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meski@ipipan.waw.pl

Maciej Szreter
Institute of Computer Science

Polish Academy of Sciences, Warsaw, Poland
mszreter@ipipan.waw.pl

We revisit the formalism of modular interpreted systems (MIS) which encourages modular and open
modeling of synchronous multi-agent systems. The original formulation of MIS did not live entirely
up to its promise. In this paper, we propose how to improve modularity and openness of MIS by
changing the structure of interference functions. These relatively small changes allow for surprisingly
high flexibility when modeling actual multi-agent systems. We demonstrate this on two well-known
examples, namely the trains, tunnel and controller, and the dining cryptographers.

Perhaps more importantly, we propose how the notions of multi-agency and openness, crucial
for multi-agent systems, can be precisely defined based on their MIS representations.

1 Introduction

The paradigm of multi-agent systems (MAS) focuses on systems consisting of autonomous entities acting
in a common environment. Regardless of whether we deem the entities to be intelligent or not, proactive
or reactive, etc., there are two design-level properties that a multi-agent system should satisfy. First, it
should be modular in the sense that it is inhabited by loosely coupled components. That is, interaction
between agents is crucial for the system, but it should be relatively scarce compared to the intensity
of local computation within agents (otherwise the system is in fact a single-agent system in disguise).
Secondly, it should be open in the sense that an agent should be able join or leave the system without
changing the design of the other components.

Models and representations of MAS can be roughly divided into two classes. On one hand, there
are models of various agent logics, most notably modal logics of knowledge, action, time, and strategic
ability [7, 8, 2]. These models are well suited for theoretical analysis of general properties of agent
systems. However, they are too abstract in the sense that: (a) they are based on abstract notions of global
state and global transition so the structure of a model does not reflect the structure of a MAS at all, and (b)
they come with neither explicit nor implicit methodology for design and analysis of actual agent systems.
At the other extreme there are practical-purpose high-level representation languages like Promela [11],
Estelle [6], and Reactive Modules (RM) [1]. They are application-oriented, and usually include too many
features to be convenient for theoretical analysis. The middle ground consists of formalisms that originate
from abstract logical models but try to encapsulate a particular modeling methodology. For instance,
interpreted systems [8] support local design of the state space; however, transitions are still global, i.e.,
they are defined between global rather than local states. Synchronous automata networks [10] and ISPL
specifications [17, 19] push the idea further: they are based on local states and semi-local transitions,
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i.e., the outcome of a transition is local, but its domain global. This makes agents hard to separate from
one another in a model, which hampers its modularity. On the other hand, concurrent programs [16] and
asynchronous automata networks [10] are fairly modular but they support only systems whose execution
can be appropriately modeled by interleaving of local actions and/or events.

Modular Interpreted Systems (MIS) are a class of models proposed in [13] to achieve separation of
the interference between agents from the local processing within agents. The main idea behind MIS was
to encapsulate the way agents’ actions interfere by so called interaction tokens from a given alphabet In,
together with functions outi, ini that define the interface of agent i. That is, outi specifies how i’s actions
influence the evolution of the other agents, whereas ini specifies how what rest of the world influences
the local transition of i. Modular interpreted systems received relatively little attention, though some
work was done on studying computational properties of the related verification problem [12], facilitating
verification by abstraction [14], and using MIS to analyze homogeneous multi-agent systems [4]. This
possibly stems from the fact that, in their original incarnation, MIS are not as modular and open as one
would expect. More precisely, the types of functions used to define interference fix the number of agents
in the MIS. Moreover, the assumption that all the functions used in a model are deterministic limit the
practical applicability, as modeling of many natural scenarios becomes cumbersome.

In this paper, we try to revive MIS as an interesting formalism for modeling multi-agent systems.
We propose how to improve modularity and openness of the original class by changing the structure of
interference functions out, in. The idea is to use multisets of interference tokens instead of k-tuples. This
way, we do not need to “hardwire” information about other modules inside a module. Additionally, we
assume that the “manifestation” function out can be nondeterministic. These relatively small changes
allow for surprisingly high flexibility when modeling MAS. We demonstrate that on two well-known
benchmark examples: trains, tunnel and controller, and the dining cryptographers.

Perhaps more importantly, we propose how two important features of multi-agent systems can be
formally defined, based on MIS representations. First, we show how to decide if a system is designed
in a proper multi-agent way by looking at the relation between the complexity of its interference layer
to the complexity of its global unfolding. Moreover, we define the degree of openness of a MIS as the
complexity of the minimal transformation that the model must undergo in order to add a new agent to
the system, or remove an existing one. We apply the definitions to our benchmark models, and show that
different variants of cryptographers grossly differ in the amount of openness that they offer.

The paper has the following structure. In Section 2, the new variant of MIS is defined, along with
its execution semantics. Section 3 presents MIS representations for two benchmarks: Tunnel, Trains and
Controller (TTC) and Dining Cryptographers (DC). A graphical notation is provided to make the exam-
ples easier to read. In Sections 4 and 5, we propose formal definitions of multi-agency and openness,
respectively, and apply them to several variants of the benchmarks. Section 6 concludes the paper.

1.1 Related Work

The modeling structures discussed in this paper share many similarities with existing modeling frame-
works, in particular with Reactive Modules [1]. Still, MIS and RMs have different perspectives: Reactive
Modules is an application-oriented language, while the focus of modular interpreted systems is more the-
oretic. This results in a higher abstraction level of MIS which are based on abstract states and interaction
tokens. MIS aim at separating internal activities of modules and interactions between modules, what is
not (explicitly) featured in RM.

Modularity in models and model checking has been the focus of many papers. Most notably, Hi-
erarchical State Machines of Alur et al. [3, 20] and the approach of hierarchical module checking by
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Murano et al. [18] feature both “horizontal” and “vertical” modularity, i.e., a system can be constructed
by means of parallel composition as well as nesting of modules. Similarly, dynamic modifications and
“true openness” of models has been advocated in [9]. In that paper, Dynamic Reactive Modules (DRM)
were proposed, which allow for dynamic reconfiguration of the structure of the system (including adding
and removing modules). Our approach differs from the ones cited above in two ways. On one hand, we
focus on an abstract formulation of the separation of concerns between modules (and agents), rather than
providing concrete mechanisms that implement the separation. On the other, we define indicators that
show how good the resulting models is. That is, our measures of agentivity and openness are meant to
assess the model “from the outside”. In particular, the focus of the DRM is on providing a mechanism for
adding and removing agents in the RM representation. We implement these operations on the meta-level,
as a basis of the mathematical measure of openness. Our work could in principle be applied to DRMs
and other formalisms, but it would require defining the appropriate multi-agent mechanisms which are
already present in Interpreted Systems.

2 Modular Interpreted Systems Revisited

Modular interpreted systems were proposed in [13] to encourage modular and open design of syn-
chronous agent systems. Below, we present an update on the formalism. The new version of MIS differs
from the original one [13] as follows. First, a single agent can be now modeled by more than one module
to allow for compact design of agents’ local state spaces and transition functions. Secondly, the type of
function ini is now independent from the structure and cardinality of the set of agents, thus removing the
main obstacle to modularity and openness of representation in the previous version. Thirdly, the interac-
tion functions ini,outi are nondeterministic in order to enable nondeterministic choice and randomization
(needed, e.g., to obtain fair scheduling or secure exchange of information). Fourthly, we separate agents
from their names. This way, agents that are not present in the “current” MIS can be referenced in order
to facilitate possible future expansion of the MIS.

2.1 New Definition of MIS

Let a bag (multiset) over set X be any function X → N. The set of all bags over X will be denoted by
B(X), and the union of bags by ].

Definition 1 (Modular interpreted system) We define a modular interpreted system (MIS) as a tuple

S = (Agtnames,Act,In,Agt),

where Agtnames is a finite set of agent names, Act is a finite set of action names, In is a finite interaction
alphabet, and Agt = {a1, . . . ,ak} is a finite set of agents (whose structure is defined in the following
paragraph). A set of directed tokens, used to specify the recipients of interactions, is defined as Tok =
In× (Agtnames∪{ε}), where ε denotes that the interaction needs to be broadcasted to all the agents
in the system.

Each agent a j = (id,{m1, . . . ,mn}) consists of a unique name id ∈ Agtnames (also denoted with
name(a j)), and one or more modules m j = (St j, Init j,d j,out j, in j,o j,Π j,π j), where:

• St j is a set of local states,
• Init j ⊆ St j is the set of initial states,
• d j : St j →P(Act) defines local availability of actions; for convenience of the notation, we addi-

tionally define the set of situated actions as D j = {(q j,α) | q j ∈ St j,α ∈ d j(q j)},
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• out j, in j are interaction (or interference) functions:
– out j : D j→P(P(Tok)) refers to the set of influences (chosen nondeterministically) that a

given situated action (of module m j) may possibly have on the recipients of the embedded
interaction symbols, and

– in j : St j×B(In)→P(In) translates external manifestations from the other modules into
the (nondeterministically chosen) “impression” that they make on module m j depending on
the local state of m j; we assume in j(·) 6= /0;

• o j : D j×In→P(St j) is a local transition function (possibly nondeterministic),
• Π j is a set of local propositions of module m j (we require that Π j and Πm are disjoint when j 6=m),
• π j : Π j→P(St j) is a valuation of these propositions.

Additionally, we define the cardinality of S (denoted card(S)) as the number of agents in S.
Typically, each agent in a MIS consists of exactly one module, and we will use the terms interchange-

ably. Also, we will omit Init j from the description of a module whenever Init j = St j.
Note that function in j is in general infinite. For practical purposes, finite representation of in j is

needed. We use decision lists similarly to [15, 19]. Thus, ini will be described as an ordered list of pairs
of the form condition 7→ value. The first pair on the list with a matching condition decides on the value
of the function. The conditions are boolean combinations of membership and cardinality tests, and are
defined over the variable s for the conditions defined on states, and over H for the conditions on multisets
of received interferences. We require that the last condition on the list is >, so that the function is total.
Several examples of MIS’s are presented in Sections 3 and 5.

2.2 Execution Semantics for MIS

Definition 2 (Explicit models) A nondeterministic concurrent epistemic game structure (NCEGS) is a
tuple C = (A ,St,St0,PV ,V ,Act,d, t,∼1, . . . ,∼k), where: A = {1, . . . ,k} is a nonempty set of agents,
St is a nonempty set of states, St0 ⊆St is the set of initial states, PV is a set of atomic propositions,
V : PV →P(St) is a valuation function, d : A ×St →P(Act) assigns nonempty sets of actions
available at each state, and t is a (nondeterministic) transition function that assigns a nonempty set
Q= t(q,α1, . . . ,αk) of outcome states to a state q, and a tuple of actions (α1, . . . ,αk) that can be executed
in q.

We define the semantics of MIS through an unfolding to NCEGS.
Definition 3 (Unfolding of MIS) Unfolding of the modular interpreted system S from Definition 1 to a
nondeterministic concurrent epistemic game structure NCEGS(S) = (A ′,St ′,St ′0,PV ′,V ′,Act ′,d′, t ′)
is defined as follows:
• A ′ = {1, . . . ,k}, and Act ′ = Act,
• St ′ = ∏

k
i=1 Sti,

• St ′0 = {(q1, . . . ,qk) | (∀i ∈ {1, . . . ,k}) qi ∈ Initi},
• PV ′ =

⋃k
i=1 Πi, and V ′(p) = πi(p) when p ∈Πi,

• d′(i,q) = di(qi) for global state q = (q1, . . . ,qk), and i ∈A ′,
• The transition function t ′ is constructed as follows. Let q = (q1, . . . ,qk) be a state, and α =
(α1, . . . ,αk) be a joint action. We define an auxiliary function oii(qi,αi) of all the possible interfer-
ences of agent i, for qi, and αi: γ ′ ∈ oii(qi,αi) iff there exist T1, . . . , Tk such that Tj ∈ out j((q j,α j)),
and γ ′ ∈ ini(qi,I1] . . .]Ik), where I j = {γ j | (∃r ∈ {name(a j),ε}) (γ j,r) ∈ Tj} for all j ∈A ′.
Then (q′1, . . . ,q

′
k) ∈ t(q,α1, . . . ,αk) iff q′i ∈ oi((qi,αi),γ), where γ ∈ oii(qi,αi);
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• q∼i q′ iff q and q′ agree on the local states of all the modules in agent ai.

Definition 3 immediately provides some important logics (such as CTL, LTL, ATL, epistemic logic,
and their combinations) with semantics over modular interpreted systems. By the same token, the model
checking and satisfiability problems for those logics are well defined in MIS.

3 Modeling with MIS

We argue that the revised definition of MIS achieves a high level of separation between components
in a model. The interaction between an agent and the rest of the world is encapsulated in the agent’s
interference functions outi, ini. Of course, the design of the agent must take into account the tokens
that can be sent from modules with which the agent is supposed to interact. For instance, the out, in
functions of two communicating agents must be prepared to receive communication tokens from the
other party. However, the interference functions can be oblivious to the modules with which the agent
does not interact. In this section, we demonstrate the advantages on two benchmark scenarios: Trains,
Tunnel, and Controller (TTC), and Dining Cryptographers (DC).

3.1 Tunnel, Trains, and Controller (TTC)

TTC is a variant of classical mutual exclusion, and models n trains moving over cyclic tracks sharing a
single tunnel. Because only one train can be in the tunnel at a time, trains need to get a permission from
the controller before entering the tunnel. We model the scenario by MIS T TCn = (Agt,Act, In), where:
• Agtnames = {tr1, . . . , trn,ctrl},
• Act = {nop,approach,request,enter, leave},
• In = {idle,appr, try1, . . . , tryn, retry,granted, left,enter,aw reqs,grant,grant1, . . . ,grantn,

no reqs, infd,ack release,aw leave}.
• Agt = {tr1, . . . , trn,ctrl},

The system includes n trains tri =
(
tri,{(Sti, Initi,di,outi, ini,oi,Πi,πi)}

)
for i ∈ {0, . . . ,n} such that:

Sti = {out, tun needed,granted, in}, and Initi = {out}. di
is defined as:

• out 7→ {nop,approach},
• tun needed 7→ {request},
• granted 7→ {enter},
• in 7→ {nop, leave}

oi is defined as:

• ((out,nop), idle) 7→ {out}
• ((out,approach),appr) 7→ {tun needed},
• ((tun needed,request), retry) 7→ {tun needed},
• ((tun needed,request),granted) 7→ {granted},
• ((granted,enter),enter) 7→ {in},
• ((in,nop), idle) 7→ {in},
• ((in, leave), leave) 7→ {out}

Πi = {in tunnel}

outi is defined as:

• (out,nop) 7→ {{(idle, tri)}},
• (out,approach) 7→ {{(appr, tri)}},
• (tun needed,request) 7→ {{(tryi,ctrl)}},
• (granted,enter) 7→ {{(enter, tri)}},
• (in,nop) 7→ {{(idle, tri)}},
• (in, leave) 7→ {{(left,ctrl),(left, tri)}}

ini is defined as:

• s = out ∧appr ∈ H 7→ {appr},
• s = tun needed∧grant ∈ H 7→ {granted},
• s = tun needed 7→ {retry},
• s = granted∧ enter ∈ H 7→ {granted},
• s = in∧ left ∈ H 7→ {left},
• > 7→ {idle}

πi = {in 7→ in tunnel}
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Moreover, the agent ctrl =
(
ctrl,{(Stc, Initc,dc,outc, inc,oc,Πc,πc)}

)
modeling the controller is defined

as follows:
Stc = {tun f ree, in f d, tr1granted, . . . , trngranted}, and
Initc = {tun f ree}.
dc is defined as:

• tun f ree 7→ {accepting},
• in f d 7→ {waiting},
• tr1granted 7→ {in f orm},
• . . .
• trngranted 7→ {in f orm}

oc is defined as:

• ((tun f ree,accepting),no reqs) 7→ {tun f ree},
• ((in f d,waiting),aw leave) 7→ {in f d},
• ((in f d,waiting),ack release) 7→ {tun f ree},
• ((tun f ree,accepting),grant1) 7→ {tr1granted},
• . . .
• ((tun f ree,accepting),grantn) 7→ {trngranted},
• ((tr1granted, in f orm), infd) 7→ {in f d},
• . . .
• ((trngranted, in f orm), infd) 7→ {in f d}

outc is defined as:

• (tun f ree,accepting) 7→ {{(aw reqs,ε)}},
• (in f d,waiting) 7→ {{(aw leave,ctrl)}},
• (tr1granted, in f orm) 7→ {{(grant, tr1)}},
• . . .
• (trngranted, in f orm) 7→ {{(grant, trn)}},

inc is defined as:

• s = tun f ree∧ try1 ∈ H 7→ {grant1},
• . . .
• s = tun f ree∧ tryn ∈ H 7→ {grantn},
• s = tun f ree 7→ {no reqs},
• s = tr1granted∨ ...∨ s = trngranted 7→ {infd},
• s = in f d∧ left ∈ H 7→ {ack release},
• s = in f d 7→ {aw leave},
• > 7→ {idle}

Πc = {tunnel busy}
πc = {in f d 7→ tunnel busy}

The model is illustrated in Figure 1 using the notation introduced in Section 3.2. The protocol focuses
on the procedure of gaining a permission to access the tunnel. Before requesting the permission, a train
approaches the tunnel, and its state changes to tun needed. In this state it requests the permission from
the controller. When the controller grants the permission to one of the nondeterministically chosen trains
(trigranted) it informs the train that got access to the tunnel about this fact, and moves to the state
in f d. The train enters the tunnel in the next step of the protocol, and changes its state to in, whereas the
remaining trains may continue requesting the access (they remain in tun needed). When the train leaves
the tunnel, it changes its state to tun f ree.

3.2 Graphical Representation

As the definitions of MIS tend to be verbose, we introduce a simple graphical notation, based on networks
of communicating automata. Let us explain it, based on Figure 1, which is a graphical representation of
the tunnel, trains, and controller model from Section 3.1:

• Modules defining different agents and belonging to the same agent are separated by solid and
dashed lines, respectively,
• Circles correspond to local states. An arrow with loose end pointing into a circle denotes an initial

state,
• Boxes define local actions associated with a state,
• For a local action, dashed lines going out of it define emitted influences, specified with the receiver

and the influence at the left and right side of an harpoon arrow pointed left, respectively. When no
receiver is specified, the influence is broadcasted,
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approach

LEFT

request

enter

leave
nop

nop

accepting

waiting

infd

tun free

trngranted

inform
tr1 ↽ grant

GRANT1⇁ try1

NO REQUESTS

GRANT1 GRANTn

ACK RELEASE

ACK RELEASE

AW LEAV E

inform inform

tun needed

granted

in

out

ctrl ↽ tryi

tri ↽ enter

RETRY

appr

GRANTED

ENTER

ctrl ↽ left
tri ↽ left

tri ↽ appr

tri ctrl

↽ aw reqs

ctrl ↽ aw leave

trn ↽ grant

⇁ tryn GRANTn

. . .

. . .

NO REQUESTS

⇁ left

>

>

AW LEAV E

tri ↽ idle

⇁ grant
GRANTED

>
RETRY

⇁ appr appr

⇁ left LEFT

⇁ enter ENTER

Figure 1: Tunnel, trains and controller (TTC) in the graphical representation

• Solid lines with arrows, connecting an action with a local state, correspond to a local transition
function,

• For a local state, guarded commands (possibly in a box) define the translation of external manifes-
tations received by an agent into local impressions. A harpoon arrow pointed right corresponds to
a sender at the left side and the message at the right side, and if the sender is not specified it means
receiving from anyone. For a transition, dotted arrows pointing at it correspond to application of
those impressions.

The number of interactions x received by an agent is denoted with n(x). The notation ∗ labeling a
transition means that it is executed when none of the remaining transitions are enabled. For example, it
could be used instead of directly specifying the generation and application of aw leave manifestation in
the controller.

Some parts can be skipped or abstracted away if it does not lead to confusion. For example, if
no influence is emitted and only one transition is associated with an action, this action needs not be
directly specified. In Figure 1, the self-loop from the in state is not accompanied by the associated
local impression nor the impression. Similarly, a single influence addressed to the very module that
issued it can be omitted. For example, we do not show the manifestation idle in the graph. Valuations of
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Counter
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. . .

pay1

payn

pay none
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Cn ↽ payn

∨(Ci+ ⇁ head ∧Who pays ⇁ payi))

↽ pay decided

↽ pay decided

βi : ((Ci+ ⇁ head ∧ n(Who pays ⇁ payi) = 0)

∨(Ci+ ⇁ tail ∧Who pays ⇁ payi))

∧Who pays ⇁ pay decided)

∧Who pays ⇁ pay decided)

start

Figure 2: MIS for dining cryptographers (DC1)

propositions can be depicted in a similar way as for networks of automata. We omit them in our examples
throughout, as they do not play a role in this paper.

3.3 Dining Cryptographers: Standard Version (DC1)

Dining Cryptographers is a well-known benchmark proposed by Chaum [5]. n cryptographers are having
dinner, and the bill is to be paid anonymously, either by one of them or by their employer. In order to
learn which option is the case without disclosing which cryptographer is paying (if any), they run a two-
stage protocol. First, every cryptographer is paired with precisely one other participant (they sit around
the table), thus forming a cycle. Every pair shares a one-bit secret, say by tossing a coin behind a menu.
In the second stage, each cryptographer publicly announces whether he sees an odd or an even number
of coin heads, saying the opposite if being the payer.

In the simplest case (DC1) the number of cryptographers is fixed, and each cryptographer is directly
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bound with its neighbours. Cryptographers announce their utterances by broadcasting them. A modular
interpreted system modeling this setting is presented in Figure 2. For n cryptographers, the ith cryptogra-
pher is modeled by agent Ci (0≤ i≤ n). We introduce notation i+ and i− to refer to the right and the left
neighbour of cryptographer i, respectively. The system includes also two additional agents. Who pays
initializes the system by determining who is the payer, and communicating it to the cryptographers. Ac-
cording to the protocol definition, either one of the cryptographers is chosen, or none of the participants
pays. Agent Counter counts the utterances of the cryptographers, computes the XOR operation (denoted
by ∨ and assuming that utterances different and equal correspond to true and false values, respectively,
thus the result is true iff the number of different utterances is odd), and determines the outcome of the
protocol. Figure 2 shows the modular interpreted system for DC1.

4 How to Measure Multi-Agency

In this section, we present our preliminary attempt at defining what it means for a design to be multi-
agent. Intuitively, separate agents should have only limited coordination and/or communication capabil-
ities. Otherwise, the whole system can be seen as a single agent in disguise. The idea is to measure the
complexity of interference between different agents, and relate it to the complexity of the system. The
former factor will be captured by the number of directed interaction tokens that a given agent can gener-
ate; the latter by the number of global transitions that can occur. We say that the agent is well designed
if its interference complexity is reasonably smaller than overall complexity of the system.

Definition 4 (Interaction complexity) The interaction complexity of agent i in modular interpreted sys-
tem M, denoted IC(i), is defined as follows. Let #outi(qi) be the the maximal number of directed to-
kens generated by function outi to modules of other agents in state qi. Furthermore, let #ini(qi) be
the maximal number of tokens admitted by function ini from modules of other agents in state qi. Now,
IC(i) = ∑qi∈Sti(#outi(qi)+#ini(qi)).

The interaction complexity of M is defined as IC(M) = ∑i∈Agt IC(i).

Definition 5 (Global complexity) The global complexity of MIS M, denoted GC(M), is the number of
transitions in the NCEGS unfolding of M.

How can we express that IC(M) is “reasonably smaller” than GC(M)? Such a requirement is rela-
tively easy to specify for classes of models, parameterized with values of some parameter (for instance,
the number of identical trains in the tunnel-controller scenario).

Definition 6 (C -sparse interaction, multi-agent design) Let M be a class of MIS and C a class of
complexity functions f : N→R+∪{0}. We say that M is characterized by C -sparse interaction iff there
is a function f ∈ C such that IC(M)≤ f (GC(M)) for every M ∈M .

Furthermore, we say that M has multi-agent design iff M has LOGTIME-sparse interaction, and
card(M)≥ 2 for every M ∈M .

Proposition 1 Classes TTC and DC1 have multi-agent design.

The proof is straightforward. It is easy to see that the other variants of Dining Cryptographers, discussed
in Section 5, also have multi-agent design.
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5 How Open is an Open System?

The idea of open systems is important for several communities: not only MAS, but also verification,
software engineering, etc. It is becoming even more important now, with modern technologies enabling
dynamic networks of devices, users and services whose nodes can be created and removed according to
current needs. Traditionally, the term open system is understood as a process coupled with the environ-
ment, which is rather disappointing given the highly distributed nature of MAS nowadays. One would
rather like “openness” to mean that components (agents in our case) can freely join and leave the system
without the need to redesign the rest of it.

Perfectly open systems are seldom in practice; usually, adding/removing components requires some
transformation of the remaining part (for instance, if a server is to send personalized information to an
arbitrary number of clients then it must add the name of each new client to the appropriate distribution
lists). So, it is rather the degree of openness that should be captured. We try to answer the question How
open is the system? (or, to be more precise, its model) in the next subsection.

5.1 A Measure of Openness

We base the measure on the following intuition: openness of a system is simplicity of adding and remov-
ing agents to and from the model. That is, we consider two natural transformations of models: expansion
(adding agents) and reduction (removing agents). We note that the simplicity of a transformation is best
measured by its algorithmic complexity, i.e., the number of steps needed to complete the transformation.
A perfectly open system requires no transformation at all (0 steps) to accommodate new components,
whereas at the other extreme we have systems that require redesigning of the model from scratch when-
ever a new agent arrives.

Note that the openness of a model depends on which agents want to join or leave. For instance,
the system with trains and controllers should be able to easily accommodate additional trains, but not
necessarily additional controllers. Likewise, departure of a train should be straightforward, but not nec-
essarily that of the controller. No less importantly, the context matters. We are usually not interested in
an arbitrary expansion or reduction (which are obviously trivial). We want to add or remove agents while
keeping the “essence” of the system’s behavior intact. The following definitions formalize the idea.

Definition 7 (Expansion and reduction of a MIS) Let M = (Agtnames,Act,In,Agt) be a MIS, and aaa
an agent (in the sense of Definition 1). By agt(aaa) (resp. act(aaa), in(aaa)) we denote the set of agent names
(resp. action symbols, interaction symbols) occurring in aaa. Moreover, ns(aaa,M) will denote the set of aaa’s
namesakes in M.1 Note that ns(aaa,M) can contain at most 1 agent.

The expansion of M by aaa is defined as the modular interpreted system M⊕aaa=(Agtnames′,Act′,In′,Agt′)
where: Agtnames′=Agtnames∪agt(aaa), Act′=Act∪act(aaa), In′=In∪in(aaa), and Agt′=Agt\ns(aaa,M)∪
{aaa}. The reduction of M by aaa is defined as M	aaa = (Agtnames,Act,In,Agt′) where Agt′ = Agt\{aaa}.

Thus, expansion corresponds to “dumb” pasting an agent into a MIS, and reduction corresponds to
simple removal of the agent. The operations are well defined in the following sense.

Proposition 2 Expansion/reduction of a MIS is always a MIS.2

It is easy to see that removing an agent and pasting it in again does not change the MIS. The reverse
sequence of operations does change the MIS. However, both structures have the same unfoldings:

1 That is, agents in M that have the same id as aaa.
2 The proofs of results in Section 5 are straightforward from the construction of MIS, and we leave them to the reader.
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Proposition 3 Let aaa be an agent in M. Then, (M	aaa)⊕aaa = M. Moreover, let aaa be an agent with no
namesake in M. Then, NCEGS((M⊕aaa)	aaa) = NCEGS(M).

Now we can make our first attempt at a measure of openness.

Definition 8 (Degree of openness) Let θ be a property of models,3 M a modular interpreted system,
and aaa an agent. The degree of openness of M wrt expansion by aaa under constraint θ is defined as the
minimal number of steps that transform M⊕aaa into a MIS M′ such that card(M′) = card(M⊕aaa) and M′

satisfies θ .
Likewise, the degree of openness of modular interpreted system M wrt reduction by agent aaa under

constraint θ is the minimal number of steps that transform M	aaa into an M′ such that card(M′) =
card(M	aaa) and M′ satisfies θ .

The constraint θ can for example refer to liveness of the system or some of its components, fairness
in access to some resources, and/or safety of critical sections. Note that the cardinality check is essential
in the definition – otherwise, a possible transformation would be to simply delete the newly added agent
from M⊕aaa (respectively, to restore aaa in M	aaa).

Definition 9 (Openness of a class of models) Let M be a class of MIS, aaa an agent, and θ a property
of models. Moreover, let C be a class of complexity functions f : N→ R+ ∪{0}. M is C -open wrt
expansion (resp. reduction) by aaa under constraint θ iff there is a complexity function f ∈ C such that for
every M ∈M the degree of openness of M wrt expansion (resp. reduction) by aaa under θ is no greater
than f (|M|).

The most cumbersome part of the above definitions is the constraint θ . How can one capture the
“essence” of acceptable expansions and reductions? Note that, semantically, θ can be seen as a subclass
of models. We postulate that in most scenarios the class that defines acceptable expansions/reductions
is the very class whose openness we want to measure. This leads to the following refinement of the
previous definitions.

Definition 10 (Openness in a class) The degree of openness of M wrt expansion (resp. reduction) by aaa
in class M is the minimal number of steps that transform M⊕aaa (resp. M	aaa) into a MIS M′ ∈M such
that card(M′) = card(M⊕aaa).

Moreover, M is C -open wrt expansion (resp. reduction) by aaa iff there is a complexity function f ∈C
such that for every M ∈M the degree of openness of M wrt expansion (resp. reduction) by aaa in M is no
greater than f (|M|).

We explain the measure in greater detail in the remainder of Section 5. It is important to note that
(in contrast to the measure of multi-agentivity proposed in Section 4) our measure of openness is not
specific to MIS, and can be applied to other modeling frameworks.

Remark 4 Alternatively, we could define the openness of M wrt aaa and θ by the Kolmogorov complexity
of an appropriate expansion/reduction, i.e., by the size of the shortest algorithm that transforms M in
an appropriate way. We chose time complexity instead, for two reasons. First, Kolmogorov complexity
often obscures the level of difficulty of a process (e.g., a two-line algorithm with an infinite while loop
can implement infinitely many changes, which gives the same complexity as changing the names of
two communication channels for a controller). Secondly, computing Kolmogorov complexity can be
cumbersome as it is Turing-equivalent to answering the halting problem.

3 We do not restrict the language in which θ is specified. It can be propositional logic, first-order temporal logic, or even
the general language of mathematics. The only requirement is that, for every MIS M, the truth of θ in M is well defined.
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Figure 3: Dining cryptographers version DC2: direct channels instead of broadcast

We observe, however, that a Kolmogorov-style measure of openness can be a good alternative for
infinite models, especially ones that require infinitely many steps to accommodate changes in the config-
uration of components.

5.2 How to Open Up Cryptographers

In Section 3.3 we modeled the standard version of the Dining Cryptographers protocol as a modular
interpreted system (class DC1). In this section, we will determine the openness of DC1, plus two other
classes of MIS modeling other versions of the protocol. To comply with classical rules of composition,
we begin with the least open variant.
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5.2.1 DC-Net, Direct Channels, No Broadcasting (DC2)

Let us assume that no broadcast channel is available, or it is too faulty (or insecure) to be of use in multi-
party computation. In such case, every pair of cryptographers must use a direct secured channel for
communicating the final utterance. The result of the computation is calculated independently by every
cryptographer. We denote this class of models by DC2, and construct it as follows. Each cryptographer i
is modeled by agent Ci, similar to the cryptographer agents in DC1. Instead of a single global counter of
utterances, there is one counter per every cryptographer (Counteri). The final utterance is sent by direct
point-to-point channels to the counters of all other participants. The resulting MIS is shown in Figure 3.

Adding a new cryptographer Ci to DC1n requires the following changes. First, modifying links
among the new neighbours of Ci yields 10 changes. Secondly, every agent C j in DC1n must be modified
in order to establish a communication channel with Ci. This requires 2 · 5 changes per cryptographer,
thus 10n changes are needed. Thirdly, for the agent Who pays, we add the state payi′ with corresponding
transitions: a single non-deterministic transition from start to payi′ (17 steps: 2 for di + 4 for outi + 8 for
ini + 3 for oi), and the loop sending payment information (19 steps: 4 for di + 4 for outi + 4 for ini + 3 for
oi). Finally, Counter needs to be updated to take into account the new participant. A XOR argument is
added with receiving a manifestation, yielding 2 ·4 = 8 changes. Thus, the overall openness complexity
for DC2n is 10n+54.

Proposition 5 Class DC2 is O(n)-open wrt expansion by a cryptographer.

5.2.2 Dining Cryptographers: Standard Version with Broadcast (DC1)

Let us now go back to the standard version of the protocol, presented in Section 3.3 Adding a new
cryptographer Ci requires the following changes. First, modifying links for the new neighbors of Ci

requires 10 changes. Secondly, changes in Who pays and Counter are the same as for DC2n, yielding
44 steps. Thus, 54 changes are needed to accommodate the new cryptographer, regardless of the number
of agents already present in the system.

Proposition 6 Class DC1 is O(1)-open wrt expansion by a cryptographer.

5.2.3 Fully Open System, Cryptographers without Identifiers (DC0)

In our most radical variant, cryptographers are not arbitrarily assigned as neighbors. Instead, they es-
tablish their neighborhood relation on their own before starting the protocol. Every cryptographer is
modeled by two modules Ci and Payi, and there are two additional agents Oracle and Counter, cf. Fig-
ure 4. The system proceeds as follows:
Setting up the payer. Every cryptographer sends the oracle his declaration whether he is going to pay

or not (chosen nondeterministically). This is performed by module Payi. If Oracle receives at most
one statement want pay, it confirms to all cryptographers. If more than one statements want pay
is sent, the round is repeated until the payment issue becomes resolved.

Establishing the neighbourhood relation and tossing coins. Each cryptographer either nondetermin-
istically tosses a coin and announces the outcome, or listens to such announcements from the other
agents. If there is exactly one cryptographer announcing and one listening, they become paired.
They register the value of the announcement, and proceed further. A cryptographer who started
with announcing will now listen, and vice versa. This takes several rounds, and completes when
every cryptographer has been paired with two neighbors (one to whom he listened, and one to
whom he announced).
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Computation. A broadcast channel is used for sending around the utterances (say equal or¬say equal).
Counter counts the utterances and computes their XOR on the spot, in the way described before.

DC0 is fully open, as adding a new cryptographer requires no adaptation of DC0n.

Proposition 7 Class DC0 is O(0)-open wrt expansion by a cryptographer.

By comparing their classes of openness, it is clear that DC1 is significantly more open wrt expansion
than DC2 (constant vs. linear openness). On the other hand, it seems that the gap between DC1 and DC0
is rather slight (O(1) vs. O(0)). Is that really the case? We believe that the difference between O(1)-
openness and O(0)-openness is larger than one is used to in complexity of algorithms. First, constant
openness means that, when expanding the MIS by a set of new agents, the required transformation can
be linear in the size of the set. More importantly, non-zero openness signifies the need to come up with
a correct procedure of expansion. In contrast, zero openness means zero hassle: the new agents can join
the system as they come. There is no need for “maintenance” of the system so that it stays compliant
with its (usually implicit) specification.

6 Conclusions

In this paper, we propose a new version of modular interpreted systems. The aim is to let modeling
and analysis of multi-agent systems benefit from true separation of interference between agents and the
“internals” of their processes that go on in a system. Thanks to that, one can strive for a more modular
and open design. Even more importantly, one can use the MIS representation of a system to assess its
agentivity and openness through application of simple mathematical measures.

We emphasize that it was not our aim to create yet another agent programming language or represen-
tations that will be used as input to cutting-edge model checkers. Instead, we propose a class of models
which enables to expose the internal structure of a multi-agent system, and to define the concepts of
openness and multi-agentivity in a precise mathematical sense. While our definition of multi-agentivity
is specific to MIS, the measure of openness is in fact generic, and can be applied to models defined in
other formalisms (such as Reactive Modules). We plan to look closer at the degree of openness provided
by different representation frameworks in the future.

We would also like to stress that the focus of this paper regarding the measures of agentivity and
openness is on formalizing the concepts and showing how they work on benchmarks. An formal study
of the measures and their properties is a matter of future work.
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Artur Mȩski acknowledges the support of the European Union, European Social Fund. Project PO KL
“Information technologies: Research and their interdisciplinary applications” (UDA-POKL.04.01.01-
00-051/10-00).

References

[1] R. Alur & T. A. Henzinger (1999): Reactive Modules. Formal Methods in System Design 15(1), pp. 7–48,
doi:10.1023/A:1008739929481.

http://dx.doi.org/10.1023/A:1008739929481


16 Modularity and Openness in Modeling Multi-Agent Systems

[2] R. Alur, T. A. Henzinger & O. Kupferman (2002): Alternating-Time Temporal Logic. Journal of the ACM
49, pp. 672–713, doi:10.1145/585265.585270.

[3] R. Alur, S. Kannan & M. Yannakakis (1999): Communicating Hierarchical State Machines. In: Proceedings
of ICALP, pp. 169–178, doi:10.1007/3-540-48523-6 14.

[4] J. Calta (2012): Synthesis of Strategies for Multi-Agent Systems. Ph.D. thesis, Humboldt University Berlin.
[5] D. Chaum (1988): The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceabil-

ity. Journal of Cryptology 1(1), pp. 65–75, doi:10.1007/BF00206326.
[6] P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Półrola, M. Szreter, B. Woźna & A. Zbrzezny
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