability of actions does not depend on the actions currently ex-
ecuted by the other players. A slightly different variant of concur-
rent programs can be defined via synchronous product of programs,
so that all agents play simultaneously.5 Unfortunately, under such
interpretation, no direct interaction between agents’ actions can be
modeled at all.

DEFINITION 2. A synchronous concurrent program consists of
k concurrent processes Pi = 〈Sti,Acti,Ri,Πi, πi〉 with the follow-
5The concept is not new, of course, and has already existed in folk
knowledge, although we failed to find an explicit definition in the
literature.

ing unfolding to a CGS: Agt = {1, ..., k}, St =
Qk

i=1 Sti, Act =Sk
i=1 Acti, d(i, 〈q1, ..., qk〉) = {αi | 〈qi, αi, q′i〉 ∈ Ri for some q′i ∈

Sti}, o(〈q1, ..., qk〉, α1, ..., αk) = 〈q′1, ..., q′k〉 such that 〈qi, αi, q′i〉 ∈
Ri for every i; Π =

Sk
i=1 Πi, and π(p) = πi(p) for p ∈ Πi.

We note that the simple reactive modules (SRML) from [22] can
be seen as a particular implementation of synchronous concurrent
programs.

DEFINITION 3. A SRML system is a tuple 〈Σ,Π,m1, . . . ,mk〉,
where Σ = {1, . . . , k} is a set of modules (or agents), Π is a
set of Boolean variables, and, for each i ∈ Σ, we have mi =
〈ctri, initi, updatei〉, where ctri ⊆ Π. Sets initi and updatei consist
of guarded commands of the form φ ; v′1 := ψ1; . . . ; v′k := ψk,
where every vj ∈ ctri, and φ, ψ1, . . . , ψk are propositional formu-
lae over Π. It is required that ctr1, . . . ctrk partitions Π.

The idea is that agent i controls the variables ctri. The init guarded
commands are used to initialize the controlled variables, while the
update guarded commands can change their values in each round.
A guarded command is enabled if the guard φ is true in the current
state of the system. In each round an enabled update guarded com-
mand is executed: each ψj is evaluated against the current state of
the system, and its logical value is assigned to vj. Several guarded
commands being enabled at the same time model non-deterministic
choice. Model checking ATL for SRML has been proved EXPTIME-
complete in the size of the model and the length of the formula [22].

3.6 Concurrent Epistemic Programs
Concurrent programs (both asynchronous and synchronous) can

be used to encode epistemic relations too – exactly in the same
way as interpreted systems do [20]. That is, when unfolding a
concurrent program to a model of CTLK or ATLir, we define that
〈q1, ..., qk〉 ∼i 〈q′1, ..., q′k〉 iff qi = q′i . Model checking CTLK
against concurrent epistemic programs is PSPACE-complete [20].
SRML can be also interpreted in the same way; then, we would
assume that every agent can see only the variables he controls.

Concurrent epistemic programs are modular and have a “grounded”
semantics. They are usually compact (albeit not always: for exam-
ple, an agent with perfect information will always blow up the size
of such a program). Still, they inherit all the problems of concur-
rent programs with perfect information, discussed in Section 3.4:
limited interaction between components, availability of local ac-
tions depending on the actual transition etc. The problems were
already important for agents with perfect information, but they be-
come even more crucial when agents have only limited knowledge
of the current situation. One of the most important applications of
logics that combine strategic and epistemic properties is verifica-
tion of communication protocols (e.g., in the context of security).
Now, we may want to, e.g., check agents’ ability to pass an in-
formation between them, without letting anybody else intercept the
message. The point is that the action of intercepting is by definition
enabled; we just look for a protocol in which the transition of “suc-
cessful interception” is never carried out. So, availability of actions
must be independent of the actions chosen by the other agents under
incomplete information. On the other hand, interaction is arguably
the most interesting feature of multi-agent systems, and it is really
hard to imagine models of strategic-epistemic logics, in which it is
not possible to represent communication.

3.7 Reactive Modules
Reactive modules [1] can be seen as a refinement of concur-

rent epistemic programs (primarily used by the MOCHA model
checker [4]), but they are much more powerful, expressive and

grounded. We have already mentioned a very limited variant of
RML (i.e., SRML). The vocabulary of RML is very close to imple-
mentations (in terms of general computational systems): the mod-
ules are essentially collections of variables, states are just valua-
tions of variables; events/actions are variable updates. However,
the sets of variables controlled by different agents can overlap,
they can change over time etc. Moreover, reactive modules sup-
port incomplete information (through observability of variables),
although it is not the main focus of RML. Again, the relationship
between sets of observable variables (and to sets of controlled vari-
ables) is mostly left up to the designer of a system. Agents can act
synchronously as well as asynchronously.

To sum up, RML define a powerful framework for modeling dis-
tributed systems with various kinds of synchrony and asynchrony.
However, we believe that there is still a need for a simpler and
slightly more abstract class of representations. First, the frame-
work of RML is technically complicated, involving a number aux-
iliary concepts and their definitions. Second, it is not always con-
venient to represent all that is going on in a multi-agent system
as reading and/or writing from/to program variables. This view
of a multi-agent system is arguably close to its computer imple-
mentation, but usually rather distant from the real world domain –
hence the need for a more abstract, and more conceptually flexible
framework. Third, the separation of the “local” complexity, and the
complexity of interaction is not straightforward. Our new proposal,
more in the spirit of interpreted systems, takes these observations
as the starting point. The proposed framework is presented in Sec-
tion 4.

4. MODULAR INTERPRETED SYSTEMS
The idea behind distributed systems (multi-agent systems even

more so) is that we deal with several loosely coupled components,
where most of the processing goes on inside components (i.e., lo-
cally), and only a small fraction of the processing occurs between
the components. Interaction is crucial (which makes concurrent
programs an insufficient modeling tool), but it usually consumes
much less of the agent’s resources than local computations (which
makes the explicit transition tables of CGS, CEGS, and interpreted
systems an overkill). Modular interpreted systems, proposed here,
extrapolate the modeling idea behind interpreted systems in a way
that allows for a tight control of the interaction complexity.

DEFINITION 4. A modular interpreted system (MIS) is defined
as a tuple

S = 〈Agt, env,Act, In〉,
where Agt = {a1, ..., ak} is a set of agents, env is the environment,
Act is a set of actions, and In is a set of symbols called interaction
alphabet. Each agent has the following internal structure:

ai = 〈Sti, di, outi, ini, oi,Πi, πi〉, where:

• Sti is a set of local states,
• di : Sti → P(Act) defines local availability of actions; for

convenience of the notation, we additionally define the set of
situated actions as Di = {〈qi, α〉 | qi ∈ Sti, α ∈ di(qi)},

• outi, ini are interaction functions; outi : Di → In refers to
the influence that a given situated action (of agent ai) may
possibly have on the external world, and ini : Sti×Ink → In
translates external manifestations of the other agents (and
the environment) into the “impression” that they make on
ai’s transition function depending on the local state of ai,

• oi : Di × In → Sti is a (deterministic) local transition func-
tion,

• Πi is a set of local propositions of agent ai where we require
that Πi and Πj are disjunct when i 6= j, and

• πi : Πi → P(Sti) is a valuation of these propositions.

The environment env = 〈Stenv, outenv, inenv, oenv,Πenv, πenv〉 has the
same structure as an agent except that it does not perform actions,
and that thus outenv : Stenv → In and oenv : Stenv × In → Stenv.

Within our framework, we assume that every action is executed
by an actor, that is, an agent. As a consequence, every actor is
explicitly represented in a MIS as an agent, just like in the case of
CGS and CEGS. The environment, on the other hand, represents the
(passive) context of agents’ actions. In practice, it serves to capture
the aspects of the global state that are not observable by any of the
agents.

The input functions ini seem to be the fragile spots here: when
given explicitly as tables, they have size exponential wrt. the num-
ber of agents (and linear wrt. the size of In). However, we can
use, e.g., a construction similar to the one from [16] to represent
interaction functions more compactly.

DEFINITION 5. Implicit input function for state q ∈ Sti is given
by a sequence 〈〈ϕ1, η1〉, ..., 〈ϕn, ηn〉〉, where each ηj ∈ In is an in-
teraction symbol, and each ϕj is a boolean combination of propo-
sitions η̂i, with η ∈ In; η̂i stands for “η is the symbol currently
generated by agent i”. The input function is now defined as fol-
lows: ini(q, ε1, ..., εk, εenv) = ηj iff j is the lowest index such that
{ε̂11, ..., ε̂k

k, ε̂
env
env} |= ϕj. It is required that ϕn ≡ >, so that the map-

ping is effective.

REMARK 1. Every ini can be encoded as an implicit input func-
tion, with each ϕj being of polynomial size with respect to the num-
ber of interaction symbols (cf. [16]).

Note that, for some domains, the MIS representation of a system
requires exponentially many symbols in the interaction alphabet In.
In such a case, the problem is inherent to the domain, and ini will
have size exponential wrt the number of agents.

4.1 Representing Agent Systems with MIS
Let Stg = (

Qk
i=1 Sti)×Stenv be the set of all possible global states

generated by a modular interpreted system S.

DEFINITION 6. The unfolding of a MIS S for initial states Q ⊆
Stg to a CEGS cegs(S,Q) = 〈Agt′, St′,Π′, π′,Act′, d′, o′,∼′1, ...,∼′k〉
is defined as follows:

• Agt′ = {1, ..., k} and Act′ = Act,

• St′ is the set of global states from Stg which are reachable
from some state in Q via the transition relation defined by o′

(below),

• Π′ =
Sk

i=1 Πi ∪Πenv,

• For each q = 〈q1, . . . , qk, qenv〉 ∈ St′ and i = 1, ..., k, env,
we define q ∈ π′(p) iff p ∈ Πi and qi ∈ πi(p),

• d′(i, q) = di(qi) for global state q = 〈q1, ..., qk, qenv〉,
• The transition function is constructed as follows. Let q =
〈q1, ..., qk, qenv〉 ∈ St′, and α = 〈α1, ..., αk〉 be an action
profile s.t. αi ∈ d′(i, q). We define inputi(q, α) =
ini

`
qi, out1(q1, α1), . . . , outi−1(qi−1, αi−1), outi+1(qi+1, αi+1),

. . . , outk(qk, αk), outenv(qenv)
´

for each agent i = 1, . . . , k,
and inputenv(q, α) = inenv

`
qenv, out1(q1, α1), . . . , outk(qk, αk)

´
.

Then, o′(q, α) = 〈o1(〈q1, α1〉, input1(q, α)), . . . ,
ok(〈qk, αk〉, inputk(q, α)), oenv(qenv, inputenv(q, α))〉;

• For each i = 1, ..., k: 〈q1, ..., qk, qenv〉 ∼′i 〈q′1, ..., q′k, q′env〉 iff
qi = q′i .

6

REMARK 2. Note that MISs can be used as representations of
CGSs too. In that case, epistemic relations∼′i are simply omitted in
the unfolding. We denote the unfolding of a MIS S for initial states
Q into a CGS by cgs(S,Q).

Propositions 3 and 5 state that modular interpreted systems can
be used as representations for explicit models of multi-agent sys-
tems. On the other hand, these representations are not always com-
pact, as demonstrated by Propositions 7 and 8.

PROPOSITION 3. For every CEGS M, there is a MIS SM and a
set of global states Q of SM such that cegs(SM,Q) is isomorphic to
M.7

PROOF. Let M = 〈{1, . . . , k}, St,Act, d, o,Π, π,∼1, . . . ,∼k〉
be a CEGS. We construct a MIS SM = 〈{a1, . . . , ak}, env,Act, In〉
with agents ai = 〈Sti, di, outi, ini, oi,Πi, πi〉 and environment env =
〈Stenv, outenv, inenv, oenv,Πenv, πenv〉, plus a set Q ⊆ Stg of global
states, as follows.

• In = Act ∪ St ∪ (Actk−1 × St),

• Sti = {[q]∼i | q ∈ St} for 1 ≤ i ≤ k (i.e., Sti is the set of i’s
indistinguishability classes in M),

• Stenv = St,

• di([q]∼i) = d(i, q) for 1 ≤ i ≤ k (this is well-defined since
d(i, q) = d(i, q′) whenever q ∼i q′),

• outi([q]∼i , αi) = αi for 1 ≤ i ≤ k; outenv(q) = q,

• ini([q]∼i , α1, . . . , αi−1, αi+1, . . . , αk, qenv) =
〈α1, . . . , αi−1, αi+1, . . . , αk, qenv〉 for i ∈ {1, . . . , k};
inenv(q, α1 . . . , αk) = 〈α1, . . . , αk〉;
ini(~x) and inenv(~x) are arbitrary for other arguments~x,

• oi(〈[q]∼i , αi〉, 〈α1, . . . , αi−1, αi+1, . . . , αk, qenv〉) =
[o(qenv, α1, . . . , αk)]∼i for 1 ≤ i ≤ k and αi ∈ di([q]∼i);
oenv(q, 〈α1, . . . , αk〉) = o(q, α1, . . . , αk);
oi and oenv are arbitrary for other arguments,

• Πi = ∅ for 1 ≤ i ≤ k, and Πenv = Π,

• πenv(p) = π(p)

• Q = {〈[q]∼1 , . . . , [q]∼k , q〉 : q ∈ St}

Let M′ = cegs(SM,Q) = 〈Agt′, St′,Act′, d′, o′,Π′, π′,∼′1, . . . ,∼′k〉.
We argue that M and M′ are isomorphic by establishing a one-
to-one correspondence between the respective sets of states, and
showing that the other parts of the structures agree on correspond-
ing states.

First we show that, for any q̂′ = 〈[q′]∼1 , . . . , [q
′]∼k , q

′〉 ∈ Q
and any α = 〈α1, . . . , αk〉 such that αi ∈ d′(i, q̂′), we have

o′(q̂′, α) = 〈[q]∼1 , . . . , [q]∼k , q〉 where q = o(q′, α) (1)

Let q̂ = o′(q̂′, α). Now, for any i: inputi(q̂′, α) = ini([q′]∼i ,
out1([q′]∼1 , α1), ..., outi−1([q′]∼i−1 , αi−1), outi+1([q′]∼i+1 , αi+1),
. . . , outk([q′]∼k , αk), outenv(q′)) = ini([q′]∼i , α1, . . . , αi−1, αi+1,

6This shows another difference between the environment and the
agents: the environment does not possess knowledge.
7We say that two CEGS are isomorphic if they only differ in the
names of states and/or actions.

. . . , αk, q′) = 〈α1, . . . , αi−1, αi+1, . . . , αk, q′〉. Similarly, we get
that inputenv(q̂′, α) = 〈α1, . . . , αk〉. Thus we get that o′(q̂′, α) =
〈o1(〈[q′]∼1 , α1〉, input1(q̂′, α)), . . . , ok(〈[q′]∼k , αk〉, inputk(q̂′, α)),
oenv(q′, inputenv(q̂′, α))〉 = 〈[o(q′, α1, . . . , αk)]∼1 , . . . ,
[o(q′, α1, . . . , αk)]∼k , o(q′, α1, . . . , αk)〉. Thus, q̂ =
〈[q]∼1 , . . . , [q]∼k , q〉 for q = o(q′, α1, . . . , αk), which completes
the proof of (1).

We now argue that St′ = Q. Clearly, Q ⊆ St′. Let q̂ ∈ St′;
we must show that q̂ ∈ Q. The argument is on induction on the
length of the least o′ path from Q to q̂. The base case, q̂ ∈ Q, is
immediate. For the inductive step, q̂ = o′(q̂′, α) for some q̂′ ∈ Q,
and then we have that q̂ ∈ Q by (1). Thus, St′ = Q.

Now we have a one-to-one correspondence between St and St′:
r ∈ St corresponds to 〈[r]∼1 , . . . , [r]∼k , r〉 ∈ St′. It remains to
be shown that the other parts of the structures M and M′ agree on
corresponding states:

• Agt′ = Agt,

• Act′ = Act,

• Π′ =
Sk

i=1 Πi ∪Πenv = Π,

• For p ∈ Π′ = Π: 〈[q′]∼1 , . . . , [q
′]∼k , q

′〉 ∈ π′(p) iff q′ ∈
πenv(p) iff q′ ∈ π(p) (same valuations at corresponding states),

• d′(i, 〈[q′]∼1 , . . . , [q
′]∼k , q

′〉) = di([q′]∼i) = d(i, q),

• It follows immediately from (1), and the fact that Q = St′,
that o′(〈[q′]∼1 , . . . , [q

′]∼k , q
′〉, α) = 〈[r′]∼1 , . . . , [r

′]∼k , r
′〉

iff o(q′, α) = r′ (transitions on the same joint action in cor-
responding states lead to corresponding states),

• 〈[q′]∼1 , . . . , [q
′]∼k , q

′〉 ∼′i 〈[r′]∼1 , . . . , [r
′]∼k , r

′〉 iff [q′]∼i =
[r′]∼i iff q′ ∼i r′ (the accessibility relations relate corre-
sponding states), which completes the proof.

COROLLARY 4. For every CEGS M, there is an ATLir-equivalent
MIS S with initial states Q, that is, for every state q in M there is
a state q′ in cegs(S,Q) satisfying exactly the same ATLir formulae,
and vice versa.

PROPOSITION 5. For every CGS M, there is a MIS SM and a set
of global states Q of SM such that cgs(SM,Q) is isomorphic to M.

PROOF. Let M = 〈Agt, St,Act, d, o,Π, π〉 be given. Now, let
M̂ = 〈Agt, St,Act, d, o,Π, π,∼1, . . . ,∼k〉 for some arbitrary ac-
cessibility relations∼i over St. By Proposition 3, there exists a MIS

SM̂ with global states Q such that M̂′ = cegs(SM̂,Q) is isomorphic
to M̂. Let M′ be the CGS obtained by removing the accessibility
relations from M̂′. Clearly, M′ is isomorphic to M.

COROLLARY 6. For every CGS M, there is an ATL-equivalent
MIS S with initial states Q. That is, for every state q in M there is a
state q′ in cgs(S,Q) satisfying exactly the same ATL formulae, and
vice versa.

PROPOSITION 7. The local state spaces in a MIS are not al-
ways compact with respect to the underlying concurrent epistemic
game structure.

PROOF. Take a CEGS M in which agent i has always perfect in-
formation about the current global state of the system. When con-
structing a modular interpreted system S such that M = cegs(S,Q),
we have that Sti must be isomorphic with St.

The above property is a part of the interpreted systems heritage.
The next proposition stems from the fact that explicit models (and
interpreted systems) allow for intensive interaction between agents.

PROPOSITION 8. The size of In in S is, in general, exponential
with respect to the number of local states and local actions. This is
the case even when epistemic relations are not relevant (i.e., when
S is taken as a representation of an ordinary CGS).

PROOF. Consider a CGS M with agents Agt = {1, ..., k}, global
states St =

Qk
i=1{qi

0, ..., q
i
i}, and actions Act = {0, 1}, all enabled

everywhere. The transition function is defined as
o(〈q1

j1 , ..., q
k
jk 〉, α1, ..., αk) = 〈q1

l1 , ..., q
k
lk 〉, where li = (ji + α1 +

...+ αk) mod i. Note that M can be represented as a modular in-
terpreted system with succinct local state spaces Sti = {qi

0, ..., q
i
i}.

Still, the current actions of all agents are relevant to determine the
resulting local transition of agent i.

We will call items In, outi, ini the interaction layer of a modu-
lar interpreted system S; the other elements of S constitute the local
layer of the MIS. In this paper we are ultimately interested in model
checking complexity with respect to the size of the local layer. To
this end, we will assume that the size of interaction layer is poly-
nomial in the number of local states and actions. Note that, by
Propositions 7 and 8, not every explicit model submits to compact
representation with a MIS. Still, as we declared at the beginning of
Section 4, we are mainly interested in a modeling framework for
systems of loosely coupled components, where interaction is es-
sential, but most processing is done locally anyway. More impor-
tantly, the framework of MIS allows for separating the interaction
of agents from their local structure to a larger extent. Moreover, we
can control and measure the complexity of each layer in a finer way
than before. First, we can try to abstract from the complexity of a
layer (e.g. like in this paper, by assuming that the other layer is kept
within certain complexity bounds). Second, we can also measure
separately the interaction complexity of different agents.

4.2 Modular Interpreted Systems vs. Simple
Reactive Modules

In this section we show that simple reactive modules are (as we
already suggested) a specific (and somewhat limited) implemen-
tation of modular interpreted systems. First, we define our (quite
strong) notion of equivalence of representations.

DEFINITION 7. Two representations are equivalent if they un-
fold to isomorphic concurrent epistemic game structures. They are
CGS-equivalent if they unfold to the same CGS.

PROPOSITION 9. For any SRML there is a CGS-equivalent MIS.

PROOF. Consider an SRML R with k modules and n variables.
We construct S = 〈Agt,Act, In〉 with Agt = {a1, ..., ak}, Act =

{>1, ...,>n,⊥1, ...,⊥n}, and In =
Sk

i=1 Sti × Sti (the local state
spaces Sti will be defined in a moment). Let us assume without loss
of generality that ctri = {x1, ..., xr}. Also, we consider all guarded
commands of i to be of type γ>i,ψ : ψ ; xi := >, or γ⊥i,ψ : ψ ;

xi := ⊥. Now, agent ai in S has the following components: Sti =
P(ctri) (i.e., local states of ai are valuations of variables controlled
by i); di(qi) = {>1, ...,>r,⊥1, ...,⊥r}; outi(qi, α) = 〈qi, qi〉;
ini(qi, 〈q1, q1〉, ..., 〈qi−1, qi−1〉, 〈qi+1, qi+1〉, 〈qk, qk〉) =
〈{xi ∈ ctri | 〈q1, ..., qk〉 |=

W
γ>i,ψ

ψ}, {xi ∈ ctri | 〈q1, ..., qk〉 |=W
γ⊥i,ψ

ψ}〉. To define local transitions, we consider three cases. If

t = f = ∅ (no update is enabled), then oi(qi, α, 〈t, f 〉) = qi for
every action α. If t 6= ∅, we take any arbitrary x̂ ∈ t, and de-
fine oi(qi,>j, 〈t, f 〉) = qi ∪ {xj} if xj ∈ t, and qi ∪ {x̂} otherwise;

oi(qi,⊥j, 〈t, f 〉) = qi \ {xj} if xj ∈ f , and qi ∪ {x̂} otherwise.
Moreover, if t = ∅ 6= f , we take any arbitrary x̂ ∈ f , and de-
fine oi(qi,>j, 〈t, f 〉) = qi ∪ {xj} if xj ∈ t, and qi \ {x̂} otherwise;
oi(qi,⊥j, 〈t, f 〉) = qi\{xj} if xj ∈ f , and qi\{x̂} otherwise. Finally,
Πi = ctri, and qi ∈ πi(xj) iff xj ∈ qi.

The above construction shows that SRML have more compact
representation of states than MIS: ri local variables of agent i give
rise to 2ri local states. In a way, reactive modules (both simple
and “full”) are two-level representations: first, the system is rep-
resented as a product of modules; next, each module can be seen
as a product of its variables (together with their update operations).
Note, however, that specification of updates with respect to a single
variable in an SRML may require guarded commands of total length
O(2

Pk
i=1 ri). Thus, the representation of transitions in SRML is (in

the worst case) no more compact than in MIS, despite the two-level
structure of SRML. We observe finally that MIS are more general,
because in SRML the current actions of other agents have no in-
fluence on the outcome of agent i’s current action (although the
outcome can be influenced by other agents’ current local states).

4.3 Model Checking Modular Interpreted Sys-
tems

One of our main aims was to study the complexity of symbolic
model checking ATLir in a meaningful way. Following the review-
ers’ remarks, we state our complexity results only as conjectures.
Preliminary proofs can be found in [14].

CONJECTURE 10. Model checking ATL for modular interpreted
systems is EXPTIME-complete.

CONJECTURE 11. Model checking ATLir for the class of mod-
ular interpreted systems is PSPACE-complete.

A summary of complexity results for model checking tempo-
ral and strategic logics (with and without epistemic component)
is given in the table below. The table presents completeness re-
sults for various models and settings of input parameters. Symbols
n, k,m stand for the number of states, agents and transitions in an
explicit model; l is the length of the formula, and nlocal is the num-
ber of local states in a concurrent program or modular interpreted
system. The new results, conjectured in this paper, are printed in
italics. Note that the result for model checking ATL against modular
interpreted systems is an extension of the result from [22].

m, l n, k, l nlocal, k, l
CTL P [5] P [5] PSPACE [15]
CTLK P [5, 8] P [5, 8] PSPACE [20]
ATL P [3] ∆P

3 [12, 16] EXPTIME
ATLir ∆P

2 [21, 13] ∆P
3 [13] PSPACE

If we are right, then the results for ATL and ATLir form an in-
triguing pattern. When we compare model checking agents with
perfect vs. imperfect information, the first problem appears to be
much easier against explicit models measured with the number of
transitions; next, we get the same complexity class against explicit
models measured with the number of states and agents; finally,
model checking imperfect information turns out to be easier than
model checking perfect information for modular interpreted sys-
tems. Why can it be so?

First, a MIS unfolds into CEGS and CGS in a different way. In
the first case, the MIS is assumed to encode the epistemic relations
explicitly (which makes it explode when we model agents with per-
fect, or almost perfect information). In the latter case, the epistemic

aspect is ignored, which gives some extra room for encoding the
transition relation more efficiently. Another crucial factor is the
number of available strategies (relative to the size of input param-
eters). The number of all strategies is exponential in the number
of global states; for uniform strategies, there are usually much less
of them but still exponentially many in general. Thus, the fact that
perfect information strategies can be synthesized incrementally has
a substantial impact on the complexity of the problem. However,
measured in terms of local states and agents, the number of all
strategies is doubly exponential, while there are “only” exponen-
tially many uniform strategies – which settles the results in favor of
imperfect information.

5. CONCLUSIONS
We have presented a new class of representations for open multi-

agent systems. Our representations, called modular interpreted sys-
tems, are: modular, in the sense that components can be changed,
replaced, removed or added, with as little changes to the whole rep-
resentation as possible; more compact than traditional explicit rep-
resentations; and grounded, in the sense that the correspondences
between the primitives of the model and the entities being mod-
eled are more immediate, giving a methodology for designing and
implementing systems. We also conjecture that the complexity of
model checking strategic ability for our representations is higher if
we assume perfect information than if we assume imperfect infor-
mation.

The solutions, proposed in this paper, are not necessarily per-
fect (for example, the “impression” functions ini seem to be the
main source of non-modularity in MIS, and can be perhaps im-
proved), but we believe them to be a step in the right direction.
We also do not mean to claim that our representations should re-
place more elaborate modeling languages like Promela or reactive
modules. We only suggest that there is a need for compact, modular
and reasonably grounded models that are more expressive than con-
current (epistemic) programs, and still allow for easier theoretical
analysis than reactive modules. We also suggest that MIS might be
better suited for modeling simple multi-agent domains, especially
for human-oriented (as opposed to computer-oriented) design.

6. ACKNOWLEDGMENTS
We thank the anonymous reviewers and Andrzej Tarlecki for

their helpful remarks. Thomas Ågotnes’ work on this paper was
supported by grants 166525/V30 and 176853/S10 from the Re-
search Council of Norway.

7. REFERENCES
[1] R. Alur and T. A. Henzinger. Reactive modules. Formal

Methods in System Design, 15(1):7–48, 1999.
[2] R. Alur, T. A. Henzinger, and O. Kupferman.

Alternating-time Temporal Logic. Lecture Notes in
Computer Science, 1536:23–60, 1998.

[3] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time Temporal Logic. Journal of the ACM,
49:672–713, 2002.

[4] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K.
Rajamani, and S. Tasiran. MOCHA user manual. In
Proceedings of CAV’98, volume 1427 of Lecture Notes in
Computer Science, pages 521–525, 1998.

[5] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic
verification of finite-state concurrent systems using temporal
logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

[6] E.A. Emerson and J.Y. Halpern. "sometimes" and "not never"
revisited: On branching versus linear time temporal logic. In
Proceedings of the Annual ACM Symposium on Principles of
Programming Languages, pages 151–178, 1982.

[7] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. MIT Press: Cambridge, MA,
1995.

[8] M. Franceschet, A. Montanari, and M. de Rijke. Model
checking for combined logics. In Proceedings of the 3rd
International Conference on Temporal Logic (ICTL), 2000.

[9] V. Goranko and W. Jamroga. Comparing semantics of logics
for multi-agent systems. Synthese, 139(2):241–280, 2004.

[10] J. Y. Halpern. Reasoning about knowledge: a survey. In
D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, The
Handbook of Logic in Artificial Intelligence and Logic
Programming, Volume IV, pages 1–34. Oxford University
Press, 1995.

[11] J.Y. Halpern and R. Fagin. Modelling knowledge and action
in distributed systems. Distributed Computing,
3(4):159–177, 1989.

[12] W. Jamroga and J. Dix. Do agents make model checking
explode (computationally)? In M. Pĕchouc̆ek, P. Petta, and
L.Z. Varga, editors, Proceedings of CEEMAS 2005, volume
3690 of Lecture Notes in Computer Science, pages 398–407.
Springer Verlag, 2005.

[13] W. Jamroga and J. Dix. Model checking abilities of agents:
A closer look. Submitted, 2006.

[14] W. Jamroga and T. Ågotnes. Modular interpreted systems: A
preliminary report. Technical Report IfI-06-15, Clausthal
University of Technology, 2006.

[15] O. Kupferman, M.Y. Vardi, and P. Wolper. An
automata-theoretic approach to branching-time model
checking. Journal of the ACM, 47(2):312–360, 2000.

[16] F. Laroussinie, N. Markey, and G. Oreiby. Expressiveness
and complexity of ATL. Technical Report LSV-06-03, CNRS
& ENS Cachan, France, 2006.

[17] K.L. McMillan. Symbolic Model Checking: An Approach to
the State Explosion Problem. Kluwer Academic Publishers,
1993.

[18] K.L. McMillan. Applying SAT methods in unbounded
symbolic model checking. In Proceedings of CAV’02,
volume 2404 of Lecture Notes in Computer Science, pages
250–264, 2002.

[19] W. Penczek and A. Lomuscio. Verifying epistemic properties
of multi-agent systems via bounded model checking. In
Proceedings of AAMAS’03, pages 209–216, New York, NY,
USA, 2003. ACM Press.

[20] F. Raimondi and A. Lomuscio. The complexity of symbolic
model checking temporal-epistemic logics. In L. Czaja,
editor, Proceedings of CS&P’05, 2005.

[21] P. Y. Schobbens. Alternating-time logic with imperfect
recall. Electronic Notes in Theoretical Computer Science,
85(2), 2004.

[22] W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the
complexity of practical ATL model checking. In P. Stone and
G. Weiss, editors, Proceedings of AAMAS’06, pages
201–208, 2006.

