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ABSTRACT
Intelligent autonomous agents need to reason about different kinds

of uncertainty in a Multi-Agent System (MAS): first, due to the oc-

currence of randomization and, second, their inability to completely

observe the state of the system. In this paper, we investigate the

verification of system specifications in probabilistic variants of the

logics ATL and ATL∗ under imperfect information (II). The resulting

setting combines these two sources of uncertainty and captures the

situation in which agents have qualitative uncertainty about the

local state as well as quantitative uncertainty about the occurrence

of future events. Since the model-checking problem is undecidable

when considered in the context of strategies with perfect recall, we

focus on memoryless (positional) strategies. As the main result, we

show that, in stochastic MAS under II, model-checking Probabilis-

tic ATL is in EXPTIME when agents play probabilistic strategies.

Filling the gap in recent work, we also show that model-checking

Probabilistic ATL∗ is PSPACE-complete when the proponent coali-

tion is restricted to deterministic strategies.
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1 INTRODUCTION
Formal methods for strategic reasoning play a fundamental role

in Multi-Agent System (MAS) design and verification [3, 16, 56, 67,

71, 77, 79]. This success story originated from the breakthrough

idea of using temporal logics for the specification of behaviors

of reactive systems [31, 36, 70]. Temporal logics are traditionally
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interpreted over Kripke structures, modeling closed systems, and

quantifying the computations of the systems universally and exis-

tentially. The need to reason about MAS led to the development of

formalisms that enable the specification of strategic behaviors of

agents [3, 60, 66, 67]. One of the main developments along this line

has been Alternating-time Temporal Logic (ATL) [3], which is a

logical formalism for the specification and verification of open sys-

tems involving multiple autonomous agents and allows expressing

statements about what coalitions of agents can achieve by strategic

cooperation.

The autonomous agents that compose a MAS often need to

reason about different kinds of uncertainty. One of the sources of

uncertainty is their inability to completely observe the current local

state (e.g., employees in a company have access to different client

information). On the other hand, MAS also face the occurrence of

randomization, for instance, due to natural events or the behavior

of other agents. While this aspect cannot be known with certainty,

it can be measured based on experiments or past observations.

For instance, while we cannot know whether a web system will

be available when it needs to be used, past observations enable

us to measure the probability of its availability. Clearly, both the

imperfect information about the local state and the likelihood of

stochastic events need to be taken into account by strategic agents.

Probabilistic model-checking is a technique for the formal verifi-

cation of probabilistic systems that can be modeled by stochastic

state-transition models [32]. It can be used to establish the cor-

rectness of such systems against probabilistic specifications, which

may describe, e.g., the probability of a failure of a system, or the

ability of a coalition to protect it from attackers. Alongside model-

checking techniques, logic-based formalisms have been widely and

successfully applied for the verification of stochasticMAS, including

economic mechanisms [65], negotiation games [8], team formation

protocols [28], and dispersion games [43], to name a few.

In this paper, we are interested in the model-checking problem in

stochastic MAS with partial observability. In particular, we consider

the Probabilistic Alternating-time Temporal Logics PATL and PATL∗

[29, 43] under imperfect information (II). Since model checking

PATL∗ under II for memoryful agents (a.k.a. agents with perfect-

recall) is known to be undecidable even for the fragment with a

single-player [43], we focus on a classic type of agents [37] called

imperfect-recall, i.e., agents who use memoryless strategies, also

called Markovian strategies or policies.
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Det. Strat. Prob. Strat.
PATLor ∆P

2 -c. [9] in EXPTIME (new)

PATLsr
PATL∗

or PSPACE-c (new) ?

PATL∗
sr

Table 1: Summary of model checking complexity results for
PATL and PATL∗. The subscripts “o” and “s” denote objective
and subjective interpretations, while “r” stands for memory-
less strategies. Open problems are indicated with “?”.

Contribution. We study the model-checking problem of the prob-

abilistic logics PATL and PATL∗ under imperfect information and

memoryless strategies. The main advantage of this setting is that

it captures MAS with two sources of uncertainty, namely random-

ization and partial observation, and enables reasoning about the

strategic abilities of memoryless agents. We consider two semantic

variations for the logics, the objective and subjective interpreta-

tions, as well as the cases whereby agents are allowed to play

probabilistic v. deterministic strategies, and show how to introduce

epistemic operators alongside them. Table 1 summarizes the results

presented in this paper and the remaining open questions. Our main

result is the solution of the model-checking problem for PATL when

agents play probabilistic strategies, which we show can be done

in EXPTIME. Filling the gap in recent work [9], we also show that

model-checking PATL∗ is PSPACE-complete when the proponent

coalition is restricted to deterministic strategies.

Related Work. One of the most important pioneering work on

logics for MAS is the Alternating-time Temporal Logic ATL∗ and
its fragment ATL [3]. ATL∗ has been extended in various directions,

considering for instance strategy contexts [59], or adding imperfect

information and epistemic operators [47]. Strategy Logic [27, 67]

extends ATL∗ to represent strategies with first-order variables.

Imperfect information have been extensively considered in the

literature on formal verification on MAS (see, for instance, [10, 13,

14, 22, 33, 46, 54, 55, 73]). While imperfect information is a key

feature of MAS, where perfect observability is either unrealistic or

computationally unattainable, it entails higher complexity, even

undecidability when considered in the context of agents with per-

fect recall [33]. The case of agents with memoryless strategies is

interesting to retrieve a decidable model-checking problem [25].

The verification of systems against specifications given in proba-

bilistic logics has been widely studied. In particular, Wan et al. study

the model-checking problem for Probabilistic Epistemic Computa-

tional Tree Logic with semantics based on probabilistic interpreted

systems [81]. In the context of MAS, Kwiatkowska et al. detail how

verification techniques for concurrent stochastic games can be de-

veloped and implemented using the PRISM model checker [57, 58].

Huang and Luo study an ATL-like logic for stochastic MAS in which

agents play deterministic strategies and have probabilistic knowl-

edge about the system [44]. Fu et al. show that the model-checking

problem for an epistemic logic with temporal operators is undecid-

able when considering strategies that depend on agents’ observa-

tion history [40]. Chen and Lu propose model-checking algorithms

for Probabilistic ATL in MAS with perfect information [29]. This

setting was also considered alongside Probabilistic Alternating-

Time 𝜇-Calculus [78] and Probabilistic Strategy Logic (PSL) [4].
All these results cannot be adapted to solve the model-checking

problem we are interested in here because they are restricted to

the setting of perfect information. Additionally, it is known that

Probabilistic Alternating 𝜇-calculus and PATL are incomparable

[21, 78]. In the case of PSL, the model checking problem is already

3-EXPTIME-complete, while we show it is in EXPTIME for PATL
under the assumption of imperfect information.

ATL-based probabilistic logics were also considered for the verifi-
cation of unbounded parameterizedMAS [61], for resource-bounded

MAS [69], alongside behavioral natural strategies [12], and under

assumptions over opponents’ strategies [20].

One of the closest related works is [45], which considers the logic

PATL∗ under incomplete information and synchronous perfect re-

call. The complexity results show that the model-checking problem

is in general undecidable even for the single-agent fragment of the

logic. PATL with imperfect information was recently considered

with the restriction of deterministic memoryless strategies for the

proponent coalition [9]. In the present work, we also consider the

general case in which agents in the proponent coalition may play

probabilistic strategies. The work in [45] considers only the sub-

jective semantics, while we consider both subjective and objective

semantics of ability, and extend the logic with epistemic operators.

In particular, the technique used in [9] is based on calling an ora-

cle that guesses the successful memoryless strategy. This method

cannot be applied when considering probabilistic strategies for the

proponent coalition because there are infinitely many such strate-

gies, and hence the oracle Turing machine would either have to

run in unbounded time, or allow for infinite branching.

Another related problem is the verification of probabilistic ob-

servability properties studied in [68]. The main difference with this

work is that they consider perfect recall for strategies and observa-

tions, whereas we focus on memoryless strategies and memoryless

knowledge. Also related is the research of algorithmic solutions for

computing winning strategies for two-player stochastic games with

imperfect information [24, 34, 35, 41]. Chatterjee and Doyen study

the problem of deciding the existence of almost-sure and positive

winning strategies in such games with partial-observation [26].

Finally, Gurov et al. investigate strategy synthesis for knowledge-

based strategies against a non-deterministic environment [42].

2 PRELIMINARIES
We start by recalling the basic definitions of stochastic multi-agent

models and strategic play [17, 29, 45]. In our presentation, we follow

mainly [9]. Fix finite non-empty sets Ag of agents 𝑎, 𝑎′, ...; Ac of
actions 𝛼, 𝛼 ′, ...; and AP of atomic propositions 𝑝, 𝑝′, .... We write

𝒐 for a tuple (𝑜𝑎)𝑎∈Ag of objects, one for each agent; such tuples

are called profiles. A joint action or move 𝒄 is an element of Ac
Ag
.

Given a profile 𝒐 and 𝐶 ⊆ Ag, we let 𝑜𝐶 be the components for the

agents in 𝐶 . Moreover, we use Ag−𝐶 as a shorthand for Ag \𝐶 .

Distributions. Let 𝑋 be a finite non-empty set. A (probability) dis-
tribution over𝑋 is a function d : 𝑋 → [0, 1] such that∑𝑥∈𝑋 d(𝑥) =
1. Dist(𝑋 ) is the set of distributions over 𝑋 . We write 𝑥 ∈ d for

d(𝑥) > 0. If d(𝑥) = 1 for some element 𝑥 ∈ 𝑋 , then d is a point



(a.k.a. Dirac) distribution. If d𝑖 is a distribution over 𝑋𝑖 , then, writ-

ing 𝑋 =
∏

𝑖 𝑋𝑖 , the product distribution of the d𝑖 is the distribution
d : 𝑋 → [0, 1] defined by d(𝑥) = ∏

𝑖 d𝑖 (𝑥𝑖 ).
Markov Chains. A Markov chain 𝑀 is a tuple (𝑆𝑡, d) where 𝑆𝑡 is
a set of states and d ∈ Dist(𝑆𝑡 × 𝑆𝑡) is a distribution. The values
d(𝑠, 𝑡) are called transition probabilities of𝑀 .

Concurrent Game Structures. A stochastic concurrent game
structure with imperfect information (or simply iCGS) G is a tu-

ple (𝑆𝑡, L, 𝛿, ℓ, {∼𝑎}𝑎∈Ag) where (i) 𝑆𝑡 is a finite, non-empty set of

states; (ii) L : 𝑆𝑡 ×Ag → 2
Ac \ {∅} is a legality function defining the

available actions for each agent in each state; we write L(𝑞) for the
set of tuples (L(𝑞, 𝑎))𝑎∈Ag; (iii) for each state 𝑞 ∈ 𝑆𝑡 and each move

𝒄 ∈ L(𝑞), the stochastic transition function 𝛿 gives the (conditional)

probability 𝛿 (𝑞, 𝒄) of a transition from state 𝑞 for all 𝑞′ ∈ 𝑆𝑡 if each
player 𝑎 ∈ Ag plays the action 𝒄𝑎 ; we also write this probability as

𝛿 (𝑞, 𝒄) (𝑞′) to emphasize that 𝛿 (𝑞, 𝒄) is a probability distribution on

𝑆𝑡 ; (iv) ℓ : 𝑆𝑡 → 2
AP

is a labelling function; (v) ∼𝑎 ⊆ 𝑆𝑡 × 𝑆𝑡 is an
equivalence relation called the observation relation of agent 𝑎.

A pointed iCGS is a pair (G, 𝑞) where 𝑞 ∈ 𝑆𝑡 is a special state
designed as initial. Throughout this paper, we assume that iCGSs

are uniform, that is, if two states are indistinguishable for an agent

𝑎, then 𝑎 has the same available actions in both states. Formally,

if 𝑞 ∼𝑎 𝑞′ then L(𝑞, 𝑎) = L(𝑞′, 𝑎), for any 𝑞, 𝑞′ ∈ 𝑆𝑡 and 𝑎 ∈ Ag.

For each state 𝑞 ∈ 𝑆𝑡 and joint action 𝒄 ∈ L(𝑞), we also assume

that there is a state 𝑞′ ∈ 𝑆𝑡 such that 𝛿 (𝑞, 𝒄) (𝑞′) is non-zero, that
is, every state has a successor state from a legal move. Finally, we

say that G is deterministic (instead of stochastic) if every 𝛿 (𝑞, 𝒄) is
a point distribution.

Plays. A play (or path) in a iCGS G is an infinite sequence 𝜋 =

𝑞0𝑞1 · · · of states such that there exists a sequence 𝒄0𝒄1 · · · of joint-
actions such that for every 𝑖 ≥ 0, 𝒄𝑖 ∈ L(𝑞𝑖 ) and 𝑞𝑖+1 ∈ 𝛿 (𝑞𝑖 , 𝒄𝑖 )
(i.e., 𝛿 (𝑞𝑖 , 𝒄𝑖 ) (𝑞𝑖+1) > 0). We write 𝜋𝑖 for state 𝑞𝑖 , 𝜋≥𝑖 for the suffix

of 𝜋 starting at position 𝑖 . Finite paths are called histories, and the

set of all histories is denoted Hist. Write last(ℎ) for the last state of
a history ℎ.

Strategies. A (general) probabilistic strategy is a function 𝜎 :

Hist → Dist(Ac) that maps each history to a distribution of actions.

We let Str be the set of all strategies. A memoryless uniform prob-
abilistic strategy for an agent 𝑎 is a function 𝜎𝑎 : 𝑆𝑡 → Dist(Ac)
in which for all positions 𝑞, 𝑞′ such that 𝑞 ∼𝑎 𝑞′, we have 𝜎𝑎 (𝑞) =
𝜎𝑎 (𝑞′). We let Str𝑟𝑎 be the set of memoryless uniform strategies

for agent 𝑎. A deterministic (or pure) strategy 𝜎𝑎 for agent 𝑎 is a

strategy in which 𝜎𝑎 (𝑞) is a point distribution for any 𝑞. A strategy
profile is a tuple 𝝈 of strategies, one for each agent. We write 𝜎𝑎
for the strategy of 𝑎 in profile 𝝈 . For a strategy 𝜎𝑎 for agent 𝑎, we

assume that 𝜎𝑎 (ℎ) (𝑐) = 0 if 𝑐 ∉ L(last(ℎ), 𝑎).

3 PROBABILISTIC ATL AND ATL∗

Now we present the syntax and semantics of the Probabilistic

Alternating-time Temporal Logics PATL∗ and PATL [9, 29, 45], in-

terpreted under the assumption of imperfect information. Again,

we follow [9] in our presentation. Note that [9] adopts the objective
semantics of strategic ability, where the coalition is supposed to

have a strategy that works from the initial state of the game. In con-

trast, [45] uses the subjective semantics of strategic ability, where

the agents need a strategy that wins from the all the observationally

equivalent states.
1
In this paper, we consider both accounts, as they

are equally relevant in the literature. In particular, we integrate

the objective and subjective semantics of probabilistic ability into a

single framework.

Definition 1 (PATL∗). State formulas Φ and path formulas𝜓 are

defined by the following grammar, where 𝑝 ∈ AP, 𝐶 ⊆ Ag, 𝑑 is a

rational constant in [0, 1], and ⊲⊳∈ {≤, <, >, ≥}:

Φ ::= 𝑝 | ¬Φ | Φ ∨ Φ | ⟨⟨𝐶⟩⟩⊲⊳𝑑𝜓
𝜓 ::= Φ | ¬𝜓 | 𝜓 ∨𝜓 | X𝜓 | 𝜓U𝜓 | 𝜓R𝜓

Formulas in PATL∗ are all and only the state formulas Φ.

The intuitive reading of the operators is as follows: ⟨⟨𝐶⟩⟩⊲⊳𝑑𝜓
means that there exists a strategy for the coalition𝐶 of agents to col-

laboratively enforce𝜓 with a probability in relation ⊲⊳with constant

𝑑 ; “next” X, “release” R, and “until” U are the standard temporal op-

erators. We define the usual derived temporal operators as follows:

F𝜓 := ⊤U𝜓 andG𝜓 := ⊥R𝜓 . Finally, we use [[𝐶]]⊲⊳𝑑𝜓 := ¬⟨⟨𝐶⟩⟩⊲⊳𝑑¬𝜓
to express that no strategy of 𝐶 can prevent𝜓 with a probability in

relation ⊲⊳ with constant 𝑑 .

An important syntactic restriction of PATL∗, namely PATL, is
obtained by restricting path formulas as follows:

𝜓 ::= XΦ | ΦUΦ | ΦRΦ

which is tantamount to the following grammar for state formulas:

Φ ::= 𝑝 | ¬Φ | Φ ∨ Φ | ⟨⟨𝐶⟩⟩⊲⊳𝑑XΦ | ⟨⟨𝐶⟩⟩⊲⊳𝑑 (ΦUΦ) | ⟨⟨𝐶⟩⟩⊲⊳𝑑 (ΦRΦ)

where again 𝑝 ∈ AP, 𝐶 ⊆ Ag, and ⊲⊳∈ {≤, <, >, ≥}.
Formulas of PATL and PATL∗ are interpreted over iCGSs.

Probability Space on Outcomes. An outcome of a strategy profile
𝝈 and a state 𝑞 is a play 𝜋 that starts with 𝑞 and is extended by

letting each agent follow the strategies in 𝝈 , i.e., 𝜋0 = 𝑞, and for

every 𝑘 ≥ 0 there exists 𝒄𝑘 ∈ 𝝈 (𝜋𝑘 ) such that 𝜋𝑘+1 ∈ 𝛿 (𝜋𝑘 , 𝒄𝑘 ).
The set of outcomes of a strategy profile 𝝈 and state 𝑞 is denoted as

𝑜𝑢𝑡 (𝝈 , 𝑞). A given iCGS G, strategy profile 𝝈 , and state 𝑞 induce an
infinite-state Markov chain𝑀𝝈 ,𝑞 whose states are the finite prefixes

of plays in 𝑂𝑢𝑡 (𝝈 , 𝑞). Such finite prefixes of plays are actually

histories. Transition probabilities in𝑀𝝈 ,𝑞 are defined as 𝑝 (ℎ,ℎ𝑞′) =∑
𝒄∈AcAg 𝝈 (ℎ) (𝒄)·𝛿 (last(ℎ), 𝒄) (𝑞

′). TheMarkov chain𝑀𝝈 ,𝑞 induces

a canonical probability space on its set of infinite paths [51], which

can be identified with the set of plays in 𝑂𝑢𝑡 (𝝈 , 𝑞). 2
Given a coalitional strategy 𝝈𝑪 ∈ ∏

𝑎∈𝐶 Str𝑟𝑎 , we define its

objective outcomes from state 𝑞 ∈ 𝑆𝑡 as the set 𝑜𝑢𝑡𝑜,𝐶 (𝝈𝑪 , 𝑞) =

{𝑂𝑢𝑡 ((𝝈𝑪 ,𝝈Ag−𝑪 ), 𝑞) | 𝝈Ag−𝑪 ∈ Str |Ag−𝐶 | } of probability measures

that the players in 𝐶 enforce when they follow the strategy 𝝈𝑪 .
Note that the opponents can use any strategies within 𝝈Ag−𝑪 , even
if 𝐶 employ only uniform memoryless strategies.

The subjective outcomes are then defined as the set

𝑜𝑢𝑡𝑠,𝐶 (𝝈𝑪 , 𝑞) =
⋃

𝑞′∼𝑎𝑞,𝑎∈𝐶
𝑜𝑢𝑡𝑜,𝐶 (𝝈𝐶 , 𝑞′) (1)

We will use 𝜇
𝝈𝑪
𝑥,𝑞 to range over the elements of 𝑜𝑢𝑡𝑥,𝐶 (𝝈𝑪 , 𝑞), for

𝑥 ∈ {𝑠, 𝑜}.
1
For a more thorough discussion of objective vs. subjective ability, cf. [1, 22].

2
This is a classic construction, see for instance [11, 30].



Remark 1. We note in passing that [45] base their semantics of

subjective ability for coalitions upon distributed knowledge (i.e.,

the intersection of the members’ outcome sets), whereas in (1) we

use mutual knowledge (i.e., the union of the outcome sets), which

is more standard in reasoning about subjective ability [22, 76].

Semantics. For 𝑥 equal to either 𝑠 or 𝑜 , state and path formulas

in PATL∗ are interpreted in a iCGS G and a state 𝑞, resp. path 𝜋 ,

according to the 𝑥-interpretation of strategy operators, as follows

(clauses for Boolean connectives are omitted as immediate):

G, 𝑞 |=𝑥 𝑝 iff 𝑝 ∈ ℓ (𝑞)

G, 𝑞 |=𝑥 ⟨⟨𝐶⟩⟩⊲⊳𝑑𝜓 iff ∃𝝈𝑪 ∈
∏
𝑎∈𝐶

Str𝑟𝑎 such that

∀𝜇𝝈𝑪𝑥,𝑞 ∈ 𝑜𝑢𝑡𝑥,𝐶 (𝝈𝑪 , 𝑞),
𝜇
𝝈𝑪
𝑥,𝑠 ({𝜋 | G, 𝜋 |=𝑥 𝜓 }) ⊲⊳ 𝑑

G, 𝜋 |=𝑥 X𝜓 iff G, 𝜋≥1 |=𝑥 𝜓
G, 𝜋 |=𝑥 𝜓1U𝜓2 iff ∃𝑘 ≥ 0 s.t. G, 𝜋≥𝑘 |=𝑥 𝜓2 and

∀𝑗 ∈ [0, 𝑘) G, 𝜋≥ 𝑗 |=𝑥 𝜓1
G, 𝜋 |=𝑥 𝜓1R𝜓2 iff ∀𝑘 ≥ 0,G, 𝜋≥𝑘 |=𝑥 𝜓2 or

∃ 𝑗 ∈ [0, 𝑘) s.t. G, 𝜋≥ 𝑗 |=𝑥 𝜓1
Remark 2. Notice that, by using the subjective interpretation of

PATL∗, we can introduce the individual knowledge operator 𝐾𝑎 of

epistemic logic as follows: 𝐾𝑎Φ ::= ⟨⟨{𝑎}⟩⟩>0⊥UΦ.
By definition of the satisfaction relation |=𝑠 , we have that

G, 𝑞 |=𝑠 𝐾𝑎Φ iff for all 𝑞′ ∼𝑎 𝑞,G, 𝑞′ |=𝑠 Φ (2)

On the other hand, for the objective semantics, 𝐾𝑎 can be added

as a primitive operator with the semantics defined as in Eq. (2).

The Model Checking Problem. The setting introduced in this pa-

per includes two logics: PATL∗ and PATL, which are interpreted

over stochastic iCGS by using either probabilistic or deterministic

(memoryless) strategies for the proponent coalition, according to

two different semantics: objective or subjective. This gives a to-

tal of 3 different dimensions. We use the notation PATL∗
or
, PATL∗

sr
,

PATLor, and PATLsr to refer to the objective and subjective variants
of PATL∗ and PATL, respectively. As a result, we obtain 8 variants

of the model checking problem, defined as follows (see Table 1 for

an overview).

Definition 2 (Model Checking Problem). Given a stochastic iCGS

G, a formula Φ ∈ 𝐿, for 𝐿 ∈ {PATL∗
xr
, PATLxr} and 𝑥 ∈ {𝑜, 𝑠}, and

a state 𝑞, the model checking problem is to determining whether

G, 𝑞 |=𝑥 Φ, when considering either probabilistic or deterministic

strategies for the proponent coalition.

The rest of this paper is devoted to analyzing the decidability

and complexity of model checking of these problems. We anticipate

that some of the dimensions listed above do not have an impact.

For instance, complexity results are the same for objective and

subjective interpretation.

4 STRATEGIC REASONING UNDER
UNCERTAINTY

In this section, we discuss motivating problems of strategic reason-

ing in stochastic MAS with agents that have partial observability

of the environment. Our examples are based on security games and

probabilistic social choice theory.

4.1 Security Games
Security games are game-theoretic models used to study security

problems, such as the protection of biodiversity in conservation

areas [38] and wildlife protection from cooperative attackers [82].

In the basic setting, a security game [52] is a two-player game

between a defender and an attacker. The attacker may choose to

attack any target, while the defender tries to prevent attacks by

covering targets using resources. This formalism has been extended

to multiple attackers [82], and multiple defenders [62]. Many real-

world scenarios are not single-shot games, as the attackers often

conduct multiple repeated attacks. This is the case, among others, of

security games for protecting the environment [50] (e.g., defending

from hunters who continuously try to poach various animals).

Let us consider a multi-defender security game inspired by [62].

The set of agents is Ag = {𝑎} ∪ 𝐷 , where 𝐷 is a non-empty set of

defenders and 𝑎 is the attacker. Each defender 𝑖 ∈ 𝐷 is in charge of

protecting a set of targets 𝑇𝑖 . The set of all targets is 𝑇 =
⋃

𝑖∈𝐷 𝑇𝑖 .
An action for a defender 𝑖 consist in a subset of targets 𝑜𝑖 ⊆ 𝑇𝑖 ,

where 𝑡 ∈ 𝑜𝑖 means that 𝑖 is covering target 𝑡 . The action 𝑜𝑖 = ∅
represents that 𝑖 does not cover any target. However, covering all

targets may not be feasible due to resource constraints [53]. We

assume each defender 𝑖 has some given number of resources 𝑘

that is at most |𝑇𝑖 |, used to cover targets. The amount of resources

available can change in each time step. The attacker’s actions consist

of attacks to one of the targets in 𝑡 ∈ 𝑇 .
For each 𝑡 ∈ 𝑇 , the atomic propositions 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑𝑡 and 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑡 ,

denote whether the target 𝑡 is attacked or covered resp. The propo-

sition 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑖,𝑘 indicates that the defender 𝑖 has 𝑘 resources to

employ (that is, the maximum capacity to cover targets), for 𝑖 ∈ 𝐷
and 0 ≤ 𝑘 ≤ |𝑇𝑖 |. The resource constraints are represented by the

legality function L: given a state 𝑞 and a defender 𝑖 , an action 𝑜𝑖 is

legal for 𝑖 in 𝑞 (i.e., 𝑜𝑖 ∈ L(𝑞, 𝑖)), if |𝑜𝑖 | is smaller or equal to greatest

𝑘 such that 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑖,𝑘 ∈ ℓ (𝑞) (if no such 𝑘 exists, L(𝑞, 𝑖) = {∅}).
Attacks in a covered target always fail (that is, the proposition

𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑𝑡 is false in the next state). On the other hand, an attack in

an uncovered target 𝑡 may fail in some cases (with a given proba-

bility). This is captured by the stochastic transition function.

Assume an instance of the problem with two defenders, namely

Ann and Bob, who are in charge of defending a forest from the

attacker Carol. Ann is in charge of defending north- and south-east

zones of the forest (targets NE and SE, resp.), while Bob should

defend the north- and south- west zones (targets NW and SW, resp.).

Let 𝑞 be a state in which Carol can attack any target while Ann

and Bob have only one resource each (that is, each one can cover

at most one zone). Table 2 illustrates the possible combinations of

actions from state 𝑞, where X denotes the situations in which Carol

would attack an uncovered target.

If the attackers know when they attacked an unprotected tar-

get, deterministic memoryless strategies for the defenders are not

enough to protect their targets, because, when a situation repeats,

the attacker could simply attack the targets left unprotected previ-

ously. On the other hand, probabilistic strategies add uncertainty

about the behavior of the defenders.



The PATL∗ formula

⟨⟨𝑎⟩⟩≥
1

2 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎,𝑘 → X
∨

𝑘≥𝑘 ′≥ |𝑇𝑎 |
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑎,𝑘 ′

says that 𝑎 has at least 1

2
probability of ensuring that, if she has 𝑘

resources at a state, this amount will not decrease in the next state.

For each 𝑡 ∈ 𝑇 , let the PATL formula 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑𝑡 := 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑𝑡 ∧
¬𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝑡 denote that target 𝑡 was destroyed if it was attacked

while unprotected.

The PATL formula

⟨⟨𝑎⟩⟩≥𝑐G
∧
𝑡 ∈𝑇𝑎

(
𝐾𝑎𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑𝑡 ∨ 𝐾𝑎¬𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑𝑡

)
represents that agent 𝑎 can ensure with probability 𝑐 that for each

of her targets, she knows whether it was destroyed or not.

The PATL∗ formula ⟨⟨𝐶⟩⟩≥𝑐 ∧𝑎∈𝐶
∨

𝑡 ∈𝑇𝑎 G¬𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑𝑡 repre-
sents that the coalition 𝐶 can ensure, with probability greater or

equal to 𝑐 that at least one target of each member of the coalition

will never be destroyed. Assuming each agent in 𝐶 have always

at least one resource (which would allow to cover a target), the

formula would be true for 0 < 𝑐 ≤ 1, since each agent could keep

protecting the same target.

The PATL formula

⟨⟨𝑎⟩⟩≥
1

4 G
∧
𝑏∈𝐷

∧
0≤𝑘≤ |𝑇𝑏 |

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑏,𝑘 → 𝐾𝑎 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑏,𝑘

represents that agent 𝑎 has at least 1

4
probability to always ensure

that, for each defender 𝑏 and her possible amount of resources 𝑘 , if

it is the case that 𝑏 has 𝑘 resources, than 𝑎 knows it.

4.2 Probabilistic Social Choice
In recent years, randomization has played an increasingly relevant

role in social choice theory and mechanism design [7, 18]. One

reason is that deterministically picking a winner is often unfair (e.g.,

when two agents have the same preference or score). Furthermore,

probabilistic approaches enable circumventing impossibility results,

such as achieving strategyproofness and non-dictatorship [6].

While in classic voting models, all voters submit their vote at

once, in many realistic scenarios committees often follow an infor-

mal voting process where members are free to revise their votes.

In iterative voting mechanisms, the game proceeds in turns, where

single or multiple voters change their vote at each turn until no

voter has objections and the final outcome is announced [64].

Voters’ actions include reporting an alternative from a finite set

of alternatives 𝑇 and voting in “none”. The atomic propositions

𝑣𝑜𝑡𝑒𝑎,𝑡 , and pref𝑎,𝑡 denote whether the agent 𝑎 last vote was to

the alternative 𝑡 and whether 𝑡 is her most preferred alternative.

Finally, the proposition 𝑐ℎ𝑜𝑖𝑐𝑒𝑡 specifies whether 𝑡 is the alternative

Carol
NE SE NW SW

(Ann, Bob)

(NE, NW) X X

(NE, SW) X X

(SE, NW) X X

(SE, SW) X X

Table 2: Example of action profile for an instance of a security
game. X denotes that an uncovered target was attacked.

chosen. After the agents vote, 𝑐ℎ𝑜𝑖𝑐𝑒𝑡 is true for the alternative that

received more votes. Ties are broken according to a probability

distribution over the most preferred alternatives (e.g., for a tie

among 𝑛 alternatives, each one is chosen with probability
1

𝑛 ).

The anonymity of votes can be verified with PATL. For instance,
the formula

¬⟨⟨𝑏⟩⟩≥
2

3 G
∧
𝑡 ∈𝑇

(
¬𝐾𝑏 𝑣𝑜𝑡𝑒𝑑𝑎,𝑡 ∧ ¬𝐾𝑏 ¬𝑣𝑜𝑡𝑒𝑑𝑎,𝑡 )

expresses that it is not the case that agent 𝑏 has a strategy to en-

sure, with probability
2

3
, to know whether 𝑎 voted in any of the

alternatives.

In iterative voting, it is relevant to determine whether the choice

will eventually be stable, i.e., to converge to an alternative. This con-

dition can be captured with the formula ⟨⟨Ag⟩⟩≥𝑐 ∨𝑡 ∈𝑇 F G 𝑐ℎ𝑜𝑖𝑐𝑒𝑡
which expresses that, with probability 𝑐 , at a certain point, some

alternative is chosen at all future states of the path.

A property that is undesired in a social choice mechanism is

called dictatorship, which happens when the preferences of a sin-

gle voter (the dictator) determine the alternative that is chosen,

whatever are the preferences of the other individuals [19]. In our

example, dictatorship-free is captured by the formula∧
𝑎∈Ag

¬
(
⟨⟨𝑎⟩⟩≥1G

∧
𝑡 ∈𝑇

(
pref𝑎,𝑡 → 𝑐ℎ𝑜𝑖𝑐𝑒𝑡

) )
Recently work has shown how to use variants of Strategy Logic

for the verification of economic mechanisms for social choice, first

in the deterministic setting with imperfect information [63], and

later for stochastic mechanisms with PSL [65]. Since the model-

checking of PSL is 3-EXPTIME-complete formemoryless strategies,

it is interesting to explore the application of other formal verifica-

tion techniques with lower computational costs. We have shown

how to express a number of properties in iterative voting with PATL
and PATL∗ and we will now focus on establishing the complexity

of model-checking these logics under memoryless strategies.

5 MODEL CHECKING STOCHASTIC SYSTEMS
WITH FORGETFUL AGENTS

As discussed in Section 4, many multi-agent systems are inherently

stochastic and characterized by imperfect information. Moreover,

it makes sense to ask about the abilities of agents with bounded

memory, i.e., who cannot (or choose not to) remember the whole

history of past observations. In that case, the memory of the agent

can be encapsulated in its local state, and one can use memoryless

strategies to model the agent’s strategic decisions.

PATL model checking allows us to verify statements about the

agents’ ability (or inability) to enforce temporal goals within a given

range of probabilities. The simpler case of deterministic memoryless

strategies has been studied in [9], where it was proven ∆P
2 -complete

by a straightworward extension of results for non-probabilistic

MAS. Here, we concentrate on the more interesting (andmuchmore

difficult) case of agents that can randomize, i.e., employ probabilistic
memoryless strategies with imperfect information.

In the rest of the section, we present our main technical results,

establishing complexity bounds for the problem. The bounds are

not tight, but reasonably close for reasoning about probabilistic



policies.
3
The proofs are nontrivial, and proceed by reductions to

fundamental arithmetic problems rarely used in logic-based ap-

proaches (theory of the reals and existential theory of the reals),
which is an interesting contribution in itself.

5.1 Background
Conceptually, model checking of PATLor and PATLsr is closely re-

lated to synthesis of memoryless policies for POMDPs, which is

known to be in PSPACE, as well as NP-hard and sum-of-square-
roots-hard [80]. We start by observing that the two problems differ

significantly, and cannot be easily reduced to one another.

Firstly, policy synthesis for POMDPs addresses non-nested 1.5-

player games with arbitrary rewards. It looks for single-agent strate-

gies that maximize the agent’s expected reward, averaged over all

execution paths and future time points. Importantly, the reward

decreases with each time step by a given temporal discount that

is strictly smaller than 1. No less importantly, the proponent is

playing against a purely reactive stochastic environment.

Secondly, model checking of PATLor and PATLsr admits nested

strategic properties in games with arbitrarily many players. It seeks

coalitional strategies that maximize the probability of enforcing a

binary reachability/safety goal against all probabilistic behaviors

of the opponents. No temporal discounting is considered.

Our proofs in the rest of this section have been inspired by the

results of [80].

Importantly, it is not possible to employ the technique that was

used in [9] to establish the complexity of model checking for deter-
ministic memoryless strategies of the coalition, i.e., calling an oracle

that guesses the best memoryless strategy, pruning the iCGS, and

solving the resulting finite set of Markov chains. This is because

there are infinitely many probabilistic memoryless strategies, and

hence the oracle Turing machine would either have to run in un-

bounded time, or allow for infinite branching. In fact, synthesis of

optimal probabilistic strategies is a special case of jointly constrained
bilinear optimization, which is a notoriously hard problem [2]. For-

tunately, our case can be reduced to deciding the second level in

the hierarchical theory of the reals [75], which is an extension of the

existential theory of the reals problem [23].

5.2 Probabilistic Strategies: Upper Bounds
We begin by showing that model checking PATLsr for probabilistic
strategies of the coalition is decidable in EXPTIME. Moreover, in

the special case of formulas that include only the grand coalition

of agents, the problem is in PSPACE, analogously to memoryless

synthesis for POMDPs. In our proofs, we will use reductions to the

following decision problems.

Definition 3 (Existential theory of the reals, ThR∃ ). The problem

decides the truth of a first-order formulaΦ ≡ ∃𝑥1 ...∃𝑥𝑛 𝑃 (𝑥1, ..., 𝑥𝑛)
where𝑥𝑖 are interpreted over the realsR, and 𝑃 is a Boolean function
of atomic predicates of the form 𝑓𝑖 (𝑥1, ..., 𝑥𝑛) ≥ 0 or 𝑓𝑖 (𝑥1, ..., 𝑥𝑛) >
0, with each 𝑓𝑖 being a polynomial with rational coefficients.

Theorem 5.1 ([23]). ThR∃ is in PSPACE.

3
Wewould be surprised to obtain a completeness result: the exact complexity of solving

POMDPs with memoryless policies is a longstanding open problem [49, 80].

Definition 4 (First-order theory of the reals, ThR). Analogously to

Definition 3, only with an arbitrary sequence of quantifiers𝑄1 ...𝑄𝑛

allowed at the beginning of Φ.

Theorem 5.2 ([74]). There is an algorithm for ThR that requires
(𝑚𝑑)𝑛 ·2𝑂 (𝜔 )

operations and (𝑚𝑑)𝑂 (𝑛) calls to an oracle computing
𝑃 , where𝑚 is the number of atomic predicates in Φ, 𝑑 is the maximal
degree of the polynomials, 𝑛 is the number of quantifiers, and 𝜔 − 1

the number of quantifier alternations in Φ.

In what follows, we first show that if the opponents can prevent

𝐶 from winning, they can always achieve it by a memoryless re-

sponse (Lemma 1). Then, we present a construction that reduces

the verification of abilities for reachability goals in iCGSs to policy

optimization in multi-agent POMDPs with undiscounted rewards,

and we express the latter problem as a formula in the existential

theory of the reals (Proposition 1). Further, we show how the veri-

fication of safety goals can be reduced to the case of reachability

goals (Proposition 2). Finally, we use the standard recursive proce-

dure for model checking formulas with nested strategic operators

(Theorem 5.3), and observe that in some special cases the reduction

obtains a tighter complexity bound (Theorem 5.4).

Hereafter, let ⊲⊳ denote the negated constraint ⊲⊳, i.e., < =≥,
≤ =>, etc.

Lemma 1. Let (G, 𝑞) be a pointed iCGS, ⟨⟨𝐶⟩⟩⊲⊳𝑑𝜑 a formula of
PATLsr, and 𝜎𝐶 a memoryless uniform strategy for 𝐶 . If there exists a
general strategy 𝜎Ag−𝐶 ∈ Str

𝐼𝑅𝑃
Ag−𝐶

such that 𝑜𝑢𝑡 ((𝜎𝐶 , 𝜎Ag−𝐶 ), 𝑞) ({𝜋 |
G, 𝜋 |= 𝜑})⊲⊳𝑑 , then there is a memoryless strategy 𝜎′

Ag−𝐶
∈ Str

𝐼𝑟𝑃
Ag−𝐶

(not necessarily uniform!) with 𝑜𝑢𝑡 ((𝜎𝐶 , 𝜎′
Ag−𝐶

), 𝑞) ({𝜋 | G, 𝜋 |=
𝜑})⊲⊳𝑑 .

Proof. We fix 𝜎𝐶 in (G, 𝑞), remove the epistemic relations, and

merge the opponents Ag−𝐶 into a single agent. Notice that 𝜑 is ei-

ther a reachability or a safety objective (i.e., of form𝜑1U𝜑2 or𝜑1R𝜑2
respectively). For reachability, we further redirect the transitions

to a new “sink” state whenever the objective becomes unattainable

(similarly to the construction in the proof of Proposition 1 below).

This way, we obtain a Markov Decision Process in which we seek

to optimize a reachability reward 𝑇 = p2, and there always exist

deterministic memoryless policies that achieve the minimum and

maximum probabilities of reaching 𝑇 [39].

For safety objectives, we transform it to negation of reachabil-

ity, by using the equivalence 𝜑1R𝜑2 ≡ ¬(¬𝜑1U¬𝜑2), and proceed

analogously. □

Now we can prove the upper bounds for simple PATLsr formulas.

Proposition 1. Checking formulas𝜑 = ⟨⟨𝐶⟩⟩⊲⊳𝑑p1Up2 is inEXPTIME
(with respect to the size of the model).

Proof. For the iCGS G, given as input, first reconstruct it into

G′
as follows:

(i) Add a “sink” state 𝑞𝑠𝑖𝑛𝑘 with G, 𝑞𝑠𝑖𝑛𝑘 ̸ |= p2 and a self-loop as

the only outgoing transition.

(ii) For all the states 𝑞 st. G, 𝑞 |= p2 or G, 𝑞 ̸ |= p1, remove all outgo-

ing transitions and replace them with an automatic transition

to 𝑞𝑠𝑖𝑛𝑘 . That is, we stop looking at the rest of the path when-

ever p2 has been achieved (and thus p1Up2 already succeeded)
or p1 has been invalidated (and thus p1Up2 already failed).



Note that, on each path in G′
, p2 can occur at most once. Moreover,

the paths that reach p2 are exactly the paths that satisfy p1Up2.
Secondly, formulate a set of constraints Φ as inequalities over

the vectors of rewards 𝑟0𝑞 ∈ R, 𝑟𝑞 ∈ R for 𝑞 ∈ 𝑆𝑡 , and probabilistic
decisions 𝑐ℎ𝑜𝑖𝑐𝑒𝑎,𝑞,𝛼 ∈ R for 𝑎 ∈ Ag, 𝑞 ∈ 𝑆𝑡, 𝛼 ∈ Ac. The value 𝑟0𝑞
captures the immediate level of success at state 𝑞, 𝑟𝑞 represents

the expected probability of success from state 𝑞, and 𝑐ℎ𝑜𝑖𝑐𝑒𝑎,𝑞,𝛼
expresses the probability with which agent 𝑎 takes action 𝛼 at state

𝑞, i.e., represents the probabilistic choices of all the agents. The set

of constraints Φ is built as follows:

(i) For every 𝑞 ∈ 𝑆𝑡 , if G, 𝑞 |= p2 then add constraint (𝑟0𝑞 = 1)
to the set of constraints Φ, else add (𝑟0𝑞 = 0). That is, the
immediate reward at 𝑞 is 1 if p2 has just been achieved, and 0

otherwise.
4

(ii) For every 𝑞 ∈ 𝑆𝑡 , add constraint(
𝑟𝑞 = 𝑟0𝑞 +

∑︁
®𝛼∈L𝑞

𝑟𝛿 (𝑞, ®𝛼 ) ·
∏
𝑎∈Ag

𝑐ℎ𝑜𝑖𝑐𝑒𝑎,𝑞,𝛼𝑎
)

(3)

expressing that 𝑟𝑞 is the sum of the immediate reward at 𝑠 and

the expected reward to be obtained in the future.

(iii) Add (𝑐ℎ𝑜𝑖𝑐𝑒𝑎,𝑞,𝛼 ≥ 0) for each 𝑎 ∈ Ag, 𝑞 ∈ 𝑆𝑡, 𝛼 ∈ L(𝑞, 𝑎), and( ∑
𝛼∈L(𝑞,𝑎) 𝑐ℎ𝑜𝑖𝑐𝑒𝑎,𝑞,𝛼 = 1

)
for each 𝑎 ∈ Ag, 𝑞 ∈ 𝑆𝑡 .

(iv) For every coalition agent 𝑎 ∈ 𝐶 , states 𝑞, 𝑞′ with 𝑞 ∼𝑎 𝑞′, and
action 𝛼 ∈ L(𝑞, 𝑎), add (𝑐ℎ𝑜𝑖𝑐𝑒𝑎,𝑞,𝛼 = 𝑐ℎ𝑜𝑖𝑐𝑒𝑎,𝑞′,𝛼 ), expressing
that the probabilistic choices of 𝑎 at indistinguishable states 𝑞

and 𝑞′ must be the same.

(v) Finally, add (𝑟𝑞 ⊲⊳ 𝑑) for every 𝑞 ∈ 𝑆𝑡 such that 𝑞0 ∼𝑎 𝑞 for

some 𝑎 ∈ 𝐶 , i.e., the expected probability of success from each

state indistinguishable from 𝑞0 is in relation ⊲⊳ with value 𝑑 .

By construction, the only value of 𝑟𝑞 that satisfies the above

constraints captures the expected probability of satisfying p1Up2
when the (memoryless probabilistic) choices of agents are given

by the vector 𝑐ℎ𝑜𝑖𝑐𝑒 . Note that the agents in 𝐶 are assumed to use

memoryless choices by the semantics of ⟨⟨𝐶⟩⟩⊲⊳𝑑p1Up2. Moreover,

memoryless choices are sufficient for the opponents in Ag−𝐶 by

Lemma 1.

Now, checking if G, 𝑞0 |= ⟨⟨𝐶⟩⟩⊲⊳𝑑p1Up2 is equivalent to deciding
the following instance of ThR:

∃{𝑟𝑞 | 𝑞 ∈ 𝑆𝑡} ∃{𝑐ℎ𝑜𝑖𝑐𝑒𝑎,𝑞,𝛼 | 𝑎 ∈ 𝐶,𝑞 ∈ 𝑆𝑡, 𝛼 ∈ Ac} (4)

∀{𝑐ℎ𝑜𝑖𝑐𝑒𝑎,𝑞,𝛼 | 𝑎 ∉ 𝐶,𝑞 ∈ 𝑆𝑡, 𝛼 ∈ Ac}
∧

Φ.

Note that the number of atomic predicates and the number of

quantifiers in Φ are𝑚 = 𝑛 = 𝑂 ( |Ag| · |𝑆𝑡 | · |Ac|), the number of

quantifier groups is 𝜔 = 2 (equivalently, the number of quantifier

alternations is 1), and the maximal degree of the polynomials is

𝑑 = 1. By Theorem 5.2, the above instance of ThR can be decided in

𝑛𝑛 ·2
𝑂 (1) + 𝑛𝑂 (𝑛) = 2

𝑂 (𝑛 ·log𝑛) = 2
𝑂 ( |Ag | · |𝑆𝑡 | · |Ac | ·log( |Ag | · |𝑆𝑡 | · |Ac | ) )

steps. □

Proposition 2. Checking formulas𝜑 = ⟨⟨𝐶⟩⟩⊲⊳𝑑p1Rp2 is inEXPTIME
(with respect to the size of the model).

Proof. Recall that p1Rp2 ≡ ¬(¬p1U¬p2). Thus, we haveG, 𝑞0 |=
⟨⟨𝐶⟩⟩⊲⊳𝑑p1Rp2 iffG, 𝑞0 |= ⟨⟨𝐶⟩⟩⊲⊳(1−𝑑 ) (¬p1U¬p2), which can be ver-
ified in EXPTIME by Proposition 1. □

4
Note that an equality can be expressed as a pair of inequalities.

Theorem 5.3. Model checking PATLsr with probabilistic strategies
for the coalition is in EXPTIME.

Proof. To check if G, 𝑞 |= 𝜑 , we first transform the temporal

and Boolean operators in 𝜑 to Negation Normal Form by using De

Morgan laws and the duality laws for “until” U and “release” R. If the

resulting formula contains no nested strategicmodalities, then it can

be model-checked in EXPTIME by Propositions 1 and 2 (the case

of “next” is straightforward). For nested strategic modalities, we

proceed recursively (bottom-up), which runs in time PEXPTIME =

EXPTIME. □

An interesting special case is when we only consider the abil-

ities of all the agents cooperating on a common goal. Then, the

verification problem is in PSPACE.

Theorem 5.4. Model checking PATLsr with probabilistic strategies
for the coalition and formulas that include only the grand coalition
(Ag) or the empty coalition (∅) is in PSPACE.

Proof. First, notice that ⟨⟨∅⟩⟩ is equivalent to "for all paths",

which reduces our model-checking problem to that of PCTL. For
formulas of type ⟨⟨𝐶⟩⟩⊲⊳𝑑p1Up2 and ⟨⟨𝐶⟩⟩⊲⊳𝑑p1Rp2, notice that the
universally quantified part in the embedding (4) presented in the

proofs of Propositions 1 and 2, is in fact empty. Thus, the con-

structions define a reduction to the existential theory of the reals,

which is in PSPACE. For nested strategic modalities, we proceed

recursively, which obtains PPSPACE = PSPACE. □

Thus, in particular, verification of probabilisticmemoryless strate-

gies in stochastic single agent iCGS is in PSPACE.

5.3 Probabilistic Strategies: Lower Bounds
Theorem 5.5. Model checking PATLsr with probabilistic strategies

for the coalition is ∆P
2 -hard.

Proof. The proof proceeds by a reduction of ATLir model check-

ing, which is ∆P
2 -hard [48].

Consider a iCGS G, a state 𝑞 in it, and a formula ⟨⟨𝐶⟩⟩𝜑 of ATLir.
Clearly, G can be seen as a stochastic iCGS with only Dirac prob-

ability distributions for transitions. We begin by recalling that, in

ATLir, it suffices to consider memoryless responses of the oppo-

nents. Formally, G, 𝑞 |=ATLir ⟨⟨𝐶⟩⟩𝜑 iff there exists a deterministic

memoryless strategy with imperfect information 𝜎𝐶 such that, for

every deterministic memoryless strategy with perfect information

𝜎Ag−𝐶 , 𝜑 holds on the sole path starting from 𝑞 and consistent with

(𝜎𝐶 , 𝜎Ag−𝐶 ).
5

Now, consider the PATLsr evaluation of formula ⟨⟨𝐶⟩⟩=1𝜑 in G, 𝑞.
First, observe that G, 𝑞 |= ⟨⟨𝐶⟩⟩=1𝜑 iff𝐶 have a deterministic memo-

ryless strategy to enforce 𝜑 with probability 1 against any response.

To see this, assume that a probabilistic strategy 𝜎𝐶 enforces 𝜑 with

probability 1. Then, every deterministic strategy in the support of

𝜎𝐶 also enforces 𝜑 with probability 1.

Secondly, by Lemma 1, it suffices to consider only deterministic

memoryless strategies of the opponents. Thus, G, 𝑞 |= ⟨⟨𝐶⟩⟩=1𝜑 iff

5
This follows from the fact that the semantics of ATL with memoryless and perfect

recall strategies coincide for agents with perfect information [3].



𝐶 have a deterministic memoryless strategy with imperfect infor-

mation 𝜎𝐶 that enforces 𝜑 with probability 1 against every deter-

ministic memoryless strategy with perfect information 𝜎Ag−𝐶 .

Thirdly, the outcome of a deterministic strategy 𝜎𝐶 and counter-

strategy 𝜎Ag−𝐶 from state 𝑞 is always a single path. Thus, enforcing

with probability 1 is equivalent to enforcing on that path.

Summing up, G, 𝑞 |=ATLir ⟨⟨𝐶⟩⟩𝜑 iff G, 𝑞 |=PATLsr ⟨⟨𝐶⟩⟩=1𝜑 , which
provides a one-to-one polynomial-time reduction frommodel check-

ing of ATLir to model checking of PATLsr. □

5.4 Model Checking Objective Ability
In the previous subsections, we have proved that model check-

ing PATL w.r.t. memoryless probabilistic strategies is between ∆P
2

and EXPTIME for the subjective interpretation of ability under

imperfect information. Moreover, it is between ∆P
2 and PSPACE

for stochastic single-agent systems. Now, we show that the same

results apply to the objective variant of probabilistic ability.

Proposition 3. Checking formulas 𝜑 = ⟨⟨𝐶⟩⟩⊲⊳𝑑p1Up2 and 𝜑 =

⟨⟨𝐶⟩⟩⊲⊳𝑑p1Rp2 is in EXPTIME with respect to the size of the model.

Proof. Analogously to Proposition 1 and 2. The sole difference

is that, in the construction for ⟨⟨𝐶⟩⟩⊲⊳𝑑p1Up2, only the constraint

(𝑟𝑞0 ⊲⊳ 𝑑) for the objective initial state 𝑞0 is added to Φ in point (v),

instead of all the indistinguishable states. □

Theorem 5.6. Model checking PATLor w.r.t. probabilistic strategies
for the coalition is in EXPTIME.

Moreover, model checking PATLor w.r.t. probabilistic strategies for
the coalition and formulas that include only the grand coalition (Ag)
or the empty coalition (∅) is in PSPACE.

Proof. Analogous to the proofs of Theorem 5.3 and 5.4. □

Theorem 5.7. Model checking PATLor with probabilistic strategies
for the coalition is ∆P

2 -hard.

Proof. The proof proceeds by a reduction of ATLir model check-

ing, which is ∆P
2 -hard [48]. We observe that the objective and sub-

jective semantics of ability coincide for the models used in the

reduction of SNSAT2 in [48], and proceed as in Theorem 5.5 □

We finally comment on the model checking complexity for the

logic PATLorK, i.e., PATLor extended with epistemic operators 𝐾 .

Recall that, in contrast to PATLsr, epistemic operators cannot be

expressed in PATLor. However, model checking of observational

knowledge is in P w.r.t. the size of the model and the length of the

model. Thus, the results in Theorems 5.6 and 5.7 carry over to the

broader language of PATLorK.

5.5 Beyond PATL
In this section, we make the first step toward establishing the com-

plexity of model-checking for PATL∗ with memoryless strategies

and imperfect information. In particular, we show that the problem

for memoryless deterministic strategies of the coalition against prob-

abilistic play of the other agents and a stochastic environment is

no more complex than in standard (non-probabilistic) case.

Theorem 5.8. Model checking PATL∗
sr
and PATL∗

or
with determin-

istic strategies for the coalition is PSPACE-complete.

Proof. The lower bound follows from the corresponding prob-

lem for ATL∗
ir
, which is also PSPACE-complete.

As for the upper bound, we apply the analogous procedure

to model checking of ATL∗
ir
: for formulas of type ⟨⟨𝐶⟩⟩⊲⊳d𝜑 , we

guess a strategy and prune the model accordingly. Then, we check

the PCTL
∗
formula 𝐴⊲⊳d𝜑 . This procedure gives an algorithm in

NPSPACE = PSPACE (see [5, Theorem 9]). □

We also speculate that model checking of PATL∗
sr
and PATL∗

or

with probabilistic strategies is between PSPACE and 2EXPTIME.
The lower bound follows from an embedding of LTL model check-

ing. For the upper bound, the idea is to extend the construction in

Proposition 1 to prefixes of paths that are sufficient to determine

what fraction of their infinite extensions satisfy the given LTL objec-
tive. It is known that, to determine the existence of such extension,

it suffices to consider prefixes of length which is polynomial in the

size of the model and exponential in the size of the formula [15]. If

the same can be proved for bounded model checking of probabilistic

LTL objectives, we could combine it with our translation to ThR,
and obtain the inclusion in 2EXPTIME. Moreover, for formulas of

bounded length the problem would be in EXPTIME w.r.t. the size

of the model. However, the leap from possibilistic to probabilistic

bounded model checking for LTL is nontrivial, and it remains to be

seen if our proof idea actually works.

6 CONCLUSION
This paper advances the research on the verification of MAS under

two combined types of uncertainty: first, the qualitative uncer-

tainty about the local state and second, the quantitative uncertainty

about the occurrence of future events. Although the resulting set-

ting is often the case in real-world scenarios, “little progress has

been made on developing practical, approximate verification and

strategy synthesis algorithms” for stochastic MAS, as noticed by

Kwiatkowska et al. [57]. To capture this setting, we have considered

the probabilistic logics PATL and PATL∗ under imperfect informa-

tion. We provided novel decidability and model-checking results

for memoryless strategies. We have considered two semantic varia-

tions for the logics, the objective and subjective interpretations, as

well as the cases whereby agents are allowed to play probabilistic

versus deterministic strategies. In particular, we have shown that

model-checking of PATL when agents play probabilistic memory-

less strategies can be done in EXPTIME. We have also shown that

the problem is PSPACE-complete for PATL∗ when the proponent

coalition is restricted to deterministic strategies. For future work,

we intend to explore the challenging case of model-checking PATL∗

when the proponent coalition plays probabilistic strategies.
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