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Abstract

In this paper, we investigate the probabilistic variants of the
strategy logics ATL and ATL∗ under imperfect information.
Specifically, we present novel decidability and complexity re-
sults when the model transitions are stochastic and agents
play uniform strategies. That is, the semantics of the logics
are based on multi-agent, stochastic transition systems with
imperfect information, which combine two sources of uncer-
tainty, namely, the partial observability agents have on the
environment, and the likelihood of transitions to occur from
a system state. Since the model checking problem is unde-
cidable in general in this setting, we restrict our attention to
agents with memoryless (positional) strategies. The resulting
setting captures the situation in which agents have qualita-
tive uncertainty of the local state and quantitative uncertainty
about the occurrence of future events. We illustrate the use-
fulness of this setting with meaningful examples.

1 Introduction
Complex and interacting Multi-Agent Systems (MAS) of-
ten face different kinds of uncertainty. One of the sources
of uncertainty is the inability to completely observe the cur-
rent local situation (e.g., whether there is public transport
available to the target destination). On the other hand, the
occurrence of many natural events and the future behaviour
of other agents, while it cannot be known with certainty, can
be measured based on experiments or past observations. For
instance, while we cannot know if the bus is going to ar-
rive on time, we may have observed that this happens 0.7%
of the time. Clearly, intelligent autonomous agents need to
consider both the imperfect information about the local state
and the likelihood of stochastic events when making strate-
gic decisions and plans.

To see this, consider, for instance, the problem of online
mechanisms, which are preference aggregation games in dy-
namic environments with multiple agents and private infor-
mation. Many multi-agent problems are inherently dynamic
rather than static. Practical examples include the problem of
allocating computational resources (bandwidth, CPU, etc.)
to processes arriving over time, selling items to a possibly
changing group of buyers with uncertainty about the future
supply, and selecting employees from a dynamically chang-
ing list of candidates (Nisan et al., 2007).

Probabilistic model-checking is a technique for the for-
mal and automated analysis of probabilistic systems that can
be modeled by stochastic state-transition models (Clarke et
al., 2018a). Its aim is to establish the correctness of such
systems against probabilistic specifications, which may de-
scribe, e.g., the probability of an unsafe event to occur, or the
ability of a coalition to ensure the completeness of a task.

Logic-based approaches have been widely and success-
fully applied for probabilistic verification of MAS. For in-
stance, probabilistic model-checking techniques have been
used for verification of preference aggregation mechanisms
(Mittelmann et al., 2023), negotiation games (Ballarini,
Fisher, and Wooldridge, 2009), team formation protocols
(Chen et al., 2011), and stochastic behaviors in dispersion
games (Hao et al., 2012), to name a few. Gutierrez et
al. (2021) investigates the problem of deciding whether the
probability of satisfying a given temporal formula in a con-
current stochastic game is 1 or greater than 0. Kwiatkowska
et al. (2022) details how verification techniques can be de-
veloped and implemented for concurrent stochastic games.

In this paper, we consider logics for reasoning about
strategic abilities while taking into account both incomplete
information and probabilistic behaviors of the environment
and agents. We study the Probabilistic Alternating-time
Temporal Logics PATL and PATL∗ (Chen and Lu, 2007;
Hao et al., 2012) under imperfect information (II) for a clas-
sic type of agents (Fagin et al., 2004) called imperfect-recall
(that is, agents who use memoryless strategies, also called
Markovian strategies or policies). Model checking PATL∗

under II for agents with perfect-recall (who uses memoryful
strategies) is known to be undecidable in general even for
the fragment with a single-player (Hao et al., 2012). We in-
troduce and motivate the problem of strategic reasoning un-
der combined types of uncertainty and memoryless agents.
We then provide results on the model-checking complexity
for PATL with memoryless deterministic strategies for the
coalition and point directions to challenging open questions.

Related Work. Recently, much work has been done on
logics for strategic reasoning in Multi-Agent Systems, start-
ing from the pioneering work on Alternating-time Tempo-
ral Logics ATL and ATL∗ (Alur, Henzinger, and Kupfer-
man, 2002). These logics enable reasoning about the strate-
gic abilities of agents in a cooperative or competitive sys-



tem. ATL has been extended in various directions, consid-
ering for instance strategy contexts (Laroussinie and Mar-
key, 2015) or adding imperfect information (Jamroga and
Bulling, 2011). Strategy Logic (SL) (Chatterjee, Henzinger,
and Piterman, 2010; Mogavero et al., 2014) extends ATL to
treat strategies as first-order variables.

Contexts of imperfect information have been extensively
considered in the literature on formal verification (see, for
instance, (Dima and Tiplea, 2011; Kupferman and Vardi,
2000; Jamroga and Ågotnes, 2007; Reif, 1984; Bulling and
Jamroga, 2014; Berthon et al., 2021; Belardinelli et al.,
2020; Berwanger and Doyen, 2008)). Generally, imper-
fect information in MAS entails higher complexity, which
may be even undecidable when considered in the context of
memoryful strategies (Dima and Tiplea, 2011). In order to
retrieve a decidable model-checking problem, it is interest-
ing to study imperfect information MAS with memoryless
agents (Cermák et al., 2018).

Several works consider the verification of systems against
specifications given in probabilistic logics. In particu-
lar, Wan, Bentahar, and Hamza (2013) study the model-
checking problem for Probabilistic Epistemic Computa-
tional Tree Logic with semantics based on probabilistic in-
terpreted systems. In the context of MAS, (Huang and Luo,
2013) studies an ATL-like logic for stochastic MAS in a set-
ting in which agents play deterministic strategies and have
probabilistic knowledge about the system. (Fu et al., 2018)
shows model-checking an epistemic logic with temporal op-
erators under strategies that depend only on agents’ obser-
vation history is undecidable.

Chen and Lu (2007) propose model-checking algorithms
for Probabilistic ATL in the perfect information setting.
Perfect information was also considered with specification
in Probabilistic Alternating-Time µ-Calculus (Song et al.,
2019) and Probabilistic Strategy Logic Aminof et al. (2019).
ATL-based probabilistic logics were also considered for the
verification of unbounded parameterized MAS (Lomuscio
and Pirovano, 2020), for resource-bounded MAS (Nguyen
and Rakib, 2019), and under assumptions over opponents’
strategies (Bulling and Jamroga, 2009).

The closest related work is (Huang, Su, and Zhang, 2012),
which considers the logic PATL∗ under incomplete informa-
tion and synchronous perfect recall. The complexity results
show that the model-checking problem is in general unde-
cidable even for the single-agent fragment of the logic.

Also related are the works in (Gripon and Serre, 2009;
Doyen and Raskin, 2011; Carayol, Löding, and Serre, 2018;
Doyen, 2022), which consider algorithmic solutions for
computing the existence of winning strategies and winning
distributions for two-player stochastic games with imperfect
information. Finally, Gurov, Goranko, and Lundberg (2022)
investigate the problem of strategy synthesis for knowledge-
based strategies against a non-deterministic environment.

2 Preliminaries
In this paper, we fix finite non-empty sets of agents Ag, ac-
tions Ac, atomic propositions AP. We write o for a tuple
of objects (oa)a∈Ag, one for each agent, and such tuples are
called profiles. A joint action or move c is an element of

AcAg. Given a profile o and C ⊆ Ag, we let oC be the com-
ponents of agents in C, and o−C is (ob)b ̸∈C . Similarly, we
let Ag−C = Ag \ C.

Distributions. Let X be a finite non-empty set. A (proba-
bility) distribution over X is a function d : X → [0, 1] such
that

∑
x∈X d(x) = 1, and Dist(X) is the set of distributions

over X . We write x ∈ d for d(x) > 0. If d(x) = 1 for some
element x ∈ X , then d is a point (a.k.a. Dirac) distribu-
tion. If, for i ∈ I , di is a distribution over Xi, then, writing
X =

∏
i∈I Xi, the product distribution of the di is the dis-

tribution d : X → [0, 1] defined by d(x) =
∏

i∈I di(xi).

Markov Chains. A Markov chain M is a tuple (St, p)
where St is a set of states and p ∈ Dist(St× St) is a distri-
bution. The values p(s, t) are called transition probabilities
of M . A path is an infinite sequence of states.

Concurrent Game Structures. A stochastic concurrent
game structure with imperfect information (or simply CGS)
G is a tuple (St,L, δ, ℓ, {∼a}a∈Ag) where (i) St is a finite
non-empty set of states; (ii) L : St × Ag → 2Ac \ {∅} is a
legality function defining the available actions for each agent
in each state, we write L(s) for the tuple (L(s, a))a∈Ag; (iii)
for each state s ∈ St and each move c ∈ L(s), the stochas-
tic transition function δ gives the (conditional) probability
δ(s, c) of a transition from state s for all s′ ∈ St if each
player a ∈ Ag plays the action ca, we also write this proba-
bility as δ(s, c)(s′), to emphasize that δ(s, c) is a probability
distribution on St; (iv) ℓ : St → 2AP is a labelling function;
(v) ∼a ⊆ St × St is an equivalence relation called the ob-
servation relation of agent a.

Throughout this paper, we assume that the CGS is uni-
form, that is, if two states are indistinguishable for an agent
a, then a has the same available actions in both states. For-
mally, if s ∼a s

′ then L(s, a) = L(s′, a), for any s, s′ ∈ St
and a ∈ Ag. For each state s ∈ St and joint action
c ∈

∏
a∈Ag L(s, a), we also assume that there is a state

s′ ∈ St such that δ(s, c)(s′) is non-zero, that is, every state
has a successive state from a legal move.

We say that G is deterministic (instead of stochastic) if
every δ(s, c) is a point distribution.

Plays. A play or path in a CGS G is an infinite se-
quence π = s0s1 · · · of states such that there exists a se-
quence c0c1 · · · of joint-actions such that ci ∈ L(si) and
si+1 ∈ δ(si, ci) (i.e., δ(si, ci)(si+1) > 0) for every i ≥ 0.
We write πi for si, π≥i for the suffix of π starting at position
i. Finite paths are called histories, and the set of all histories
is denoted Hist. Write last(h) for the last state of a history
h.

Strategies. A (general) probabilistic strategy is a function
σ : Hist → Dist(Ac) that maps each history to a distri-
bution of actions. We let Str be the set of all strategies. A
memoryless uniform probabilistic strategy for an agent a is a
function σa : St → Dist(Ac) in which for all positions s, s′
such that s ∼a s′, we have σ(s) = σ(s′). We let Strra be
the set of uniform strategies for agent a. A deterministic (or
pure) strategy σ is a strategy in which σ(s) is a point distri-
bution for any s. A strategy profile is a tuple σ of strategies,



one for each agent. We write σa for the strategy of a in the
strategy profile σ. For a strategy σa for agent a, we assume
that σ(h)(c) = 0 if c ̸∈ L(last(h), a).

3 Probabilistic ATL and ATL∗

We begin by introducing the Probabilistic Alternating-Time
Temporal Logics PATL∗ and PATL.

The syntax of PATL∗ is defined by the grammar

φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ | ⟨⟨C⟩⟩▷◁dφ

where p ∈ AP, C ⊆ Ag, d is a rational constant in [0, 1],
and ▷◁∈ {≤, <,>,≥}.

The intuitive reading of the operators is as follows:
⟨⟨C⟩⟩▷◁dφ means that there exists a strategy for the coali-
tion C to collaboratively enforce φ with a probability in re-
lation ▷◁ with constant d, “next” X and “until” U are the
standard temporal operators. We make use of the usual syn-
tactic sugar Fφ := ⊤Uφ and Gφ := ¬F¬φ for temporal
operators. Finally, we use [[C]]▷◁dφ := ¬⟨⟨C⟩⟩▷◁d¬φ to ex-
press that no strategy of C can prevent φ with a probability
in relation ▷◁ with constant d.

An PATL∗ formula of the form ⟨⟨C⟩⟩▷◁dφ or [[C]]▷◁dφ is
also called state formula. An important syntactic restriction
of PATL∗, namely PATL, is defined as follows.

The syntax of PATL is defined by the grammar

φ ::= p | φ ∨ φ | ¬φ | ⟨⟨C⟩⟩▷◁dXφ | ⟨⟨C⟩⟩▷◁d(φUφ)

where p ∈ AP, C ⊆ Ag, and ▷◁∈ {≤, <,>,≥}.
Formulas of PATL and PATL∗ are interpreted over CGSs.

Probability Space on Outcomes. An outcome of a strat-
egy profile σ and a state s is a play π that starts with s
and is extended by σ, i.e., π0 = s, and for every k ≥ 0
there exists ck ∈ σ(πk) such that πk+1 ∈ δ(πk, ck). The
set of outcomes of a strategy profile σ and state s is de-
noted Out(σ, s). A given system G, strategy profile σ, and
state s induce an infinite-state Markov chain Mσ,s whose
states are the finite prefixes of plays in Out(σ, s). Such fi-
nite prefixes of plays are called histories and written h, and
we let last(h) denote the last state in h. Transition probabil-
ities in Mσ,s are defined as p(h, hs′) =

∑
c∈AcAg σ(h)(c)×

δ(last(h), c)(s′). The Markov chain Mσ,s induces a canon-
ical probability space on its set of infinite paths (Kemeny,
Snell, and Knapp, 1976), which can be identified with the
set of plays in Out(σ, s) and the corresponding measure is
denoted out(σ, s). 1

Given a coalition strategy σC ∈
∏

a∈C Strra, we let
n = |Ag \ {C}| and define the set of possible outcomes
of σC from a state s ∈ St to be the set outC(σC , s) =
{out((σC ,σ−C), s) : σ−C ∈ Strn} of probability mea-
sures that the players in C enforce when they follow the
strategy σC , namely, for each a ∈ Ag, player a follows
strategy σa. We use µσC

s to range over outC(σC , s).

1This is a classic construction, see for instance (Clarke et al.,
2018b; Berthon et al., 2020).

PATL and PATL∗ Semantics PATL and PATL∗ formulas
are interpreted in a transition system G and a path π,

G, π |= p iff p ∈ ℓ(π0)

G, π |= ¬φ iff G, π ̸|= φ

G, π |= φ1 ∨ φ2 iff G, π |= φ1 or G, π |= φ2

G, π |= ⟨⟨C⟩⟩▷◁dφ iff ∃σC ∈
∏
a∈C

Strra such that

∀µσC
π0

∈ outC(σC , π0),

µσC
π0

({π′ : G, π′ |= φ}) ▷◁ d
G, π |= Xφ iff G, π≥1 |= φ

G, π |= ψ1Uψ2 iff ∃k ≥ 0 s.t. G, π≥k |= ψ2 and
∀j ∈ [i, k). G, π≥j |= ψ1

4 Strategic Reasoning under Uncertainty
Many real-life scenarios require agents to interact in par-
tially observable environments with stochastic phenomena.
A natural application of strategic reasoning over both of
these sources of uncertainty is card games, as the distribu-
tion of cards is a stochastic event and the hand of each agent
is kept secret from the other players.

Let us see a more detailed example based on online mech-
anism design2 and, in particular, elections. While the ma-
jority of elections have a static set of candidates which is
known upfront, there are contexts where candidates appear
over time. A classic example is hiring a committee: the can-
didates that will appear the next day to pass an interview are
unknown, and the voters must decide immediately whether
to hire one of the current candidates or not (Do et al., 2022).

In online approval-based election (Do et al., 2022), there
is a non-empty set of candidatesC = {1, ...,m} and the goal
is to select k ≤ 1 candidates for a committee. In each state,
an unseen candidate j is presented and the agents vote on
whether to include the current candidate in the committee or
not. The election continue until the committee is completed
or all candidates have been rejected. For a candidate j, we
let the propositions rejectedj , selectedj , interviewj , de-
note whether candidate j was already rejected, whether she
was selected to the committee, and whether she is been cur-
rently interviewed, resp. For each agent a, likesa,j denotes
whether a is currently willing to approve the candidate j.

Agents know their own preferences, that is, the candidates
they like but are uncertain about others’ preferences. Voters
can distinguish the candidate currently interviewed, but are
unaware of the next candidate to be presented (i.e., whether
Xinterviewj holds in any given state).

In each state s, agents can either accept or reject the cur-
rent candidate (actions y and n, resp.). The probability of
selecting candidate j being selected is determined by the
transition function δ(s, c), according to the actions in c. If
all agents accept (similarly, reject) a candidate, the system
transitions to a state in which the candidate is selected (resp.

2Previous work (Maubert et al., 2021; Mittelmann et al., 2022,
2023) have shown how to encode notions from Mechanism Design
(e.g., strategyprofness) using logics for strategic reasoning.



rejected) with a probability equal to one. If there is no con-
sensus on whether to accept the candidate, the probability to
transition to a state in which the candidate is selected is given
by a rational constant pj,c ∈ (0, 1). Similarly, the probabil-
ity of moving to a state where she is rejected is 1− pj,c.

The PATL formula

rejectedj → ¬⟨⟨C⟩⟩≥1Fselectedj

represents that the coalition C cannot select a candidate
that was already rejected.

The PATL∗ formula

⟨⟨C⟩⟩≥ 1
2

∧
a∈C

∨
j∈C

likesa,j ∧ Fselectedj

represents that the coalition C can ensure, with probability
greater or equal to 1

2 to select in the future at least one can-
didate liked by each agent in a, while

⟨⟨C⟩⟩≥ 1
2

∧
a∈C

∧
j∈C

likesa,j ∧ Fselectedj

states that they can ensure, with probability greater or equal
to 1

2 , all their liked candidates are eventually selected.
The formula

interviewj → ⟨⟨C⟩⟩≤ 1
4Xselectedj

says that the probability the coalition C ensures the cur-
rently interviewed candidate is selected in the next state is
at most 1

4 .

5 Model Checking Complexity
In this section, we look at the complexity of model-checking
for PATL. In particular, we show that the problem for memo-
ryless deterministic strategies of the coalition against proba-
bilistic play of the other agents and a stochastic environment
is no more complex than in standard (non-probabilistic)
case. The settings introduced in this paper include both de-
terministic and probabilistic memoryless strategies for the
coalition and deterministic and stochastic CGSs. This gives
4 semantic variants in total, but the case of determinis-
tic strategies and deterministic CGSs consists of the stan-
dard setting for ATL, whose complexity results are well-
established.

The main technical result of this paper is as follows.
Theorem 1. Model checking PATLir

3 with deterministic
strategies for the coalition is ∆P

2 -complete.

Proof. The lower bound follows by a reduction of ATLir
model checking, which is ∆P

2 -hard (Jamroga and Dix,
2006). Given are: a pointed CGS (M, q) and a formula
⟨⟨C⟩⟩φ of ATLir. Note thatM can be seen as stochastic CGS
with only Dirac probability distributions for transitions. Re-
call that, in finite games, the opponents always have a de-
terministic best-response strategy to any given strategy σC .
Thus,M, q |=ATLir

⟨⟨C⟩⟩φ iff the agents inC have a uniform
deterministic memoryless strategy to enforce φ on all paths

3As usual in the verification process, we denote no recall with r
and imperfect information with i.

iff they have such a strategy against all the probabilistic re-
sponses from C. Since the set of best responses includes de-
terministic strategies of C played against deterministic strat-
egy σC in the deterministic CGS M , this is equivalent to
saying that M, q |=PATLir

⟨⟨C⟩⟩≥1φ, which completes the
reduction.

For the upper bound, we apply a similar procedure to that
of ATLir (Schobbens, 2004). For formulas of type ⟨⟨C⟩⟩▷◁dφ
without nested strategic modalities, we guess a strategy
σC , prune the model accordingly, and merge the remaining
agents (C) into a single opponent. This yields a single-agent
Markov Decision Process with full observability. Then, we
check the Probabilistic Computation Tree Logic formula
A▷◁dφ, which can be done in time NP∩ co-NP (Chen and
Lu, 2007).

For nested strategic modalities, we proceed recursively
(bottom up), which runs in time PNP∩co-NP = ∆P

2 .

6 Discussion
This paper analyses the verification of the strategic abilities
of autonomous agents in MAS while accounting for both
incomplete information and probabilistic behaviours of the
environment and agents. The setting considered in this paper
is significant as MAS are often set in partially observable en-
vironments, whose evolution might not be known with cer-
tainty, but can be measured based on experiments and past
observations. Verification of strategic abilities in the general
setting with perfect recall is known to be undecidable, but
the restriction to memoryless strategies is meaningful. We
provided complexity results for deterministic strategies for
the proponent coalition and point out different settings that
are currently challenging open questions, based on proba-
bilistic strategies for the proponent coalition.

For solving the model checking problem w.r.t. probabilis-
tic strategies for the proponent coalition, notice that it is
not possible to exploit the technique used in Section 5 for
deterministic strategies, i.e., calling an oracle that guesses
the successful memoryless strategy. This is because there
are infinitely many probabilistic memoryless strategies, and
hence the oracle Turing machine would either have to run
in unbounded time, or allow for infinite branching. In fact,
the synthesis of optimal probabilistic strategies is a special
case of jointly constrained bilinear optimization, which is
a notoriously hard problem (Al-Khayyal, 1990). Addition-
ally, techniques employed for partially observable Markov
decision processes (see for instance (Vlassis, Littman, and
Barber, 2012)) can not be easily adapted as they refer to
single-agent abilities. Moreover, the work on Probabilistic
Alternating µ-calculus (Song et al., 2019) seems unhelpful
in our case. First, it is known that Probabilistic Alternating
µ-calculus and PATL are incomparable (Bulling and Jam-
roga, 2011; Song et al., 2019). Second, the work (Song et
al., 2019) only considers perfect information strategies. Fi-
nally, using the work on PSL (Aminof et al., 2019) does
not seem the right direction either. Indeed, it only consid-
ers perfect information strategies. Additionally, the model
checking problem for PSL is 3-EXPTIME-complete, while
we expect a much lower complexity in our setting.
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