
Model Checking Logics of Strategic Ability:
Complexity∗

Nils Bulling, Jürgen Dix, Wojciech Jamroga

Abstract This chapter is about model checking and its complexity in some of the
main temporal and strategic logics, e.g. LTL, CTL, and ATL. We discuss several
variants of ATL (perfect vs. imperfect recall, perfect vs. imperfect information) as
well as two different measures for model checking with concurrent game structures
(explicit vs. implicit representation of transitions). Finally, we summarize some re-
sults about higher order representations of the underlying models.

1 Introduction

Model checking is a powerful method used in verification. Given a model and a
formula in a certain logic, model checking determines whether the formula is true
in the model. Usually, it is used to check specifications of desirable properties for
a system whose model is given. If the formula is true, then we know the property
expressed by the formula is satisfied in the model. If not, it might lead us to change
the system or give hints how to debug it.

Model checking was invented and pioneered by the work of Edward Melson
Clarke, Ernest Allen Emerson, and by Joseph Sifakis and Jean Pierre Queille in the
80ies as a means for formal verification of finite-state concurrent systems. Specifica-

Nils Bulling and Jürgen Dix
Dept. of Informatics, Niedersächsische Technische Hochschule, Standort Clausthal, Germany
e-mail: {bulling,dix}@in.tu-clausthal.de

Wojciech Jamroga
Computer Science and Communications, University of Luxembourg, Luxembourg and Dept. of
Informatics, Niedersächsische Technische Hochschule, Standort Clausthal, Germany
e-mail: wojtek.jamroga@uni.lu

∗ This work was partly funded by the NTH School for IT Ecosystems. NTH (Niedersächsische
Technische Hochschule) is a joint university consisting of Technische Universität Braunschweig,
Technische Universität Clausthal, and Leibniz Universität Hannover.

1

Erratum. Theorems 10 and 11 on page 20 are incorrect. The correct variants of the results can be found in:

• Nils Bulling and Wojciech Jamroga (2011), Alternating Epistemic Mu-Calculus. Proceedings of the
22nd International Joint Conference on Artificial Intelligence IJCAI'11, pp. 109-114.

• Wojciech Jamroga (2015), Logical Methods for Specification and Verification of Multi-Agent Systems.
Monograph Series no 10, ICS PAS Publishing House. ISBN 978-83-63159-25-2.

Wojtek
Podświetlony

Wojtek
Podświetlony

2 Nils Bulling, Jürgen Dix, Wojciech Jamroga

tions about the system were expressed as temporal logic formulae. It was especially
suited for checking hardware designs, but also applied to checking software specifi-
cations. While it started as a new approach replacing the then common Floyd-Hoare
style logic, it could only handle relatively small (though non-trivial) examples. Scal-
ability was an important motivation right from the beginning. The last years have
seen many industrial applications, and a number of powerful model checkers are
available today. As founders of a new and flourishing area in computer science,
Clarke, Emerson and Sifakis have been honored with the Turing award in 2007.

Logic-based verification of multi-agent systems has become an important sub-
field on its own. Some important model-checkers are:

• Mocha [1], available for download at http://www.cis.upenn.edu/ mocha/,
• VeriCS [11], available at http://pegaz.ipipan.waw.pl/verics/,
• MCMAS [45, 44], available at http://www-lai.doc.ic.ac.uk/mcmas/.

In this chapter, we do not deal with practical aspects of MAS verification. Instead,
we offer a comprehensive survey of theoretical results concerning the computational
complexity of model checking for relevant properties of agents and their teams. To
this end, we focus on the class of properties that can be specified in Alternating-time
Temporal Logic ATL (a logic that extends the classical branching time logic CTL
with strategic modalities) and some of its extensions.

The aim of this chapter is twofold: (1) to give a comprehensive overview of the
complexity of model checking in various strategic logics based on ATL, and (2) to
discuss how the complexity can change when the models are not given explicitly but
implicitly. Often, a model cannot be represented explicitly: It is given in a certain
symbolic manner. Thus, the representation can be much smaller than the model
itself, but it has to be (at least partially) unfolded when checking its properties.

While there are several chapters in this book that investigate model checking in
multi-agent systems (cf. Chapter 3, Model Checking Agent Communication, Chapter
4, Directions for Agent Model Checking, Chapter 8, Model Checking Goal-Oriented
Agent Programming), in this chapter we investigate mainly logics of strategic ability
(variants of ATL). We determine the precise complexity of several variants of the
logics and show when the problems become (probably) undecidable.

The plan of this chapter is as follows. In Section 2 we introduce the logics we are
interested in: the temporal logics LTL, CTL, and CTL∗ and the strategic logics
ATL and ATL∗ as well as their variants based on the assumption that agents have
(im)perfect recall and (im)perfect information. We define syntax and semantics and
introduce several running examples. Section 3 is devoted to standard complexity
results for the logics. By standard, we mean that the input size is given by the number
of transitions in the model and the length of the formula. In particular, we assume
that the model and the formula are given explicitly. In Section 4 we consider the
case when the transitions in the model are given in a more compact way, rather
than by enumerating outcomes of all the possible combinations of agents’ actions.
Then, it makes more sense to measure complexity with respect to the number of
states and the number of agents in the model. Finally, in Section 5, we investigate
model checking for symbolic, very compact representations of multiagent systems:

Model Checking Logics of Strategic Ability: Complexity 3

concurrent programs and modular interpreted systems. This results in surprising
complexity results, that can only be understood when looking closely at the size of
the underlying structures (representations, models). We conclude in Section 6 with
a discussion of our results, put them in perspective and point out future challenges.

2 The Logics: Syntax and Semantics

We begin by introducing temporal and strategic logics. We start with the linear-
time logic LTL (Linear-time Temporal Logic) and the branching-time logics CTL∗
and CTL (Computation Tree Logic). Then, we present one of the most popular
logics of strategic ability in multi-agent systems: ATL and ATL∗ (Alternating-time
Temporal Logic). The relations between perfect vs. imperfect information on one
hand, and perfect vs. imperfect recall on the other are discussed, and we show how
they give rise to different semantics for ATL and ATL∗, yielding an interesting
class of logics.

In the rest of this chapter we assume that Π is a non-empty set of propositional
symbols and St a non-empty and finite set of states.

Remark 1 (Language, Semantics and Logic). In the following we proceed as fol-
lows. We introduce a logical language, say L, which is defined as a set of formulae.
Elements of L are called L-formulae. Then, we consider (possibly several) seman-
tics for the language. We look at each tuple consisting of a language and a suitable
semantics (over a class of models) as a logic. The logic CTL, for instance, is given
by the language LCTL using the standard Kripke semantics.

2.1 Linear- and Branching-Time Logics

We begin by recalling two well-known classes of temporal logics: the linear-time
logic LTL (Linear-Time Temporal Logic) and the branching-time logics CTL and
CTL∗ (Computation Tree Logic).

2.1.1 The Languages LLTL, LCTL, and LCTL∗

LLTL [42] extends the language of propositional logic with operators that allow
to express temporal patterns over an infinite sequences of states, called paths. The
basic temporal operators are U (until) and g(in the next state).

Definition 1 (Language LLTL [42]). The language LLTL is given by all formulae
generated by the following grammar, where p ∈ Π is a proposition: ϕ ::= p | ¬ϕ |
ϕ ∧ϕ | ϕ U ϕ | gϕ.

4 Nils Bulling, Jürgen Dix, Wojciech Jamroga

The LLTL-formula g(ϕ ∧ψ), for instance, expresses that ϕ and ψ hold in the
next moment; ϕ U ψ states that the property ϕ is true at least until ψ becomes true
which will eventually be the case. The additional operators 3 (sometime from now
on) and 2 (always from now on) can be defined as macros by 3ϕ ≡ >U ϕ and
2ϕ ≡ ¬3¬ϕ , respectively. The standard Boolean connectives >,⊥,∨,→, and ↔
are defined in their usual way.

The logic is called linear-time since formulae are interpreted over infinite linear
orders of states. The logic CTL∗ [13] explicitly refers to patterns of properties that
can occur along a particular temporal path, as well as to the set of possible time
series, and thus extends LTL. The latter dimension is handled by so called path
quantifiers: E (there is a path) and A (for all paths) where the A quantifier is defined
as macro: Aϕ ≡ ¬E¬ϕ . Hence, the language of CTL∗, LCTL∗ , extends LLTL by
adding the existential path quantifier E.

Definition 2 (Language LCTL∗ [13]). The language LCTL∗ is given by all formulae
generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ϕ | Eγ where γ ::= ϕ | ¬γ |
γ ∧ γ | γ U γ | gγ and p ∈ Π . Formulae ϕ (resp. γ) are called state (resp. path)
formulae.

Additionally, the same abbreviations as for LLTL are defined. The LCTL∗ -formula
E3ϕ , for instance, ensures that there is at least one path on which ϕ holds at some
(future) time moment. Thus, LCTL∗ -formulae do not only talk about temporal pat-
terns on a given path but also quantify (existentially or universally) over such paths.

Finally, we define a fragment of CTL∗ called CTL [9] which is strictly less
expressive but has better computational properties. The language LCTL restricts
LCTL∗ in such a way that each temporal operator must be directly preceded by a
path quantifier. For example, A2E gp is a LCTL-formula whereas A23p is not.
Although this completely characterizes the language we also provide the original
definition in which modalities are given by path quantifiers coupled with temporal
operators. Note that, chronologically, CTL was proposed and studied before CTL∗.

Definition 3 (Language LCTL [9]). The language LCTL is given by all formulae
generated by the following grammar, where p ∈ Π is a proposition: ϕ ::= p | ¬ϕ |
ϕ ∧ϕ | E(ϕ U ϕ) | E gϕ | E2ϕ.

Again, the Boolean connectives are given by their usual abbreviations. In addition to
that, we define the following: 3ϕ ≡ >U ϕ , A gϕ ≡ ¬E g¬ϕ , A2ϕ ≡ ¬E3¬ϕ ,
and Aϕ U ψ ≡ ¬E((¬ψ)U (¬ϕ ∧¬ψ))∧¬E2¬ψ . We note that in the definition
of the language the existential quantifier cannot be replaced by the universal one
without losing expressiveness (cf. [35]).

2.1.2 Semantics for LLTL, LCTL∗ , and LCTL

As mentioned above, the semantics of LTL is given over paths that are infinite
sequences of states from St and a labeling function π : Π →P(St) that determines

Model Checking Logics of Strategic Ability: Complexity 5

which propositions are true at which states. Note that each path can be considered
as a mapping N→ St. We use λ [i] to denote the ith position on path λ (starting
from i = 0) and λ [i,∞] to denote the subpath of λ starting from i (i.e. λ [i,∞] =
λ [i]λ [i+1] . . .).

Definition 4 (Semantics |=LTL). Let λ be a path and π be a valuation over St. The
semantics of LLTL-formulae is defined by the satisfaction relation |=LTL defined as
follows:

λ ,π |=LTL p iff λ [0] ∈ π(p) and p ∈Π ;
λ ,π |=LTL ¬ϕ iff not λ ,π |=LTL ϕ (we will also write λ ,π 6|=LTL ϕ);
λ ,π |=LTL ϕ ∧ψ iff λ ,π |=LTL ϕ and λ ,π |=LTL ψ;
λ ,π |=LTL gϕ iff λ [1,∞],π |=LTL ϕ; and
λ ,π |=LTL ϕ U ψ iff there is an i∈N0 such that λ [i,∞],π |=ψ and λ [j,∞],π |=LTL

ϕ for all 0≤ j < i;

Thus, according to Remark 1, the logic LTL is given by (LLTL, |=LTL). Paths are
considered as (canonical) models for LLTL-formulae.

For model checking we require a finite representation of the input λ . To this
end, we use a (pointed) Kripke model M,q and consider the problem whether an
LLTL-formula holds on all paths of M starting in q.

A Kripke model (or unlabeled transition system) is given by M = 〈St,R,Π ,π〉
where St is a nonempty set of states (or possible worlds), R ⊆ St × St is a serial
transition relation on states, Π is a set of atomic propositions, and π : Π →P(St) is
a valuation of propositions. A path λ (or computation) in M is an infinite sequence
of states that can result from subsequent transitions, and refers to a possible course
of action. We use the same notation for these paths as introduced above. For q ∈ St
we use ΛM(q) to denote the set of all paths of M starting in q and we define ΛM as⋃

q∈St ΛM(q). The subscript “M” is often omitted when clear from context.
LCTL∗ - and LCTL-formulae are interpreted over Kripke models but in addition to

LLTL-(path) formulae (which can only occur as subformulae) it must be specified
how state formulae are evaluated.

Definition 5 (Semantics |=CTL∗). Let M be a Kripke model, q ∈ St and λ ∈ Λ.
The semantics of LCTL∗ - and LCTL-formulae are given by the satisfaction relation
|=CTL∗ for state formulae by

M,q |=CTL∗ p iff λ [0] ∈ π(p) and p ∈Π ;
M,q |=CTL∗ ¬ϕ iff M,q 6|=CTL∗ ϕ;
M,q |=CTL∗ ϕ ∧ψ iff M,q |=CTL∗ ϕ and M,q |=CTL∗ ψ;
M,q |=CTL∗ Eϕ iff there is a path λ ∈Λ(q) such that M,λ |=CTL∗ ϕ;

and for path formulae by:

M,λ |=CTL∗ ϕ iff M,λ [0] |=CTL∗ ϕ;
M,λ |=CTL∗ ¬γ iff M,λ 6|=CTL∗ γ;
M,λ |=CTL∗ γ ∧δ iff M,λ |=CTL∗ γ and M,λ |=CTL∗ δ ;

6 Nils Bulling, Jürgen Dix, Wojciech Jamroga

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Fig. 1 Two robots and a carriage: a schematic view (left) and a transition system M0 that models
the scenario (right).

M,λ |=CTL∗ gγ iff λ [1,∞],π |=CTL∗ γ; and
M,λ |=CTL∗ γ U δ iff there is an i ∈ N0 such that M,λ [i,∞] |=CTL∗ δ and
M,λ [j,∞] |=CTL∗ γ for all 0≤ j < i.

Alternatively, an equivalent state-based semantics for CTL can be given:

M,q |=CTL p iff q ∈ π(p);
M,q |=CTL ¬ϕ iff M,q 6|=CTL ϕ;
M,q |=CTL ϕ ∧ψ iff M,q |=CTL ϕ and M,q |=CTL ψ;
M,q |=CTL E gϕ iff there is a path λ ∈Λ(q) such that M,λ [1] |=CTL ϕ;
M,q |=CTL E2ϕ iff there is a path λ ∈ Λ(q) such that M,λ [i] |=CTL ϕ for
every i≥ 0;
M,q |=CTL Eϕ U ψ iff there is a path λ ∈Λ(q) such that M,λ [i] |=CTL ψ for
some i≥ 0, and M,λ [j,∞] |=CTL ϕ for all 0≤ j < i.

This equivalent semantics underlies the model checking algorithm for CTL which
can be implemented in P rather than PSPACE which is the case for CTL∗ (cf.
Section 3.1). Hence, the logics CTL and CTL∗ are given by (LCTL, |=CTL) and
(LCTL∗ , |=CTL∗), respectively.

Remark 2. Note that model checking problem for an LLTL-formula ϕ with respect
to a given Kripke model M and a state q is equivalent to the CTL∗ model checking
problem M,q |=CTL∗ Aϕ .

We end this section with an example.

Example 1 (Robots and Carriage). Consider the scenario depicted in Figure 1. Two
robots push a carriage from opposite sides. As a result, the carriage can move clock-
wise or anticlockwise, or it can remain in the same place – depending on who pushes
with more force (and, perhaps, who refrains from pushing). To make our model of

Model Checking Logics of Strategic Ability: Complexity 7

the domain discrete, we identify 3 different positions of the carriage, and associate
them with states q0, q1, and q2. The arrows in transition system M0 indicate how the
state of the system can change in a single step. We label the states with propositions
pos0,pos1,pos2, respectively, to allow for referring to the current position of the
carriage in the object language.

For example, we have M0,q0 |=CTL E3pos1: In state q0, there is a path such
that the carriage will reach position 1 sometime in the future. Of course, the same is
not true for all paths, so we also have that M0,q0 |=CTL ¬A3pos1.

2.2 Strategic Abilities under Perfect Information

In this section we introduce logics that can be used to model and to reason about
strategic abilities of agents with perfect information. Here “perfect information” is
understood in such a way that agents know the current state of the system: The
agents are able to distinguish all states of the system. This is fundamentally differ-
ent from the imperfect information setting presented in Section 2.3 where different
states possibly provide the same information to an agent and thus make them appear
indistinguishable to it. This must be reflected in the agents’ available strategies.

¿From now on, we assume that Agt = {1, . . . ,k} is a non-empty and finite set of
agents. Sometimes, in order to make the examples easier to read, we may also use
symbolic names (a,b,c, . . .) when referring to agents.

2.2.1 The Languages LATL∗ and LATL

The logics ATL∗ and ATL [3, 4] (Alternating-time Temporal Logic) are general-
izations of CTL∗ and CTL, respectively. In LATL∗ /LATL the path quantifiers E,A
are replaced by cooperation modalities 〈〈A〉〉 where A ⊆ Agt is a team of agents.
Formula 〈〈A〉〉γ expresses that team A has a collective strategy to enforce γ . The
recursive definition of the language is given below.

Definition 6 (Language LATL∗ [3]). The language LATL∗ is given by all formulae
generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈A〉〉γ where γ ::= ϕ |
¬γ | γ ∧ γ | γ U γ | gγ , A ⊆ Agt, and p ∈ Π . Formulae ϕ (resp. γ) are called state
(resp. path) formulae.

We use similar abbreviations to the ones introduced in Section 2.1.1. In the case of
a single agent a we will also write 〈〈a〉〉 instead 〈〈{a}〉〉. An example LATL∗ -formula
is 〈〈A〉〉23p which says that coalition A can guarantee that p is satisfied infinitely
many times (ever and ever again in the future).

The language LATL restricts LATL∗ in the same way as LCTL restricts LCTL∗ :
Each temporal operator must be directly preceded by a cooperation modality.

8 Nils Bulling, Jürgen Dix, Wojciech Jamroga

Definition 7 (Language LATL [3]). The language LATL is given by all formulae
generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈A〉〉 gϕ | 〈〈A〉〉2ϕ |
〈〈A〉〉ϕ U ϕ where A⊆ Agt and p ∈Π .

The LATL∗ -formula 〈〈A〉〉23p is obviously not a formula of LATL as it includes
two consecutive temporal operators. In more general terms, LATL does not allow to
express abilities related to, e.g., fairness properties. Still, many interesting proper-
ties are expressible. For instance, we can state that agent a has a strategy that per-
manently take away the ability to enforce gp from coalition B: 〈〈a〉〉2¬〈〈B〉〉 gp.
As for the two computation tree logics, the choice between LATL∗ and LATL reflects
the tradeoff between expressiveness and practicality.

2.2.2 Perfect Information Semantics for LATL∗ and LATL

The semantics for LATL∗ and LATL are defined over a variant of transition systems
where transitions are labeled with combinations of actions, one per agent. Formally,
a concurrent game structure (CGS) is a tuple M = 〈Agt,St,Π ,π,Act,d,o〉 which
includes a nonempty finite set of all agents Agt = {1, . . . ,k}, a nonempty set of
states St, a set of atomic propositions Π and their valuation π : Π →P(St), and a
nonempty finite set of (atomic) actions Act. Function d : Agt×St→P(Act) defines
nonempty sets of actions available to agents at each state, and o is a (deterministic)
transition function that assigns the outcome state q′ = o(q,α1, . . . ,αk) to state q and
a tuple of actions 〈α1, . . . ,αk〉 for αi ∈ d(i,q) and 1≤ i≤ k, that can be executed by
Agt in q. We also write da(q) instead of d(a,q). So, it is assumed that all the agents
execute their actions synchronously: The combination of the actions, together with
the current state, determines the next transition of the system.

A strategy of agent a is a conditional plan that specifies what a is going to do in
each situation. It makes sense, from a conceptual and computational point of view,
to distinguish between two types of “situations” (and hence strategies): An agent
might base his decision only on the current state or on the whole history of events
that have happened. A history is considered as a finite sequence of states of the
system.

A perfect information perfect recall strategy for agent a (IR-strategy for short)2 is
a function sa : St+→Act such that sa(q0q1 . . .qn)∈ da(qn). The set of such strategies
is denoted by Σ IR

a . On the other hand, a perfect information memoryless strategy for
agent a (Ir-strategy for short) is given by a function sa : St → Act where sa(q) ∈
da(q). The set of such strategies is denoted by Σ Ir

a . We will use the term strategy to
refer to any of these two types.

A collective strategy for a group of agents A = {a1, . . . ,ar} ⊆ Agt is simply a
tuple sA = 〈sa1 , . . . ,sar〉 of strategies, one per agent from A. By sA|a, we denote
agent a’s part sa of the collective strategy sA where a ∈ A. The set of A’s collective
perfect information strategies is given by Σ IR

A = ∏a∈A Σ IR
a (in the perfect recall case)

2 The notation was introduced in [49] where i (resp. I) stands for imperfect (resp. perfect) infor-
mation and r (resp. R) for imperfect (resp. perfect) recall. Also compare with Section 2.3.

Model Checking Logics of Strategic Ability: Complexity 9

and Σ Ir
A = ∏a∈A Σ Ir

a (in the memoryless case). The set of all strategy profiles is given
by Σ IR = Σ IR

Agt (resp. Σ Ir = Σ Ir
Agt).

Function out(q,sA) returns the set of all paths that may occur when agents A ex-
ecute strategy sA from state q onward. For an IR-strategy the set is given as follows:

out(q,sA) = {λ = q0q1q2 . . . | q0 = q and for each i = 1,2, . . . there exists a tuple
of agents’ decisions 〈α i−1

a1
, . . . ,α i−1

ak
〉 such that α i−1

a ∈ da(qi−1) for every a∈Agt,
and α i−1

a = sA|a(q0q1 . . .qi−1) for every a∈ A, and o(qi−1,α
i−1
a1

, . . . ,α i−1
ak

) = qi}.

For an Ir-strategy sA the outcome is defined analogously: “sA|a(q0q1 . . .qi−1)” is
simply replaced by “sA|a(qi−1)”

The semantics for LATL and LATL∗ , one for each type of strategy, are shown
below. Informally speaking, M,q |= 〈〈A〉〉γ if, and only if, there exists a collective
strategy sA such that γ holds for all computations from out(q,sA).

Definition 8 (Perfect Information Semantics |=IR and |=Ir). Let M be a CGS.
The perfect information perfect recall semantics for LATL∗ and LATL, IR-semantics
for short, is defined as |=CTL∗ from Definition 5, denoted by |=IR, but the rule for
Eϕ is replaced by the following clause:

M,q |=IR 〈〈A〉〉γ iff there is an IR-strategy sA ∈ Σ IR
A for A such that for every

path λ ∈ out(sA,q), we have M,λ |=IR γ .

The perfect information memoryless semantics for LATL∗ and LATL, Ir-semantics
for short, is given as above but “IR” is replaced by “Ir” everywhere.

Remark 3. Note that cooperation modalities are neither “diamonds” nor “boxes” in
terms of classical modal logic. Rather, they are combinations of both as their struc-
ture can be described by “∃∀”: we ask for the existence of a strategy of the propo-
nents which is successful against all responses of the opponents.

In [6] it is shown how the cooperation modalities can be decomposed into two
parts in the context of STIT logic. A similar decomposition is considered in [27]
for the analysis of stochastic multi-agent systems.

The LCTL∗ path quantifiers A and E can be embedded in LATL∗ using the IR-
semantics in the following way: Aγ ≡ 〈〈∅〉〉γ and Eγ ≡ 〈〈Agt〉〉γ .

Analogously to CTL, it is possible to provide a state-based semantics for LATL.
We only present the clause for 〈〈A〉〉2ϕ (the cases for the other temporal operators
are given in a similar way):

M,q, |=ATL
Ix 〈〈A〉〉2ϕ iff there is an Ix-strategy sA ∈ Σ Ix

A such that for all λ ∈
out(q,sA) and i ∈ N0 it holds that M,q, |=ATL

Ix ϕ

where x is either R or r.
This already suggests that dealing with LATL is computationally less expensive

than with LATL∗ . On the other hand, LATL lacks expressiveness: There is no formula
which is true for the memoryless semantics and false for the perfect recall semantics,
and vice versa.

10 Nils Bulling, Jürgen Dix, Wojciech Jamroga

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Fig. 2 The robots and the carriage: a concurrent game structure M1.

Theorem 1. 3 For LATL, the perfect perfect recall semantics is equivalent to the
memoryless semantics under perfect information, i.e., M,q |=IR ϕ iff M,q |=Ir ϕ .
Both semantics are different for LATL∗ .

Thus, when referring to LATL using the perfect information semantics, we can omit
the subscript in the satisfaction relation |=.

Definition 9 (ATLIx, ATL∗Ix, ATL, ATL∗). We define ATLIx and ATL∗Ix as the
logics (LATL, |=Ix) and (LATL∗ , |=Ix) where x ∈ {r,R}, respectively. Moreover, we
use ATL (resp. ATL∗) as an abbreviation for ATLIR (resp. ATL∗IR).

Note again, that ATLIR and ATLIr are equivalent logics. We end our presentation
of the language and semantics with an example.

Example 2 (Robots and Carriage, ctd.). Transition system M0 from Figure 1 en-
abled us to study the evolution of the system as a whole. However, it did not allow
us to represent who can achieve what, and how the possible actions of the agents
interact. Concurrent game structure M1, presented in Figure 2, fills the gap. We
assume that each robot can either push (action push) or refrain from pushing (ac-
tion wait). Moreover, they both use the same force when pushing. Thus, if the robots
push simultaneously or wait simultaneously, the carriage does not move. When only
one of the robots is pushing, the carriage moves accordingly.

As the outcome of each robot’s action depends on the current action of the other
robot, no agent can make sure that the carriage moves to any particular position. So,
we have for example that M1,q0 |=¬〈〈1〉〉3pos1. On the other hand, the agent can at
least make sure that the carriage will avoid particular positions. For instance, it holds
that M1,q0 |= 〈〈1〉〉2¬pos1, the right strategy being s1(q0) = wait,s1(q2) = push
(the action that we specify for q1 is irrelevant).

3 The property has been first observed in [49] but it follows from [4] in a straightforward way.

Model Checking Logics of Strategic Ability: Complexity 11

2.3 Strategic Abilities under Imperfect Information

ATL∗ and ATL include no way of addressing uncertainty that an agent or a process
may have about the current situation. Several extensions capable of dealing with
imperfect information have been proposed, e.g., in [4, 49, 29].

Here, we take Schobbens’ version from [49] as the “core”, minimal LATL∗ -based
language for strategic ability under imperfect information. We take the already de-
fined languages LATL∗ and LATL but here the cooperation modalities have an addi-
tional epistemic flavor by means of a modified semantics as we will show below.4

The models, imperfect information concurrent game structures (ICGS), can be seen
as concurrent game structures augmented with a family of indistinguishability rela-
tions∼a⊆ St×St, one per agent a∈Agt. The relations describe agents’ uncertainty:
q∼a q′ means that agent a cannot distinguish between states q and q′ of the system.
Each ∼a is assumed to be an equivalence relation. It is also required that agents
have the same choices in indistinguishable states: if q∼a q′ then d(a,q) = d(a,q′).
Two histories h = q0q1 . . .qn and h′ = q′0q′1 . . .q

′
n′ are said to be indistinguishable for

agent a, h∼a h′, if and only if, n = n′ and qi ∼a q′i for i = 1, . . . ,n. This means that
we deal with the synchronous notion of recall according to the classification in [18].

An imperfect information strategy5 – memoryless or perfect recall – of agent a is
a plan that takes into account a’s epistemic limitations. An executable strategy must
prescribe the same choices for indistinguishable situations. Therefore, we restrict
the strategies that can be used by agents in the following way.

An imperfect information perfect recall strategy (iR-strategy for short) of agent
a is an IR-strategy satisfying the following additional constraint: For all histories
h,h′ ∈ St+, if h ∼a h′ then sa(h) = sa(h′). That is, an iR-strategy is required to
assign the same action to indistinguishable histories. Note that, as before, a perfect
recall strategy (memoryless or not) assigns an action to each element from St+.

An imperfect information memoryless strategy (ir-strategy for short) is an Ir-
strategy satisfying the following constraint: if q ∼a q′ then sa(q) = sa(q′). The set
of a’s ir (resp. iR) strategies is denoted by Σ ir

a (resp. Σ iR
a).

A collective iR/ir-strategy is a combination of individual iR/ir-strategies. The set
of A’s collective imperfect information strategies is given by Σ iR

A = ∏a∈A Σ iR
a (in

the perfect recall case) and Σ ir
A = ∏a∈A Σ ir

a (in the memoryless case). The set of all
strategy profiles is given by Σ iR = Σ iR

Agt (resp. Σ ir = Σ ir
Agt). The outcome function

out(q,sA) for the imperfect information cases is defined as before.

Definition 10 (Imperfect Information Semantics |=iR and |=ir). Let M be an
ICGS, and let img(q,ρ)= {q′ | ρ(q,q′)} be the image of state q wrt a binary relation
ρ . The imperfect information perfect recall semantics (iR-semantics) for LATL∗ and
LATL, denoted by |=iR, is given as in Definition 8 with the rule for 〈〈A〉〉γ replaced
by the following clause:

4 In [49] the cooperation modalities are presented with a subscript: 〈〈A〉〉ir to indicate that they ad-
dress agents with imperfect information and imperfect recall. Here, we take on a rigorous semantic
point of view and keep the syntax unchanged.
5 Also called uniform strategy.

12 Nils Bulling, Jürgen Dix, Wojciech Jamroga

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t

push,wait
w

ait,push
push,w

ait

wait,push

w
ai

t,p
us

h

pos2

1

2

Fig. 3 Two robots and a carriage: a schematic view (left) and an imperfect information concurrent
game structure M2 that models the scenario (right).

M,q |=iR 〈〈A〉〉γ iff there is an iR-strategy sA ∈ Σ iR
A such that, for each q′ ∈

img(q,∼A) and every λ ∈ out(sA,q′), we have M,λ |=iR γ (where∼A:=
⋃

a∈A∼a).

The imperfect information memoryless semantics for LATL∗ and LATL, ir-semantics
for short, is given as above but “iR” is replaced by “ir” everywhere.

Note that M,q |=ix 〈〈A〉〉γ requires A to have a single strategy that is successful
in all states indistinguishable from q.

Remark 4 (Implicit knowledge operators). Note that some knowledge operators are
implicitly given by the cooperation modalities if the imperfect information seman-
tics is used. In this setting a formula 〈〈A〉〉γ is read as follows: every agent in A
knows that they (the agents in A) have a collective strategy to enforce γ . In particu-
lar, one can express Kaϕ (“a knows that ϕ”) by 〈〈a〉〉ϕ U ϕ , and EAϕ (“everybody
in A knows that ϕ”) by 〈〈A〉〉ϕ U ϕ . More sophisticated epistemic versions of ATL
which contain explicit knowledge operators (including ones for common and dis-
tributed knowledge) are, for instance, considered in [29, 25, 40, 21].

Definition 11 (ATLix, ATL∗ix). We define ATLix and ATL∗ix as the logics (LATL, |=ix)
and (LATL∗ , |=ix) where x ∈ {r,R}, respectively.

Example 3 (Robots and Carriage, ctd.). We refine the scenario from Examples 1
and 2 by restricting perception of the robots. Namely, we assume that robot 1 is
only able to observe the color of the surface on which it is standing, and robot
2 perceives only the texture (cf. Figure 3). As a consequence, the first robot can
distinguish between position 0 and position 1, but positions 0 and 2 look the same
to it. Likewise, the second robot can distinguish between positions 0 and 2, but not
0 and 1. We also assume that the agents are memoryless, i.e., they cannot memorize
their previous observations.

With their observational capabilities restricted in such way, no agent can make
the carriage reach or avoid any selected states singlehandedly. E.g., we have that

Model Checking Logics of Strategic Ability: Complexity 13

M2,q0 |=ir ¬〈〈1〉〉2¬pos1. Note in particular that strategy s1 from Example 2 cannot
be used here because it is not uniform (indeed, the strategy tells robot 1 to wait in q0
and push in q2 but both states look the same to the robot). The robots cannot even
be sure to achieve the task together: M2,q0 |=ir ¬〈〈1,2〉〉2pos1 (when in q0, robot
2 considers it possible that the current state of the system is q1, in which case all
the hope is gone). So, do the robots know how to play to achieve anything? Yes,
for example they know how to make the carriage reach a particular state eventually:
M2,q0 |=ir 〈〈1,2〉〉3pos1 etc. – it suffices that one of the robots pushes all the time
and the other waits all the time. Still, M2,q0 |=ir ¬〈〈1,2〉〉32posx (for x = 0,1,2):
there is no memoryless strategy for the robots to bring the carriage to a particular
position and keep it there forever.

Most of the above properties hold for the iR semantics as well. Note, however,
that for robots with perfect recall we do have that M2,q0 |=iR 〈〈1,2〉〉32posx. The
right strategy is that one robot pushes and the other waits for the first 3 steps. Af-
ter that, they know their current position exactly, and can go straight the specified
position.

2.4 Other Subsets of LATL∗

2.4.1 Coalition Logic

Coalition Logic (CL), introduced in [41], is another logic for modeling and reason-
ing about strategic abilities of agents. The main construct of CL, [A]ϕ , expresses
that coalition A can bring about ϕ in a single-step game.

Definition 12 (Language LCL [41]). The language LCL is given by all formulae
generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ϕ | [A]ϕ , where p ∈Π and
A⊆ Agt.

In [41], coalitional models were chosen as semantics for LCL. These models are
given by (St,E,π) consisting of a set of states St, a playable effectivity function E,
and a valuation function π . The effectivity function determines the outcomes that
a coalition is effective for, i.e., given a set X ⊆ St of states a coalition C is said
to be effective for X iff it can enforce the next state to be in X . However, in [21]
it was shown that CGS provide an equivalent semantics, and that CL can be seen
as the next-time fragment of ATL. Hence, for this presentation we will interpret
LCL-formulae over CGS’s, and consider [A]ϕ as an abbreviation for 〈〈A〉〉 gϕ . The
various logics CLxy that we can obtain using the semantics |=xy for x ∈ {i, I} and
y ∈ {r,R} are defined analogously to ATLxy.

14 Nils Bulling, Jürgen Dix, Wojciech Jamroga

2.4.2 ATL+

The language LATL+ is the subset of LATL∗ that requires each temporal operator
to be followed by a state formula, but allows for Boolean combinations of path
subformulae. The formula 〈〈A〉〉(2p∧3q), for instance, is an LATL+-formula but
not an LATL-formula. Formally, the language is given as follows:

Definition 13 (Language LATL+). The language LATL+ is given by all formulae
generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈A〉〉γ where γ ::= ¬γ |
γ ∧ γ | ϕ U ϕ | gϕ , A⊆ Agt and p ∈Π .

We define the various logics emerging from LATL+ and the different semantics
analogously to the case of LATL. The logic ATL+ is strictly more expressive than
ATL (contrary to common belief, each ATL+ formula can only be translated to an
equivalent ATL formula if the “release” or “weak until” operator is added to the
language of LATL [8, 37, 22]) but it enables a more succinct encoding of properties
(this follows from the results in [53]). In Section 3 we will see that the more succinct
language has its price: The model checking problem becomes computationally more
expensive.

2.5 Summary, Notation, and Related Work

We have recalled the linear-time temporal logic and two versions of the computa-
tion tree logics for reasoning about purely temporal systems. Then, we presented
several variants of the alternating-time temporal logics: the richest underlying lan-
guage LATL∗ , somewhat restricted variants LATL+ and LATL, and LCL which can
be seen as a very limited fragment of LATL. All these languages were coupled with
four alternative semantics that result from combining perfect/imperfect information
with perfect recall/memoryless strategies (the IR, Ir, iR, and ir-semantics).

The resulting logics were defined with respect to the notation introduced by
Schobbens [49] to refer to a strategic logic using a specific semantics. For ID ∈
{CL,ATL,ATL+,ATL∗}, x ∈ {I, i}, and y ∈ {R,r}, we used IDxy to refer to the
logic over the language LID using the xy-semantics |=xy.

In this chapter we are concerned with model checking strategic logics and thus
take on a semantic view. Naturally, there is more than that to be studied. In [20]
a complete axiomatization for ATLIR is presented. Also the satisfiability prob-
lem of ATLIR and ATL∗IR has been considered by researchers: The problem was
proven EXPTIME-complete for ATLIR [12, 52] and even 2EXPTIME-complete for
ATL∗IR [47]. Axiomatization and satisfiability of other variants of alternating-time
temporal logic still remains open.

Model Checking Logics of Strategic Ability: Complexity 15

3 Standard Model Checking Complexity Results

In this section we consider model checking for the logics introduced in Section 2.
The process of model checking seeks to answer the question whether a given for-
mula ϕ is satisfied in a state q of model M. Formally, local model checking is the
decision problem that determines membership in the set

MC(L ,Struc, |=) := {(M,q,ϕ) ∈ Struc×L | M,q |= ϕ},

where L is a logical language, Struc is a class of (pointed) models for L (i.e. a tu-
ple consisting of a model and a state), and |= is a semantic satisfaction relation com-
patible with L and Struc. We omit parameters if they are clear from context, e.g.,
we use MC(CTL) to refer to model checking of CTL over the class of (pointed)
Kripke models and the introduced semantics.

It is often useful to compute the set of states in M that satisfy formula ϕ instead
of checking if ϕ holds in a particular state. This variant of the problem is known as
global model checking. It is easy to see that, for the settings we consider here, the
complexities of local and global model checking coincide, and the algorithms for
one variant of model checking can be adapted to the other variant in a simple way.
As a consequence, we will use both notions of model checking interchangeably.

In the following, we are interested in the decidability and the computational com-
plexity of determining whether an input instance (M,q,ϕ) belongs to MC(. . .). The
complexity is always relative to the size of the instance; in the case of model check-
ing, it is the size of the representation of the model and the representation of the
formula that we use. Thus, in order to establish the complexity, it is necessary to fix
how we represent the input and how we measure its size. In this section, we con-
sider explicit representation of models and formulae, together with the “standard”
input measure, where the size of the model (|M|) is given by the number of transi-
tions in M, and the size of the formula (|ϕ|) is given by its length (i.e., the number
of elements it is composed of, apart from parentheses). For example, the model in
Figure 2 includes 12 (labeled) transitions, and the formula 〈〈1〉〉 g(pos0∨pos1) has
length 5.

3.1 Model Checking Temporal Logics

An excellent survey on the model checking complexity of temporal logics has been
presented in [48]. Here, we only recall the results relevant for the subsequent analy-
sis of strategic logics.

Let M be a Kripke model and q be a state in the model. Model checking a
LCTL/LCTL∗ -formula ϕ in M,q means to determine whether M,q |=ϕ , i.e., whether
ϕ holds in M,q. For LTL, checking M,q |= ϕ means that we check the validity of
ϕ in the pointed model M,q, i.e., whether ϕ holds on all the paths in M that start
from q (equivalent to CTL∗ model checking of formula Aϕ in M,q, cf. Remark 2).

16 Nils Bulling, Jürgen Dix, Wojciech Jamroga

function mcheck(M,ϕ).
Model checking formulae of CTL. Returns the exact subset of St for which formula ϕ holds.
case ϕ ≡ p : return {q ∈ St | p ∈ π(q)}
case ϕ ≡ ¬ψ : return St \mcheck(M,ψ)
case ϕ ≡ ψ1∧ψ2 : return mcheck(M,ψ1)∩mcheck(M,ψ2)
case ϕ ≡ E fψ : return pre(mcheck(M,ψ))
case ϕ ≡ E2ψ :

Q1 := Q; Q2 := Q3 := mcheck(M,ψ);
while Q1 6⊆ Q2 do Q1 := Q1∩Q2; Q2 := pre(Q1)∩Q3 od;
return Q1

case ϕ ≡ Eψ1 U ψ2 :
Q1 := /0; Q2 := mcheck(M,ψ2); Q3 := mcheck(M,ψ1);
while Q2 6⊆ Q1 do Q1 := Q1∪Q2; Q2 := pre(Q1)∩Q3 od;
return Q1

end case

Fig. 4 The CTL model checking algorithm from [9].

It has been known for a long time that formulae of CTL can be model-checked in
time linear with respect to the size of the model and the length of the formula [10],
whereas formulae of LTL and CTL∗ are significantly harder to verify.

Theorem 2 (CTL [10, 48]). Model checking CTL is P-complete, and can be done
in time O(|M| · |ϕ|), where |M| is given by the number of transitions.

Proof (Sketch). The algorithm determining the states in a model at which a given
formula holds is presented in Figure 4. The lower bound (P-hardness) can be for
instance proven by a reduction of the tiling problem [48]. ut

Theorem 3 (LTL [50, 39, 51]). Model checking LTL is PSPACE-complete, and
can be done in time 2O(|ϕ|)O(|M|), where |M| is given by the number of transitions.

Proof (Sketch). We sketch the approach given in [51]. Firstly, given an LLTL-
formula ϕ , a Büchi automaton A¬ϕ of size 2O(|ϕ|) accepting exactly the paths sat-
isfying ¬ϕ is constructed. The pointed Kripke model M,q can directly be inter-
preted as a Büchi automaton AM,q of size O(|M|) accepting all possible paths in the
Kripke model starting in q. Then, the model checking problem reduces to the non-
emptiness check of L(AM,q)∩L(A¬ϕ) which can be done in time O(|M|) ·2O(|ϕ|)

by constructing the product automaton. (Emptiness can be checked in linear time
wrt to the size of the automaton.) A PSPACE-hardness proof can for instance be
found in [50]. ut

The hardness of CTL∗ model checking is immediate from Theorem 3 as LLTL
can be seen as a fragment of LCTL∗ . For the proof of the upper bound one combines
the CTL and LTL model checking techniques. Consider a LCTL∗ -formula ϕ which
contains a state subformula Eψ where ψ is a pure LLTL-formula. Firstly, we can use
LTL model checking to determine all state which satisfy Eψ (these are all states q
in which the LLTL-formula ¬ψ is not true) and label them by a fresh propositional

Model Checking Logics of Strategic Ability: Complexity 17

symbol , say p, and replace Eψ in ϕ by p as well. Applying this procedure recur-
sively yields a pure LCTL-formula which can be verified in polynomial time. Hence,
the procedure can be implemented by an oracle machine of type PPSPACE =PSPACE
(the LTL model checking algorithm might be employed polynomially many times).
Thus, the complexity for CTL∗ is the same as for LTL.

Theorem 4 (CTL∗ [10, 16]). Model checking CTL∗ is PSPACE-complete, and can
be done in time 2O(|ϕ|)O(|M|), where |M| is given by the number of transitions.

In Section 2.4 we introduced ATL+, a variant of ATL. As the model checking
algorithm for ATL+ will rely on the complexity of CTL+ model checking,6 we
mention the latter result here.

Theorem 5 (CTL+ [38]). Model checking CTL+ is ∆ P
2 -complete in the number of

transitions in the model and the length of the formula.

3.2 Model Checking ATL and CL: Perfect Information

One of the main results concerning ATL states that its formulae can also be model-
checked in deterministic linear time, analogously to CTL. It is important to empha-
size, however, that the result is relative to the number of transitions in the model and
the length of the formula. In Section 4 we will discuss an alternative input measure
in terms of agents, states, and the length of the formula, and show that this causes a
substantial increase in complexity.

The ATL model checking algorithm from [4] is presented in Figure 5. The al-
gorithm employs the well-known fixpoint characterizations of strategic-temporal
modalities:

〈〈A〉〉2ϕ ↔ ϕ ∧〈〈A〉〉 g〈〈A〉〉2ϕ

〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2∨ϕ1∧〈〈A〉〉 g〈〈A〉〉ϕ1 U ϕ2,

and computes a winning strategy step by step (if it exists). That is, it starts with the
appropriate candidate set of states (/0 for U and the whole set St for 2), and iterates
backwards over A’s one-step abilities until the set gets stable. It is easy to see that the
algorithm needs to traverse each transition at most once per subformula of ϕ . Note
that it does not matter whether perfect recall or memoryless strategies are used: The
algorithm is correct for the IR-semantics, but it always finds an Ir-strategy. Thus,
for an LATL-formula 〈〈A〉〉γ , if A have an IR-strategy to enforce γ , they also have an
Ir-strategy to obtain it.

Theorem 6 (ATLIr and ATLIR [4]). Model checking ATLIr and ATLIR is P-
complete, and can be done in time O(|M| · |ϕ|), where |M| is given by the number
of transitions in M.

6 CTL+ is defined analogously to ATL+: Boolean combinations of path formulae are allowed in
the scope of path quantifiers.

18 Nils Bulling, Jürgen Dix, Wojciech Jamroga

function mcheck(M,ϕ).
ATL model checking. Returns the set of states in model M = 〈Agt,St,Π ,π,o〉 for which formula
ϕ holds.
case ϕ ∈Π : return π(p)
case ϕ = ¬ψ : return St \mcheck(M,ψ)
case ϕ = ψ1∨ψ2 : return mcheck(M,ψ1)∪mcheck(M,ψ2)
case ϕ = 〈〈A〉〉 fψ : return pre(M,A,mcheck(M,ψ))
case ϕ = 〈〈A〉〉2ψ :

Q1 := St; Q2 := mcheck(M,ψ); Q3 := Q2;
while Q1 6⊆ Q2
do Q1 := Q2; Q2 := pre(M,A,Q1)∩Q3 od;
return Q1

case ϕ = 〈〈A〉〉ψ1 U ψ2 :
Q1 :=∅; Q2 := mcheck(M,ψ1);
Q3 := mcheck(M,ψ2);
while Q3 6⊆ Q1
do Q1 := Q1∪Q3; Q3 := pre(M,A,Q1)∩Q2 od;
return Q1

end case

function pre(M,A,Q).
Auxiliary function; returns the exact set of states Q′ such that, when the system is in a state q ∈Q′,
agents A can cooperate and enforce the next state to be in Q.
return {q | ∃αA∀αAgt\A o(q,αA,αAgt\A) ∈ Q}

Fig. 5 The ATL model checking algorithm from [4]

Proof (Sketch). Each case of the algorithm is called at most O(|ϕ|) times and ter-
minates after O(|M|) steps [4]. The latter is shown by translating the model to a
two-player game [4], and then solving the “invariance game” on it in polynomial
time [5]. Hardness is shown by a reduction of reachability in And-Or-Graphs, which
was shown to be P-complete in [26], to model checking the (constant) LATL-formula
〈〈1〉〉3p in a two player game. In each Or-state it is the turn of player 1 and in each
And-state it is player 2’s turn [4]. ut

In the next theorem, we show that the model checking of coalition logic is as
hard as for ATL. To our knowledge, this is a new result; the proof is done by a
slight variation of the hardness proof for ATL in [4] (cf. the proof of Theorem 6).

Theorem 7 (CLIr and CLIR). Model checking CLIr and CLIR is P-complete, and
can be done in time O(|M| · |ϕ|), where |M| is given by the number of transitions
in M.

Proof. The upper bound follows from the fact that LCL is a sublanguage of LATL.
We show P-hardness by the following adaption of the reduction of And-Or-Graph
reachability from [4]. Firstly, we observe that if a state y is reachable from x in
graph G then it is also reachable via a path whose length is bounded by the number
n of states in the graph. Like in the proof of Theorem 6, we take G to be a turned-
based CGS in which player 1 “owns” all the Or-states and player 2 “owns” all the

Model Checking Logics of Strategic Ability: Complexity 19

And-states. We also label node y with a special proposition y, and replace all the
transitions outgoing from y with a deterministic loop. Now, we have that y is reach-
able from x in G iff G,x |= 〈〈1〉〉 g. . .〈〈1〉〉 g︸ ︷︷ ︸

n-times

y. The reduction uses only logarithmic

space. ut

It is worth pointing out, however, that checking strategic properties in one-step
games is somewhat easier. We recall that AC0 is the class corresponding to constant-
depth, unbounded-fanin, polynomial-size Boolean circuits with AND, OR, and NOT
gates [19]. We call a formula flat if it contains no nested cooperation modalities.
Moreover, a formula is simple if it is flat and does not include Boolean connec-
tives. For example, the language of “simple CL” consists only of formulae p and
〈〈A〉〉 gp, for p ∈Π and A⊆ Agt.

Theorem 8 (Simple CLIr and CLIR [37]). Model checking “Simple CLIr” and
“Simple CLIR” with respect to the number of transitions in the model and the length
of the formula is in AC0.

Proof (Sketch). For M,q |= 〈〈A〉〉 gp, we construct a 3-level circuit [37]. On the
first level, we assign one AND gate for every possible coalition B and B’s collective
choice αB; the output of the gate is “true” iff αB leads to a state satisfying p for
every response of Agt \B. On the second level, there is one OR gate per possible
coalition B that connects all the B’s gates from the first level and outputs “true” iff
there is any successful strategy for B. On the third level, there is a single AND gate
that selects the right output (i.e., the one for coalition A). ut

3.3 Model Checking ATL and CL: Imperfect Information

In contrast to the perfect information setting, analogous fixpoint characterizations
do not hold for the incomplete information semantics over LATL because the choice
of a particular action at a state q has non-local consequences: It automatically fixes
choices at all states q′ indistinguishable from q for the coalition A. Moreover, the
agents’ ability to identify a strategy as winning also varies throughout the game in
an arbitrary way (agents can learn as well as forget). This suggests that winning
strategies cannot be synthesized incrementally. Note that, in order to check M,q |=
〈〈A〉〉γ (where γ includes no nested cooperation modalities), the following procedure
suffices. Firstly, we guess a uniform strategy sA of team A (by calling an NP oracle),
and then verify the strategy by pruning M accordingly (removing all the transitions
that are not going to be executed according to sA) and model-checking the LCTL-
formula Aγ in the resulting model. For nested cooperation modalities, we proceed
recursively (bottom up). Since model checking CTL can be done in polynomial
deterministic time, the procedure runs in polynomial deterministic time with calls
to an NP oracle, which demonstrates the inclusion in ∆ P

2 = PNP [49]. As it turns
out, a more efficient procedure does not exist, which is confirmed by the following
result.

20 Nils Bulling, Jürgen Dix, Wojciech Jamroga

Theorem 9 (ATLir [49, 33]). Model checking ATLir is ∆ P
2 -complete in the number

of transitions in the model and the length of the formula.

Proof (Sketch). The discussion above proves the membership in ∆ P
2 . ∆ P

2 -hardness
was shown in [33] through a reduction of sequential satisfiability (SNSAT2), a stan-
dard ∆ P

2 -complete problem [38]. The idea is that there are two agents where one
agent tries to verify a (nested) propositional formula and a second agent tries to
refute it. A winning strategy of the “verifier agent” corresponds to a satisfying val-
uation of the formula. Uniformity of the verifier’s strategy is needed to ensure that
identical proposition symbols, occurring at different places in the formula, are as-
signed the same truth values. ut

Now we consider the incomplete information setting for Coalition Logic. It is
easy to see that the iR- and ir-sematics are equivalent for LCL since gis the only
temporal operator, and thus only the first action in a strategy matters. As a conse-
quence, whenever there is a successful iR-strategy for agents A to enforce gϕ , then
there is also an ir-strategy for A to obtain the same. Perfect recall of the history does
not matter in one-step games.

Theorem 10 (CLir and CLiR). Model checking CLir and CLiR is P-complete wrt
the number of transitions in the model and the length of the formula, and can be
done in time O(|M| · |ϕ|).

Proof. The P-hardness follows from Theorem 7 (perfect information CGS’s can
be seen as a special kind of ICGSwhere the indistinguishability relations contain
only the reflexive loops). For the upper bound, we use the following algorithm.
For M,q |= 〈〈A〉〉 gp, we check if there is a collective action αA such that for all
responses αAgt\A we have that

⋃
{q′|q∼Aq′}{o(q′,αA,αAgt\A)} ⊆ π(p). For 〈〈A〉〉 gϕ

with nested cooperation modalities, we proceed recursively (bottom up). ut

Theorem 11 (Simple CLir and CLiR). Model checking “simple” formulae of CLir
and CLiR with respect to the number of transitions in the model and the length of
the formula is in AC0.

Proof. For M,q |= 〈〈A〉〉 gp, we extend the procedure from [37] by creating one
copy of the circuit per q′ ∈ img(q,∼A). Then, we add a single AND gate on the
fourth level of the circuit, that takes the output of those copies and returns “true” iff
A have a strategy that is successful from all states indistinguishable from q. ut

That leaves us with the issue of LATL with the semantics assuming imperfect in-
formation and perfect recall. To our knowledge, there is no formal proof in the litera-
ture regarding the complexity of model checking LATL with iR-strategies. However,
the problem is commonly believed to be undecidable.

Conjecture 1 (ATLiR [4]). Model checking ATLiR is undecidable.

Theorems 10 and 11 are
incorrect.
The correct result is that
model checking of CLir and
CLiR is P-complete for
coalitions of size up to 2, and
NP-hard for larger
coalitions. For Simple CLir
and CLiR the problem is
respectively P-complete and
NP-complete.
A precise formulation and
proofs can be found e.g. in
Jamroga (2015), pp. 112-114.

Model Checking Logics of Strategic Ability: Complexity 21

3.4 Model Checking ATL∗ and ATL+

We now turn to model checking logics over broader subsets of LATL∗ . In the first
case we consider perfect recall strategies in the perfect information setting. The
complexity results established here are based on an automata-theoretic approach
which is explained below.

Let M be a CGS and 〈〈A〉〉ψ be an LATL∗ -formula (where we assume that ψ is
an LLTL-formula). Given a strategy sA of A and a state q in M the model can be
unfolded into a q-rooted tree representing all possible behaviors with agents A fol-
lowing their strategy sA. This structure can be seen as the tree induced by out(q,sA)
and we will refer to it as a (q,A)-execution tree. Note that every strategy profile for
A may result in a different execution tree. Now, a Büchi tree automaton AM,q,A can
be constructed that accepts exactly the (q,A)-execution trees [4].

Secondly, it was shown that one can construct a Rabin tree automaton which
accepts all trees that satisfy the LCTL∗ -formula Aψ [17]. Hence, the LATL∗ -formula
〈〈A〉〉ψ is satisfied in M,q if there is a tree accepted by AM,q,A (i.e., it is a (q,A)-
execution tree) and by Aψ (i.e., it is a model of Aψ).

Theorem 12 (ATL∗IR [4]). Model checking ATL∗IR is 2EXPTIME-complete in the
number of transitions in the model and the length of the formula.

Proof (Sketch). We briefly analyze the complexity for the procedure described
above. Firstly, the Büchi tree automaton AM,q,A is built by considering the states
A is effective for [4]. That is, in a state of the automaton corresponding to a state
q ∈ St of M the automaton nondeterministically chooses a sequence (q′1,q

′
2, . . . ,q

′
n)

of successors of q such that A has a common action to guarantee that the system will
end up in one of the states {q′1,q′2, . . . ,q′n} in the next step. It is assumed that the se-
quence is minimal. Incrementally, this models any sA strategy of A and thus accepts
all (q,A)-execution trees. The transition function of the automaton is constructed in
the described way. As the number of transitions in each state of the automaton is
bounded by the move combinations of agents A the size of the automaton, |AM,q,A|,
is bounded by O(|M|). All states are defined as acceptance states, such that AM,q,A
accepts all possible execution trees of A.

Following the construction of [17], the automaton Aψ is a Rabin tree automaton
with 22O(|ψ|)

states and 2O(|ψ|) Rabin pairs.
The product automaton Aψ ×AM,q,A, accepting the trees accepted by both au-

tomata, is a Rabin tree automaton with n := O(|Aψ | · |AM,q,A|) many states and
r := 2O(|ψ|) many Rabin pairs (note that AM,q,A can be seen as a Rabin tree automa-
ton with one Rabin pair composed of the states of the automaton and the empty
set). Finally, to determine whether the language accepted by the product automaton
is empty can be done in time O(n · r)3r [15, 43]; hence, the algorithm runs in time
|M|2O(|ψ|)

(it might be employed at each state of the model and for each subformula).
The lower bound is shown by a reduction of the 2EXPTIME-complete problem

of the realizability of LTL-formulae [43, 46, 4]. ut

22 Nils Bulling, Jürgen Dix, Wojciech Jamroga

The next result shows that model checking LATL∗ with memoryless strategies is
no worse than for LTL and CTL∗ for both perfect and imperfect information.

Theorem 13 (ATL∗ir and ATL∗Ir [49]). Model checking ATL∗ir and ATL∗Ir is PSPACE-
complete in the number of transitions in the model and the length of the formula.

Proof (Sketch). LLTL is contained in LATL∗ which renders LATL∗ with the perfect
information memoryless semantics to be at least PSPACE-hard.

On the other hand, there is a PSPACE algorithm for model checking LATL∗

with the imperfect information memoryless semantics. Consider the formula 〈〈A〉〉ψ
where ψ is an LLTL-formula. Then, an ir-strategy sA for A is guessed and the model
is “trimmed” according to sA, i.e. all transitions which cannot occur by following sA
are removed. Note that a memoryless strategy can be guessed in polynomially many
steps, and hence also using only polynomially many memory cells. In the new model
the LCTL∗ -formula Aψ is checked. This procedure can be performed in NPPSPACE,
which renders the complexity of the whole language to be in PNPPSPACE

= PSPACE.
ut

We consider the more limited language LATL+ . Boolean combinations of path
formulae prevent us from using the fixed-point characterizations for model check-
ing. Instead, given a formula 〈〈A〉〉ψ with no nested cooperation modalities, we
can guess a (memoryless) strategy of A, “trim” the model accordingly, and model-
check the LCTL+-formula Aψ in the resulting model. Since the model checking
problem for CTL+ is ∆ P

2 -complete, we get that the overall procedure runs in time

∆ P
2

∆ P
2 = ∆ P

3 [49].

Theorem 14 (ATL+
ir andATL+

Ir [49]). Model checking ATL+
ir and ATL+

Ir is ∆ P
3 -

complete in the number of transitions in the model and the length of the formula.

Proof (Sketch). The above procedure shows the membership. Note that in the in-
complete information case one has to guess a uniform strategy. Again, it is essential
that a strategy can be guessed in polynomially many steps, which is indeed the case
for Ir- and ir-strategies. The hardness proof can be obtained by a reduction of the
standard ∆ P

3 -complete problem SNSAT3, cf. [49] for the construction. ut

What about ATL+
IR? It has been believed that verification with LATL+ is ∆ P

3 -
complete for perfect recall strategies, too. However, it turns out that the complex-
ity of ATL+

IR model checking is much harder, namely PSPACE [8]. Since the ∆ P
3 -

completeness for memoryless semantics is correct, we get that memory makes ver-
ification harder already for LATL+ , and not just for LATL∗ as it was believed before.

Theorem 15 (ATL+
IR [8]). Model checking ATL+

IR is PSPACE-complete with re-
spect to the number of transitions in the model and the length of the formula. It is
PSPACE-complete even for turn-based models with two agents and “flat” ATL+

formulae.

Model Checking Logics of Strategic Ability: Complexity 23

Ir IR ir iR

Simple LCL AC0 AC0 AC0 AC0

LCL P P P P
LATL P P ∆ P

2 Undecidable†

LATL+ ∆ P
3 PSPACE ∆ P

3 Undecidable†

LATL∗ PSPACE 2EXPTIME PSPACE Undecidable†

Fig. 6 Overview of the model checking complexity results for explicit models. All results except
for “Simple CL” are completeness results. Each cell represents the logic over the language given
in the row using the semantics given in the column. † These problems are believed to be
undecidable, though no formal proof has been proposed yet (cf. Conjectures 1, 2, and 3).

Proof (Sketch). Consider the LATL+-formula 〈〈A〉〉γ where γ does not contain any
further cooperation modalities. The upper bound can be proven by constructing an
alternating Turing Machine that first produces (by alternatingly guessing the “best”
choices of the proponents and the “most damaging” responses of the opponents)
the relevant part of a path (whose length is asymptotically bounded by the product
of the length of the formula and the number of states in the model) that suffices to
determine the truth of an LATL+-formula. Then, we implement the game-theoretical
semantics of propositional logic [23] as a game between the verifier (who controls
disjunction) and the refuter (controlling conjunction). The machine runs in time
O(nkl) where n (resp. k and l) denotes the number of states (resp. number of agents
and length of the formula), cf. [8] for details.

Hardness is proved by a reduction of QSAT. A perfect recall strategy of the
proponents is used to assign consistent valuations (step-by-step) to propositional
variables that they control; analogously for the opponents. Thereby, the proponents
control the existentially quantified variables and the opponents the universally quan-
tified ones. An LATL+-formula is used to describe such valid assignments; i.e. truth
values must be ascribed to variables in a uniform way. For the complete construction
we refer to [8] again. ut

Note that the input size only depends on the number of states and agents in the
model and length of the formula which is important for the complexity result given
in Theorem 25 about non-standard input measures.

The following conjectures are immediate consequences of Conjecture 1 as LATL
is a fragment of LATL∗ as well as LATL+ .

Conjecture 2 (ATL∗iR). Model checking ATL∗iR is undecidable.

Conjecture 3 (ATL+
iR). Model checking ATL+

iR is undecidable.

Figure 3.4 presents an overview of the model checking complexity results for
explicit models.

24 Nils Bulling, Jürgen Dix, Wojciech Jamroga

4 Complexity for Implicit Models: States and Agents

We have seen several complexity results for the model checking problem in logics
like LTL, CTL, and ATL. Some of these results are quite attractive: one usually
cannot hope to achieve verification with complexity better than linear.

However, it is important to remember that these results measure the complexity
with respect to the size of the underlying model. Often, these models are so big,
that an explicit representation is not possible and we have to represent the model
in a “compressed” way. To give a simple illustration, consider the famed primality
problem: checking whether a given natural number n is prime. The well-known al-
gorithm uses

√
n-many divisions and thus runs in polynomial time when the input is

represented in unary. But a symbolic representation of n needs only log(n) bits and
thus the above algorithm runs in exponential time with respect to its size. This does
not necessarily imply that the problem itself is of exponential complexity. In fact,
the famous and deep result of Agrawal, Kayal and Saxena shows that the primality
problem can be solved in polynomial time.

We will consider model checking of temporal and strategic logics for such highly
compressed representations (in terms of state space compression and modulariza-
tion) in Section 5. Such a rigorous compressed representation is not the only way in
which the model checking complexity can be influenced. Another important factor
is how we encode the transition function. So far, we assumed that the size of a model
is measured with respect to the number of transitions in the model.

In this section we consider the complexity of the model checking problem with
respect to the number of states, agents, and an implicitly encoded transition function
rather than the (explicit) number of transitions. It is easy to see that, for CGS’s,
the number of transitions can be exponential in the number of states and agents.
Therefore, all the algorithms presented in Section 3 give us only exponential time
bounds provided that the transition function is encoded sufficiently small.

Observation 1 ([4, 31]) Let n be the number of states in a concurrent game struc-
ture M, let k denote the number of agents, and d the maximal number of available
decisions (moves) per agent per state. Then, m = O(ndk). Therefore the ATLIR
model checking algorithm from [4] runs in time O(ndkl), and hence its complexity
is exponential if the number of agents is a parameter of the problem.

In comparison, for an unlabeled transition system with n states and m transitions,
we have that m = O(n2). This means that CTL model checking is in P also with
respect to the number of states in the model and the length of the formula. The
following theorem is an immediate corollary of the fact (and Theorem 2).

Theorem 16. CTL model checking over unlabeled transition systems is P-complete
in the number of states and the length of the formula, and can be done in time
O(n2l).

For ATL and concurrent game structures, however, the situation is different. In
the following we make precise what we mean by a compressed transition function.

Model Checking Logics of Strategic Ability: Complexity 25

Implicit concurrent game structures (called this way first in [36], but already
present in the ISPL modeling language behind MCMAS [45, 44]) are defined simi-
larly to a CGS but the transition function is encoded in a particular way often allow-
ing for a more compact representation than the explicit transition table. Formally,
an implicit CGS is given by M = 〈Agt,St,Π ,π,Act,d, ô〉 where ô, the encoded
transition function, is given by a sequence

((ϕr
0,q

r
0), . . . ,(ϕ

r
tr ,q

r
tr))r=1,...,|Q|

where tr ∈ N0, qr
i ∈ St and each ϕr

i is a Boolean combination of propositions execjα
where j ∈ Agt, α ∈ Act, i = 1, . . . , t and r = 1, . . . , |Q|. It is required that ϕr

tr = >.
The term execjα stands for “agent j executes action α”. We use ϕ[α1, . . . ,αk] to refer
to the Boolean formula over {>,⊥} obtained by replacing exec

aj
α with> (resp.⊥) if

α j =α (resp. α j 6=α). The encoded transition function induces a standard transition
function oô as follows:

oô(qi,α1, . . . ,αk) = qi
j where j = min{κ | ϕ i

κ [α1, . . . ,αk]≡>}

That is, oô(qi,α1, . . . ,αk) returns the state belonging to the formula ϕ i
κ (asso-

ciated with state qi) with the minimal index κ that evaluates to “true” given the
actions α1, . . . ,αk. We use ô(qi,α1, . . . ,αk) to refer to oô(qi,α1, . . . ,αk). Note that
the function is well defined as the last formula in each sequence is given by >: no
deadlock can occur. The size of ô is defined as |ô|= ∑r=1,...,|Q|∑ j=1,...,tr |ϕ

r
j |, that is,

the sum of the sizes of all formulae. Hence, the size of an implicit CGS is given by
|St|+ |Agt|+ |ô|. Recall, that the size of an explicit CGS is |St|+ |Agt|+m where
m is the number of transitions. Finally, we require that the encoding of the transition
function is reasonably compact, that is, |ô| ≤O(|oô|).

Now, why should the model checking complexity change for implicit CGS’s?
Firstly, one can observe that we can take the trivial encoding of an explicit transition
function yielding an implicit CGS that has the same size as the explicit CGS. This
implies that all the lower bounds proven before are still valid.

Proposition 1. Model checking with respect to implicit CGS’s is at least as hard as
model checking over explicit CGS’s for any logic discussed here.

Therefore, we focus on the question whether model checking can become more
difficult for implicit CGS’s. Unfortunately, the answer is yes: Model checking can
indeed become more difficult.

We illustrate this by considering the presented algorithm for solving the ATLIR
model checking problem. It traverses all transitions and since transitions are consid-
ered explicitly in the input, the algorithm runs in polynomial time. But if we choose
an encoding ô that is significantly smaller than the explicit number of transitions,
the algorithm still has to check all transitions, yet now the number of transitions can
be exponential with respect to the input of size |St|+ |Agt|+ |ô|.

Henceforth, we are interested in the cases in which the size of the encoded transi-
tion function is much smaller, in particular, when the size of the encoding is polyno-

26 Nils Bulling, Jürgen Dix, Wojciech Jamroga

mial with respect to the number of states and agents. This is the reason why we will
often write that we measure the input in terms of states (n) and agents (k), neglecting
the size of ô when it is supposed to be polynomial in n,k.

Remark 5. An alternative view is to assume that the transition function is provided
by an external procedure (a “black box”) that runs in polynomial time, similar to an
oracle [31]. This view comes along with some technical disadvantages, and we will
not discuss it here.

4.1 Model Checking ATL and CL in Terms of States and Agents

As argued above the complexity of O(ml) may (but does not have to) include po-
tential intractability if the transition function is represented more succinctly. The
following result supports this observation.

Theorem 17 ([37, 31, 33]). Model checking ATLIR and ATLIr over implicit CGS’s
is ∆ P

3 -complete with respect to the size of the model and the length of the formula
(l).

Proof (Sketch). The idea of the proof for the lower bound is clear if we reformulate
the model checking of M,q |= 〈〈a1, . . . ,ar〉〉 gϕ as

∃(α1, . . . ,αr)∀(αr+1, . . . ,αk) M,o(q,α1, . . . ,αk) |= ϕ,

which closely resembles QSAT2, a typical Σ P
2 -complete problem. A reduction of

this problem to our model checking problem is straightforward: For each instance
of QSAT2, we create a model where the values of propositional variables p1, . . . , pr
are “declared” by agents A and the values of pr+1, . . . , pk by Agt \A. The subse-
quent transition leads to a state labeled by proposition yes iff the given Boolean
formula holds for the underlying valuation of p1, . . . , pk. Then, QSAT2 reduces to
model checking formula 〈〈a1, . . . ,ar〉〉 gyes [31]. In order to obtain ∆ P

3 -hardness,
the above schema is combined with nested cooperation modalities, which yields a
rather technical reduction of the SNSAT3 problem that can be found in [37].

For the upper bound, we consider the following algorithm for checking M,q |=
〈〈A〉〉γ with no nested cooperation modalities. Firstly, guess a strategy sA of the
proponents and fix A’s actions to the ones described by sA. Then check if Aγ is
true in state q of the resulting model by asking an oracle about the existence of a
counterstrategy sĀ for Agt\A that falsifies γ and reverting the oracle’s answer. The
evaluation takes place by calculating ô (which takes polynomially many steps) re-
garding the actions prescribed by (sA,sĀ) at most |St| times. For nested cooperation
modalities, we proceed recursively (bottom-up). ut

Surprisingly, the imperfect information variant of ATL is no harder than the
perfect information one under this measure:

Model Checking Logics of Strategic Ability: Complexity 27

Theorem 18 ([33]). Model checking ATLir over implicit CGS’s is ∆ P
3 -complete

with respect to the size of the model and the length of the formula. This is the same
complexity as for model checking ATLIr and ATLIR.

Proof (Sketch). For the upper bound, we use the same algorithm as in checking
ATLIr. For the lower bound, we observe that ATLIr can be embedded in ATLir
by explicitly assuming perfect information of agents (through the minimal reflexive
indistinguishability relations). ut

The ∆ P
3 -hardness proof in Theorem 17 uses the “nexttime” and “until” temporal

operators in the construction of an ATL formula that simulates SNSAT3 [37]. How-
ever, the proof can be modified so that only the “nexttime” sublanguage of LATL
is used. We obtain thus an analogous result for coalition logic. Details of the new
construction can be found in the technical report [7].

Theorem 19. Model checking CLIR, CLIr, CLir, and CLiR over implicit CGS’s
is ∆ P

3 -complete with respect to the size of the model and the length of the formula.
Moreover, it is Σ P

2 -complete for the “simple” variants of CL.

It is worth mentioning that model checking “Positive ATL” (i.e., the fragment
of LATL where negation is allowed only on the level of literals) is Σ P

2 -complete
with respect to the size of implicit CGS’s, and the length of formulae for the IR, Ir,
and ir-semantics [33]. The same applies to “Positive CL”, the analogous variant of
coalition logic.

4.2 CTL and CTL+ Revisited

At the beginning of Section 4, we mentioned that the complexity of model checking
computation tree logic is still polynomial even if we measure the size of models with
the number of states rather than transitions. That is certainly true for unlabeled tran-
sition systems (i.e., the original models of CTL). For concurrent game structures,
however, this is no longer the case.

Theorem 20. Model checking CTL over implicit CGS’s is ∆ P
2 -complete with re-

spect to the size of the model and the length of the formula.

Proof (Sketch). For the upper bound, we observe that M,q |=CTL Eγ iff M,q |=IR
〈〈Agt〉〉γ which is in turn equivalent to M,q |=Ir 〈〈Agt〉〉γ . In other words, Eγ holds
iff the grand coalition has a memoryless strategy to achieve γ . Thus, we can verify
M,q |= Eγ (with no nested path quantifiers) as follows: we guess a strategy sAgt
for Agt (in polynomially many steps), then we construct the resulting model M′

by asking ô which transitions are enabled by following the strategy sA and check if
M′,q |= Eγ and return the answer. Note that M′ is an unlabeled transition system,
so constructing M′ and checking M′,q |= Eγ can be done in polynomial time. For
nested modalities, we proceed recursively.

28 Nils Bulling, Jürgen Dix, Wojciech Jamroga

For the lower bound, we sketch the reduction of SAT to model checking LCTL-
formulae with only one path quantifier. For propositional variables p1, . . . , pk and
boolean formula ϕ , we construct an implicit CGS where the values of p1, . . . , pk
are “declared” by agents Agt = {a1, . . . ,ak} (in parallel). The subsequent transition
leads to a state labeled by proposition yes iff ϕ holds for the underlying valuation of
p1, . . . , pk. Then, SAT reduces to model checking formula 〈〈Agt〉〉 gyes. The reduc-
tion of SNSAT2 (to model checking LCTL-formulae with nested path quantifiers) is
an extension of the SAT reduction, analogous to the one in [32, 33]. ut

As it turns out, the complexity of CTL+ does not increase when we change the
models to implicit concurrent game structures: It is still ∆ P

2 .

Theorem 21. Model checking CTL+ over implicit CGS’s is ∆ P
2 -complete with re-

spect to the size of the model and the length of the formula.

Proof (Sketch). The lower bound follows from Theorem 5 and Proposition 1.
For the upper bound, we observe that the CTL+ model checking algorithm

in [38] verifies M,q |= Eγ by guessing a finite history h with length |StM| · |γ|,
and then checking γ on h. We recall that Eγ ≡ 〈〈Agt〉〉γ . Thus, for a concurrent
game structure, each transition in h can be determined by guessing an action profile
in O(|Agt|) steps, calculating ô wrt the guessed profile, and the final verification
whether γ holds on the finite sequence h which can be done in deterministic polyno-
mial time (cf. [8]). Consequently, we can implement this procedure by a nondeter-
ministic Turing machine that runs in polynomial time. For nested path quantifiers,
we proceed recursively which shows that the model checking problem can be solved
by a polynomial time Turing machine with calls to an NP-oracle. ut

We will use the last result in the analysis of ATL+ in Section 4.3.

4.3 ATL∗ and ATL+

Theorem 22. Model checking ATL∗Ir and ATL∗ir over implicit CGS’s is PSPACE-
complete with respect to the size of the model and the length of the formula.

Proof. The lower bound follows from Theorem 13 and Proposition 1.
For the upper bound, we model-check M,q |= 〈〈A〉〉γ by guessing a memoryless

strategy sA for coalition A, then we guess a counterstrategy sĀ of the opponents.
Having a complete strategy profile, we proceed as in the proof of Theorem 20 and
check the LTL path formula γ on the resulting (polynomial model) M′ which can
be done in polynomial space (Theorem 13). For nested cooperation modalities, we
proceed recursively. ut

Theorem 23 ([37]). Model checking ATL∗IR over implicit CGS’s is 2EXPTIME-
complete with respect to the size of the model and the length of the formula.

Model Checking Logics of Strategic Ability: Complexity 29

Ir IR ir iR
Simple LCL Σ P

2 Σ P
2 Σ P

2 Σ P
2

LCL ∆ P
3 ∆ P

3 ∆ P
3 ∆ P

3
LATL ∆ P

3 ∆ P
3 ∆ P

3 Undecidable†

LATL+ ∆ P
3 PSPACE ∆ P

3 Undecidable†

LATL∗ PSPACE 2EXPTIME PSPACE Undecidable†

Fig. 7 Overview of the model checking complexity results for implicit CGS. All results are com-
pleteness results. Each cell represents the logic over the language given in the row using the seman-
tics given in the column. † These problems are believed to be undecidable, though no formal
proof has been proposed yet.

Proof. The lower bound follows from Theorem 12 and Proposition 1. For the upper
bound, we have to modify the algorithm given in the proof of Theorem 12 such that
it is capable of dealing with implicit models. More precisely, we need to modify
the construction of the Büchi automaton AM,q,A that is used to accept the (q,A)-
execution trees. Before, we simply checked all the moves of A in polynomial time
and calculated the set of states A is effective for (as the moves are bounded by the
number of transitions). Here, we have to incrementally generate all these moves
from A using ô. This may take exponential time (as there can be exponentially many
moves in terms of the number of states and agents). However, as this can be done
independently of the non-emptiness check, the overall runtime of the algorithm is
still double exponential. ut
Theorem 24 ([37]). Model checking ATL+

Ir, and ATL+
ir over implicit CGS’s is ∆ P

3 -
complete with respect to the size of the model and the length of the formula.

Proof. The lower bounds follow from Theorem 14 and Proposition 1. For the upper
bound we model-check M,q |= 〈〈A〉〉γ by guessing a memoryless strategy sA for
coalition A, and constructing an unlabeled transition system M′ as follows. For each
state qi we evaluate formulae contained in ((ϕ i

0,q
i
0), . . . ,(ϕ

i
ti ,q

i
ti)) according to the

guessed strategy. Then, we introduce a transition from qi to qi
j if (

∧
k=0,..., j−1¬ϕ i

k)∧
ϕ i

j is satisfiable (i.e., there is a countermove of the opponents such that ϕ
j

i is true and
j is the minimal index) . This is the case iff the opponents have a strategy to enforce
the next state to be qi

j. These polynomially many tests can be done by independent
calls of an NP-oracle. The resulting model M′ is an explicit CGS of polynomial size
regarding the number of states and agents. Finally, we apply CTL+ model checking
to Aγ which can be done in time ∆ P

2 . ut
Finally, we consider the case for perfect recall strategies. The lower and upper

bound directly follow from the proof of Theorem 15.

Theorem 25 ([8]). Model checking ATL+
IR over implicit CGS’s is PSPACE-complete

with respect to the size of the model and the length of the formula.

A summary of complexity results for the alternative representation/measure of
the input is presented in Figure 7. It turns out that, when considering the finer-
grained representation that comes along with a measure based on the number of

30 Nils Bulling, Jürgen Dix, Wojciech Jamroga

states, agents, and an encoded transition function rather than just the number of
transitions, the complexity of model checking LATL seems distinctly harder than
before for games with perfect information, and only somewhat harder for imperfect
information. In particular, the problem falls into the same complexity classes for
imperfect and perfect information analysis, which is rather surprising, considering
the results from Section 3. Finally, the change of perspective does not influence the
complexity of model checking of LATL∗ as well as LATL+ at all.

5 Higher-Order Representations of Models

In this section, we summarize very briefly the results for higher-level representa-
tions of multi-agent systems (e.g., concurrent programs, reactive modules, modular
interpreted systems etc.). Sections 3 and 4 presented complexity results for model
checking with respect to models where global states of the system were represented
explicitly. Most multi-agent systems, however, are characterized by an immensely
huge state space. In such cases, one would like to define the model in terms of a
compact high-level representation, plus an unfolding procedure that defines the re-
lationship between representations and actual models of the logic (and hence also
the semantics of the logic with respect to the compact representation). Of course,
unfolding a higher-level description to an explicit model involves usually an expo-
nential blowup in its size.

Consider, for example, a system whose state space is defined by r boolean vari-
ables (binary attributes). Obviously, the number of global states in the system is
n = 2r. A more general approach is presented in [34], where the “high-level de-
scription” is defined in terms of concurrent programs, that can be used for simulat-
ing Boolean variables, but also for processes or agents acting in parallel.

A concurrent program P is composed of k concurrent processes, each described
by a labeled transition system Pi = 〈Sti,Acti,Ri,Πi,πi〉, where Sti is the set of local
states of process i, Acti is the set of local actions, Ri ⊆ Sti×Acti×Sti is a transition
relation, and Πi,πi are the set of local propositions and their valuation. The behavior
of program P is given by the product automaton of P1, . . . ,Pk under the assumption
that processes work asynchronously, actions are interleaved, and synchronization is
obtained through common action names.

Theorem 26 ([34]). Model checking CTL in concurrent programs is PSPACE-
complete with respect to the number of local states and agents (processes), and
the length of the formula.

Concurrent programs seem to be sufficient to reason about purely temporal prop-
erties of systems, but not quite so for reasoning about agents’ strategies and abili-
ties. For the latter kind of analysis, we need to allow for more sophisticated interfer-
ence between agents’ actions (and enable modeling agents that play synchronously).
ATL model checking for higher-order representations was first analyzed in [24]

Model Checking Logics of Strategic Ability: Complexity 31

over a class of simple reactive modules, based on synchronous product of local mod-
els. However, even simple reactive modules do not allow to model interference be-
tween agents’ actions. Because of that, we use modular interpreted systems [30, 28],
that draw inspiration from interpreted systems [18], reactive modules [2], and are in
many respects similar to ISPL specifications [44].

A modular interpreted system (MIS) is defined as a tuple M= 〈Agt,env,Act,In〉,
where Agt = {a1, . . . ,ak} is a set of agents, env is the environment, Act is a set of
actions, and In is a set of symbols called interaction alphabet. Each agent has the
following internal structure: ai = 〈Sti,di,outi, ini,oi,Πi,πi〉, where:

• Sti is a set of local states,
• di : Sti→P(Act) defines local availability of actions; for convenience we addi-

tionally define the set of situated actions as Di = {〈qi,α〉 | qi ∈ Sti,α ∈ di(qi)},
• outi, ini are interaction functions; outi : Di → In refers to the influence that a

given situated action (of agent ai) may possibly have on the external world, and
ini : Sti×Ink →In translates external manifestations of the other agents (and
the environment) into the “impression” that they make on ai’s transition function
depending on the local state of ai,

• oi : Di×In→ Sti is a (deterministic) local transition function,
• Πi is a set of local propositions of agent ai where we require that Πi and Π j are

disjunct when i 6= j, and
• πi : Πi→P(Sti) is a valuation of these propositions.

The environment env has the same structure as an agent except that it does not
perform actions.

The unfolding of a MIS M to a concurrent game structure follows by the syn-
chronous product of the agents (and the environment) in M, with interaction sym-
bols being passed between local transition functions at every step. The unfold-
ing can also determine indistinguishability relations as follows 〈q1, . . . ,qk,qenv〉 ∼i
〈q′1, . . . ,q′k,q′env〉 iff qi = q′i, thus yielding a full iCGS. This way the semantics of both
ATLIR/ATLIr and ATLir is extended to MIS.

Theorem 27 ([24]). Model checking ATLIr and ATLIR in simple reactive modules
is EXPTIME-complete with respect to the number of local states and agents, and
the length of the formula.

Since simple reactive modules can be embedded in modular interpreted systems,
and the model checking algorithm from [24] can be extended to MIS, we get the
following.

Theorem 28 ([28]). Model checking ATLIr and ATLIR in modular interpreted sys-
tems is EXPTIME-complete with respect to the number of local states and agents,
and the length of the formula.

Note that this means that systems with no interference between agents are not
easier to handle than the general case.

The real surprise, however, comes to light when we study the model checking
complexity for imperfect information agents.

32 Nils Bulling, Jürgen Dix, Wojciech Jamroga

Theorem 29 ([30, 28]). Model checking ATLir in modular interpreted systems is
PSPACE-complete with respect to the number of local states and agents, and the
length of the formula.

Thus, model checking in modular interpreted systems seems to be easier for im-
perfect rather than perfect information strategies (while it appears to be distinctly
harder for explicit models, cf. Section 3). There are two reasons for that. The more
immediate is that agents with limited information have fewer available strategies
than if they had perfect information about the current (global) state of the game.
Generally, the difference is exponential in the number of agents. More precisely, the
number of perfect information strategies is double exponential with respect to the
number of agents and their local states, while there are “only” exponentially many
uniform strategies – and that settles the results in favor of imperfect information.

The other reason is more methodological. While model checking imperfect in-
formation is easier when we are given a particular MIS, modular interpreted systems
may provide more compact representation to systems where all the agents have per-
fect information by definition. In particular, the most compact MIS representation
of a given ICGS M can be exponentially larger than the most compact MIS repre-
sentation of M with the epistemic relations removed. In the former case, the MIS
must encode the epistemic relations explicitly. In the latter case, the epistemic as-
pect is ignored, which gives some extra room for encoding the transition relation
more efficiently.

On the other hand, it should be noted that for systems of agents with “reasonably
imperfect information”, i.e., ones where the number of each agent’s local states is
logarithmic in the number of global states of the system, the optimal MIS encodings
for perfect and imperfect information are the same. Still, model checking ATLIR is
EXPTIME-complete and model checking ATLir is PSPACE-complete, which sug-
gests that imperfect information can be beneficial in practical verification.

Finally, we report two results that are straightforward extensions of Theorem 19
and Theorem 29, respectively.

Theorem 30. Model checking CLIR, CLIr, CLir, and CLiR is ∆ P
3 -complete with

respect to the number of local states and agents in the MIS and the length of the
formula. Moreover, it is Σ P

2 -complete for the “simple” variants of CL.

Theorem 31. Model checking ATL+
ir and ATL∗ir in modular interpreted systems is

PSPACE-complete with respect to the number of local states and agents, and the
length of the formula.

6 Summary

Figure 8 gives a summary of the results. The results for ATLIr and ATLir form
an intriguing pattern. When we compare model checking agents with perfect vs.
imperfect information, the first problem appears to be much easier against explicit

Model Checking Logics of Strategic Ability: Complexity 33

Logic \ Input m, l n,k, l nlocal ,k, l

Simple CLiR,ir,IR,Ir AC0 [37] Σ P
2 -complete Σ P

2 -complete
CLiR,ir,IR,Ir P-complete ∆ P

3 -complete ∆ P
3 -complete

ATLIr,IR P-complete [4] ∆ P
3 -compl. [37, 33] EXPTIME-compl. [24]

ATLir ∆ P
2 -compl. [49, 33] ∆ P

3 -compl. [33] PSPACE-compl. [28]
ATLiR Undecidable† Undecidable† Undecidable†

ATL+
Ir ∆ P

3 -complete [49] ∆ P
3 -complete EXPTIME-hard

ATL+
ir ∆ P

3 -complete [49] ∆ P
3 -complete PSPACE-complete

ATL+
IR PSPACE-complete [8] PSPACE-complete [8] EXPTIME-hard

ATL+
iR Undecidable† Undecidable† Undecidable†

ATL∗Ir PSPACE-complete [49] PSPACE-complete EXPTIME-hard
ATL∗ir PSPACE-compl. [49] PSPACE-complete PSPACE-complete
ATL∗IR 2EXPTIME-compl. [4] 2EXPTIME-compl. EXPTIME-hard
ATL∗iR Undecidable† Undecidable† Undecidable†

Fig. 8 Overview of the complexity results. All results except for “Simple CL” are completeness
results. The results with no given reference have been established in this chapter for the first time
(usually by a simple extension of existing proofs). The fields that report only hardness results
correspond to problems which are still open. Symbols n and m stand for the number of states and
transitions, respectively, and k is the number of agents in the model, l is the length of the formula,
and nlocal is the number of local states in a concurrent program, simple reactive module, or modular
interpreted system. † These problems are believed to be undecidable, though no formal proof
has been proposed yet (cf. Conjectures 1, 2, and 3).

models measured with the number of transitions. Then, we get the same complexity
class against explicit models measured with the number of states and agents. Finally,
model checking imperfect information turns out to be easier than model checking
perfect information for modular interpreted systems. Why is that so?

The number of available strategies (relative to the size of input parameters) is
the crucial factor here. It is exponential in the number of global states. For uni-
form strategies, there are usually much less of them but still exponentially many
in general. Thus, the fact that perfect information strategies can be synthesized in-
crementally has a substantial impact on the complexity of the problem. However,
measured in terms of local states and agents, the number of all strategies is double
exponential, while there are “only” exponentially many uniform strategies– which
settles the results in favor of imperfect information. It should be also noted that
the representation of a concurrent game structure by a MIS can be in general more
compact than that of an iCGS. In the latter case, the MIS is assumed to encode the
epistemic relations explicitly. In the case of CGS, the epistemic aspect is ignored,
which gives some extra room for encoding the transition relation more efficiently.

What have we learned and what are the challenges ahead? An important out-
come of theoretical research on verification is to determine the precise boundary
between model checking problems that are decidable and those that are not. As
we have shown, decidability depends very much on the underlying language, the
chosen logic and whether we consider perfect or imperfect recall. But even if the

34 Nils Bulling, Jürgen Dix, Wojciech Jamroga

problem is decidable, the precise complexity of the problem depends on the chosen
representation and ranges from P- to 2EXPTIME-completeness.

It must be noted that Figure 8 is filled mostly with complexity classes that are
generally considered intractable. Of these, the undecidability hypotheses for ATLiR
are obviously the most pessimistic. But what does an undecidability result tell us? It
shows that there is no general algorithm solving the problem at hand. Yet one is of-
ten not interested in model checking all possible specifications that can be expressed
in the underlying logic. For most practical purposes, the set of interesting formulas
to be model checked is quite small. This raises the question: Which subsets of the
logics are decidable? A similar question can be stated for the complexity results re-
ported here: 2EXPTIME completeness concerns all formulas of LATL∗ , but suitable
fragments can have much lower complexity. These are interesting questions to be
investigated in the future.

References

1. Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA user man-
ual. In: Proceedings of CAV’98, Lecture Notes in Computer Science, vol. 1427, pp. 521–525
(1998)

2. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design 15(1), 7–48
(1999)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: Proceedings
of the 38th Annual Symposium on Foundations of Computer Science (FOCS), pp. 100–109.
IEEE Computer Society Press (1997)

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49, 672–713 (2002)

5. Beeri, C.: On the menbership problem for functional and multivalued dependencies in rela-
tional databases. ACM Trans. Database Syst. 5(3), 241–259 (1980)

6. Broersen, J., Herzig, A., Troquard, N.: A STIT-extension of ATL. In: JELIA, pp. 69–81 (2006)
7. Bulling, N.: Model checking coalition logic on implicit models is ∆3-complete. In: IfI Tech-

nical Reports (2010)
8. Bulling, N., Jamroga, W.: Verifying agents with memory is harder than it seemed. In: Pro-

ceedings of AAMAS 2010. ACM Press, Toronto, Canada (2010)
9. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching

time temporal logic. In: Proceedings of Logics of Programs Workshop, Lecture Notes in
Computer Science, vol. 131, pp. 52–71 (1981)

10. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions on Programming Languages and Sys-
tems 8(2), 244–263 (1986)

11. Dembiński, P., Janowska, A., Janowski, P., Penczek, W., Półrola, A., Szreter, M., Woźna,
B., Zbrzezny, A.: Verics: A tool for verifying timed automata and estelle specifications. In:
Proceedings of the of the 9th Int. Conf. on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’03), LNCS, vol. 2619, pp. 278–283. Springer (2003)

12. van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: Proceedings of
LICS’2003, pp. 208–217. IEEE Computer Society Press (2003)

13. Emerson, E., Halpern, J.: ”sometimes” and ”not never” revisited: On branching versus linear
time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

14. Emerson, E.A.: Temporal and modal logic. In: J. van Leeuwen (ed.) Handbook of Theoretical
Computer Science, vol. B, pp. 995–1072. Elsevier Science Publishers (1990)

Model Checking Logics of Strategic Ability: Complexity 35

15. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. In: SFCS
’88: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp.
328–337. IEEE Computer Society, Washington, DC, USA (1988)

16. Emerson, E.A., Lei, C.L.: Modalities for model checking: Branching time logic strikes back.
Science of Computer Programming 8(3), 275–306 (1987)

17. Emerson, E.A., Sistla, A.P.: Deciding branching time logic. In: STOC ’84: Proceedings of the
sixteenth annual ACM symposium on Theory of computing, pp. 14–24. ACM, New York, NY,
USA (1984)

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press:
Cambridge, MA (1995)

19. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math.
Systems Theory 17, 13–27 (1984)

20. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of the
Alternating-time Temporal Logic (2003)

21. Goranko, V., Jamroga, W.: Comparing semantics of logics for multi-agent systems. Synthese
139(2), 241–280 (2004)

22. Harding, A., Ryan, M., Schobbens, P.Y.: Approximating ATL* in ATL. In: VMCAI ’02:
Revised Papers from the Third International Workshop on Verification, Model Checking, and
Abstract Interpretation, pp. 289–301. Springer-Verlag, London, UK (2002)

23. Hintikka, J.: Logic, Language Games and Information. Clarendon Press : Oxford (1973)
24. van der Hoek, W., Lomuscio, A., Wooldridge, M.: On the complexity of practical ATL model

checking. In: P. Stone, G. Weiss (eds.) Proceedings of AAMAS’06, pp. 201–208 (2006)
25. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge and time: Alternating-time Tem-

poral Epistemic Logic and its applications. Studia Logica 75(1), 125–157 (2003)
26. Immerman, N.: Number of quantifiers is better than number of tape cells. Journal of Computer

and System Sciences 22(3), 384 – 406 (1981)
27. Jamroga, W.: A temporal logic for stochastic multi-agent systems. In: Proceedings of

PRIMA’08, LNCS, vol. 5357, pp. 239–250 (2008)
28. Jamroga, W., Ågotnes, T.: Modular interpreted systems: A preliminary report. Tech. Rep.

IfI-06-15, Clausthal University of Technology (2006)
29. Jamroga, W., Ågotnes, T.: Constructive knowledge: What agents can achieve under incomplete

information. Journal of Applied Non-Classical Logics 17(4), 423–475 (2007)
30. Jamroga, W., Ågotnes, T.: Modular interpreted systems. In: Proceedings of AAMAS’07, pp.

892–899 (2007)
31. Jamroga, W., Dix, J.: Do agents make model checking explode (computationally)? In:

M. Pĕchouc̆ek, P. Petta, L. Varga (eds.) Proceedings of CEEMAS 2005, Lecture Notes in
Computer Science, vol. 3690, pp. 398–407. Springer Verlag (2005)

32. Jamroga, W., Dix, J.: Model checking ATLir is indeed ∆ P
2 -complete. In: Proceedings of EU-

MAS’06 (2006)
33. Jamroga, W., Dix, J.: Model checking abilities of agents: A closer look. Theory of Computing

Systems 42(3), 366–410 (2008)
34. Kupferman, O., Vardi, M., Wolper, P.: An automata-theoretic approach to branching-time

model checking. Journal of the ACM 47(2), 312–360 (2000)
35. Laroussinie, F.: About the expressive power of CTL combinators. Information Processing

Letters 54(6), 343–345 (1995)
36. Laroussinie, F., Markey, N., Oreiby, G.: Expressiveness and complexity of ATL. Tech. Rep.

LSV-06-03, CNRS & ENS Cachan, France (2006)
37. Laroussinie, F., Markey, N., Oreiby, G.: On the expressiveness and complexity of atl. LMCS

4, 7 (2008)
38. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking CTL+ and FCTL is hard. In:

Proceedings of FoSSaCS’01, Lecture Notes in Computer Science, vol. 2030, pp. 318–331.
Springer (2001)

39. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear
specification. In: POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pp. 97–107. ACM, New York, NY, USA (1985)

36 Nils Bulling, Jürgen Dix, Wojciech Jamroga

40. van Otterloo, S., van der Hoek, W., Wooldridge, M.: Knowledge as strategic ability. Electronic
Lecture Notes in Theoretical Computer Science 85(2) (2003)

41. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation
12(1), 149–166 (2002)

42. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS, pp. 46–57 (1977)
43. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL ’89: Proceedings of

the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp.
179–190. ACM, New York, NY, USA (1989)

44. Raimondi, F.: Model checking multi-agent systems. Ph.D. thesis, University College London
(2006)

45. Raimondi, F., Lomuscio, A.: Automatic verification of deontic interpreted systems by model
checking via OBDD’s. In: R. de Mántaras, L. Saitta (eds.) Proceedings of ECAI, pp. 53–57
(2004)

46. Rosner, R.: Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Institute of Science
(1992)

47. Schewe, S.: ATL* satisfiability is 2ExpTime-complete. In: Proceedings of ICALP 2008, Lec-
ture Notes in Computer Science, vol. 5126, pp. 373–385. Springer-Verlag (2008)

48. Schnoebelen, P.: The complexity of temporal model checking. In: Advances in Modal Logics,
Proceedings of AiML 2002. World Scientific (2003)

49. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in Theoretical
Computer Science 85(2) (2004)

50. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal of
ACM 32(3), 733–749 (1985)

51. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification
(preliminary report). In: Proceedings of the First Annual IEEE Symposium on Logic in Com-
puter Science (LICS 1986), pp. 332–344. IEEE Computer Society Press (1986)

52. Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: ATL satisfiability is indeed EXPTIME-
complete. Journal of Logic and Computation 16(6), 765–787 (2006)

53. Wilke, T.: CTL+ is exponentially more succint than CTL. In: Proceedings of FST&TCS ’99,
LNCS, vol. 1738, pp. 110–121 (1999)

